1
|
Cao Y, Xu A, Tao M, Wang S, Yu Q, Li S, Tu Z, Liu Z. Flavor evolution of unsweetened green tea beverage during actual storage: Insights from multi-omics analysis. Food Chem 2025; 481:144039. [PMID: 40157108 DOI: 10.1016/j.foodchem.2025.144039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/13/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
The flavor evolution of unsweetened green tea beverage (USGTB) under actual storage is critical for quality control yet remains unclear. Unlike previous studies conducted by accelerated shelf-life testing, this research investigated sensory-chemical changes in naturally stored USGTB (0-7 months) through multi-omics integrating metabolomics and sensomics. Results identified the 5-month as a critical point for flavor preservation. The EC-EGCG dimer emerged as a novel aging marker, contrasting with freshness indicators (ascorbic acid and other antioxidants). Protocatechuic acid and 2-furoic acid served as multi-flavor contributors (yellowish, sweetness and astringency), whereas L-tartaric acid and malic acid enhanced sourness. Concurrently, aroma deterioration was driven by the diminished (E)-β-ionone and accumulated methyl salicylate. Mechanistically, oxidations of ascorbic acid, catechins, and fresh aroma-related volatiles, flavonoid glycosylation, and oligosaccharides hydrolysis collectively drove color darkening, astringency enhancement, sweetness intensification, and cooked-off flavor development. These findings provided targeted quality control points for USGTB during actual shelf-life.
Collapse
Affiliation(s)
- Yanyan Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Anan Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Meng Tao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Shanshan Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Qinyan Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sixu Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; The College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Zheng Tu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhengquan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Xu C, Zhang J, Pan Y, Feng X, Yan A, Wang X, Xiang L, Guo H, He L, Chen T, Fan F, Gong S, Chen P, Chu Q. Formation of aroma characteristics driven by microorganisms during long-term storage of Liubao tea. Food Chem 2025; 476:143400. [PMID: 39986067 DOI: 10.1016/j.foodchem.2025.143400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
Liubao tea (LBT) with longer storage year is believed to have better sensory quality. The aroma characteristics and fungal community succession during the storage process of LBT were studied using LBT stored for 2-15 years as materials. The results showed that the aroma characteristics of LBT showed significant changes in 3 stages. After 10 years of storage, the sensory quality of LBT was notably improved, with herbal aroma beginning to emerge and a distinctly woody aroma. In addition, fungi were involved in the transformation of substances to affect the aroma quality during the storage of LBT. Aspergillus and Penicillium may help reduce musty and green odors and enhancing woody and herbal odors based on correlation analysis. This study provided useful information on the key aroma compounds and core functional microorganisms that drive the aroma characteristics formation of LBT during storage.
Collapse
Affiliation(s)
- Chang Xu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jinming Zhang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Anran Yan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinxin Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Lin Xiang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Haowei Guo
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Lixin He
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China..
| |
Collapse
|
3
|
Liu C, Liao Y, Jiang H, Tang Q, He C, Wang Y, Ren M, Wang C, Chen S, Tan L, Wan X, Chen D. Theabrownin: The 'rich hue' of Chinese dark tea, its extraction, and role in regulating inflammation and immune response. Food Res Int 2025; 209:116185. [PMID: 40253125 DOI: 10.1016/j.foodres.2025.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Theabrownin (TB) is one of the most representative bioactive components in Chinese dark tea, often referred to as the "gold in dark tea." The complex macromolecular structure of TB is influenced by its source (tea materials), extraction, separation, and purification methods, which affect its final structure and bioactivity. In recent years, research on TB has surged, becoming a hotspot in the field of tea functional components and health research. Extensive studies on its health benefits indicate that TB is a crucial active ingredient in dark tea with substantial potential for application in food, health care, industry, and medical fields. This review summarizes the formation of TB during dark tea manufacturing, especially the "piling" stage, extraction methods, various purification techniques, and the physicochemical properties of TB. Additionally, it comprehensively reviews recent research on TB's role in typical inflammation and immune imbalance-induced diseases such as colitis, atherosclerosis, non-alcoholic fatty liver disease, and innate immune diseases. The review concludes with a comparative summary of the biological activities of TB from the five major types of Chinese dark tea in terms of anti-inflammatory and immune regulatory effects.
