1
|
Huang Y, Wu Z, Ma L, Han X, Yan H, Lim SS, Wang Z. Avicularin is a minor aldose reductase inhibitor in defatted seeds of Oenothera biennis L.: Screening, inhibitory kinetics, and interaction mechanism. Food Chem 2025; 473:143100. [PMID: 39893921 DOI: 10.1016/j.foodchem.2025.143100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Inhibition of aldose reductase (AR) activity is promising for mitigating diabetic complications. Defatted evening primrose seeds (DO), a byproduct of evening primrose oil production, exhibits significant AR inhibitory effects. This study optimized extraction conditions of DO using response surface methodology to maximize the recovery of AR inhibitors (ARIs). A combination of high-speed countercurrent chromatography, affinity-based ultrafiltration, and high-performance liquid chromatography was used to screen ARIs from DO extract. Five compounds were identified as ARIs, with avicularin, a minor ARI, demonstrating the strongest inhibitory activity (IC50 = 4.17 μg mL-1). The inhibitory kinetics and interaction mechanisms of avicularin against AR were investigated, revealing that avicularin acts as a non-competitive inhibitor of AR (Ki = 4.42 μM). Avicularin quenched the intrinsic fluorescence of AR through static quenching, forming non-covalent complexes primarily via hydrogen bonds and van der Waals forces, while also altering the conformational structure and microenvironment of AR, impairing AR activity.
Collapse
Affiliation(s)
- Yueyao Huang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zhaoyang Wu
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-Gil, Chuncheon 24252, Republic of Korea.
| | - Lei Ma
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xue Han
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-Gil, Chuncheon 24252, Republic of Korea.
| | - Zhiqiang Wang
- Hebei Key Laboratory of Public Health Safety, School of Public Health, College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Guo X, Zhang J, Zhu M, Xu X, Liu L, Chen S, Wang Y, Gao X, Chen Q. High internal phase Pickering emulsions stabilized by tea residue protein: Application in β-carotene encapsulation. Int J Biol Macromol 2025; 310:143141. [PMID: 40246092 DOI: 10.1016/j.ijbiomac.2025.143141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/16/2025] [Accepted: 04/12/2025] [Indexed: 04/19/2025]
Abstract
The increasing production and consumption of tea drinks has led to the generation of large amounts of discarded extracted tea residues. As a result, researchers have attempted to extract tea water-insoluble protein (TP) from discarded tea residues to produce food emulsifiers. Thus, in this study, high-internal-phase Pickering emulsions (HIPPEs) stabilized by TP were developed and characterized. First, the effects of salt ions on the emulsifying properties of TP were examined using interfacial tension and hydrophobicity. Fourier transform infrared spectroscopy was used to determine the suitable range of salt ions in the processing stage. Then, the particle size distribution, microstructure, rheological properties, and stability of the emulsions were systematically investigated by controlling the oil phase volume, particle concentration of TP, and emulsification method. The results showed that TP was effectively adsorbed on the oil-water interface and formed a stable particle layer, which means that TP-stable high-internal-phase Pickering emulsions (TPHIPPEs) has been successfully prepared. Further analysis showed that TPHIPPEs exhibited good stability and gelation properties. The pH range was 7-9, and the salt ion concentration was <0.5 M. Additionally, TPHIPPEs exhibited excellent temperature tolerance and antioxidant ability. Finally, the application development results revealed that the loading and retention rates of β-carotene in TPHIPPEs were significantly higher than those of the control group of camellia oil, and that TPHIPPEs exhibited good resistance to UV light and thermal degradation. This study provides new insights into the high-value utilization of tea residue resources.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Junjie Zhang
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Minghui Zhu
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Xiaohan Xu
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Lu Liu
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Shengnan Chen
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Yu Wang
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Xueling Gao
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China; National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Qi Chen
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China; National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036, Hefei, China.
| |
Collapse
|
3
|
Sinuhaji TRF, Ramadhani S, Setiawan VK, Baroroh U. Targeting diabetes with flavonoids from Indonesian medicinal plants: a review on mechanisms and drug discovery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04139-2. [PMID: 40202673 DOI: 10.1007/s00210-025-04139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The rich biodiversity of Indonesia provides a wide variety of plants rich in flavonoids, which show promising potential as antidiabetic agents. Flavonoids are polyphenolic compounds recognized for their broad biological activities, such as antioxidant, anti-inflammatory, and antidiabetic effects. Traditional Indonesian medicinal plants such as Syzygium cumini, Moringa oleifera, and Curcuma longa are currently being studied for their flavonoid content and potential in diabetes treatment. Studies suggest that flavonoids can influence crucial pathways in diabetes management, including enhancing insulin sensitivity, boosting insulin production, and safeguarding pancreatic β cells against damage caused by oxidative stress. For example, quercetin and kaempferol, flavonoids in many Indonesian plants, have demonstrated potential for managing glucose metabolism and lowering high blood sugar levels. Additionally, these substances have been shown to inhibit enzymes such as α-glucosidase and α-amylase, which are involved in the breakdown of carbohydrates, thus aiding in the regulation of blood sugar levels after meals. The antioxidant qualities of flavonoids play a crucial role in fighting oxidative stress and are a significant contributor to the development of diabetes and related complications. Flavonoids help neutralize free radicals and enhance the body's antioxidant protection, reducing oxidative harm and promoting metabolic wellness. Additionally, their anti-inflammatory properties aid in reducing the chronic inflammation linked to insulin resistance and β-cell dysfunction. Formulation advancements, such as nanocarrier technology, have been explored to boost the effectiveness of flavonoid-based therapies. Due to its vast plant diversity, Indonesia offers a potential reservoir for new antidiabetic drugs, meriting additional research and development with the aim of this review providing new knowledge on the potential of flavonoids that can play a role in the treatment of diabetes.
Collapse
Affiliation(s)
- Tubagus Rayyan Fitra Sinuhaji
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang, Indonesia.
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia.
| | - Sintha Ramadhani
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Prof. Dr. Hamka, 13460, Jakarta, Indonesia
| | - Volta Kellik Setiawan
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Mulawarman University, 75119, Samarinda, Indonesia
| | - Umi Baroroh
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biotechnology Pharmacy, Indonesian School of Pharmacy, 40266, Bandung, Indonesia
| |
Collapse
|
4
|
Ma X, Li H, Li Y, Xie X, Wang Y, Wang M, Peng X. Potential Antidiabetic Activity of Nordihydroguaiaretic Acid: An Insight into Its Inhibitory Mechanisms on Carbohydrate-Hydrolyzing Enzymes, the Binding Behaviors with Enzymes, and In Vivo Antihyperglycemic Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8290-8304. [PMID: 40152424 DOI: 10.1021/acs.jafc.4c11307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The inhibitory mechanisms and binding behaviors of nordihydroguaiaretic acid (NDGA) to α-glucosidase/α-amylase were investigated by in vitro multispectroscopic methods and in silico modeling technique. The results demonstrated that NDGA reversibly and uncompetitively inhibited α-glucosidase, exhibiting stronger inhibition than acarbose, while it displayed noncompetitive inhibition against α-amylase. Additionally, NDGA could spontaneously bind to α-glucosidase/α-amylase mainly through hydrogen bonds and hydrophobic forces, thus altering the spatial structure of enzymes and reducing their catalytic activity. The presence of crowding reagents/polysaccharides/undigested milk proteins would decrease the inhibitory ability of NDGA, whereas fatty acids exhibited the opposite phenomenon on α-glucosidase. Furthermore, the antidiabetic activity of NDGA in vivo was evaluated using the diabetic Drosophila model induced by a high-sugar diet. It was found that NDGA significantly reduced the glucose levels of diabetic Drosophila. These findings suggested that NDGA was a potential inhibitor of α-glucosidase/α-amylase and could be used as a nutritional adjuvant to prevent diabetes.
Collapse
Affiliation(s)
- Xiangzhao Ma
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Huan Li
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Mengfan Wang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xin Peng
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
5
|
Bi H, Teng W, Wang J, Wang X, Zhang Z, Wang M. Recent developments in non-starch Ipomoea batatas (L.) Lam. polysaccharides: extractions and purifications, structural characteristics, pharmacological activities, structure-activity relationships, and applications A review. Int J Biol Macromol 2025; 309:142808. [PMID: 40188924 DOI: 10.1016/j.ijbiomac.2025.142808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Ipomoea batatas (L.) Lam. (I. batatas) is highly regarded by consumers and researchers in medicine and food due to their high yield and rich nutritional value. Due to the difficulty in applying starch polysaccharides from I. batatas in drug development, non-starch polysaccharides with rich pharmacological activity have become a research hotspot in recent years. Non-starch I. batatas polysaccharide has been proven to contain a variety of pharmacological activities, including immune regulation, improvement of intestinal microbiota, gastric protection, liver protection, anti-tumor, anti-inflammatory, anti-oxidant, anti-glycosylation, and anti-diabetes. At the same time, in addition to traditional extraction methods, researchers have also utilized various new extraction methods such as isoelectric point precipitation, hot reflux extraction, and ultra-high pressure extraction to obtain non-starch I. batatas polysaccharides with various conformational features, including cyclic and chain structures. Its rich pharmacological activities and diverse chemical structures provide clear guidance for elucidating of its structure-activity relationships and developing products in fields such as medicine and food. Based on this, this article reviews the research progress on the extraction and purification methods, structural characteristics, pharmacological activities, structure-activity relationships, and applications of non-starch I. batatas polysaccharides in recent years, providing theoretical guidance for future research on non-starch I. batatas polysaccharides.
Collapse
Affiliation(s)
- Haizheng Bi
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China
| | - Wenjing Teng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Jingyuan Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China
| | - Xingyu Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China
| | - Zhaojiong Zhang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China
| | - Meng Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin 150000, China.
| |
Collapse
|
6
|
Zhao L, Luo S, Peng Z, Wang G. Studies on the inhibition mechanism of α-glucosidase by kaempferide: Enzyme kinetic, multi-spectroscopy and molecular docking techniques. Int J Biol Macromol 2025; 302:140637. [PMID: 39908884 DOI: 10.1016/j.ijbiomac.2025.140637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
α-Glucosidase (α-Glu) is an enzyme that lowers postprandial blood glucose after breaking down complex carbohydrates. Kaempferide is the principal flavonoid active ingredient in plants and is widely found in fruits, vegetables, and beverages. This study found that kaempferide has the potential to inhibit α-Glu activity to treat type 2 diabetes. The results showed that kaempferide (IC50 = 55.35 ± 0.27 μM), serving as a mixed-type inhibitor for α-Glu, exhibited sensibly superior inhibition of α-Glu than acarbose (IC50 = 414.08 ± 10.73 μM). In addition, the outcomes from fluorescence quenching, 3D fluorescence, synchronous fluorescence, CD spectroscopy, and molecular docking analysis showed that kaempferide can not only chelate with α-Glu by hydrogen bonding and Van der Waals forces, but also affect the secondary structure and activity of the enzyme. After oral administration of sucrose in mice, kaempferide effectively reduces postprandial blood glucose (PBG) and without any other adverse symptoms. In summary, this study has the potential to contribute to the development of functional foods for the prevention and management of type 2 diabetes (T2DM).
