1
|
Fard NJH, Jahedi F, Turner A. Microplastics and nanoplastics in tea: Sources, characteristics and potential impacts. Food Chem 2025; 466:142111. [PMID: 39608112 DOI: 10.1016/j.foodchem.2024.142111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Recent scientific studies have raised concerns about the presence and potential impacts of microplastics and nanoplastics (MNPs) in tea-based drinks. This review critically examines publications relating to MNPs in tea, with focus on the type of sample involved, methods and techniques employed to isolate and identify MNPs, and the main qualitative and quantitative findings. Sources of MNPs in tea include production water, plastic packaging and contaminated tea leaves but the most important source is teabags when steeped in boiling water. Here, more than 109 MNPs have been reported to be released per plastic teabag. However, significant quantities of MNPs are also released when plastic-cellulosic composite and biodegradable bags are steeped. Discrepancies among different studies partly reflect inter-brand and inter-material differences, but a more general cause is the adoption of different analytical protocols, including different size cutoffs used during isolation and constrained by identification. Some studies have also reported leaching of plastic additives and residues on steeping, although it is not clear whether these are released from the intact teabags or MNPs that are subsequently mobilised. As teabags generate concentrations of MNPs greater than other beverages or foodstuffs, potential impacts on human health and the environment are a concern and require further study.
Collapse
Affiliation(s)
- Neamatollah Jaafarzadeh Haghighi Fard
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Faezeh Jahedi
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
2
|
Hayrapetyan R, Séverin I, Matviichuk O, Da Costa L, Juan C, Juan-Garcia A, Moche H, Platel A, Cariou R, Chagnon MC. Hazard assessment of fenozan, a released non-intentionally added substance from polyester-based can coating. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1692-1706. [PMID: 39401250 DOI: 10.1080/19440049.2024.2414438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 11/26/2024]
Abstract
Since the safety of new-generation polyester-based internal coatings regarding the migration of non-intentionally added substances (NIAS) is poorly documented, studies are needed to identify NIAS originating from these food-contact materials (FCM). The aim of this study was to identify volatile and semi-volatile NIAS from polyester-based coatings in order to assess their hazard and ensure consumers' safety with regard to exposure from canned food. Extraction and migration tests were carried out on a single polyester-coated tin plate (5 batches) using two solvents: acetonitrile and ethanol 95%, then FCM's extracts and migrates were analysed by GC-MS. An antioxidant degradation (hydrolysis) product, 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid or fenozan (CAS RN: 20170-32-5), was identified and confirmed by reference standard in all migrates. To assess fenozan's toxicity, several in vitro bioassays, such as the Ames test (to assess point mutation), the micronucleus assay (to detect chromosomal aberrations), and the iodide uptake assay (to study one mode of action for thyroid disruption) were conducted. Fenozan was negative in the Ames test on three strains of S. typhimurium (TA98, TA100, and TA1535) and on one strain of E.coli (WP2), with and without metabolic activation system (S9 mix) using direct incorporation and pre-incubation methods. The in vitro micronucleus assay conducted on HepG2 cells also exhibited a negative response following a 4-hour treatment with the S9 mix, and a 48-hour treatment without the S9 mix. A weak inhibitory effect was obtained when testing fenozan in the iodide uptake assay using rat thyroid FRTL-5 cells. Significant inhibition started from 800 µM of fenozan, with a maximal inhibition of almost 47% at 1000 µM. The findings indicate that fenozan exhibits an anti-thyroid activity in vitro.
Collapse
Affiliation(s)
- Ruzanna Hayrapetyan
- CTM UMR1231, Nutrition Physiology and Toxicology Team (NUTox), Dijon, France
| | - Isabelle Séverin
- CTM UMR1231, Nutrition Physiology and Toxicology Team (NUTox), Dijon, France
| | - Olga Matviichuk
- Oniris, INRAE, LABERCA, Nantes, France
- Metal Packaging Research Laboratory (LEREM), Montataire, France
| | - Lorine Da Costa
- CTM UMR1231, Nutrition Physiology and Toxicology Team (NUTox), Dijon, France
| | | | | | - Hélène Moche
- ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé Humaine, Univ. Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Anne Platel
- ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé Humaine, Univ. Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | | | | |
Collapse
|
3
|
Li M, Zhao X, Shi H, Zhang Q, Wang Z, Lv Q. Non-targeted identification and risk assessment of unknown substances in disposable plastic tableware by GC-Orbitrap HRMS. Food Chem 2024; 454:139837. [PMID: 38820634 DOI: 10.1016/j.foodchem.2024.139837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Disposable plastic tableware was widely used and it was particularly important to identify potential hazardous substances in it and evaluate the risk to humans health. In this study, 85 substances were identified in 60 samples (22 bowls, 20 sporks, and 18 straws) by methanol extraction and non-targeted analysis using GC-Orbitrap HRMS. Subsequently, 14 high-risk substances were further screened and their migration in the samples was measured in three food simulants. Finally, based on the proposed safety limit assessment scheme for EU- authorized and unauthorized substances, the risk assessment of exposure to high-risk substances in disposable plastic tableware was performed for three age groups. The results showed that the dibutyl phthalate and bis(2-ethylhexyl) phthalate in some samples exceeded the safety limit value. Overall, the risk of bowls was lower than spock and straws, and the potential exposure risk for young children was higher than that of adults and older children.