Collapse
Affiliation(s)
- Chen Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China; Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Yihong Liao
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Hanrui Jiang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Qian Tang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Chunlei He
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Mengyi Ren
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Chenbo Wang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Shengxiang Chen
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Liqiang Tan
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China.
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, PR China.
| |
Collapse
|
4
|
Wu D, Chen Z, Ma M, Li W, Peng Z, Shi Z, Zhang J, Liu H, Xie G, Lu J. Effects of aging years on taste attributes of Huangjiu and their correlation with non-volatile compounds: A study based on E-tongue, UPLC-MS untargeted metabolomics, and WGCNA. Food Chem 2025; 484:144319. [PMID: 40273878 DOI: 10.1016/j.foodchem.2025.144319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Aging plays a crucial role in enhancing the flavor of Huangjiu. This study aims to elucidate the changes in taste attributes of aged Huangjiu and explore the correlation between non-volatile compounds. It showed that aging made the sourness, bitterness, and astringency more pronounced. The content of organic acids and amino acids exhibited specific patterns with aging years. The total taste activity value of organic acids showed an increasing trend, peaking at 54.40 in Huangjiu aged 15 years, which served as a key indicator of sourness intensity. A total of 22 potential contributors to umami and 18 to bitterness were screened based on weighted gene coexpression network analysis. The total content of potential umami contributors was significantly higher in fresh Huangjiu and aging stage I, but declined in later periods, while bitterness contributors increased gradually throughout the aging process. This study provided theoretical support for the taste characteristics of aged Huangjiu.
Collapse
Affiliation(s)
- Dianhui Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China
| | - Ziqiang Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China
| | - Mingtao Ma
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China
| | - Wenzhe Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhengcong Peng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China
| | - Zhenbao Shi
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jinglong Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China
| | - Hua Liu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Jian Lu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR. China.
| |
Collapse
|
5
|
Huang H, Chen X, Wang Y, Cheng Y, Wu X, Wu C, Xiong Z. Analysis of volatile compounds and vintage discrimination of raw Pu-erh tea based on GC-IMS and GC-MS combined with data fusion. J Chromatogr A 2025; 1743:465683. [PMID: 39832420 DOI: 10.1016/j.chroma.2025.465683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Storage duration significantly influences the aroma profile of raw Pu-erh tea. To comprehensively investigate the differences in the volatile compounds across various vintages of raw Pu-erh teas and achieve the rapid classification of tea vintages, volatile compounds of raw Pu-erh tea with different years (2020-2023) were analyzed using a combination of gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography-mass spectrometry (GC-MS). The datasets obtained from both techniques were integrated through low-level and mid-level data fusion strategies. Additionally, partial least squares discriminant analysis (PLS-DA) and random forest (RF) machine learning algorithms were applied to develop predictive models for the classification of tea storage durations. Consequently, GC-IMS and GC-MS identified 54 and 76 volatile compounds, respectively. Notably, the RF model, particularly when coupled with mid-level data fusion, exhibited exceptional predictive accuracy for tea storage time, reaching an accuracy of 100%. These findings provide a reference for elucidating the aroma characteristics of raw Pu-erh tea of different vintages and demonstrate that data fusion combined with machine learning has great potential for ensuring food quality.
Collapse
Affiliation(s)
- Haoran Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Xinyu Chen
- Optoelectronics Department of Changzhou Institute of Technology, Liaohe Road 666, Changzhou 213002, China
| | - Ying Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Ye Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Xianzhi Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Zhixin Xiong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| |
Collapse
|
6
|
Zhu W, Feng X, Pan Y, Guo H, Liu Y, Lin X, Fan F, Gong S, Chen P, Chu Q. Flowering in aged white tea: Recovering umami taste and amplifying of stale aroma. Food Chem 2025; 465:141649. [PMID: 39433449 DOI: 10.1016/j.foodchem.2024.141649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024]
Abstract
Throughout the natural aging process from new to aged white tea, the flavor evolves into a 'stale flavor', despite the initial umami diminishes. The flowering process, inoculation of Eurotium cristatum to white tea, improves the flavor. The impact on sensory qualities and underlying chemical basis of flowering in aged white tea warrant investigation. Sensory analysis, non-targeted metabolomics and volatilomics together deciphered flavor modifications of flowering in aged white tea from different aging years (FAWTs). Findings indicate the flowering process can recover the umami of aged white tea, enhancing the 'stale flavor'. These changes primarily stem from oxidations of catechins and free amino acids, enrichments of flavonols and soluble sugars, and 16 pivotal aroma compounds from degradations of lipids and glycosides. Additionally, 15 volatile and 39 non-volatile compounds were identified as potential biomarkers for FAWTs. These findings offer a viable strategy to improving the quality of aged white tea.