Collapse
Affiliation(s)
- Li Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Shuang Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
7
|
Jiang X, Li Y, Ma Y, Gao F, Yu Y. Inhibition mechanism of starch digestion by luteolin, eriodictyol, and their complex in vitro: Multispectral, kinetic, and theoretical calculations analysis. Int J Biol Macromol 2025; 308:142649. [PMID: 40174831 DOI: 10.1016/j.ijbiomac.2025.142649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Peanut shell polyphenol possesses hypoglycemic activity, however, its inhibitory effects and mechanisms on starch digestion remain unclear. This study investigated the inhibitory effects of its main components: luteolin, eriodictyol, and their complex (luteolin-eriodictyol) on starch digestion. The results indicated that all three polyphenols inhibited starch digestion, primarily by inhibiting digestive enzymes activity. Luteolin-eriodictyol exhibited the strongest inhibition, with a 15.87 ± 0.81 % inhibition rate in starch digestion, and IC50 values of 455 ± 9.38 μg/mL for α-amylase and 25 ± 1.34 μg/mL for α-glucosidase. Quantum chemical analysis revealed that luteolin-eriodictyol exhibited greater molecular stability compared to its monomers. Its strong inhibitory effect was attributed to its high environmental stability and multiple binding sites on digestive enzymes. Spectroscopic analysis and molecular docking confirmed that luteolin, eriodictyol, and luteolin-eriodictyol combined with digestive enzymes through hydrogen bonding, hydrophobic interaction, and van der Waals force. These bindings changed the secondary and tertiary structures of digestive enzymes, leading to inhibitory effects. This study provides novel insights into the synergistic potential of dietary polyphenols in managing diabetes and highlights the value of combining polyphenols to enhance bioactivity.
Collapse
Affiliation(s)
- Xinyu Jiang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| | - Yanli Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yongliang Ma
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| | - Feng Gao
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| | - Yali Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
8
|
Meng X, Huang X, Cheng J, Wang Y, Wang L, He L, Liu D, Jiang J. Anti-glycemic mechanism of dihydromyricetin from Ampelopsis grossedentata on α-glucosidase by multispectroscopic investigation and in silico molecular simulation. Int J Biol Macromol 2025; 308:142571. [PMID: 40154717 DOI: 10.1016/j.ijbiomac.2025.142571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
As a potential anti-glycemic candidate in Ampelopsis grossedentata, the binding behavior of dihydromyricetin (DMY) on α-glucosidase (α-GLA) was investigated by multispectral techniques and in silico molecular docking coupled with molecular dynamic simulation. The results revealed that DMY had potent inhibition on α-GLA with the IC50 of 38 ± 0.025 μM in a mixed competitive mode. It could attenuate the endogenous fluorescence of α-GLA through the static quenching manner. The thermodynamic analysis indicated hydrogen bonding and van der Waals forces were two major driving forces to maintain the stability of the complex, resulting in the decline of α-helix and β-turn and enhancement of β-sheet and random coil correspondingly, evidenced by Fourier transform infrared spectroscopy and circular dichroism approaches. Isothermal titration calorimetry directly measured the dissociation constant Kd for the bound α-GLA-DMY complex was 2.39 ± 0.034 μM with enthalpy change of -33.8 ± 2.85 kJ·mol-1 and entropy change of -24.1 ± 1.76 J·mol-1·K-1. As expected with the microenvironmental changes, the docking conformation followed by dynamic simulation within 200 ns further corroborated the surrounding catalytic sites of α-GLA was non-covalently bound by DMY, in which GLU411, ARG442, ARG315 and PRO312 as hydrogen bond acceptors were double-connected by -OH of DMY at C7 in the A ring and C5' in the B ring, and reinforced by the hydroxyl substitution at C3 due to the hydrogenation on C2C3 bond in C ring. Our findings would boost DMY as a spectacular α-GLA inhibitor for hypoglycemic foods application.
Collapse
Affiliation(s)
- Xiaohui Meng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China; Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Xubo Huang
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Junwen Cheng
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Yanbin Wang
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Liling Wang
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China
| | - Liang He
- Key Laboratory of State Forest Food Resources Utilization and Quality Control, Zhejiang Academy of Forestry, Hangzhou 310023, PR China.
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, PR China.
| | - Jinrong Jiang
- Forestry Technology Extension Station, Qingtian County Forestry Bureau, Lishui 323999, PR China
| |
Collapse
|
9
|
Li XY, Wang T, Wu SL, Huang XY, Ma YB, Geng CA. New C-linked diarylheptanoid dimers as potential α-glucosidase inhibitors evidenced by biological, spectral and theoretical approaches. Int J Biol Macromol 2025; 295:139496. [PMID: 39778839 DOI: 10.1016/j.ijbiomac.2025.139496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated blood glucose levels, generally due to defects of insulin action or secretion. Inhibition of α-glucosidase, an enzyme responsible for carbohydrate degradation, is a promising strategy for managing postprandial hyperglycemia in diabetic patients. In this study, two new C-linked diarylheptanoid dimers, kaemgalanganols A (1) and B (2), were isolated from K. galanga, which showed obvious inhibitory activity on α-glucosidase but weak activity on protein tyrosine phosphatase 1B (PTP1B). Kaemgalanganol B had an IC50 value of 35.1 μM against α-glucosidase, obviously more potent than kaemgalanganol A (IC50 = 78.5 μM) and acarbose (IC50 = 363.0 μM). Enzyme kinetic study indicated that 2 was a reversible mixed-type inhibitor of α-glucosidase via non-competitive and anti-competitive inhibition modes. Fluorescence quenching and UV-visible spectroscopic study revealed that fluorescence quenching mechanism of 2 on α-glucosidase is a combination of dynamic quenching and static quenching, accompanied by non-radiative energy transfer. Compound 2 formed complex with α-glucosidase closer to the Tyr residue, and induced changes in both the microenvironment and peptide backbone. Surface hydrophobicity and CD spectra measurement indicated that 2 affected the function of α-glucosidase by decreasing the surface hydrophobicity of α-glucosidase as well as altering the secondary structure instead of the overall three-dimensional framework, which is consistent with the results of fluorescence experiment. Molecular docking manifested that compound 2 had a strong binding affinity (-7.27 kcal/mol) with α-glucosidase, higher than 1 (-9.82 kcal/mol) and acarbose (-4.48 kcal/mol), consistent with the enzyme inhibitory assay. Besides hydrogen bonds, electrostatic interactions and hydrophobic interactions played important roles in the binding of 2 with α-glucosidase. This study disclosed the inhibitory activity and mechanism of 2 against α-glucosidase, which provides a theoretical basis for the development of new antidiabetic drugs form K. galanga.
Collapse
Affiliation(s)
- Xin-Yu Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tian Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Sheng-Li Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Yan Huang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yun-Bao Ma
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chang-An Geng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
10
|
Li J, Ji W, Chen G, Yu K, Zeng J, Zhang Q, Xiong G, Du C, Peng Y, Zeng X, Chen C. Peonidin-3-O-(3,6-O-dimalonyl-β-D-glucoside), a polyacylated anthocyanin isolated from the black corncobs, alleviates colitis by modulating gut microbiota in DSS-induced mice. Food Res Int 2025; 202:115688. [PMID: 39967148 DOI: 10.1016/j.foodres.2025.115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Polyacylated anthocyanins are known for their enhanced stability and immunosuppressive properties. Although peonidin-3-O-(3,6-O-dimalonyl-β-D-glucoside) (P3GdM) from black corncobs has demonstrated notable antibacterial and stress-resistance effects in plants, its regulatory role in inflammatory bowel disease (IBD) remains unexplored. In this study, P3GdM was isolated from black corncobs, and its potential as a treatment for dextran sulfate sodium (DSS)-induced colitis in mice was evaluated. The findings revealed that P3GdM significantly mitigated clinical symptoms, reduced the disease activity index (DAI), suppressed the production of pro-inflammatory cytokines and endotoxins, and repaired the intestinal barrier. Furthermore, P3GdM markedly improved DSS-induced gut microbiota dysbiosis, significantly increasing microbial diversity and enhancing the relative abundance of critical bacterial species such as Akkermansia muciniphila and Lactobacillus reuteri, while also stimulating the production of short-chain fatty acids (SCFAs) and lactic acid. Correlation analyses further revealed strong associations between key microbial taxa, pro-inflammatory factors, clinical symptoms, tight junction proteins, and SCFAs. These findings provide support for the potential of P3GdM as an adjunct therapy for intestinal disorders, particularly colitis.
Collapse
Affiliation(s)
- Junjie Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Wenting Ji
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kun Yu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Jianhua Zeng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Qi Zhang
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Guoyuan Xiong
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Chuanlai Du
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Yujia Peng
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Chunxu Chen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Chuzhou 233100, China.
| |
Collapse
|
11
|
Quan Z, Chen M, Zhang D. Effects of hydrodynamic cavitation combined with snail enzyme treatment on the structure and functional properties of water-soluble dietary fiber in rice husks. ULTRASONICS SONOCHEMISTRY 2025; 113:107236. [PMID: 39842319 PMCID: PMC11788859 DOI: 10.1016/j.ultsonch.2025.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
In this study, we adopted the synergistic modification technology of hydrodynamic cavitation and snail enzyme, to improve the yield and activity of soluble dietary fibers (SDFs) of rice husk. The physicochemical properties, structural changes, and inhibition of α-glucosidase and α-amylase of SDFs were examined in vitro. This synergistic treatment significantly increased the yield of SDFs to 18.64 % ± 0.16 %, significantly reduced the particle size to 122.33 ± 0.26 nm, and significantly increased the specific surface area to 1.718 ± 0.002 m2/g. The absolute value of the zeta potential significantly increased to -36.39 ± 0.12 mV, indicating an excellent solution stability and gel-forming ability. At the same time, the water-holding, oil-holding, and swelling capacities were significantly enhanced, reaching 8.52 ± 0.09 g/g, 4.85 ± 0.29 g/g, and 7.29 ± 0.25 mL/g, respectively. Structural analysis showed that the synergistic treatment destroyed the fiber structure, produced a large number of small molecule fragments, and significantly changed the monosaccharide components and functional group distribution. Functional evaluation showed that the inhibitory effect of CE-SDF on α-glucosidase and α-amylase was significantly enhanced, and enzymatic reaction kinetic analysis revealed that both enzymes were competitive inhibitors, with IC50 values of 2.893 and 1.727 mg/mL, respectively. In summary, the synergistic modification of hydrodynamic cavitation and snail enzyme greatly optimized the structural and functional properties of rice husk SDFs, providing a theoretical basis for its application in the field of hypoglycemic drugs and functional foods.
