1
|
Hendrickson OD, Byzova NA, Panferov VG, Zvereva EA, Xing S, Zherdev AV, Liu J, Lei H, Dzantiev BB. Ultrasensitive Lateral Flow Immunoassay of Fluoroquinolone Antibiotic Gatifloxacin Using Au@Ag Nanoparticles as a Signal-Enhancing Label. BIOSENSORS 2024; 14:598. [PMID: 39727863 DOI: 10.3390/bios14120598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay (LFIA) was performed. GAT-specific monoclonal antibodies and labeled anti-species antibodies were used in the LFIA. Bimetallic core@shell Au@Ag nanoparticles (Au@Ag NPs) were synthesized as a new label. Peroxidase-mimic properties of Au@Ag NPs allowed for the catalytic enhancement of the signal on test strips, increasing the assay sensitivity. A mechanism of Au@Ag NPs-mediated catalysis was deduced. Signal amplification was achieved through the oxidative etching of Au@Ag NPs by hydrogen peroxide. This resulted in the formation of gold nanoparticles and Ag+ ions, which catalyzed the oxidation of the peroxidase substrate. Such "chemical enhancement" allowed for reaching the instrumental limit of detection (LOD, calculated by Three Sigma approach) and cutoff of 0.8 and 20 pg/mL, respectively. The enhanced assay procedure can be completed in 21 min. The enhanced LFIA was tested for GAT detection in raw meat samples, and the recoveries from meat were 78.1-114.8%. This method can be recommended as a promising instrument for the sensitive detection of various toxicants.
Collapse
Affiliation(s)
- Olga D Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Nadezhda A Byzova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Vasily G Panferov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, ON N2L 3G1, Canada
| | - Elena A Zvereva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Shen Xing
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, ON N2L 3G1, Canada
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
2
|
Thiruvengadam M, Kim JT, Kim WR, Kim JY, Jung BS, Choi HJ, Chi HY, Govindasamy R, Kim SH. Safeguarding Public Health: Advanced Detection of Food Adulteration Using Nanoparticle-Based Sensors. Crit Rev Anal Chem 2024:1-21. [PMID: 39269682 DOI: 10.1080/10408347.2024.2399202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Food adulteration, whether intentional or accidental, poses a significant public health risk. Traditional detection methods often lack the precision required to detect subtle adulterants that can be harmful. Although chromatographic and spectrometric techniques are effective, their high cost and complexity have limited their widespread use. To explore and validate the application of nanoparticle-based sensors for enhancing the detection of food adulteration, focusing on their specificity, sensitivity, and practical utility in the development of resilient food safety systems. This study integrates forensic principles with advanced nanomaterials to create a robust detection framework. Techniques include the development of nanoparticle-based assays designed to improve the detection specificity and sensitivity. In addition, sensor-based technologies, including electronic noses and tongues, have been assessed for their capacity to mimic and enhance human sensory detection, offering objective and reliable results. The use of nanomaterials, including functionalized nanoparticles, has significantly improved the detection of trace amounts of adulterants. Nanoparticle-based sensors demonstrate superior performance in terms of speed, sensitivity, and selectivity compared with traditional methods. Moreover, the integration of these sensors into food safety protocols shows promise for real-time and onsite detection of adulteration. Nanoparticle-based sensors represent a cutting-edge approach for detecting food adulteration, and offer enhanced sensitivity, specificity, and scalability. By integrating forensic principles and nanotechnology, this framework advances the development of more resilient food-safety systems. Future research should focus on optimizing these technologies for widespread application and adapting them to address emerging adulteration threats.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Jung-Tae Kim
- Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration (RDA), Jellabuk-do, Republic of Korea
| | - Won-Ryeol Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ji-Ye Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Bum-Su Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jin Choi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Elbarbary NK, Darwish WS, Fotouh A, Dandrawy MK. Unveiling the mix-up: investigating species and unauthorized tissues in beef-based meat products. BMC Vet Res 2024; 20:380. [PMID: 39182072 PMCID: PMC11344315 DOI: 10.1186/s12917-024-04223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
Customers are very concerned about high-quality products whose provenance is healthy. The identification of meat authenticity is a subject of growing concern for a variety of reasons, including religious, economic, legal, and public health. Between March and April of 2023, 150 distinct marketable beef product samples from various retailers in El-Fayoum, Egypt, were gathered. There were 30 samples of each of the following: luncheon, kofta, sausage, burger, and minced meat. Every sample underwent a histological investigation as well as subjected to a standard polymerase chain reaction (PCR) analysis to identify meat types that had not been stated by Egyptian regulations. According to the obtained data, the meat products under scrutiny contained a variety of unauthorized tissues which do not match Egyptian regulations. Furthermore, the PCR results indicated that the chicken, camels, donkeys, and pigs derivatives were detected in 60%, 30%, 16%, and 8% of examined samples, respectively. In conclusion, besides displaying a variety of illegal tissues, the majority of the meat items under examination were tainted with flesh from many species. As a result, it is crucial to regularly inspect these products before they are put on the market to ensure that they comply with the law and don't mislead customers Furthermore, it is advisable for authorities to implement rigorous oversight of food manufacturing facilities to ensure the production of safe and wholesome meat.