Collapse
Affiliation(s)
- Wan Zhu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Haowei Guo
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Liu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China..
| |
Collapse
|
7
|
Zhou Y, Wang D, Zhao J, Guo Y, Yan W. Differentiation and characterization of volatile compounds in five common milk powders using HS-GC-IMS, HS-SPME-GC-MS, and multivariate statistical approaches. Food Chem X 2025; 25:102179. [PMID: 39906067 PMCID: PMC11791332 DOI: 10.1016/j.fochx.2025.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/04/2025] [Accepted: 01/12/2025] [Indexed: 02/06/2025] Open
Abstract
Aroma is a key factor in milk powder quality evaluation and consumer choice. However, research has mostly focused on processing effects, with little on flavor differences among milk powders. This study analysed and identified the flavor characteristics of five common types of milk powders in China, including yak milk powder, donkey milk powder, camel milk powder, goat milk powder, and cow milk powder, using Headspace-Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS), Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS), and multivariate statistical analysis. Results identified 55 and 86 volatile compounds via HS-GC-IMS and HS-SPME-GC-MS, respectively, revealing significant differences between milk powders. PCA, OPLS-DA, PLS-DA, and heatmaps further distinguished the sources. Based on VIP values, 27 and 24 key compounds were identified. These results underscored the potential of utilizing these combined techniques for quick flavor analysis and detecting adulteration in milk powder.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Jian Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Yu Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| |
Collapse
|
8
|
Wei K, Wei Q, Wei Y, Peng L, Cheng L, Zhu Y, Wang Y, Wei X. Chemical Basis and Molecular Mechanism of Aged Qingzhuan Tea Alleviating DSS-Induced Colitis. Mol Nutr Food Res 2024:e2400734. [PMID: 39676441 DOI: 10.1002/mnfr.202400734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/31/2024] [Indexed: 12/17/2024]
Abstract
SCOPE Inflammatory bowel disease (IBD) poses a serious threat to human health. Qingzhuan tea (QZT), especially aged QZT, was concerned to have a potential effect on the prevention of colitis. In this study, we aim to assess the feasibility of different aged QZT on the alleviation of colitis induced by DSS. METHODS AND RESULTS A comprehensive investigation into the efficacy of QZT of different aging years was conducted by establishing the animal model of colitis and the cellular inflammation model. The results demonstrated that QZT aged 0-20 years could significantly alleviate the symptoms of colitis. Notably, QZT aged for 5 years (A5) and 10 years (A10) was particularly effective in downregulating the levels of proinflammatory cytokines, via suppressing the activation of the NF-κB p65 pathway and upregulating the expression of the Nrf2/ARE pathway. The additional upregulation of gut microbiota including Allobaculum and Lactobacillus and superior alleviation on mitochondrial damage may be the mechanisms for A10 to show the better activity than A0 on alleviating colitis. CONCLUSION Our study highlights the potential of QZT, especially A5 and A10, and provides valuable insights for the development of functional foods targeting colitis.
Collapse
Affiliation(s)
- Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qiurong Wei
- Chibi People's Hospital, Chibi, Hubei, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuzhi Zhu
- Yangloudong Tea Industry Co. LTD, Yangloudong Tea Culture Ecological Industrial Park, Chibi, Hubei, PR China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
9
|
Wen S, Bai S, An R, Peng Z, Chen H, Jiang R, Ouyang J, Liu C, Wang Z, Ou X, Zeng H, Sun S, Pu S, Cao J, Huang J, Liu Z. Key Metabolites Influencing Astringency and Bitterness in Yinghong 9 Large-Leaf Dark Tea Before and After Pile-Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27378-27388. [PMID: 39604007 DOI: 10.1021/acs.jafc.4c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Understanding the impacts of pile-fermentation on the taste quality of dark tea (DT) is crucial. Although the large-leaf DT, Yinghong 9 DT, was successfully developed, its taste quality was not systematically studied. This research aims to analyze how pile-fermentation affects taste. Our taste evaluations indicated that pile-fermentation reduces astringency while slightly increasing bitterness. Through untargeted metabolomic analysis, we identified 16 key metabolites associated with these taste changes. The analysis of the dose-overthreshold values affirmed that rutin, isoquercetin, myricetin 3-galactoside, EGCG, DL-C, and ECG were found to lower astringency, while caffeine contributed to the slight increase in bitterness. Additionally, the changes in these metabolites are closely linked to the catalytic effects of microbial extracellular enzymes. These findings provide a theoretical foundation for a deeper understanding of how pile fermentation influences the taste quality of large-leaf DT.