Collapse
Affiliation(s)
- Zhigang Quan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Mingming Chen
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; National Coarse Cereals Engineering Research Center, Daqing 163319, PR China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, PR China.
| |
Collapse
|
12
|
Du L, Ding X, Tian Y, Chen J, Li W. Effect of anthocyanins on metabolic syndrome through interacting with gut microbiota. Pharmacol Res 2024; 210:107511. [PMID: 39577753 DOI: 10.1016/j.phrs.2024.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Metabolic syndrome, as a complex pathological condition, is caused by a series of pathogenic factors and has become a global public health challenge. Anthocyanins, a natural water-soluble flavonoid pigment, have attracted much attention due to their antioxidant, anti-inflammatory, and anticancer biological activities. After ingestion, a majority of anthocyanins is not directly absorbed but rather reaches the colon. Hence, the exertion of their biological benefits is closely intertwined with the role played by gut microbiota. In this review, we introduce the pathogenesis and intervention methods of metabolic syndrome, as well as the interaction between anthocyanins and gut microbiota. We also discuss the therapeutic potential of anthocyanins through gut microbiota in addressing a range of metabolic syndrome conditions, including obesity, type 2 diabetes mellitus, cardiovascular diseases, non-alcoholic fatty liver disease, inflammatory bowel disease, polycystic ovary syndrome, osteoporosis, and cancer.
Collapse
Affiliation(s)
- Lanlan Du
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuwen Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Weilin Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Yu M, Qu C, Li D, Jiang Z, Liu J, Yang F, Liu C, Yue W, Wu Q. Study on the effects of endogenous polyphenols on the structure, physicochemical properties and in vitro digestive characteristics of Euryales Semen starch based on multi-spectroscopies, enzyme kinetics, molecular docking and molecular dynamics simulation. Int J Biol Macromol 2024; 282:137245. [PMID: 39505170 DOI: 10.1016/j.ijbiomac.2024.137245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/19/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Euryales Semen (ES) is a highly nutritious food with low digestibility, which is closely associated with its endogenous phenolic compounds. In this study, five phenolic compounds (naringenin, isoquercitrin, gallic acid, epicatechin and quercetin) with high concentrations in ES were selected to prepare starch-polyphenol complexes. Subsequently, the effects of endogenous polyphenols on the structure, physicochemical properties and digestion characteristics of ES starch were studied using multiple techniques. The addition of phenolic compounds markedly reduced the in vitro digestibility, swelling power, gelatinization enthalpy, while increased the solubility of ES starch. Fourier-transform infrared spectroscopy and X-ray diffraction analysis showed that phenolic compounds interacted with the starch through non-covalent bonds. Five phenolic compounds inhibited α-amylase activity through a mixed competitive inhibition mechanism, with the inhibition potency ranked as follows: quercetin > epicatechin > gallic acid > isoquercitrin > naringenin. The spectroscopic analysis and molecular dynamics simulations confirmed that five phenolic compounds interacted with the amino acid residues of α-amylase through hydrogen bonding and hydrophobic interactions, caused α-amylase static fluorescence quenching, and altered its conformation and microenvironment. This study provides a better understanding of the interaction mechanisms between ES starch and polyphenols, and supports the development of ES as a food that lowers sugar levels.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Dishuai Li
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zheng Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fan Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chanchan Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Yue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qinan Wu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
14
|
Zhou HB, Peng SH, Liu YM, Wang T, Weng XH, Liu G, Zhang JL. Structural changes of potato starch and activity inhibition of starch digestive enzymes by anthocyanin from lingonberry (Vaccinium uliginosum L.) retarded starch digestibility. Int J Biol Macromol 2024; 281:136673. [PMID: 39426763 DOI: 10.1016/j.ijbiomac.2024.136673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The effects of anthocyanins on in vitro and in vivo digestibility of potato starch were evaluated in this study. Then the influence of anthocyanins on physicochemical property of potato starch and the activity of starch digestive enzymes (α-amylase and α-glucosidase) were also investigated to understand the mechanism of anthocyanins on starch digestibility. Results have shown that dietary anthocyanins could effectively inhibit the biological activities of α-amylase and α-glucosidase to delay the peak of postprandial blood glucose. Characterization of physicochemical properties of potato starch indicates a structural change due to the presence of anthocyanins, hindering its access to starch digestive enzymes. Among all anthocyanins, lingonberry anthocyanin significantly promoted the retrogradation of potato starch (7.153 % to 25.913 %) and exert promising inhibition on α-amylase and α-glucosidase. Lingonberry anthocyanins mainly interacted with potato starch through hydrogen bonds, which reduce the amount of amylose molecules leached from potato starch and loosen the three-dimensional (3D) network structure of starch gel. This study could provide theoretical evidence for utilization of anthocyanins in diabetic-management function food.
Collapse
Affiliation(s)
- H B Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - S H Peng
- Wuhan Polytechnic University, College of Food Science and Engineering, Wuhan, China
| | - Y M Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - T Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - X H Weng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - G Liu
- Wuhan Polytechnic University, College of Food Science and Engineering, Wuhan, China
| | - J L Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China.
| |
Collapse
|
15
|
Wang Y, Julian McClements D, Chen L, Peng X, Xu Z, Meng M, Ji H, Zhi C, Ye L, Zhao J, Jin Z. Progress on molecular modification and functional applications of anthocyanins. Crit Rev Food Sci Nutr 2024; 64:11409-11427. [PMID: 37485927 DOI: 10.1080/10408398.2023.2238063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Anthocyanins have attracted a lot of attention in the fields of natural pigments, food packaging, and functional foods due to their color, antioxidant, and nutraceutical properties. However, the poor chemical stability and low bioavailability of anthocyanins currently limit their application in the food industry. Various methods can be used to modify the structure of anthocyanins and thus improve their stability and bioavailability characteristics under food processing, storage, and gastrointestinal conditions. This paper aims to review in vitro modification methods for altering the molecular structure of anthocyanins, as well as their resulting improved properties such as color, stability, solubility, and antioxidant properties, and functional applications as pigments, sensors and functional foods. In industrial production, by mixing co-pigments with anthocyanins in food systems, the color and stability of anthocyanins can be improved by using non-covalent co-pigmentation. By acylation of fatty acids and aromatic acids with anthocyanins before incorporation into food systems, the surface activity of anthocyanins can be activated and their antioxidant and bioactivity can be improved. Various other chemical modification methods, such as methylation, glycosylation, and the formation of pyranoanthocyanins, can also be utilized to tailor the molecular properties of anthocyanins expanding their range of applications in the food industry.
Collapse
Affiliation(s)
- Yun Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Man Meng
- Licheng Detection and Certification Group Co., Ltd, Zhongshan, China
| | - Hangyan Ji
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chaohui Zhi
- Changzhou Longjun Skypurl Environmental Protection Industrial Development Co., Ltd, Changzhou, China
| | - Lei Ye
- Changzhou Longjun Skypurl Environmental Protection Industrial Development Co., Ltd, Changzhou, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Wang H, Zhou Q, Shen LH, Zhang JL. The mechanism of purple sweet potato anthocyanin extract to reduce the digestion rate and improve the starch digestion characteristics based on dough system. Int J Biol Macromol 2024; 277:134551. [PMID: 39116975 DOI: 10.1016/j.ijbiomac.2024.134551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Current studies have predominantly focused on the in vitro interactions between starch and anthocyanins, neglecting the complexity of actual food composition systems. In this study, purple sweet potato anthocyanin extract (PSPAE)-dough mixture was constructed with the aim of refining the mechanism by which anthocyanins improved starch digestive properties. Animal experiments demonstrated that the dough containing PSPAE (250 mg/kg) significantly reduced peak blood glucose levels in mice by 39.69 %. Further analysis of the dough mixture properties-including texture, particle size, pasting characteristics, microstructure, infrared spectrum, and crystallinity-helped elucidate how PSPAE impedes starch digestion. The incorporation of 600 mg of PSPAE into the dough led to a 40.45 % reduction in the volume mean diameter compared to the blank dough. Textural and microstructural examinations suggested that PSPAE obstruct the interaction forces between starch molecules by filling gluten protein pores or wrapping starch molecules. This denser microstructure likely contributes to enhanced starch resistance. Additionally, alterations in dough crystallinity revealed that PSPAE encourages the reorganization of linear starch molecules, boosting the content of resistant starch and thereby reducing starch digestibility. This study enriches the mechanism of PSPAE in ameliorating diabetes symptoms and provides theoretical insights for the development of functional foods aimed at diabetes management.
Collapse
Affiliation(s)
- Hao Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Zhou
- Department of Pharmacy, Wuhan City Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Lu-Hong Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiu-Liang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Cao L, Wan M, Xian Z, Zhou Y, Dong L, Huang F, Su D. Lacticaseibacillus casei- and Bifidobacterium breve-fermented red pitaya promotes beneficial microbial proliferation in the colon. Food Funct 2024; 15:9434-9445. [PMID: 39189643 DOI: 10.1039/d4fo02352h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Red pitaya has been demonstrated to strongly inhibit α-glucosidase activity; however, the impact of red pitaya fermentation by probiotic bacteria on α-glucosidase inhibition remains unclear. In this study, six strains of lactic acid bacteria (Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, Lactobacillus bulgaricus, Lacticaseibacillus casei, Lactobacillus acidophilus and Streptococcus thermophilus) and one strain of Bifidobacterium breve were utilized for the fermentation of red pitaya pulp. The α-glucosidase and α-amylase inhibition rates of red pitaya pulp were significantly greater after fermentation by Bifidobacterium breve and Lacticaseibacillus casei than by the other abovementioned strains. The LC group exhibited an α-glucosidase inhibition rate of 99%, with an α-amylase inhibition rate of 89.91%. In contrast, the BB group exhibited an α-glucosidase inhibition rate of 95.28%, accompanied by an α-amylase inhibition rate of 95.28%. Moreover, red pitaya pulp fermented with Bifidobacterium breve and Lacticaseibacillus casei produced a notable quantity of oligosaccharides, which was more than three times greater than that in the other groups. Furthermore, 16S rRNA high-throughput sequencing analysis was conducted to assess alterations in the composition of the gut microbiota. This revealed an increase in the abundance of Lactobacillus and Faecalibacterium in the pulp fermented by Bifidobacterium breve and Lacticaseibacillus casei, whereas the abundance of Sutterella decreased. Further analysis at the species level revealed that Bifidobacterium longum, Faecalibacterium prausnitzii, and Lactobacillus zeae were the dominant strains present during colonic fermentation. These results indicate a beneficial health trend associated with probiotic bacterial fermentation of red pitaya pulp, which is highly important for the development of functional products.