Collapse
Affiliation(s)
- Meiping Li
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China.
| | - Xiying Zhao
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China; Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Haoyang Shi
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China; Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qing Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Zhijuan Wang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qing Lv
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
4
|
Szabo D, Falconer TM, Fisher CM, Heise T, Phillips AL, Vas G, Williams AJ, Kruve A. Online and Offline Prioritization of Chemicals of Interest in Suspect Screening and Non-targeted Screening with High-Resolution Mass Spectrometry. Anal Chem 2024; 96:3707-3716. [PMID: 38380899 PMCID: PMC10918621 DOI: 10.1021/acs.analchem.3c05705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Recent advances in high-resolution mass spectrometry (HRMS) have enabled the detection of thousands of chemicals from a single sample, while computational methods have improved the identification and quantification of these chemicals in the absence of reference standards typically required in targeted analysis. However, to determine the presence of chemicals of interest that may pose an overall impact on ecological and human health, prioritization strategies must be used to effectively and efficiently highlight chemicals for further investigation. Prioritization can be based on a chemical's physicochemical properties, structure, exposure, and toxicity, in addition to its regulatory status. This Perspective aims to provide a framework for the strategies used for chemical prioritization that can be implemented to facilitate high-quality research and communication of results. These strategies are categorized as either "online" or "offline" prioritization techniques. Online prioritization techniques trigger the isolation and fragmentation of ions from the low-energy mass spectra in real time, with user-defined parameters. Offline prioritization techniques, in contrast, highlight chemicals of interest after the data has been acquired; detected features can be filtered and ranked based on the relative abundance or the predicted structure, toxicity, and concentration imputed from the tandem mass spectrum (MS2). Here we provide an overview of these prioritization techniques and how they have been successfully implemented and reported in the literature to find chemicals of elevated risk to human and ecological environments. A complete list of software and tools is available from https://nontargetedanalysis.org/.
Collapse
Affiliation(s)
- Drew Szabo
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Travis M. Falconer
- Forensic
Chemistry Center, Office of Regulatory Science, Office of Regulatory
Affairs, US Food and Drug Administration, Cincinnati, Ohio 45237, United States
| | - Christine M. Fisher
- Center
for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland 20740, United States
| | - Ted Heise
- MED
Institute Inc, West Lafayette, Indiana 47906, United States
| | - Allison L. Phillips
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Corvallis, Oregon 97333, United States
| | - Gyorgy Vas
- VasAnalytical, Flemington, New Jersey 08822, United States
- Intertek
Pharmaceutical Services, Whitehouse, New Jersey 08888, United States
| | - Antony J. Williams
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, US Environmental Protection
Agency, Durham, North Carolina 27711, United States
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department
of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
5
|
Yang D, Yang H, Shi M, Jia X, Sui H, Liu Z, Wu Y. Advancing food safety risk assessment in China: development of new approach methodologies (NAMs). FRONTIERS IN TOXICOLOGY 2023; 5:1292373. [PMID: 38046399 PMCID: PMC10690935 DOI: 10.3389/ftox.2023.1292373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Novel techniques and methodologies are being developed to advance food safety risk assessment into the next-generation. Considering the shortcomings of traditional animal testing, new approach methodologies (NAMs) will be the main tools for the next-generation risk assessment (NGRA), using non-animal methodologies such as in vitro and in silico approaches. The United States Environmental Protection Agency and the European Food Safety Authority have established work plans to encourage the development and application of NAMs in NGRA. Currently, NAMs are more commonly used in research than in regulatory risk assessment. China is also developing NAMs for NGRA but without a comprehensive review of the current work. This review summarizes major NAM-related research articles from China and highlights the China National Center for Food Safety Risk Assessment (CFSA) as the primary institution leading the implementation of NAMs in NGRA in China. The projects of CFSA on NAMs such as the Food Toxicology Program and the strategies for implementing NAMs in NGRA are outlined. Key issues and recommendations, such as discipline development and team building, are also presented to promote NAMs development in China and worldwide.
Collapse
Affiliation(s)
| | | | | | | | - Haixia Sui
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhaoping Liu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | | |
Collapse
|
6
|
Chen Y, Li H, Huang H, Zhang B, Ye Z, Yu X, Shentu X. Recent Advances in Non-Targeted Screening of Compounds in Plastic-Based/Paper-Based Food Contact Materials. Foods 2023; 12:4135. [PMID: 38002192 PMCID: PMC10670899 DOI: 10.3390/foods12224135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Ensuring the safety of food contact materials has become a pressing concern in recent times. However, detecting hazardous compounds in such materials can be a complex task, and traditional screening methods may not be sufficient. Non-targeted screening technologies can provide comprehensive information on all detectable compounds, thereby supporting the identification, detection, and risk assessment of food contact materials. Nonetheless, the non-targeted screening of food contact materials remains a challenging issue. This paper presents a detailed review of non-targeted screening technologies relying on high-resolution mass spectrometry for plastic-based and paper-based food contact materials over the past five years. Methods of extracting, separating, concentrating, and enriching compounds, as well as migration experiments related to non-targeted screening, are examined in detail. Furthermore, instruments and devices of high-resolution mass spectrometry used in non-targeted screening technologies for food contact materials are discussed and summarized. The research findings aim to provide a theoretical basis and practical reference for the risk management of food contact materials and the development of relevant regulations and standards.