Collapse
Affiliation(s)
- Shuai Wen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Silei Bai
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Ran An
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhong Peng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Hongyu Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Ronggang Jiang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Zhong Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Xingchang Ou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Hongzhe Zeng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Songtao Pu
- Yunnan Xiaguantuo Tea (Group) Co.,Ltd, Dali 671000, China
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
10
|
Shen S, Fu J, Fan R, Zhang J, Sun H, Wang Y, Ning J, Yue P, Zhang L, Gao X. Changes in the key odorants of loose-leaf dark tea fermented by Eurotium cristatum during aging for one year: Focus on the stale aroma. Food Res Int 2024; 197:115244. [PMID: 39593326 DOI: 10.1016/j.foodres.2024.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Aging process has been recognized as one of the means to improve the quality of microbial fermented teas. The evolution of the characteristic stale aroma, a key odorant of microbial fermented tea, throughout the aging process remains unknown. To investigate the changes in key odorants of the fermented tea during aging, the loose-leaf dark tea (LDT) used in this study was prepared by solid-state fermentation using Eurotium cristatum and was aged for 0, 3, 6, 9, 12 months, producing varied aged LDT samples. Quantitative descriptive analysis (QDA) showed that the intensity of stale aroma in the LDT increased gradually during aging for one year. The volatile compounds from different aged samples were extracted using solvent-assisted flavor evaporation (SAFE) combined with liquid-liquid extraction, and ninety-six aroma-active compounds were further identified by gas chromatography-mass spectrometry/olfactometry (GC - MS/O) combined with modified detection frequency (MF) values. Among them, alcohols and esters showed an increasing trend, while nitrogenous compounds showed a decreasing trend during aging. The stale aroma attribute of the LDT were closely associated with several key odorants produced from the biotransformation by Eurotium cristatum, including cedrol, β-ionone, 1-octen-3-one, 1-octen-3-ol, and 4-vinylguaiacol, their aroma contributions were confirmed by further addition tests. These findings provide a theoretical basis for the future optimization of the aging process of fermented tea.
Collapse
Affiliation(s)
- Shanshan Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jialin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ranqin Fan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Haoran Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pengxiang Yue
- Fujian Provincial Key Laboratory of Plant Extraction Technology for Beverages, Zhangzhou, 363005, Fujian, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
11
|
Huang Y, Liu H, Wang J, Zhang R, Zhang Y, Liu Z, Pang Y, Yang C, Nie J. Impact of the long-term storage on flavor quality of Liupao tea using sensory evaluation combined with metabolomics analysis. Food Res Int 2024; 198:115386. [PMID: 39643349 DOI: 10.1016/j.foodres.2024.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
This study comprehensively investigated the impact of different storage times on the quality and metabolomic profiles of Liupao tea (LPT). The sensory evaluations revealed that both Maosheng (MS) and Tianyu (TY) teas exhibited a browning of tea appearance and brightening of tea infusion during storage. The taste evolved from bitterness and astringency to purity and briskness, while the aroma shifted from stuffy to woody and aged aromas. Notably, MS teas exhibited superior sensory quality after 10 years, while TY teas reached optimal quality in the 8th year of storage. Correlation analysis of metabolites and sensory attributes has underscored the integral influence of metabolites throughout the storage process, which significantly directed the development of tea quality. The non-volatile metabolites exerted significant influence on tea flavor by modulating key biochemical pathways, including the oxidation of catechins, the formation of alkaloids as well as the glycosylation and/or methylation of flavonoids. However, TY teas experienced both glycosylation and methylation, which promoted the transformation of bitterness and astringency, achieving a mellow and brisk taste more quickly than MS teas. The transformation pathways of volatile metabolites potentially involved the hydrolysis of linalool glycosides and phenylethanol glycosides, the synthesis of sesquiterpenes, the methylation of gallic acid and the degradation of carotenoids. However, the divergent trends observed in ketones and aldehydes between the two types of tea could culminate in distinct aromatic profiles, which might be due to different metabolic pathways or differences in the rates of metabolite formation and degradation during storage. Additionally, the antioxidant analysis revealed that both MS and TY teas exhibited a parabolic trend in comprehensive antioxidant capacity during storage, which primarily influenced by the oxidative polymerization of phenolic compounds and the glycosylation of flavonoids. In summary, this study emphasized the multifaceted attributes of tea quality and the importance of metabolites in shaping sensory quality and health properties. It was found that the optimal storage time of 8 to 10 years for LPT was conducive to attaining a desirable balance of flavor and health benefits.