Collapse
Affiliation(s)
- Li Cao
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Mengxi Wan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Zhixing Xian
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Yongqiang Zhou
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510006, China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510006, China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Jia J, Dou B, Gao M, Zhang C, Liu Y, Zhang N. Effect of Genistein on Starch Digestion In Vitro and Its Mechanism of Action. Foods 2024; 13:2809. [PMID: 39272574 PMCID: PMC11394712 DOI: 10.3390/foods13172809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
The digestive properties of starch are crucial in determining postprandial glycaemic excursions. Genistein, an active phytoestrogen, has the potential to influence starch digestion rates. We investigated the way genistein affected the digestive properties of starch in vitro. We performed enzyme kinetics, fluorescence spectroscopy, molecular docking, and molecular dynamics (MD) simulations for analysing the inhibitory properties of genistein on starch digestive enzymes as well as clarifying relevant mechanism of action. Our findings demonstrated that, following the addition of 10% genistein, the contents of slowly digestible and resistant starches increased by 30.34% and 7.18%, respectively. Genistein inhibited α-amylase and α-glucosidase, with half maximal inhibitory concentrations of 0.69 ± 0.06 and 0.11 ± 0.04 mg/mL, respectively. Genistein exhibits a reversible and non-competitive inhibiting effect on α-amylase, while its inhibition on α-glucosidase is a reversible mixed manner type. Fluorescence spectroscopy indicated that the presence of genistein caused declining fluorescence intensity of the two digestive enzymes. Molecular docking and MD simulations showed that genistein binds spontaneously to α-amylase via hydrogen bonds, hydrophobic interactions, and π-stacking, whereas it binds with α-glucosidase via hydrogen bonds and hydrophobic interactions. These findings suggest the potential for developing genistein as a pharmacologic agent for regulating glycaemic excursions.
Collapse
Affiliation(s)
- Jianhui Jia
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Boxin Dou
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Man Gao
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chujia Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ying Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
19
|
Peng Q, Ma Y, Wang Z, Wang J. Inhibition mechanism of different structural polyphenols against α-amylase studied by solid-state NMR and molecular docking. Int J Biol Macromol 2024; 275:133757. [PMID: 38986997 DOI: 10.1016/j.ijbiomac.2024.133757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/22/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Polyphenol has the considerable effects for inhibition of digestive enzymes, however, inhibition mechanism of molecular size-dependent polyphenols on enzyme activity is still lacking. Herein, inhibition effect and binding interactions of three different structural polyphenols (catechol, quercetin and hesperidin) on α-amylase were studied. Inhibition assays proved that polyphenols significantly inhibited α-amylase and their effects were increased with their molecular sizes. Hesperidin showed the highest inhibition ability of α-amylase, which was determined as IC50 = 0.43 mg/mL. Fluorescence and FT-IR spectroscopy proved that inter-molecular interactions between polyphenols and α-amylase occurred through non-covalent bonds. Besides, the secondary structure of α-amylase was obviously changed after binding with polyphenols. Inter-molecular interactions were investigated using solid-state NMR and molecular docking. Findings proved that hydrogen bonds and π-π stacking interactions were the mainly inter-molecular interactions. We hope this contribution could provide a theoretical basis for developing some digestive enzyme inhibitors from natural polyphenols.
Collapse
Affiliation(s)
- Qiyue Peng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Zhipeng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| |
Collapse
|
20
|
Ye L, Hu H, Wang Y, Cai Z, Yu W, Lu X. In vitro digestion and colonic fermentation characteristics of media-milled purple sweet potato particle-stabilized Pickering emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5064-5076. [PMID: 38284773 DOI: 10.1002/jsfa.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Pickering emulsions stabilized by multicomponent particles have attracted increasing attention. Research on characterizing the digestion and health benefit effects of these emulsions in the human gastrointestinal tract are quite limited. This work aims to reveal the digestive characteristics of media-milled purple sweet potato particle-stabilized Pickering emulsions (PSPP-Es) during in vitro digestion and colonic fermentation. RESULTS The media-milling process improved the in vitro digestibility and fermentability of PSPP-Es by reaching afree fatty acids release rate of 43.11 ± 4.61% after gastrointestinal digestion and total phenolic content release of 101.00 ± 1.44 μg gallic acid equivalents/mL after fermentation. In addition, PSPP-Es exhibited good antioxidative activity (2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays), α-glucosidase inhibitory activity (half-maximal inhibitory concentration: 6.70%, v/v), and prebiotic effects, reaching a total short-chain fatty acids production of 9.90 ± 0.12 mol L-1, boosting the growth of Akkermansia, Bifidobacterium, and Blautia and inhibiting the growth of Escherichia-Shigella. CONCLUSIONS These findings indicate that the media-milling process enhances the potential health benefits of purple sweet potato particle-stabilized Pickering emulsions, which is beneficial for their application as a bioactive component delivery system in food and pharmaceutical products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liuyu Ye
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Hong Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou, China
- Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, China
| | - Zizhe Cai
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Wenwen Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou, China
- Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, China
| |
Collapse
|
21
|
Meng X, Liu R, Xie J, Li L, Yu K, Liu J, Zhang Y, Wang H. Valuation of the significant hypoglycemic activity of black currant anthocyanin extract by both starch structure transformation and glycosidase activity inhibition. Int J Biol Macromol 2024; 269:132112. [PMID: 38714278 DOI: 10.1016/j.ijbiomac.2024.132112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
The objective of this study was to investigate the impact of anthocyanin-rich black currant extract (BCE) on the structural properties of starch and the inhibition of glycosidases, gathering data and research evidence to support the use of low glycemic index (GI) foods. The BCE induced a change in the starch crystal structure from A-type to V-type, resulting in a drop in digestibility from 81.41 % to 65.57 %. Furthermore, the inhibitory effects of BCE on glycosidases activity (α-glucosidase: IC50 = 0.13 ± 0.05 mg/mL and α-amylase: IC50 = 2.67 ± 0.16 mg/mL) by inducing a change in spatial conformation were confirmed through in vitro analysis. The presence of a 5'-OH group facilitated the interaction between anthocyanins and receptors of amylose, α-amylase, and α-glucosidase. The glycosyl moiety enhanced the affinity for amylose yet lowered the inhibitory effect on α-amylase. The in vivo analysis demonstrated that BCE resulted in a reduction of 3.96 mM·h in blood glucose levels (Area Under Curve). The significant hypoglycemic activity, particularly the decrease in postprandial blood glucose levels, highlights the potential of utilizing BCE in functional foods for preventing diabetes.
Collapse
Affiliation(s)
- Xiangxing Meng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Jiao Xie
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou 550025, China
| | - Liwei Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China; Health Food Development Center, Tasly Academy, Tianjin 300410, China
| | - Kai Yu
- Orthopedics Department, China Aerospace Science & Industry Corporation 731 Hospital, Beijing 100074, China
| | - Jianhui Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, Nanjing 210023, China.
| | - Ye Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
22
|
Li J, Qin CF, Chen ND. Evaluation of antioxidant, antidiabetic and antiobesity potential of phenylpropanoids (PPs): Structure-activity relationship and insight into action mechanisms against dual digestive enzymes by comprehensive technologies. Bioorg Chem 2024; 146:107290. [PMID: 38507999 DOI: 10.1016/j.bioorg.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Phenylpropanoids (PPs), a group of natural compounds characterized by one or more C6-C3 units, have exhibited considerable potential in addressing metabolic disease. However, the comprehensive investigation on the relationship of compound structures and involved activity, along with the action mechanisms on the drug target is absent. This study aimed to evaluate the antioxidant and inhibitory activities of 16 PPs against two digestive enzymes, including α-glucosidase and pancreatic lipase, explore the structure-activity relationships and elucidate the mechanisms underlying enzyme inhibition. The findings revealed the similarities in the rules governing antioxidant and enzyme inhibitory activities of PPs. Specifically, the introduction of hydroxyl groups generally exerted positive effects on the activities, while the further methoxylation and glycosylation were observed to be unfavorable. Among the studied PPs, esculetin exhibited the most potent antioxidant activity and dual enzymes inhibition potential, displaying IC50 values of 0.017 and 0.0428 mM for DPPH and ABTS radicals scavenging, as well as 1.36 and 6.67 mM for α-glucosidase and lipase inhibition, respectively. Quantification analysis indicated esculetin bound on both α-glucosidase and lipase successfully by a mixed-type mode. Further analyses by UV-Vis, FT-IR, fluorescence spectra, surface hydrophobicity, SEM, and molecular docking elucidated that esculetin could bind on the catalytic or non-catalytic sites of enzymes to form complex, impacting the normal spatial conformation for hydrolyzing the substrate, thus exhibiting the weakened activity. These results may shed light on the utilization value of natural PPs for the management of hyperglycemia and hyperlipemia, and afford the theoretical basis for designing drugs with stronger inhibition against the dual digestive enzymes based on esculetin.