Collapse
Affiliation(s)
- Ya Chen
- College of Life Science, China Jiliang University, Hangzhou 310018, China;
| | - Hongyan Li
- Zhejiang Institute of Product Quality and Safety Science, Hangzhou 310018, China;
| | - Haizhi Huang
- College of Life Science, China Jiliang University, Hangzhou 310018, China;
| | - Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (B.Z.); (Z.Y.); (X.Y.)
| |
Collapse
|
7
|
Bou-Maroun E, Dahbi L, Dujourdy L, Ferret PJ, Chagnon MC. Migration Studies and Endocrine Disrupting Activities: Chemical Safety of Cosmetic Plastic Packaging. Polymers (Basel) 2023; 15:4009. [PMID: 37836058 PMCID: PMC10574997 DOI: 10.3390/polym15194009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The endocrine activity and endocrine disruptor (ED) chemical profiles of eleven plastic packaging materials covering five major polymer types (3PET, 1HDPE, 4LDPE, 2 PP, and 1SAN) were investigated using in vitro cell-based reporter-gene assays and a non-targeted chemical analysis using gas chromatography coupled to mass spectrometry (GC-MS). To mimic cosmetic contact, six simulants (acidic, alkaline, neutral water, ethanol 30%, glycerin, and paraffin) were used in migration assays performed by filling the packaging with simulant. After 1 month at 50 °C, simulants were concentrated by Solid Phase Extraction (SPE) or Liquid-Liquid Extraction (LLE). The migration profiles of seven major endocrine disrupting chemicals detected from GC-MS in the different materials and simulants were compared with Estrogen Receptor (ER) and Androgen Receptor (AR) activities. With low extraction of ED chemicals in aqueous simulants, no endocrine activities were recorded in the leachates. Paraffin was shown to be the most extracting simulant of antiandrogenic chemicals, while glycerin has estrogenic activities. Overall, ED chemical migration in paraffin was correlated with hormonal activity. The NIAS 2,4-di-tert-butyl phenol and 7,9-di-tert-butyl1-oxaspiro (4,5) deca-6,9-diene-2,8-dione were two major ED chemicals present in all polymers (principally in PP and PE) and in the highest quantity in paraffin simulant. The use of glycerin and liquid paraffin as cosmetic product simulants was demonstrated to be relevant and complementary for the safety assessment of released compounds with endocrine activities in this integrated strategy combining bioassays and analytical chemistry approaches.
Collapse
Affiliation(s)
- Elias Bou-Maroun
- PAM UMR A 02.102, Food and Microbiological Processes, Institut Agro, Université Bourgogne Franche-Comté, 1 Esplanade Erasme, F-21000 Dijon, France
| | - Laurence Dahbi
- Derttech “Packtox”, NUTOX, INSERM U1231, Université Bourgogne Franche-Comté, F-21000 Dijon, France; (L.D.); (M.-C.C.)
| | - Laurence Dujourdy
- Institut Agro Dijon, Service d’Appui à la Recherche, F-21000 Dijon, France;
| | - Pierre-Jacques Ferret
- Safety Assessment Department, Pierre Fabre Dermo-Cosmétique, 3 Avenue Hubert Curien, 31035 Toulouse, France;
| | - Marie-Christine Chagnon
- Derttech “Packtox”, NUTOX, INSERM U1231, Université Bourgogne Franche-Comté, F-21000 Dijon, France; (L.D.); (M.-C.C.)
| |
Collapse
|
8
|
Liu Z, Yu H, Lu L, Lv X, Ju G, Zhao J, Sun F, Wang Y, Yu W. Simultaneous Determination and Exposure Assessment of Antioxidants in Food Contact Plastic Materials by HPLC-MS/MS. J Food Prot 2023:100121. [PMID: 37355008 DOI: 10.1016/j.jfp.2023.100121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Antioxidants are widely used to prevent oxidative degradation of food-contact plastics materials. However, when plastic products come into contact with food, antioxidants may contaminate food. Herein, twenty-three kinds of possible antioxidants were monitored in 257 products of seven polymers. The migration of antioxidants into the food simulants at different temperatures and times was detected by using HPLC-MS/MS. Risk assessment was performed based on the EU, U.S. FDA methods and Monte Carlo simulation. The antioxidants migrated mainly to fatty food simulant, with the highest concentration and occurrence frequency of Irgafos 168, followed byIrganox 1010, Irganox 1076, and Antioxidant LTDP in polyethylene terephthalate, polyvinyl chloride, polypropylene, polyethylene. No antioxidants were detected in polystyrene, polycarbonate, and polyvinylidene chloride. Additionally, antioxidants exhibited the highest detection rate of 0.81 in polyethylene. Risk assessment demonstrated that the antioxidants have no obvious health risk to the exposed population. However, the risk of polypropylene was relatively high compared to other polymers.