Collapse
Affiliation(s)
- Yingyi Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; Guangxi Research Institute of Tea Science, Guilin 541004, China; Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Huahong Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; Guangxi Research Institute of Tea Science, Guilin 541004, China; Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Jing Wang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Rui Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yun Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Zhusheng Liu
- Guangxi Research Institute of Tea Science, Guilin 541004, China; Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Yuelan Pang
- Guangxi Research Institute of Tea Science, Guilin 541004, China; Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Chun Yang
- Guangxi Research Institute of Tea Science, Guilin 541004, China; Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China.
| |
Collapse
|
12
|
Chen C, Huang L, Xia N, Teng J, Zhang Q, Zhu P, Wang H, Deng H. Combining non-targeted and targeted metabolomics to study key bitter and astringent substances of Liupao tea. Food Chem 2024; 467:142289. [PMID: 39637669 DOI: 10.1016/j.foodchem.2024.142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Liupao tea is a post-fermented dark tea with bitterness and astringency as key sensory traits, though its chemical composition is not fully understood. Six Liupao tea samples with significant differences in bitterness and astringency were analyzed using non-targeted metabolomics and sensory evaluation. Thirty finished and five semi-finished Liupao tea samples were analyzed using UHPLC-MS-PRM for targeted quantification of bitter and astringent compounds. The results show that 477 non-volatile compounds were detected, including 18 potential bitter compounds and 22 potential astringent compounds. Six key bitter compounds (epigallocatechin gallate, catechin gallate, caffeine, quinic acid, neochlorogenic acid, and caffeic acid) and 11 key astringent compounds (e.g., epigallocatechin gallate, gallic acid, chlorogenic acid, ellagic acid) were identified. After fermentation, flavonoid glycosides and flavanols were reduced by 62.41 % to 97.46 %, while phenolic acids showed varied trends. Different rates of change in key compounds during fermentation resulted in variations in bitterness and astringency. This study offers insights for improving Liupao tea quality.
Collapse
Affiliation(s)
- Can Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qisong Zhang
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Huifang Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Haichao Deng
- Baihui Pharmaceutical Group co, LTD, Nanning, Guangxi 530003, China.
| |
Collapse
|
13
|
Song X, Wu Z, Liang Q, Ma C, Cai P. Prediction of storage years of Wuyi rock tea Shuixian by metabolites analysis. Food Sci Nutr 2024; 12:7166-7176. [PMID: 39479628 PMCID: PMC11521635 DOI: 10.1002/fsn3.4327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 11/02/2024] Open
Abstract
Wuyi rock teas of different storage duration have different flavor, bioactivity, and market value, Shuixian is a main variety of Wuyi rock tea. In this study, metabolites composition of Shuixian with different storage years were analyzed using Ultrahigh Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-TOF-MS). A total of 1201 compounds were identified, and 104 differential compounds (VIP > 1.5) were determined. Furthermore, the results showed that five compounds exhibited a positive correlation with storage time, such as alpha-terpineol formate, carnosol, 2-phenethyl-D-glucopyranoside, Ellagic acid, and D-ribosyl nicotinic acid, while 24 compounds showed a negative correlation, such as Ethyl linoleate, leucocyanidin, cis-3-hexenyl acetate. In total, 29 signature compounds significantly correlated with storage time. These findings shed light on the patterns and mechanisms of changes in the composition of Wuyi rock tea during storage and provide a theoretical foundation for distinguishing the storage years.