Collapse
Affiliation(s)
- Jiao Li
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resource, Lu'an 237012, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China
| | - Chao-Feng Qin
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resource, Lu'an 237012, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China
| | - Nai-Dong Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resource, Lu'an 237012, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an 237012, China.
| |
Collapse
|
23
|
Tian LL, Bi YX, Wang C, Zhu K, Xu DF, Zhang H. Bioassay-guided discovery and identification of new potent α-glucosidase inhibitors from Morus alba L. and the interaction mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117645. [PMID: 38147942 DOI: 10.1016/j.jep.2023.117645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morus alba L. (mulberry) is a well-known medicinal species that has been used by herbalist doctors for the treatment of diabetes for a long history, and modern ethnopharmacological studies have demonstrated the ameliorating effects of different mulberry extracts toward diabetes-related symptoms and identified a number of α-glucosidase inhibitors as hypoglycemic ingredients. AIM OF THE STUDY The present study aims to explore new potent α-glucosidase inhibitors from the root bark of M. alba (known as Sang-Bai-Pi in traditional medicine) based on an in vivo antidiabetic evaluation of its extract fractions and further characterize the preliminary mechanism of the new active constituents. MATERIALS AND METHODS α-Glucosidase inhibitory assay and diabetic mice model were used to locate and evaluate the active fractions from the extract. Diverse separation techniques (e.g. Sephadex LH-20 column chromatograph (CC) and HPLC) and spectroscopic methods (e.g. MS, NMR and ECD) were employed to isolate and structurally characterize the obtained constituents, respectively. Fluorescence quenching, kinetics and molecular docking experiments were conducted to investigate the enzyme inhibitory mechanism of the active compounds. RESULTS The 80% ethanol eluate from the macroporous resin CC exerted good antidiabetic effects in the tested mice. Fifty-two flavonoids including 22 new ones were then separated and identified, and most of them showed strong inhibition against α-glucosidase with their structure-activity relationship being also discussed. The four new most active ingredients were further characterized to be mixed type of α-glucosidase inhibitors, and their binding modes with the enzyme were also explored. CONCLUSIONS Our current work has demonstrated that the root bark of M. alba is an extremely rich source of flavonoids as potent α-glucosidase inhibitors and potential antidiabetic agents, which makes it a promising candidate species to develop new natural remedies for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Lin-Lin Tian
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yan-Xue Bi
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Chao Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kongkai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - De-Feng Xu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
24
|
Sun N, Xie J, Zheng B, Xie J, Chen Y, Hu X, Yu Q. The inhibition mechanism of bound polyphenols extracted from mung bean coat dietary fiber on porcine pancreatic α-amylase: kinetic, spectroscopic, differential scanning calorimetric and molecular docking. Food Chem 2024; 436:137749. [PMID: 37864970 DOI: 10.1016/j.foodchem.2023.137749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
The inhibitory mechanisms of purified bound polyphenols extracted from mung bean coat dietary fiber (pMBDF-BP) on porcine pancreatic α-amylase (PPA) were investigated through inhibition kinetics, fluorescence spectroscopy, circular dichroism, differential scanning calorimetry and molecular docking. It was shown that pMBDF-BP exerted significant reversible inhibition on PPA in a mixed-type inhibition manner (IC50 = 18.57 ± 0.30 μg/mL), and the combination of the three major components exhibited a synergistic inhibitory effect on PPA. Further, pMBDF-BP bound to the active site or form a polyphenol-enzyme complex at the inactive site through hydrogen bonding and hydrophobic forces, via enhancing the hydrophobicity of the microenvironment surrounding tryptophan and tyrosine residues and promoting the secondary structure of PPA towards a more stable conformation, eventually reducing the enzyme activity. This study provided theoretical evidences for the utilization of bound polyphenols extracted from mung bean coat dietary fiber as a functional component in natural inhibitors of α-amylase.
Collapse
Affiliation(s)
- Nan Sun
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Bing Zheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
25
|
Liu S, Meng F, Guo S, Yuan M, Wang H, Chang X. Inhibition of α-amylase digestion by a Lonicera caerulea berry polyphenol starch complex revealed via multi-spectroscopic and molecular dynamics analyses. Int J Biol Macromol 2024; 260:129573. [PMID: 38266829 DOI: 10.1016/j.ijbiomac.2024.129573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Polyphenol-starch complexes exhibit synergistic and beneficial effects on both polyphenols and resistant starches. This study evaluates the inhibitory effects and mechanisms of α-amylase on a Lonicera caerulea berry polyphenol-wheat starch (LPWS) complex following high hydrostatic pressure treatments of 400 MPa for 30 min and 600 MPa for 30 min. The IC50 values for α-amylase inhibition by the complex were 3.61 ± 0.10 mg/mL and 3.42 ± 0.08 mg/mL at a 10 % (w/w) polyphenol content. This interaction was further supported by Fourier-transform infrared spectroscopy and circular dichroism, which confirmed that the alpha helix component of the secondary structure of α-amylase was reduced due to the complex. Multifluorescence spectroscopy revealed that the complex induces changes in the microenvironment of fluorophores surrounding the α-amylase active site. Molecular dynamics simulations and molecular docking revealed that the active site of amylose within the complex becomes enveloped in polyphenol clusters. This wrapping effect reduced the hydrogen bonds between amylose and α-amylase, decreasing from 16 groups to just one group. In summary, the LPWS complex represents a low-digestible carbohydrate food source, thus laying the groundwork for the research and development of functional foods aimed at postprandial hypoglycemic effects.
Collapse
Affiliation(s)
- Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao 066004, China.
| | - Fanna Meng
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Shuo Guo
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Meng Yuan
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Xuedong Chang
- Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao 066004, China
| |
Collapse
|
26
|
Zhou HB, Feng LJ, Weng XH, Wang T, Lu H, Bian YB, Huang ZY, Zhang JL. Inhibition mechanism of cordycepin and ergosterol from Cordyceps militaris Link. against xanthine oxidase and cyclooxygenase-2. Int J Biol Macromol 2024; 258:128898. [PMID: 38141695 DOI: 10.1016/j.ijbiomac.2023.128898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Cordyceps militaris Link. (C. militaris) is an entomopathogenic fungus that parasitizes the pupa or cocoon of lepidopteran insect larvae, with various bioactive compounds. Cordycepin and ergosterol are the two active components in C. militaris. This study aimed to evaluate the inhibitory activity of cordycepin and ergosterol against xanthine oxidase (XO) and cyclooxygenase-2 (COX-2), as well as investigate the inhibition mechanism. Cordycepin could better inhibit XO (IC50 = 0.014 mg/mL) and COX-2 (IC50 = 0.055 mg/mL) than ergosterol. Additionally, surface hydrophobicity and circular dichroism (CD) spectra results confirmed the conformational changes in enzymes induced by cordycepin and ergosterol. Finally, cordycepin and ergosterol significantly decreased uric acid (UA) and inflammatory factors to normal level in mice with gouty nephropathy (GN). This study could provide theoretical evidence for utilization of C. militaris in hyperuricemia-management functional foods.
Collapse
Affiliation(s)
- H B Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - L J Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - X H Weng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - T Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - H Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Y B Bian
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan HUAYU XINMEI Mushroom industry Company Limited, Wuhan 430070, China
| | - Z Y Huang
- Wuhan HUAYU XINMEI Mushroom industry Company Limited, Wuhan 430070, China
| | - J L Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China.
| |
Collapse
|
27
|
Sun Y, Cao Q, Huang Y, Lu T, Ma H, Chen X. Mechanistic study on the inhibition of α-amylase and α-glucosidase using the extract of ultrasound-treated coffee leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:63-74. [PMID: 37515816 DOI: 10.1002/jsfa.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Our previous studies have shown that ultrasound-treated γ-aminobutyric acid (GABA)-rich coffee leaves have higher angiotensin-I-converting enzyme inhibitory activity than their untreated counterpart. However, whether they have antidiabetic activity remains unknown. In this study, we aimed to investigate the inhibitory activities of coffee leaf extracts (CLEs) prepared with ultrasound (CLE-U) or without ultrasound (CLE-NU) pretreatment on α-amylase and α-glucosidase. Subsequently, we evaluated the binding interaction between CLE-U and both enzymes using multi-spectroscopic and in silico analyses. RESULTS Ultrasound pretreatment increased the inhibitory activities of CLE-U against α-amylase and α-glucosidase by 21.78% and 25.13%, respectively. CLE-U reversibly inhibits both enzymes, with competitive inhibition observed for α-amylase and non-competitive inhibition for α-glucosidase. The static quenching of CLE-U against both enzymes was primarily driven by hydrogen bond and van der Waals interactions. The α-helices of α-amylase and α-glucosidase were increased by 1.8% and 21.3%, respectively. Molecular docking results showed that the key differential compounds, including mangiferin, 5-caffeoylquinic acid, rutin, trigonelline, GABA, caffeine, glutamate, and others, present in coffee leaves interacted with specific amino acid residues located at the active site of α-amylase (ASP197, GLU233, and ASP300). The binding of α-glucosidase and these bioactive components involved amino acid residues, such as PHE1289, PRO1329, and GLU1397, located outside the active site. CONCLUSION Ultrasound-treated coffee leaves are potential anti-diabetic substances, capable of preventing diabetes by inhibiting the activities of α-amylase and α-glucosidase, thus delaying starch digestion. Our study provides valuable information to elucidate the possible antidiabetic capacity of coffee leaves through the inhibition of α-amylase and α-glucosidase activities. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qingwei Cao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
28
|
Jiang X, Zhang R, Yao Y, Yang Y, Wang B, Wang Z. Effect of cooking methods on metabolites of deep purple-fleshed sweetpotato. Food Chem 2023; 429:136931. [PMID: 37517223 DOI: 10.1016/j.foodchem.2023.136931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
The effects of different cooking methods on purple-fleshed sweetpotato (PFSP) metabolites were systematically explored, containing the changes of starch, soluble sugar, volatile organic compounds and non-target metabolites after steaming, boiling and baking. Compared to raw samples, the steamed samples showed the greatest changes in starch (degraded from 53.01% to 39.5%) and soluble sugar content (increased from 11.82% to 29.08%), while the baked samples showed insignificant changes in starch (51.06%). In total, 64 volatile organic compounds were identified in PFSP, with aldehydes decreasing and terpenes increasing after cooking. However, most of them were low in content and contributed weak aroma for PFSP. More importantly, 871 non-volatile metabolites were detected in PFSP, and 83.5% of which were well-preserved after cooking, while most of the changes were concentrated in phenylpropanoids, amino acids and carbohydrates. This study enriches the understanding of quality changes after PFSP cooking and helps consumers choose the right cooking method.