Collapse
Affiliation(s)
- Ze Liu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Hongwei Yu
- Qingdao Municipal Center for Disease Control and Prevention, 175 Shandong Road, Qingdao 266033, Shandong, China
| | - Li Lu
- Qingdao Municipal Center for Disease Control and Prevention, 175 Shandong Road, Qingdao 266033, Shandong, China
| | - Xiaojing Lv
- Qingdao Municipal Center for Disease Control and Prevention, 175 Shandong Road, Qingdao 266033, Shandong, China
| | - Guangxiu Ju
- Qingdao Municipal Center for Disease Control and Prevention, 175 Shandong Road, Qingdao 266033, Shandong, China
| | - Jinquan Zhao
- Qingdao Municipal Center for Disease Control and Prevention, 175 Shandong Road, Qingdao 266033, Shandong, China
| | - Fenglin Sun
- Qingdao Municipal Center for Disease Control and Prevention, 175 Shandong Road, Qingdao 266033, Shandong, China
| | - Yong Wang
- Shimadzu (China) Co.,LTD. Beijing Branch, 16 Chaoyangmenwai Street, Beijing 100020, China
| | - Weisen Yu
- Qingdao Municipal Center for Disease Control and Prevention, 175 Shandong Road, Qingdao 266033, Shandong, China.
| |
Collapse
|
9
|
Schreier VN, Çörek E, Appenzeller-Herzog C, Brüschweiler BJ, Geueke B, Wilks MF, Schilter B, Muncke J, Simat TJ, Smieško M, Roth N, Odermatt A. Evaluating the food safety and risk assessment evidence-base of polyethylene terephthalate oligomers: A systematic evidence map. ENVIRONMENT INTERNATIONAL 2023; 176:107978. [PMID: 37210807 DOI: 10.1016/j.envint.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND The presence of polyethylene terephthalate (PET) oligomers in food contact materials (FCMs) is well-documented. Consumers are exposed through their migration into foods and beverages; however, there is no specific guidance for their safety evaluation. OBJECTIVES This systematic evidence map (SEM) aims to identify and organize existing knowledge and associated gaps in hazard and exposure information on 34 PET oligomers to support regulatory decision-making. METHODS The methodology for this SEM was recently registered. A systematic search in bibliographic and gray literature sources was conducted and studies evaluated for inclusion according to the Populations, Exposures, Comparators, Outcomes, and Study type (PECOS) framework. Inclusion criteria were designed to record hazard and exposure information for all 34 PET oligomers and coded into the following evidence streams: human, animal, organism (non-animal), ex vivo, in vitro, in silico, migration, hydrolysis, and absorption, distribution, metabolism, excretion/toxicokinetics/pharmacokinetics (ADME/TK/PK) studies. Relevant information was extracted from eligible studies and synthesized according to the protocol. RESULTS Literature searches yielded 7445 unique records, of which 96 were included. Data comprised migration (560 entries), ADME/TK/PK-related (253 entries), health/bioactivity (98 entries) and very few hydrolysis studies (7 entries). Cyclic oligomers were studied more frequently than linear PET oligomers. In vitro results indicated that hydrolysis of cyclic oligomers generated a mixture of linear oligomers, but not monomers, potentially allowing their absorption in the gastrointestinal tract. Cyclic dimers, linear trimers and the respective smaller oligomers exhibit physico-chemical properties making oral absorption more likely. Information on health/bioactivity effects of oligomers was almost non-existent, except for limited data on mutagenicity. CONCLUSIONS This SEM revealed substantial deficiencies in the available evidence on ADME/TK/PK, hydrolysis, and health/bioactivity effects of PET oligomers, currently preventing appropriate risk assessment. It is essential to develop more systematic and tiered approaches to address the identified research needs and assess the risks of PET oligomers.
Collapse
Affiliation(s)
- Verena N Schreier
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Emre Çörek
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | | | - Beat J Brüschweiler
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Bern, Switzerland.
| | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Martin F Wilks
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Benoit Schilter
- Consultant of Food Contact Materials Safety, Lausanne, Switzerland.
| | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Thomas J Simat
- Chair of Food Contact Materials, Dresden University of Technology, Dresden, Germany.
| | - Martin Smieško
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Nicolas Roth
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Feng D, Li X, Fan X, Guo Y, Zhang J, Yuan H, Wang W, Zhao T, Han T. Cytotoxicity, endocrine disrupting activity, and chemical analysis of 42 food contact silicone rubber products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162298. [PMID: 36801328 DOI: 10.1016/j.scitotenv.2023.162298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
After migration in 95 % ethanol (food simulant) at 70 °C for 2 h (accelerated conditions), the cytotoxicity and endocrine-disruption activity of 42 food contact silicone products (FCSPs) obtained from the Chinese market were studied. Of 31 kitchenwares, 96 % showed mild or above cytotoxicity (relative growth rate < 80 %) using the HeLa neutral red uptake test; and 84 % showed estrogenic (64 %), anti-estrogenic (19 %), androgenic (42 %), and anti-androgenic (39 %) activities by the Dual-luciferase reporter gene assay. The mold sample induced late phase HeLa apoptosis as detected by Annexin V-FITC/PI double staining flow cytometry, in addition, the migration of mold sample has a higher risk of endocrine disruption at high temperature usage. Encouragingly, 11 bottle nipples had neither cytotoxic nor hormonal activity. Utilizing multiple mass spectrometry techniques, non-intentionally added substances (NIASs) in 31 kitchenwares were analyzed, and the migration levels of 26 organic compounds and 21 metals were quantified, furthermore, the safe risk of single migrant was evaluated through their special migration limit (SML) or threshold of toxicological concern (TTC). Using "nchoosek" statement and Spearman's correlation analysis in MATLAB, the migration of 38 compounds or combinations including metals, plasticizers, methylsiloxanes, and lubricants, had strong correlation with cytotoxicity or hormonal activity. The coexistence of various chemical substances in migrants leads to complex biological toxicity of FCSPs, so it is very important to detect the toxicity of the final products. The combination of bioassays and chemical analyses are valuable tools to facilitate the identification and analyses of FCSPs and migrants that have potential safety risks.