Collapse
Affiliation(s)
- Nady Khairy Elbarbary
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Wageh S Darwish
- Food Hygiene, Safety, and Technology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed Fotouh
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, New Valley University, Kharga, Egypt
| | - Mohamed K Dandrawy
- Food Hygiene and Control Department, Faculty of Veterinary Medicine, South Valley University, Qena, 83522, Egypt
| |
Collapse
|
4
|
Zvereva EA, Hendrickson OD, Dzantiev BB, Zherdev AV. Comparison of competitive and sandwich immunochromatographic analysis in the authentication of chicken in meat products. Anal Biochem 2024; 689:115484. [PMID: 38382834 DOI: 10.1016/j.ab.2024.115484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Cheap chicken meat is often used as an undeclared substitute in meat products. In this study, two formats of the immunochromatographic assay (ICA) of immunoglobulins of class Y (IgY) as a biomarker for chicken authentication were developed. In both competitive ICA (cICA) and sandwich ICA (sICA), gold nanoparticles (GNP) were conjugated with anti-species antibodies. A simple procedure of sample preparation, which took only 30 min, was proposed. Test systems demonstrated high sensitivity and rapidity: visual limits of detection of IgY and assay durations were 12/14 ng/mL and 10/15 min for cICA and sICA, respectively. The absence of cross-reactivity with the mammalian species confirmed the high specificity of the test systems. Good applicability of the assays was confirmed for the detection of chicken in raw meat mixtures: as low as 3% and 0.2% (w/w) of chicken could be revealed in beef and pork by cICA and sICA, respectively. The influence of heat processing of meat-based products on immune recognition and, consequently, the analytical performance of the test systems was revealed. It was shown that sICA is preferable for the detection of IgY even in thermally processed meat. The proposed ICAs can be recommended for rapid on-site control of meat products' composition.
Collapse
Affiliation(s)
- Elena A Zvereva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, 119071, Moscow, Russia
| | - Olga D Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, 119071, Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, 119071, Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, 119071, Moscow, Russia.
| |
Collapse
|
5
|
Zvereva EA, Hendrickson OD, Dzantiev BB, Zherdev AV. Double lateral flow immunosensing of undeclared pork and chicken components of meat products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1148-1156. [PMID: 38562594 PMCID: PMC10981650 DOI: 10.1007/s13197-024-05944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024]
Abstract
Adulteration of meat products is a serious problem in the modern society. Consumption of falsified meat products can be hazardous to health and/or lead to violating religious dietary principles. To identify such products, rapid and simple test systems for point-of-need detection are in demand along with complex laboratory methods. This study presents the first double lateral flow (immunochromatographic) test system, which allows simultaneous revealing two prevalent types of falsifications-undeclared addition of pork and chicken components to meat products. In the proposed test system, porcine myoglobin (MG) and chicken immunoglobulin Y (IgY) were used as specific biomarkers recognizable by antibodies. Within the optimization of the analysis, the concentrations of the immune reagents and regimes of their application on the working membrane were selected, which provided minimal limits of detection (LODs) for both analytes. The developed test system enables the detection of MG and IgY with the LODs of 10 and 12 ng/mL, respectively, which accords to addition of 0.1% of the undeclared meat compounds. The applicability of the test system to control the composition of raw meat mixtures and cooked food products was confirmed. The developed approach can be considered as a promising tool for monitoring composition of meat products. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05944-y.