Collapse
Affiliation(s)
- Xia Jiang
- Food College, Shihezi University, Shihezi, 832000, Xinjiang Uygur Autonomous Region, China; Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China
| | - Rong Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China
| | - Yanqiang Yao
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China; Hebei Normal University of Science & Technology, College of Agriculture and Biotechnology, Changli, Hebei 066600, China
| | - Yiling Yang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi, 832000, Xinjiang Uygur Autonomous Region, China.
| | - Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
29
|
Luo S, Yang W, Huang Y, Peng Z, Wang G. Design, synthesis, biological evaluation, and docking study of new triazole-phenylacetamide derivatives as α-glucosidase inhibitors. Bioorg Chem 2023; 141:106844. [PMID: 37703743 DOI: 10.1016/j.bioorg.2023.106844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
To discover potent α-glucosidase inhibitors, a class of novel triazole-phenylacetamide derivatives (5a-5p) were designed, prepared, and tested for their α-glucosidase inhibitory effects. All tested compounds (5a-5p) displayed a strong α-glucosidase inhibitory activity (IC50 = 6.69 ± 0.18-113.65 ± 2.94 μM) in comparison with the positive control acarbose (IC50 = 723.06 ± 11.26 μM). Thereinto, 5g (IC50 = 6.69 ± 0.18 μM) showed the best anti-α-glucosidase activity and behaved as a mixed-type inhibitor with the value of Ki and Kis to be 1.65 μM and 4.54 μM, respectively. Besides, fluorescence quenching experiment, three-dimensional fluorescence spectra assay, circular dichroism analysis, and molecular docking studies indicated that 5g may inhibit α-glucosidase activity by binding with its active site as well as changing the secondary structure of α-glucosidase. Combined with the inhibition effect on the rise of postprandial blood glucose level and low cytotoxicity of 5g, it could be concluded that these title compounds may play a role as lead compounds to develop novel α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Shuang Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Wei Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yong Huang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
30
|
Feng Q, Yang W, Peng Z, Wang G. Utilizing bio-affinity ultrafiltration combined with UHPLC Q-Exactive Plus Orbitrap HRMS to detect potential α-glucosidase inhibitors in Oxalis corniculate L. Int J Biol Macromol 2023; 252:126490. [PMID: 37625761 DOI: 10.1016/j.ijbiomac.2023.126490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Oxalis corniculate L. (O. corniculate) was used to treat diabetes in Chinese folk as a popular tea drink. In this work, 31 compounds from O. corniculate were screened and identified as potential α-Glucosidase inhibitors (α-GIs). Among them, 6 compounds displayed stronger inhibitory activity than acarbose (IC50 = 212.9 ± 5.98 μg/mL). Especially, the most effective compounds quercetin (Qu, IC50 = 4.70 ± 0.40 μg/mL) and luteolin (Lu, IC50 = 15.72 ± 0.75 μg/mL) inhibited α-Glu in competitive and mixed manners, respectively. Moreover, fluorescence quenching, circular dichroism (CD), and molecular docking study revealed that they can arouse the changes in the secondary structure and hydrophobic micro-environment of the enzyme mainly through a hydrophobic binding. Furthermore, it was observed that oral administration of Qu (20 mg/kg) can significantly reduce postprandial blood glucose (PBG) levels in mice vs. the control group. To sum up, the above research confirmed that O. corniculate could prevent and treat postprandial hyperglycemia as a good tea drink, and the plant was an excellent source to obtain natural α-GIs.
Collapse
Affiliation(s)
- Qianqian Feng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Wei Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
31
|
Lin Q, Qiu C, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Tian Y, Jin Z. The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Crit Rev Food Sci Nutr 2023; 63:12126-12135. [PMID: 35822304 DOI: 10.1080/10408398.2022.2098687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes is caused by persistently high blood sugar levels, which leads to metabolic dysregulation and an increase in the risk of chronic diseases such as diabetes and obesity. High levels of rapidly digestible starches within foods may contribute to high blood sugar levels. Amylase inhibitors can reduce amylase activity, thereby inhibiting starch hydrolysis, and reducing blood sugar levels. Currently, amylase inhibitors are usually chemically synthesized substances, which can have undesirable side effects on the human body. The development of amylase inhibitors from food-grade ingredients that can be incorporated into the human diet is therefore of great interest. Several classes of phytochemicals, including polyphenols and flavonoids, have been shown to inhibit amylase, including certain types of food-grade nanoparticles. In this review, we summarize the main functions and characteristics of amylases within the human body, as well as their interactions with amylase inhibitors. A strong focus is given to the utilization of nanoparticles as amylase inhibitors. The information covered in this article may be useful for the design of functional foods that can better control blood glucose levels, which may help reduce the risk of diabetes and other diet-related diseases.
Collapse
Affiliation(s)
- Qianzhu Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
32
|
Tang S, Cheng Y, Xu T, Wu T, Pan S, Xu X. Hypoglycemic effect of Lactobacillus plantarum-fermented mulberry pomace extract in vitro and in Caenorhabditis elegans. Food Funct 2023; 14:9253-9264. [PMID: 37750031 DOI: 10.1039/d3fo02386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Mulberry pomace is rich in phytochemicals, but there are few studies on its utilization as a by-product. Natural foods containing phytochemicals can alleviate the toxic effects of excessive glucose intake. In this study, we investigated the protective effect of Lactobacillus plantarum-fermented mulberry pomace extract (FMPE) under hyperglycemic conditions. The phenolic compounds and α-glucosidase inhibition of FMPE were determined using UPLC-MS and chemical models. Furthermore, Caenorhabditis elegans was a model system to study the hypoglycemic effects. The results showed that the polyphenolics and α-glucosidase inhibition were improved during fermentation. Three phenolic components (cyanidin, 2,4,6-trihydroxybenzaldehyde, and taxifolin) were important variables for α-glucosidase inhibition. FMPE and the three key compound treatments reduced the glucose content and reactive oxygen species (ROS) level in Caenorhabditis elegans. The protective mechanism occurred by activating DAF-16/FOXO and SKN-1/Nrf2. This study suggests that Lactobacillus plantarum-fermentation was a potential way to utilize mulberry pomace polyphenols as hypoglycemic food ingredients.
Collapse
Affiliation(s)
- Shuxin Tang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yuxin Cheng
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Tingting Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
33
|
Xu H, Hao Z, Zhang J, Liu H, Deng C, Yu Z, Zheng M, Liu Y, Zhou Y, Xiao Y. Influence pathways of nanocrystalline cellulose on the digestibility of corn starch: Gelatinization, structural properties, and α-amylase activity perspective. Carbohydr Polym 2023; 314:120940. [PMID: 37173023 DOI: 10.1016/j.carbpol.2023.120940] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
This work focused on the pathways by which NCC regulated the digestibility of corn starch. The addition of NCC changed the viscosity of the starch during pasting, improved the rheological properties and short-range order of the starch gel, and finally formed a compact, ordered, and stable gel structure. In this respect, NCC affected the digestion process by changing the properties of the substrate, which reduced the degree and rate of starch digestion. Moreover, NCC induced changes in the intrinsic fluorescence, secondary conformation, and hydrophobicity of α-amylase, which lowered its activity. Molecular simulation analyses suggested that NCC bonded with amino acid residues (Trp 58, Trp 59, and Tyr 62) at the active site entrance via hydrogen bonding and van der Waals forces. In conclusion, NCC decreased CS digestibility by modifying the gelatinization and structural properties of starch and inhibiting α-amylase activity. This study provides new insights into the mechanisms by which NCC regulates starch digestibility, which could be beneficial for the development of functional foods to tackle type 2 diabetes.
Collapse
Affiliation(s)
- Huajian Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Jinglei Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Huixia Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Changyue Deng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
34
|
Arisanti CIS, Wirasuta IMAG, Musfiroh I, Ikram EHK, Muchtaridi M. Mechanism of Anti-Diabetic Activity from Sweet Potato ( Ipomoea batatas): A Systematic Review. Foods 2023; 12:2810. [PMID: 37509903 PMCID: PMC10378973 DOI: 10.3390/foods12142810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
This study aims to provide an overview of the compounds found in sweet potato (Ipomoea batatas) that contribute to its anti-diabetic activity and the mechanisms by which they act. A comprehensive literature search was conducted using electronic databases, such as PubMed, Scopus, and Science Direct, with specific search terms and Boolean operators. A total of 269 articles were initially retrieved, but after applying inclusion and exclusion criteria only 28 articles were selected for further review. Among the findings, four varieties of sweet potato were identified as having potential anti-diabetic properties. Phenolic acids, flavonols, flavanones, and anthocyanidins are responsible for the anti-diabetic activity of sweet potatoes. The anti-diabetic mechanism of sweet potatoes was determined using a combination of components with multi-target actions. The results of these studies provide evidence that Ipomoea batatas is effective in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Cokorda Istri Sri Arisanti
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Pharmacy Department, Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Bali 80361, Indonesia
| | - I Made Agus Gelgel Wirasuta
- Pharmacy Department, Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Bali 80361, Indonesia
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Emmy Hainida Khairul Ikram
- Centre for Dietetics Studies, Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia
- Integrated Nutrition Science and Therapy Research Group (INSPIRE), Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam 42300, Malaysia
- Research Collaboration Center for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Collaboration Center for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang 45363, Indonesia
| |
Collapse
|
35
|
He T, Zhang X, Zhao L, Zou J, Qiu R, Liu X, Hu Z, Wang K. Insoluble dietary fiber from wheat bran retards starch digestion by reducing the activity of alpha-amylase. Food Chem 2023; 426:136624. [PMID: 37356242 DOI: 10.1016/j.foodchem.2023.136624] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/13/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
This study investigated effects of insoluble dietary fiber (IDF) from wheat bran on starch digestion in vitro, analyzed the inhibition kinetics of IDF toward α-amylase and discussed the underlying mechanisms. Digestion results showed IDF significantly retarded starch digestion with reduced digestion rate and digestible starch content. Enzyme inhibition kinetics indicated IDF was a mixed-type inhibitor to α-amylase, because IDF could bind α-amylase, as evidenced by confocal laser scanning microscopy. Fluorescence quenching and UV-vis absorption experiments conformed this, found IDF led to static fluorescence quenching of α-amylase, mainly through van der Waals and/or hydrogen bonding forces. This interaction induced alternations in α-amylase secondary structure, showing more loosening and misfolding structures. This may prevent the active site of enzyme from capturing substrates, contributing to reduced α-amylase activity. These results would shed light on the utilization of IDF in functional foods for the management of postprandial blood glucose.
Collapse
Affiliation(s)
- Ting He
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Xin Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Jincheng Zou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Runkang Qiu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
36
|
Wang R, Fan R, Meng T, Wang L. Exploration of the inhibitory mechanisms of trans-polydatin/resveratrol on α-glucosidase by multi-spectroscopic analysis, in silico docking and molecular dynamics simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122866. [PMID: 37201332 DOI: 10.1016/j.saa.2023.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Plant-derived phenolics as natural α-glucosidase (α-GLU) inhibitors have attached great attention in the treatment of type-II diabetes mellitus currently. In this study, trans-polydatin and its aglycone resveratrol were found to show a notable inhibitory activity on α-GLU in a mixed-type manner with IC50 values of 18.07 and 16.73 μg/mL, respectively, which were further stronger than anti-diabetic drug acrabose (IC50 = 179.86 μg/mL). Multi-spectroscopic analysis results indicated that polydatin/resveratrol bound to α-GLU with one affinity binding site which was mainly driven by hydrogen bonds and van der Waals forces, and this binding process resulted in conformational alteration of α-GLU. In silico docking study showed that polydatin/resveratrol can well interact with the surrounding amino acid residues in the active cavity of α-GLU. Molecular dynamics simulation further clarified the structure and characterization of α-GLU-polydatin/resveratrol complexes. This study might supply a theoretical basis for the designing of novel functional foods with polydatin/resveratrol.