Collapse
Affiliation(s)
- Di Feng
- School of Light Industry, Beijing Technology and Business University, Beijing, China.
| | - Xueyan Li
- School of Light Industry, Beijing Technology and Business University, Beijing, China.
| | - Xiaojie Fan
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Yifan Guo
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Jingwei Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hang Yuan
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Wenjuan Wang
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Tingting Zhao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Tian Han
- School of Light Industry, Beijing Technology and Business University, Beijing, China.
| |
Collapse
|
11
|
Xu X, Guo J, Gao Y, Xue Y, Shi X, Zhang L, Zhang Q, Peng M. Leaching behavior and evaluation of zebrafish embryo toxicity of microplastics and phthalates in take-away plastic containers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21104-21114. [PMID: 36264459 DOI: 10.1007/s11356-022-23675-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Take-away containers are the common food contact materials (FCMs) that are widely used in daily life. However, little is known regarding the effects of different food simulants on the pollution characteristics of microplastics derived from food containers, as well as the toxic effects of the chemical substances that are leached from them. Extracts were obtained by adding organic solvents into plastic containers (polypropylene, PP; polystyrene, PS) to simulate aqueous, alcoholic, and fatty environments. The extracted substances and their toxic effects were then assessed by counting and characterizing the resulting microplastics and performing bio-acute toxicity assays. The results demonstrated that the highest abundance of microplastics occurred in PS containers in fatty environments, which was likely due to the rough surface of the PS. In contrast, organic solvents seemed more conducive to the migration of substances. Furthermore, the PP and PS extracts in an alcohol and fatty environment have significant impacts on zebrafish embryo development, including arrhythmia, pericardial cysts, and spinal curvature.
Collapse
Affiliation(s)
- Xia Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Jun Guo
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Yu Gao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Yingang Xue
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xinlan Shi
- Changzhou Environmental Monitoring Center of Jiangsu Province, Changzhou, 213001, China
| | - Ling Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Qiuya Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Mingguo Peng
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
12
|
Courtier A, Roig B, Cariou S, Cadiere A, Bayle S. Evaluation of Coriolis Micro Air Sampling to Detect Volatile and Semi-Volatile Organic Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196462. [PMID: 36234999 PMCID: PMC9572053 DOI: 10.3390/molecules27196462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
There are several analytical procedures available for the monitoring of volatile organic compounds (VOCs) in the air, which differ mainly on sampling procedures. The Coriolis micro air sampler is a tool normally designed for biological air sampling. In this paper, the Coriolis micro bio collector is used to evaluate its ability to sample organic contaminants sampling and detecting them when combined GC-MS. We also compare the use of the Coriolis micro with a standardized sampling method, which is the use of a lung box with a Nalophan® bag. The results show that the Coriolis micro sampling method is suitable for the sampling of organic contaminants. Indeed, the Coriolis micro allows to sample and detect mainly semi-volatile molecules, while the lung box/Nalophan® bags allow to sample more volatile molecules (highly volatile and volatile). These results were confirmed in the controlled air lab with a slight difference with the field. The simultaneous use of the both techniques allow to sample and detect a larger number of molecules with specific physicochemical properties to each sampling technique. In conclusion, the Coriolis micro can sample and detect volatile organic compounds present in air. We have shown that the development of alternative sampling methods and the use of non-target analysis are essential for a more comprehensive risk assessment. Moreover, the use of the Coriolis micro allows the detection of emergent molecules around the Thau lagoon.
Collapse
Affiliation(s)
- Audrey Courtier
- UPR Chrome, University of Nimes, Rue du Dr G. Salan, CEDEX 1, 30021 Nimes, France
- Correspondence:
| | - Benoit Roig
- UPR Chrome, University of Nimes, Rue du Dr G. Salan, CEDEX 1, 30021 Nimes, France
| | - Stephane Cariou
- Laboratoire des Sciences des Risques (LSR), IMT Alès, 6 Av. de Clavières, 30100 Alès, France
| | - Axelle Cadiere
- UPR Chrome, University of Nimes, Rue du Dr G. Salan, CEDEX 1, 30021 Nimes, France
| | - Sandrine Bayle
- Laboratoire des Sciences des Risques (LSR), IMT Alès, 6 Av. de Clavières, 30100 Alès, France
| |
Collapse
|
13
|
Schreier VN, Appenzeller-Herzog C, Brüschweiler BJ, Geueke B, Wilks MF, Simat TJ, Schilter B, Smieško M, Muncke J, Odermatt A, Roth N. Evaluating the food safety and risk assessment evidence-base of polyethylene terephthalate oligomers: Protocol for a systematic evidence map. ENVIRONMENT INTERNATIONAL 2022; 167:107387. [PMID: 35841728 DOI: 10.1016/j.envint.2022.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Polyethylene terephthalate (PET) oligomers are ubiquitous in PET used in food contact applications. Consumer exposure by migration of PET oligomers into food and beverages is documented. However, no specific risk assessment framework or guidance for the safety evaluating of PET oligomers exist to date. AIM The aim of this systematic evidence map (SEM) is to identify and organize existing knowledge clusters and associated gaps in hazard and exposure information of PET oligomers. Research needs will be identified as an input for chemical risk assessment, and to support future toxicity testing strategies of PET oligomers and regulatory decision-making. SEARCH STRATEGY AND ELIGIBILITY CRITERIA Multiple bibliographic databases (incl. Embase, Medline, Scopus, and Web of Science Core Collection), chemistry databases (SciFinder-n, Reaxys), and gray literature sources will be searched, and the search results will be supplemented by backward and forward citation tracking on eligible records. The search will be based on a single-concept PET oligomer-focused strategy to ensure sensitive and unbiased coverage of all evidence related to hazard and exposure in a data-poor environment. A scoping exercise conducted during planning identified 34 relevant PET oligomers. Eligible work of any study type must include primary research data on at least one relevant PET oligomer with regard to exposure, health, or toxicological outcomes. STUDY SELECTION For indexed scientific literature, title and abstract screening will be performed by one reviewer. Selected studies will be screened in full-text by two independent reviewers. Gray literature will be screened by two independent reviewers for inclusion and exclusion. STUDY QUALITY ASSESSMENT Risk of bias analysis will not be conducted as part of this SEM. DATA EXTRACTION AND CODING Will be performed by one reviewer and peer-checked by a second reviewer for indexed scientific literature or by two independent reviewers for gray literature. SYNTHESIS AND VISUALIZATION The extracted and coded information will be synthesized in different formats, including narrative synthesis, tables, and heat maps. SYSTEMATIC MAP PROTOCOL REGISTRY AND REGISTRATION NUMBER Zenodo: https://doi.org/10.5281/zenodo.6224302.