Collapse
Affiliation(s)
- Elena A. Zvereva
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, Moscow, Russia 119071
| | - Olga D. Hendrickson
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, Moscow, Russia 119071
| | - Boris B. Dzantiev
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, Moscow, Russia 119071
| | - Anatoly V. Zherdev
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, Moscow, Russia 119071
| |
Collapse
|
6
|
Shi X, Li H, Yao S, Ding Y, Lin X, Xu H, Liu Y, Zhao C, Zhang T, Wang J. A CRISPR/Cas12a-assisted bacteria quantification platform combined with magnetic covalent organic frameworks and hybridization chain reaction. Food Chem 2024; 440:138196. [PMID: 38104450 DOI: 10.1016/j.foodchem.2023.138196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The total bacterial count is an important indicator of food contamination in food safety supervision and management. Recently, the CRISPR/Cas12a system integrated with nucleic acid amplification has increasingly shown tremendous potential in microorganism detection. However, a general quantification strategy for total bacteria count based on the CRISPR/Cas12a system has not yet been developed. Herein, we established a sensitive bacterial quantification strategy based on the CRISPR/Cas12a system combined with magnetic covalent organic frameworks (MCOFs) and hybridization chain reaction (HCR). MCOFs acted as a carrier, adsorbing the ssDNA as HCR trigger sequence through π-π stacking. Then, the HCR circuit produces DNA duplexes containing the PAM sequences that activate the trans-cleavage activity of Cas12a for further signal amplification. Under the optimal conditions, the proposed method can quantify total bacteria in 50 min with a minimum detection concentration of 10 CFU/mL. The successful applications in food samples confirmed the feasibility and broad application prospects.
Collapse
Affiliation(s)
- Xuening Shi
- School of Public Health, Jilin University, Changchun 130021, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130021,China.
| | - Hang Li
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Shuo Yao
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Yukun Ding
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Xiuzhu Lin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Hui Xu
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Yi Liu
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Juan Wang
- School of Public Health, Jilin University, Changchun 130021, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun 130021,China.
| |
Collapse
|
7
|
Hassan M, Hussain D, Kanwal T, Xiao HM, Ghulam Musharraf S. Methods for detection and quantification of gelatin from different sources. Food Chem 2024; 438:137970. [PMID: 37988934 DOI: 10.1016/j.foodchem.2023.137970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Gelatin is a water-soluble protein obtained from the collagen of various animal origins (porcine, bovine, fish, donkey, horse, and deer hide) and has diverse applications in the food, pharmaceutical, and cosmetics industries. Porcine and bovine gelatins are extensively used in food and non-food products; however, their acceptance is limited due to religious prohibitions, whereas fish gelatin is accepted in all religions. In Southeast Asia, especially in China, gelatin obtained from donkey and deer skins is used in medicines. However, both sources suffer from adulteration (mixing different sources of gelatin) due to their limited availability and high cost. Unclear labeling and limited information about actual gelatin sources in gelatin-containing products cause serious concern among societies for halal and fraud authentication of gelatin sources. Therefore, authenticating gelatin sources in gelatin-based products is challenging due to close similarities between the composition differences and degradation of DNA and protein biomarkers in processed gelatin. Thus, different methods have been proposed to identify and quantify different gelatin sources in pharmaceutical and food products. To the best of our knowledge, this systematic and comprehensive review highlights different authentication techniques and their limitations in gelatin detection and quantification in various commercial products. This review also describes halal authentication and adulteration prevention strategies of various gelatin sources, mainly focussing on research gaps, challenges, and future directions in this research area.
Collapse
Affiliation(s)
- Mahjabeen Hassan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Dilshad Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Tehreem Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hua-Ming Xiao
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
8
|
Hendrickson OD, Zvereva EA, Dzantiev BB, Zherdev AV. Highly Sensitive Immunochromatographic Detection of Porcine Myoglobin as Biomarker for Meat Authentication Using Prussian Blue Nanozyme. Foods 2023; 12:4252. [PMID: 38231679 DOI: 10.3390/foods12234252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
This study was aimed at the sensitive immunodetection of porcine myoglobin (MG) as a species-specific biomarker in meat products. The enhanced lateral flow immunoassay (LFIA) was created in the sandwich format using monoclonal antibodies (Mab) with specificity to porcine MG and labeled by Prussian blue nanoparticles (PBNPs) as peroxidase-mimicking nanozymes. Signal amplification was provided by the colored product of oxidation catalyzed by the PBNPs. Several Mab-PBNP conjugates with different antibody loads were synthesized; the one that provided the best analytical characteristics of the LFIA was selected. Advanced optimization of the test system was carried out. As a result, the visual limit of detection (LOD) of MG was 1.5 ng/mL. Involvement of the catalytic nanozyme properties allowed the LOD to be decreased by ~9 times in comparison to the LFIA based on gold nanomarkers, and by ~27 times compared to the LFIA based on PBNP coloration. The assay time was 30 min, including catalytic enhancement. A simple technique of meat sample pre-treatment aimed at effective MG extraction and matrix disposal was proposed. The specificity of the LFIA towards the pork meat was demonstrated. The applicability of the created test system was shown by testing extracts obtained from finished meat products.