Collapse
Affiliation(s)
- Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruyan Fan
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Tingyu Meng
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
37
|
Yañez-Apam J, Domínguez-Uscanga A, Herrera-González A, Contreras J, Mojica L, Mahady G, Luna-Vital DA. Pharmacological Activities and Chemical Stability of Natural and Enzymatically Acylated Anthocyanins: A Comparative Review. Pharmaceuticals (Basel) 2023; 16:ph16050638. [PMID: 37242421 DOI: 10.3390/ph16050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Anthocyanins (ANCs) are naturally occurring water-soluble pigments responsible for conferring red, blue, and purple colors to fruits, vegetables, flowers, and grains. Due to their chemical structure, they are highly susceptible to degradation by external factors, such as pH, light, temperature, and oxygen. Naturally acylated anthocyanins have proven to be more stable in response to external factors and exhibit superior biological effects as compared with their non-acylated analogues. Therefore, synthetic acylation represents a viable alternative to make the application of these compounds more suitable for use. Enzyme-mediated synthetic acylation produces derivatives that are highly similar to those obtained through the natural acylation process, with the main difference between these two pathways being the catalytic site of the enzymes involved in the synthesis; acyltransferases catalyze natural acylation, while lipases catalyze synthetic acylation. In both cases, their active sites perform the addition of carbon chains to the hydroxyl groups of anthocyanin glycosyl moieties. Currently, there is no comparative information regarding natural and enzymatically acylated anthocyanins. In this sense, the aim of this review is to compare natural and enzyme-mediated synthetic acylated anthocyanins in terms of chemical stability and pharmacological activity with a focus on inflammation and diabetes.
Collapse
Affiliation(s)
- Jimena Yañez-Apam
- Tecnologico de Monterrey, School of Engineering and Science, Ave., 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave., 2501, Monterrey 64849, Mexico
| | - Astrid Domínguez-Uscanga
- Tecnologico de Monterrey, School of Engineering and Science, Ave., 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave., 2501, Monterrey 64849, Mexico
| | - Azucena Herrera-González
- Department of Chemical Engineering, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd., Gral., Marcelino García Barragán 1421, Guadalajara 44430, Mexico
| | - Jonhatan Contreras
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C.-Unidad Zapopan, Camino Arenero 1227, Zapopan 45019, Mexico
| | - Luis Mojica
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C.-Unidad Zapopan, Camino Arenero 1227, Zapopan 45019, Mexico
| | - Gail Mahady
- Clinical Pharmacognosy Laboratory, Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, 833 South Wood St., Chicago, IL 60612, USA
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, School of Engineering and Science, Ave., 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave., 2501, Monterrey 64849, Mexico
| |
Collapse
|
38
|
Zhou H, Zhang S, Chen L, Liu Y, Shen L, Zhang J. Effective Therapeutic Verification of Crocin I, Geniposide, and Gardenia ( Gardenia jasminoides Ellis) on Type 2 Diabetes Mellitus In Vivo and In Vitro. Foods 2023; 12:foods12081668. [PMID: 37107463 PMCID: PMC10137615 DOI: 10.3390/foods12081668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
For many centuries, Gardenia (Gardenia jasminoides Ellis) was highly valued as a food homologous Chinese herbal medicine with various bioactive compounds, including crocin I and geniposide. However, the functional mechanism underlying the hypoglycemic effect of gardenia is absent in the literature. To evaluate the effect of gardenia and its different extracts on type 2 diabetes mellitus (T2DM) in in vivo and in vitro experiments, the dried gardenia powder was extracted using 60% ethanol and eluted at different ethanol concentrations to obtain the corresponding purified fragments. After that, the active chemical compositions of the different purified gardenia fragments were analyzed using HPLC. Then, the hypoglycemic effects of the different purified gardenia fragments were compared using in vitro and in vivo experiments. Finally, the different extracts were characterized using UPLC-ESI-QTOF-MS/MS and the mass spectrometric fragmentation pathway of the two main compounds, geniposide and crocin I, were identified. The experimental results indicated that the inhibitory effect of the 40% EGJ (crocin I) on the α-glucosidase was better than the 20% EGJ (geniposide) in vitro. However, the inhibitory effect of geniposide on T2DM was better than crocin I in the animal experiments. The different results in vivo and in vitro presumed potentially different mechanisms between crocin I and geniposide on T2DM. This research demonstrated that the mechanism of hypoglycemia in vivo from geniposide is not only one target of the α-glucosidase but provides the experimental background for crocin I and the geniposide deep processing and utilization.
Collapse
Affiliation(s)
- Haibo Zhou
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Sen Zhang
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Lianghua Chen
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen 361006, China
| | - Yimei Liu
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Luhong Shen
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Jiuliang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
39
|
Qin Y, Chen X, Xu F, Gu C, Zhu K, Zhang Y, Wu G, Wang P, Tan L. Effects of hydroxylation at C3' on the B ring and diglycosylation at C3 on the C ring on flavonols inhibition of α-glucosidase activity. Food Chem 2023; 406:135057. [PMID: 36459800 DOI: 10.1016/j.foodchem.2022.135057] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The structure-activity relationship and inhibitory mechanism of flavonols on α-glucosidase were studied by inhibition kinetics, multispectral study, and molecular docking. The flavonols of rutin, quercetin and kaempferol effectively inhibit the activity of α-glucosidase, among which quercetin and rutin showed the strongest and weakest inhibitory abilities, respectively. The inhibitory ability of flavonols was enhanced by hydroxylation at C3' of B ring, while it was weakened by diglycosylation at C3 of C ring. Remarkably, the quenching affinity and inhibitory ability of flavonols were inconsistent, which was different from the conclusions reported by some previous studies. This may be ascribed to the hydroxyl groups of C3' of B ring and C3 of C ring. Furthermore, three flavonols were spontaneously bound to α-glucosidase through hydrophobic interactions and hydrogen bonding, which caused the structure and hydrophobic microenvironment of α-glucosidase to change, resulting in significant inhibition of α-glucosidase by flavonols.
Collapse
Affiliation(s)
- Yajuan Qin
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; School of Forest, Northeast Forestry University, Haerbin 150040, Heilongjiang, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Xiaoai Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Chunhe Gu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China.
| | - Gang Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China
| | - Ping Wang
- School of Forest, Northeast Forestry University, Haerbin 150040, Heilongjiang, China.
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China.
| |
Collapse
|
40
|
Li H, Yang J, Wang M, Ma X, Peng X. Studies on the inhibition of α-glucosidase by biflavonoids and their interaction mechanisms. Food Chem 2023; 420:136113. [PMID: 37054519 DOI: 10.1016/j.foodchem.2023.136113] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Biflavonoids are a kind of polyphenol compounds with numerous biological functions. However, the potential inhibitory activities of biflavonoids on α-glucosidase are yet unknown. Here, the inhibitory effects of two biflavonoids (amentoflavone and hinokiflavone) on α-glucosidase and their interaction mechanisms were explored using multispectral approaches and molecular docking. The results showed that the inhibitory activities of biflavonoids were much better compared with monoflavonoid (apigenin) and acarbose, and the order of inhibition ability was hinokiflavone > amentoflavone > apigenin > acarbose. These flavonoids were noncompetitive inhibitors of α-glucosidase and showed synergistic inhibition effects with acarbose. Additionally, they could statically quench the intrinsic fluorescence of α-glucosidase, and form the non-covalent complexes with enzyme primarily through hydrogen bonds and van der Waals forces. The binding of flavonoids changed the conformational structure of α-glucosidase, therefore impairing the enzyme activity. The findings suggested that biflavonoids could be considered as potential hypoglycemic functional foods in diabetes therapy.
Collapse
Affiliation(s)
- Huan Li
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Jichen Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Mengfan Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China.
| | - Xiangzhao Ma
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, PR China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
41
|
Liu H, Zheng C, Li Z, Xia X, Jiang D, Wang W, Zhang R, Xiang X. Inhibitory mechanism of phenolic compounds in rapeseed oil on α-amylase and α-glucosidase: Spectroscopy, molecular docking, and molecular dynamic simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122251. [PMID: 36542921 DOI: 10.1016/j.saa.2022.122251] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Developing naturally active components to control α-amylase/α-glucosidase activity is highly desired for preventing and managing type 2 diabetes. Rapeseed oil is rich in active phenolic compounds and seed oil is a major source of liposoluble inhibitors to these enzymes. However, it remains unclear about the interaction of phenolic compounds in rapeseed oil with α-amylase/α-glucosidase. This study found that the important phenolic compounds from rapeseed oil (Sinapic acid, SA; canolol, CAO; canolol dimer, CAO dimer) possessed effective inhibition performance against α-amylase and α-glucosidase. CAO showed the lowest and highest inhibitory effect, respectively. In the kinetics studies, the inhibition mechanism of SA/CAO/CAO dimer against α-glucosidase was non-competitive, exhibiting a different way from α-amylase. Fluorescence quenching spectra implied that the static processes were responsible for the spontaneous binding between the compounds and enzymes. Fourier-transform infrared spectroscopy (FT-IR) displayed these compounds-induced conformation alterations of α-amylase/α-glucosidase. Molecular docking revealed that SA/CAO/CAO dimer decreased the catalytic efficiency of α-amylase/α-glucosidase through hydrogen bonds, hydrophobic force, or π-π interaction. Molecular dynamics matched well with the experimental and docking results regarding the inhibitory behaviors and interactions toward α-amylase/α-glucosidase. These results demonstrated the potential benefits of phenolic compounds from rapeseed oil in antidiabetic-related activities.