Collapse
Affiliation(s)
- Verena N Schreier
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | | | - Beat J Brüschweiler
- Federal Food Safety and Veterinary Office (FSVO), Risk Assessment Division, Bern, Switzerland.
| | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Martin F Wilks
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Thomas J Simat
- Chair of Food Contact Materials, Dresden University of Technology, Dresden, Germany.
| | - Benoit Schilter
- Nestlé Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland.
| | - Martin Smieško
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Alex Odermatt
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| | - Nicolas Roth
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Song XC, Canellas E, Dreolin N, Goshawk J, Nerin C. Identification of Nonvolatile Migrates from Food Contact Materials Using Ion Mobility-High-Resolution Mass Spectrometry and in Silico Prediction Tools. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9499-9508. [PMID: 35856243 PMCID: PMC9354260 DOI: 10.1021/acs.jafc.2c03615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The identification of migrates from food contact materials (FCMs) is challenging due to the complex matrices and limited availability of commercial standards. The use of machine-learning-based prediction tools can help in the identification of such compounds. This study presents a workflow to identify nonvolatile migrates from FCMs based on liquid chromatography-ion mobility-high-resolution mass spectrometry together with in silico retention time (RT) and collision cross section (CCS) prediction tools. The applicability of this workflow was evaluated by screening the chemicals that migrated from polyamide (PA) spatulas. The number of candidate compounds was reduced by approximately 75% and 29% on applying RT and CCS prediction filters, respectively. A total of 95 compounds were identified in the PA spatulas of which 54 compounds were confirmed using reference standards. The development of a database containing predicted RT and CCS values of compounds related to FCMs can aid in the identification of chemicals in FCMs.
Collapse
Affiliation(s)
- Xue-Chao Song
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, CPS-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Elena Canellas
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, CPS-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Nicola Dreolin
- Waters
Corporation, Altrincham
Road, SK9 4AX Wilmslow, United Kingdom
| | - Jeff Goshawk
- Waters
Corporation, Altrincham
Road, SK9 4AX Wilmslow, United Kingdom
| | - Cristina Nerin
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, CPS-University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| |
Collapse
|
15
|
Feng D, Zhang X, Yuan H, Li X, Fan X. Identification, migration, and childhood exposure of methylsiloxanes in silicone infant bottle nipples marketed in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154449. [PMID: 35276138 DOI: 10.1016/j.scitotenv.2022.154449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/06/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The analysis, migration, and childhood exposure of methylsiloxanes (MSs) in 32 silicone infant bottle nipples marketed in China were studied. Thirty types of MSs in two families, which included 11 linear MSs (LMSs, L4-L14) and 19 cyclic MSs (CMSs, D4-D22), were identified using gas chromatography-mass spectrometry (GC-MS) associated with standards, retention index, and carbon number rule. In 32 nipples, MSs with molecular weight < 1000 Da and CMSs were predominant. Considering the actual daily use of bottle nipples, the migration tests of MSs from nipples to artificial saliva and reconstituted powdered formula were performed. In particular, the orthogonal test design-QuEChERS-GC/MS was employed to detect MSs in formula. The median migration level of ΣMSs (MW < 1000 Da) in formula was 950.9 ng/mL, which was much higher than that in artificial saliva (98.1 ng/mL). If formula is fed to children aged 3-36 months using bottle nipples according to product instructions, the daily oral exposure to ΣMSs (MW < 1000) for children ranged from 52 to 146 μg/kg bw-day, which were two to five orders of magnitude higher than those of other exposure pathways. In sum, oral intake (especially through formula) may be the predominant pathway of exposure of MSs in children. This research enhances our understanding of the oral exposure risks of MSs and provides useful information that could aid the development of risk management strategies.