Collapse
Affiliation(s)
- Olga D Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Elena A Zvereva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
9
|
Kim SA, Lee JE, Kim DH, Lee SM, Yang HK, Shim WB. A Highly Sensitive Indirect Enzyme-Linked Immunosorbent Assay (ELISA) Based on a Monoclonal Antibody Specific to Thermal Stable-Soluble Protein in Pork Fat for the Rapid Detection of Pork Fat Adulterated in Heat-Processed Beef Meatballs. Food Sci Anim Resour 2023; 43:989-1001. [PMID: 37969326 PMCID: PMC10636219 DOI: 10.5851/kosfa.2023.e55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 11/17/2023] Open
Abstract
Processed foods containing pork fat tissue to improve flavor and gain economic benefit may cause severe issues for Muslims, Jews, and vegetarians. This study aimed to develop an indirect enzyme-linked immunosorbent assay (iELISA) based on a monoclonal antibody specific to thermal stable-soluble protein in pork fat tissue and apply it to detect pork fat tissue in heat-processed (autoclave, steam, roast, and fry) beef meatballs. To develop a sensitive iELISA, the optimal sample pre-cooking time, coating conditions, primary and secondary dilution time, and various buffer systems were tested. The change in the iELISA sensitivity with different 96-well microtiter microplates was confirmed. The detection limit of iELISA performed with an appropriate microplate was 0.015% (w/w) pork fat in raw and heat-treated beef. No cross-reactions to other meats or fats were shown. These results mean that the iELISA can be used as an analytical method to detect trace amounts of pork fat mixed in beef.
Collapse
Affiliation(s)
- Sol-A Kim
- Division of Applied Life Science, Graduate
School, Gyeongsang National University, Jinju 52828,
Korea
| | - Jeong-Eun Lee
- Institute of Smart Farm, Gyeongsang
National University, Jinju 52828, Korea
| | - Dong-Hyun Kim
- Division of Applied Life Science, Graduate
School, Gyeongsang National University, Jinju 52828,
Korea
| | - Song-min Lee
- Division of Applied Life Science, Graduate
School, Gyeongsang National University, Jinju 52828,
Korea
| | - Hee-Kyeong Yang
- Division of Applied Life Science, Graduate
School, Gyeongsang National University, Jinju 52828,
Korea
| | - Won-Bo Shim
- Institute of Smart Farm, Gyeongsang
National University, Jinju 52828, Korea
- Division of Food Science and Technology,
Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture and Life Science,
Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
10
|
Raja Nhari RMH, Soh JH, Khairil Mokhtar NF, Mohammad NA, Mohd Hashim A. Halal authentication using lateral flow devices for detection of pork adulteration in meat products: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:971-980. [PMID: 37535014 DOI: 10.1080/19440049.2023.2242955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Lateral flow devices (LFDs) are straightforward scientific tools that have made substantial advances in recent years. They have been used in many fields including the meat industry to detect disease markers, determine meat freshness or meat species determination. They are, therefore, significant in the research of meat adulteration by mixed animal species, because food component authenticity is a serious concern encompassing health, economic, legal, and religious issues. Pork adulteration is one of the most crucial issues in the global meat industry. In this review, we discuss the various types of LFDs and recent research on the development of LFDs as an authenticity tool for detecting pig additives in meat-based products, and how regulatory authorities could adopt LFDs for their workflows. Despite the benefits of rapidity, simplicity, low cost, high sensitivity, and specificity, researchers face challenges when using LFD as a final confirmation test. Future directions are suggested for globalising the use of LFD as a halal authentication method.