Collapse
Affiliation(s)
- Huihui Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Chang Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Ziliang Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xiaoyang Xia
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Dan Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Wen Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Ruiying Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Xia Xiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
42
|
Effect of the Enzymatic Treatment of Phenolic-Rich Pigments from Purple Corn (Zea mays L.): Evaluation of Thermal Stability and Alpha-Glucosidase Inhibition. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
43
|
Chávez-Delgado EL, Jacobo-Velázquez DA. Essential Oils: Recent Advances on Their Dual Role as Food Preservatives and Nutraceuticals against the Metabolic Syndrome. Foods 2023; 12:1079. [PMID: 36900596 PMCID: PMC10000519 DOI: 10.3390/foods12051079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Essential oils (EO) are compounds synthesized by plants as secondary products and are a complex mixture of volatile molecules. Studies have demonstrated their pharmacological activity in the prevention and treatment of metabolic syndrome (MetS). Moreover, they have been used as antimicrobial and antioxidant food additives. The first part of this review discusses the role of EO as nutraceuticals to prevent metabolic syndrome-related disorders (i.e., obesity, diabetes, and neurodegenerative diseases), showing results from in vitro and in vivo studies. Likewise, the second part describes the bioavailability and mechanisms of action of EO in preventing chronic diseases. The third part presents the application of EO as food additives, pointing out their antimicrobial and antioxidant activity in food formulations. Finally, the last part explains the stability and methods for encapsulating EO. In conclusion, EO dual role as nutraceuticals and food additives makes them excellent candidates to formulate dietary supplements and functional foods. However, further investigation is needed to understand EO interaction mechanisms with human metabolic pathways and to develop novel technological approaches to enhance EO stability in food systems to scale up these processes and, in this way, to overcome current health problems.
Collapse
Affiliation(s)
- Emily L. Chávez-Delgado
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
44
|
In Vitro Inhibitory Effects of Polyphenols from Flos sophorae immaturus on α-Glucosidase: Action Mechanism, Isothermal Titration Calorimetry and Molecular Docking Analysis. Foods 2023; 12:foods12040715. [PMID: 36832790 PMCID: PMC9956223 DOI: 10.3390/foods12040715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Flos sophorae immaturus (FSI) is considered to be a natural hypoglycemic product with the potential for a-glucosidase inhibitory activity. In this work, the polyphenols with α-glucosidase inhibition in FSI were identified, and then their potential mechanisms were investigated by omission assay, interaction, type of inhibition, fluorescence spectroscopy, circular dichroism, isothermal titration calorimetry and molecular docking analysis. The results showed that five polyphenols, namely rutin, quercetin, hyperoside, quercitrin and kaempferol, were identified as a-glucosidase inhibitors with IC50 values of 57, 0.21, 12.77, 25.37 and 0.55 mg/mL, respectively. Quercetin plays a considerable a-glucosidase inhibition role in FSI. Furthermore, the combination of quercetin with kaempferol generated a subadditive effect, and the combination of quercetin with rutin, hyperoside and quercitrin exhibited an interference effect. The results of inhibition kinetics, fluorescence spectroscopy, isothermal titration calorimetry and molecular docking analysis showed that the five polyphenols were mixed inhibitors and significantly burst the fluorescence intensity of α-glucosidase. Moreover, the isothermal titration calorimetry and molecular docking analysis showed that the binding to α-glucosidase was a spontaneous heat-trapping process, with hydrophobic interactions and hydrogen bonding being the key drivers. In general, rutin, quercetin, hyperoside, quercitrin and kaempferol in FSI are potential α-glucosidase inhibitors.
Collapse
|
45
|
Ji W, Gu L, Zou X, Li Z, Xu X, Wu J, Zhang S, Deng H. Discovery, Validation, and Target Prediction of Antibacterial and Antidiabetic Components of Archidendron clypearia Based on a Combination of Multiple Analytical Methods. Molecules 2023; 28:molecules28031329. [PMID: 36770996 PMCID: PMC9919075 DOI: 10.3390/molecules28031329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Archidendron clypearia (A. clypearia), a Fabaceae family member, is widely used as an anti-inflammatory herbal medicine; however, its antibacterial and antidiabetic properties have not been extensively investigated. This study aimed to systematically analyze the antibacterial and antidiabetic components of A. clypearia by utilizing a combination of analytical methods. First, ten different polarity extracts were analyzed through ultra-performance liquid chromatography (UPLC), and their antibacterial and antidiabetic activities were evaluated. Then the spectrum-effect relationship between the biological activity and UPLC chromatograms was analyzed by partial least squares regression and gray relational analysis, followed by corresponding validation using isolated components. Finally, network pharmacology and molecular docking were implemented to predict the main antibacterial target components of A. clypearia and the enzyme inhibition active sites of α-amylase and α-glucosidase. P15, P16, and P20 were found to be the antibacterial and antidiabetic active components. The inhibitory effect of 7-O-galloyltricetiflavan (P15) on six bacterial species may be mediated through the lipid and atherosclerosis pathway, prostate cancer, adherens junctions, and targets such as SRC, MAPK1, and AKT1. The molecular docking results revealed that 7-O-galloyltricetiflavan and 7,4'-di-O-galloyltricetiflavan (P16/P20) can bind to α-amylase and α-glucosidase pockets with binding energies lower than -6 kcal/mol. Our study provides guidance for the development of antibacterial and antidiabetic products based on A. clypearia and can be used as a reference for the evaluation of bioactivity of other herbs.
Collapse
Affiliation(s)
- Wenduo Ji
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixia Gu
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuezhe Zou
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhichao Li
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaohong Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jialin Wu
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shu Zhang
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hong Deng
- The Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence:
| |
Collapse
|
46
|
Chen K, Kortesniemi MK, Linderborg KM, Yang B. Anthocyanins as Promising Molecules Affecting Energy Homeostasis, Inflammation, and Gut Microbiota in Type 2 Diabetes with Special Reference to Impact of Acylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1002-1017. [PMID: 36515085 PMCID: PMC9853865 DOI: 10.1021/acs.jafc.2c05879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
Anthocyanins, the red-orange to blue-violet colorants present in fruits, vegetables, and tubers, have antidiabetic properties expressed via modulating energy metabolism, inflammation, and gut microbiota. Acylation of the glycosyl moieties of anthocyanins alters the physicochemical properties of anthocyanins and improves their stability. Thus, acylated anthocyanins with probiotic-like property and lower bioavailability are likely to have different biological effects from nonacylated anthocyanins on diabetes. This work highlights recent findings on the antidiabetic effects of acylated anthocyanins from the perspectives of energy metabolism, inflammation, and gut microbiota compared to the nonacylated anthocyanins and particularly emphasizes the cellular and molecular mechanisms associated with the beneficial effects of these bioactive molecules, providing a new perspective to explore the different biological effects induced by structurally different anthocyanins. Acylated anthocyanins may have greater modulating effects on energy metabolism, inflammation, and gut microbiota in type 2 diabetes compared to nonacylated anthocyanins.
Collapse
|
47
|
Ezati M, Ghavamipour F, Adibi H, Pouraghajan K, Arab SS, Sajedi RH, Khodarahmi R. Design, synthesis, spectroscopic characterizations, antidiabetic, in silico and kinetic evaluation of novel curcumin-fused aldohexoses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121806. [PMID: 36108405 DOI: 10.1016/j.saa.2022.121806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Curcumin (bis-α,β-unsaturated β-diketone) plays an important role in the prevention of numerous diseases, including diabetes. Curcumin, as an enzyme inhibitor, has ideal structural properties including hydrophobic nature, flexible backbone, and several available hydrogen bond (H-bond) donors and acceptors. In this study, curcumin-fused aldohexose derivatives 3(a-c) were synthesized and used as influential agents in the treatment of diabetes with inhibitory properties against two carbohydrate-hydrolyzing enzymes α-glucosidase (α-Gls) and α-amylase (α-Amy) which are known to be significant therapeutic targets for the reduction of postprandial hyperglycemia. These compounds were isolated, purified, and then spectrally characterized via FT-IR, Mass, 1H, and 13C NMR, which strongly confirmed the targeted product's formation. Also, their inhibitory properties against α-Gls and α-Amy were evaluated spectroscopically. The Results indicated that all compounds strongly inhibited α-Amy and α-Gls by mixed and competitive mechanisms, respectively. The intrinsic fluorescence of α-Amy was quenched by the interaction with compounds 1 and 3b through a dynamic quenching mechanism, and the 1 and 3b/α-Amy complexes were spontaneously formed, mainly driven by the hydrophobic interaction and hydrogen bonding. Fourier transform infrared spectra (FT-IR) comprehensively verified that the binding of compounds 1 and 3b to α-Amy would change the conformation and microenvironment of α-Amy, thereby inhibiting the enzyme activity. Docking and molecular dynamics (MD) simulations showed that all compounds interacted with amino acid residues located in the active pocket site of the proteins. In vivo studies confirmed the plasma glucose diminution after the administration of compound 3b to Wistar rats. Accordingly, the results of the current work may prompt the scientific communities to investigate the possibility of compound 3b application in the clinic.
Collapse
Affiliation(s)
- Mohammad Ezati
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fahimeh Ghavamipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khadijeh Pouraghajan
- Bioinformatics Laboratory, Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
48
|
Inhibition mechanisms of wounded okra on the α-glucosidase/α-amylase. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Preparation of hypoglycemic anthocyanins from mulberry (Fructus mori) fruits by ultrahigh pressure extraction. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Dai J, Ruan Y, Feng Y, Li B. Physical Properties, α-Glucosidase Inhibitory Activity, and Digestive Stability of Four Purple Corn Cob Anthocyanin Complexes. Foods 2022; 11:3665. [PMID: 36429257 PMCID: PMC9689758 DOI: 10.3390/foods11223665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, pectin (PC), whey protein isolate (WPI), and chitosan (CS) were combined with purple corn cob anthocyanins (PCCA). Four complexes, PC-PCCA, WPI-PCCA, WPI-PC-PCCA, and CS-PC-PCCA were prepared to evaluate the improvement in the α-glucosidase inhibitory activity and digestive stability of PCCA. The encapsulation efficiency (EE), particle size, physical properties, and mode of action of the synthesized PCCA complexes were evaluated. Among them, CS-PC-PCCA had the highest EE (48.13 ± 2.73%) except for WPI-PC-PCCA; furthermore, it had a medium size (200-300 nm), the lowest hygroscopicity (10.23 ± 0.28%), lowest solubility (10.57 ± 1.26%), and highest zeta potential (28.20 ± 1.14). CS-PC-PCCA was multigranular and irregular in shape; x-ray diffraction showed that it was amorphous; and Fourier transform infrared spectroscopy confirmed that it was joined with PCCA through hydrogen bonds and electrostatic interactions. Compared with PCCA, the four complexes showed a higher α-glucosidase inhibition activity and digestive stability, except for WPI-PC-PCCA. Furthermore, CS-PC-PCCA exhibited the best α-glucosidase inhibition and simulated digestion stability.
Collapse
Affiliation(s)
- Jialin Dai
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Feng
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Bin Li
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|