Collapse
Affiliation(s)
- Di Feng
- School of Light Industry, Beijing Technology and Business University, Beijing, China.
| | - XiRong Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hang Yuan
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - XueYan Li
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - XiaoJie Fan
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
16
|
Wang CF, Yang XQ, Sun J, Wang T, Cui HR, Yang YB, Ding ZT. New Metabolites, Antifeedant, Insecticidal Activities, and Reciprocal Relationship Between Insect and Fungus from Endophyte Schizophyllum commune. Chem Biodivers 2022; 19:e202200130. [PMID: 35580000 DOI: 10.1002/cbdv.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022]
Abstract
Five new bisabolane sesquiterpenes, a new polyketide, along with seven known compounds, were isolated from endophyte Schizophyllum commune associated with a famous medicinal and edible plant, Gastrodia elata. Most compounds 1-12, and extract indicated antifeedant activities against silkworm with feeding deterrence index (FDI) of 21-85 %, at concentrations of 20 μg/cm2 , 40 μg/cm2 , respectively. Compound 6 indicated obvious insecticidal activity with fatality rate of 60 %, at the concentration of 20 μg/cm2 . Five bisabolane sesquiterpenes, two ergosterols, and a glyceride showed insecticidal synergism by combining with abamectin. Interesting, ergosterol peroxide (13) distributed widely in mushrooms and fungi, was found to have feeding attractant activities on insects and antifungal activity against entomopathogen Beauveria bassiana. The reciprocal relationship should be occurred between S. commune and pests for the fungus produced ergosterol peroxide to attract the pests propagating spore, and its anti-entomopathogen activity was also benefit for the health of insects.
Collapse
Affiliation(s)
- Cui-Fang Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xue-Qiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jing Sun
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Ting Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Han-Rong Cui
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Ya-Bin Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.,College of Pharmacy, Dali University, Dali, 671003, P. R. China
| |
Collapse
|
17
|
Song XC, Canellas E, Dreolin N, Goshawk J, Nerin C. A Collision Cross Section Database for Extractables and Leachables from Food Contact Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4457-4466. [PMID: 35380813 PMCID: PMC9011387 DOI: 10.1021/acs.jafc.2c00724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The chemicals in food contact materials (FCMs) can migrate into food and endanger human health. In this study, we developed a database of traveling wave collision cross section in nitrogen (TWCCSN2) values for extractables and leachables from FCMs. The database contains a total of 1038 TWCCSN2 values from 675 standards including those commonly used additives and nonintentionally added substances in FCMs. The TWCCSN2 values in the database were compared to previously published values, and 85.7, 87.7, and 64.9% [M + H]+, [M + Na]+, and [M - H]- adducts showed deviations <2%, with the presence of protomers, post-ion mobility spectrometry dissociation of noncovalent clusters and inconsistent calibration are possible sources of CCS deviations. Our experimental TWCCSN2 values were also compared to CCS values from three prediction tools. Of the three, CCSondemand gave the most accurate predictions. The TWCCSN2 database developed will aid the identification and differentiation of chemicals from FCMs in targeted and untargeted analysis.
Collapse
Affiliation(s)
- Xue-Chao Song
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Elena Canellas
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Nicola Dreolin
- Waters
Corporation, Altrincham
Road, SK9 4AX Wilmslow, United Kingdom
| | - Jeff Goshawk
- Waters
Corporation, Altrincham
Road, SK9 4AX Wilmslow, United Kingdom
| | - Cristina Nerin
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
- . Phone: +34 976761873
| |
Collapse
|
18
|
Faraji M, Afsharsaveh Z, Shirani M. Application of vortex assisted dispersive liquid-liquid microextraction based on a new deep eutectic solvent for microextraction of aromatic amines from simulant of kitchenware samples by HPLC-UV. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Qiu SQ, Huang GY, Fang GZ, Li XP, Lei DQ, Shi WJ, Xie L, Ying GG. Chemical characteristics and toxicological effects of leachates from plastics under simulated seawater and fish digest. WATER RESEARCH 2022; 209:117892. [PMID: 34861434 DOI: 10.1016/j.watres.2021.117892] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
In recent years, the ecological risks of plastics to marine environments and organisms have attracted increasing attention, especially the leachates from plastics. However, a comprehensive knowledge about the leaching characteristics and subsequent toxicological effects of leachates is still sparse. In this study, 15 different plastic products were immersed in simulated seawater and fish digest for 16 h. The leachates were analyzed through non-target and target analyses and their toxicological signatures were assessed by bioassays. In total, 240 additives were identified from the plastic leachates, among which plasticizers represented the most (16.7%), followed by antioxidants (8.7%) and flame retardants (7.1%). Approximately 40% of plastic leachates exhibited significant inhibitory effects on the bioluminescence using a recombinant luminescent assay. In addition, both the hyperactive and hypoactive behaviors were displayed in the larvae of marine medaka (Oryzias melastigma) exposed to some plastic leachates. In general, the number and amount of identified compounds under simulated fish digest were less than those under simulated seawater. However, the simulated fish digest leachates triggered higher toxicity. Redundancy analysis demonstrated that identified additives did not adequately explain the toxicological effects. Future research should focus on the identification of more additives in the plastic leachates and their potential ecological risks.