Collapse
Affiliation(s)
- Raja Mohd Hafidz Raja Nhari
- Laboratory of Halal Science Research, Halal Products Research Institute, Putra Infoport Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | | | - Nur Fadhilah Khairil Mokhtar
- Laboratory of Halal Science Research, Halal Products Research Institute, Putra Infoport Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Nurhidayatul Asma Mohammad
- Laboratory of Halal Science Research, Halal Products Research Institute, Putra Infoport Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Amalia Mohd Hashim
- Laboratory of Halal Science Research, Halal Products Research Institute, Putra Infoport Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
11
|
Mahmud AH, Salahuddin NM, Md Jani AM, Abu Bakar NF, Zainal Abidin SAS, Mohd Zain Z, Low KF. A voltammetric immunosensor based on a nanoporous alumina millirod for detection of porcine serum albumin. Food Chem 2023; 411:135493. [PMID: 36689871 DOI: 10.1016/j.foodchem.2023.135493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
A voltammetric immunosensor was developed for detection of porcine serum albumin (PSA) to identify raw meat products adulterated with pork. A novel strategy to fabricate multiple individual nanoporous alumina (NPA) millirods (length, 5.0 mm; diameter, 1.0 mm) as the biorecognition platform is described. Each NPA millirod was covalently bioconjugated with anti-PSA capturing antibodies (α-PSAC). Following immunocapture, the PSA bound to the α-PSAC/NPA millirod bioconjugate were tagged with gold nanoparticles (AuNPs) functionalized with anti-PSA detection antibodies as the signaling probe. Subsequently, the AuNPs were voltammetrically analyzed to quantify the target PSA. The immunosensor exhibited 100 % specificity and high sensitivity to PSA with a limit of detection (LoD) of 50 (range, 0-1000) pg/mL (R2 = 0.9907). Real-world applicability was successfully validated using pork/beef adulterated mixtures with a LoD of 0.05 % (w/w). Overall, the detection performance of the proposed immunosensor was excellent and, thus, is suitable for surveillance of food safety and quality.
Collapse
Affiliation(s)
- Abdul Hadi Mahmud
- Faculty of Applied Sciences, Universiti Teknologi MARA, Tapah Campus, Tapah Road, Perak 35400 Malaysia
| | - Nurul Mahira Salahuddin
- Faculty of Applied Sciences, Universiti Teknologi MARA, Tapah Campus, Tapah Road, Perak 35400 Malaysia
| | - Abdul Mutalib Md Jani
- Faculty of Applied Sciences, Universiti Teknologi MARA, Tapah Campus, Tapah Road, Perak 35400 Malaysia
| | - Noor Fitrah Abu Bakar
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, Selangor 40450 Malaysia
| | - Siti Aimi Sarah Zainal Abidin
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 Malaysia; Malaysia Institute of Transport, Universiti Teknologi MARA, Shah Alam, Selangor 40450 Malaysia
| | - Zainiharyati Mohd Zain
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 Malaysia; Electrochemical Material and Sensors (EmaS) Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 Malaysia
| | - Kim-Fatt Low
- Faculty of Applied Sciences, Universiti Teknologi MARA, Tapah Campus, Tapah Road, Perak 35400 Malaysia; Electrochemical Material and Sensors (EmaS) Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 Malaysia.
| |
Collapse
|
12
|
Banerjee R, Maheswarappa NB, Biswas S, Dasoju S, Barbuddhe S, Rajan VM, Patra G, Bhattacharyya D. Lateral flow immunoassay-based absolute point-of-care technique for authentication of meat and commercial meat products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:772-782. [PMID: 36712205 PMCID: PMC9873842 DOI: 10.1007/s13197-022-05663-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023]
Abstract
Point-of-care (POC) assay is an emerging technique for rapid initial screening of meat fraud incidents in a resource-limited environment. To achieve this goal, a simple extraction protocol is proposed for efficient recovery of meat proteins from raw, heat-processed, and commercial samples as well as meat offals without utilizing sophisticated laboratory settings. A sandwich-format lateral flow immunoassay (LFIA) was developed based on gold nanoparticles as labels and immunoglobulins (IgG and IgY) as biomarkers for meat species identification in raw and cooked meat mixes. The test system showed a sensitivity of 10 ng/mL allowing the detection of as low as 0.063% pork and chicken meat and 0.125% sheep meat (lamb) in meat mixes within 15 min including sample preparation. Reproducibility of the assay was confirmed by the fully consistent intra- and inter-laboratory tests and RT-PCR method. The current study developed a field-deployable extraction technique and highly-specific, sensitive, reproducible, cost-effective, and user-friendly LFIA-based assay for rapid species authentication in raw, cooked, and commercial meat samples and meat offals. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05663-2.
Collapse
Affiliation(s)
- Rituparna Banerjee
- Meat Proteomics Lab, ICAR-National Research Centre on Meat, Chengicherla, Hyderabad, Telangana 500092 India
| | - Naveena B Maheswarappa
- Meat Proteomics Lab, ICAR-National Research Centre on Meat, Chengicherla, Hyderabad, Telangana 500092 India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037 India
| | - Sowmya Dasoju
- Meat Proteomics Lab, ICAR-National Research Centre on Meat, Chengicherla, Hyderabad, Telangana 500092 India
| | - Sukhdeo Barbuddhe
- Meat Proteomics Lab, ICAR-National Research Centre on Meat, Chengicherla, Hyderabad, Telangana 500092 India
| | - Vishnuraj M. Rajan
- Meat Proteomics Lab, ICAR-National Research Centre on Meat, Chengicherla, Hyderabad, Telangana 500092 India
| | - Gopal Patra
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037 India
| | - Debasish Bhattacharyya
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037 India
| |
Collapse
|
13
|
Application of biosensors for detection of meat species: A short review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Novel immunochromatographic estimation of lamb content in meat products using IgG as biomarker. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Hendrickson OD, Zvereva EA, Zherdev AV, Dzantiev BB. Double qualitative immunochromatographic test for simultaneous control of chicken muscles and eggs in food. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Rudenko N, Fursova K, Shepelyakovskaya A, Karatovskaya A, Brovko F. Antibodies as Biosensors' Key Components: State-of-the-Art in Russia 2020-2021. SENSORS 2021; 21:s21227614. [PMID: 34833687 PMCID: PMC8624206 DOI: 10.3390/s21227614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
The recognition of biomolecules is crucial in key areas such as the timely diagnosis of somatic and infectious diseases, food quality control, and environmental monitoring. This determines the need to develop highly sensitive display devices based on the achievements of modern science and technology, characterized by high selectivity, high speed, low cost, availability, and small size. Such requirements are met by biosensor systems—devices for reagent-free analysis of compounds that consist of a biologically sensitive element (receptor), a transducer, and a working solution. The diversity of biological material and methods for its immobilization on the surface or in the volume of the transducer and the use of nanotechnologies have led to the appearance of an avalanche-like number of different biosensors, which, depending on the type of biologically sensitive element, can be divided into three groups: enzyme, affinity, and cellular/tissue. Affinity biosensors are one of the rapidly developing areas in immunoassay, where the key point is to register the formation of an antigen–antibody complex. This review analyzes the latest work by Russian researchers concerning the production of molecules used in various immunoassay formats as well as new fundamental scientific data obtained as a result of their use.
Collapse
|
17
|
Ivanov AV, Popravko DS, Safenkova IV, Zvereva EA, Dzantiev BB, Zherdev AV. Rapid Full-Cycle Technique to Control Adulteration of Meat Products: Integration of Accelerated Sample Preparation, Recombinase Polymerase Amplification, and Test-Strip Detection. Molecules 2021; 26:6804. [PMID: 34833896 PMCID: PMC8622786 DOI: 10.3390/molecules26226804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022] Open
Abstract
Verifying the authenticity of food products is essential due to the recent increase in counterfeit meat-containing food products. The existing methods of detection have a number of disadvantages. Therefore, simple, cheap, and sensitive methods for detecting various types of meat are required. In this study, we propose a rapid full-cycle technique to control the chicken or pig adulteration of meat products, including 3 min of crude DNA extraction, 20 min of recombinase polymerase amplification (RPA) at 39 °C, and 10 min of lateral flow assay (LFA) detection. The cytochrome B gene was used in the developed RPA-based test for chicken and pig identification. The selected primers provided specific RPA without DNA nuclease and an additional oligonucleotide probe. As a result, RPA-LFA, based on designed fluorescein- and biotin-labeled primers, detected up to 0.2 pg total DNA per μL, which provided up to 0.001% w/w identification of the target meat component in the composite meat. The RPA-LFA of the chicken and pig meat identification was successfully applied to processed meat products and to meat after heating. The results were confirmed by real-time PCR. Ultimately, the developed analysis is specific and enables the detection of pork and chicken impurities with high accuracy in raw and processed meat mixtures. The proposed rapid full-cycle technique could be adopted for the authentication of other meat products.
Collapse
Affiliation(s)
| | | | | | | | | | - Anatoly V. Zherdev
- Research Centre of Biotechnology, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (A.V.I.); (D.S.P.); (I.V.S.); (E.A.Z.); (B.B.D.)
| |
Collapse
|