Collapse
Affiliation(s)
- Shu-Qing Qiu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Gui-Zhen Fang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Pei Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Qiao Lei
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
20
|
Canellas E, Vera P, Nerin C, Dreolin N, Goshawk J. The detection and elucidation of oligomers migrating from biodegradable multilayer teacups using liquid chromatography coupled to ion mobility time-of-flight mass spectrometry and gas chromatography-mass spectrometry. Food Chem 2021; 374:131777. [PMID: 34906802 DOI: 10.1016/j.foodchem.2021.131777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
Biodegradable materials are increasingly being used in manufacturing processes due to their environmental benefits. In this work, a study has been performed to assess the migration of compounds from biodegradable multilayer teacups to a tea solution. Liquid chromatography in conjunction with ion-mobility quadrupole time-of-flight mass spectrometry has been used for the elucidation of non-volatile compounds. An orthogonal projection to latent structures-discriminant analysis has been carried out to compare the tea after migration against untreated tea used as blank. Headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry has been optimised to analyse the migration of volatile compounds. Eight migrants were identified in the tea, six of which were non-intentionally added oligomers. The degree of migration for hot tea ranged from 0.05 and 4.68 mg/kg, exceeding the specific migration limit. Nevertheless, the migration to cold tea was an order of magnitude lower (between 0.003 and 0.56 mg/kg).
Collapse
Affiliation(s)
- Elena Canellas
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A, María de Luna, 3, 50018 Zaragoza, Spain
| | - Paula Vera
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A, María de Luna, 3, 50018 Zaragoza, Spain
| | - Cristina Nerin
- GUIA Group, Department of Analytical Chemistry, University of Zaragoza, I3A, María de Luna, 3, 50018 Zaragoza, Spain
| | | | - Jeff Goshawk
- Waters Corporation, Wilmslow SK9 4AX, United Kingdom
| |
Collapse
|
21
|
Ma X, Sui H, Sun X, Ali MM, Debrah AA, Du Z. A risk classification strategy for migrants of food contact material combined with three (Q)SAR tools in silico. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126422. [PMID: 34182426 DOI: 10.1016/j.jhazmat.2021.126422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The chemical constituents in food contact materials (FCMs) may transfer into food during the contact, which may pose potential risk to humans. So, it is important to evaluate the safety of FCMs. Due to the advantages of cost-effectiveness and high throughput, (Q)SAR tools have been gradually used for risk assessment. In this work, a risk classification strategy for migrants of food contact materials combined with three (Q)SAR tools was developed based on a single endpoint (Mutagenicity) assessment and risk matrix approach, respectively. 419 migrants existing in a self-built toxicology database beneficial from Python crawler technology were evaluated. 5 toxic hazard ranks and 4 risk ranks were obtained for single endpoint assessment and risk matrix respectively, with 21 substances assigned as Toxic hazard Class I and 43 substances assigned as RISK Ⅰ which need the highest safety concern. Besides, for the Toxic hazard Class I substances assessed by the single endpoint, 19 of them were confirmed experimentally, and all of them were overlapped in the RISK Ⅰ substances, which suggests the effectiveness and reliability of this strategy.
Collapse
Affiliation(s)
- Xin Ma
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haixia Sui
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Xuechun Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Mujahid Ali
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Augustine Atta Debrah
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenxia Du
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
22
|
Shin C, Kim DG, Kim JH, Kim JH, Song MK, Oh KS. Migration of substances from food contact plastic materials into foodstuff and their implications for human exposure. Food Chem Toxicol 2021; 154:112373. [PMID: 34182045 DOI: 10.1016/j.fct.2021.112373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
The safety of food contact plastic materials, including PP, PE, PET, PCT, PLA, PBT and cross-linked polyester, was assessed with regard to migrated substances. The migrated concentrations of overall migrants (OMs), terephthalic acid, acetaldehyde, 1,4-butanediol and lead, were determined according to the standards and specifications for utensils, containers and packages in Korea. Food simulants of 4% acetic acid, water and n-heptane were used for the analysis of the substances. The dietary exposures of terephthalic acid, acetaldehyde and 1,4-butanediol were assessed using the dietary concentrations and the food consumption data. As a result, the dietary exposures were considered to be safe comparing to the health-based guidance values. In the case of lead, the margin of exposure (MOE) approach was applied. The MOEs calculated using the UB concentration and mean consumption data were ranged from 3 to 1000, which indicated low concern for health risk. Moreover, in this study, the dietary exposures were estimated by the Korean MFDS and U.S. FDA methods, respectively. As a result, the assessed risks were considered to be low in both cases. Based on the results of current exposure assessments, it could be considered that the food contact plastic materials are properly controlled by the regulatory authorities.
Collapse
Affiliation(s)
- Choonshik Shin
- Food Additives Standard Division, Food Standard Planning Office, Ministry of Food and Drug Safety, Osong, Cheongju, 28159, Republic of Korea.
| | - Dong-Gyu Kim
- Food Additives Standard Division, Food Standard Planning Office, Ministry of Food and Drug Safety, Osong, Cheongju, 28159, Republic of Korea
| | - Jun-Hyun Kim
- Food Additives Standard Division, Food Standard Planning Office, Ministry of Food and Drug Safety, Osong, Cheongju, 28159, Republic of Korea
| | - Jun Ho Kim
- Hygiene Safety Center, Korea Conformity Laboratories, Geumcheon-gu, Seoul, 08503, Republic of Korea.
| | - Min-Kyung Song
- Korea Natural Resource & Economic Research Institute, Seongdong-gu, Seoul, 04793, Republic of Korea
| | - Keum-Soon Oh
- Food Additives Standard Division, Food Standard Planning Office, Ministry of Food and Drug Safety, Osong, Cheongju, 28159, Republic of Korea
| |
Collapse
|