Collapse
Affiliation(s)
- Xiaoyue Song
- College of Food Science, Fujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Zhifeng Wu
- College of Food Science, Fujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Quanming Liang
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Chunhua Ma
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| | - Pumo Cai
- College of Tea and Food Science, Wuyi UniversityWuyishanChina
| |
Collapse
|
14
|
Cheng L, Peng L, Li X, Xu L, Chen J, Zhu Y, Wei Y, Wei X. Co-occurrence network and functional profiling of the bacterial community in the industrial pile fermentation of Qingzhuan tea: Understanding core functional bacteria. Food Chem 2024; 454:139658. [PMID: 38810451 DOI: 10.1016/j.foodchem.2024.139658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024]
Abstract
The distinct quality of Qingzhuan tea is greatly influenced by the bacterial community but was poorly characterized. Therefore, this study investigated the Co-occurrence network and functional profiling of the bacterial community, with special attention paid to core functional bacteria in the industrial pile fermentation. Microbiomics analysis indicated that Klebsiella and Pantoea dominated raw tea leaves, and were rapidly replaced by Pseudomonas in pile fermentation, but substituted mainly by Burkholderia and Saccharopolyspora in final fermented tea. Bacterial taxa were grouped into 7 modules with the dominant in module I, III, and IV, which were involved in flavor formation and biocontrol production. Functional profiling revealed that "penicillin and cephalosporin biosynthesis" increased in pile fermentation. Twelve bacterial genera were identified as core functional bacteria, in which Klebsiella, Pantoea, and Pseudomonas also dominated the pile fermentation. This work would provide theoretical basis for its chemical biofortification and quality improvement by controlling bacterial communities.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xin Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Junhai Chen
- Hubei Zhaoliqiao Tea Factory Co. Ltd., Xianning 437318, PR China
| | - Yuzhi Zhu
- Hubei Qingzhuan Tea Industry Development Group Co. Ltd., Xianning 437000, PR China
| | - Yanxiang Wei
- Hubei Zhaoliqiao Tea Factory Co. Ltd., Xianning 437318, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
15
|
Zhang W, Chen W, Pan H, Sanaeifar A, Hu Y, Shi W, Guo J, Ding L, Zhou J, Li X, He Y. Rapid identification of the aging time of Liupao tea using AI-multimodal fusion sensing technology combined with analysis of tea polysaccharide conjugates. Int J Biol Macromol 2024; 278:134569. [PMID: 39122062 DOI: 10.1016/j.ijbiomac.2024.134569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Identifying the aging time of Liupao Tea (LPT) presents a persistent challenge. We utilized an AI-Multimodal fusion method combining FTIR, E-nose, and E-tongue to discern LPT's aging years. Compared to single-source and two-source fusion methods, the three-source fusion significantly enhanced identifying accuracy across all four machine learning algorithms (Decision tree, Random forest, K-nearest neighbor, and Partial least squares Discriminant Analysis), achieving optimal accuracy of 98-100 %. Physicochemical analysis revealed monotonic variations in tea polysaccharide (TPS) conjugates with aging, observed through SEM imaging as a transition from lamellar to granular TPS conjugate structures. These quality changes were reflected in FTIR spectral characteristics. Two-dimensional correlation spectroscopy (2D-COS) identified sensitive wavelength regions of FTIR from LPT and TPS conjugates, indicating a high similarity in spectral changes between TPS conjugates and LPT with aging years, highlighting the significant role of TPS conjugates variation in LPT quality. Additionally, we established an index for evaluating quality of aging, which is sum of three fingerprint peaks (1029 cm-1, 1635 cm-1, 2920 cm-1) intensities. The index could effectively signify the changes in aging years on macro-scale (R2 = 0.94) and micro-scale (R2 = 0.88). These findings demonstrate FTIR's effectiveness in identifying aging time, providing robust evidence for quality assessment.
Collapse
Affiliation(s)
- Wenkai Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Hongjing Pan
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Alireza Sanaeifar
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, United States
| | - Yan Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wanghong Shi
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Guo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lejia Ding
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jihong Zhou
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Qi Z, Huang W, Liu Q, Ning J. Variation in the Aroma Composition of Jasmine Tea with Storage Duration. Foods 2024; 13:2524. [PMID: 39200451 PMCID: PMC11353297 DOI: 10.3390/foods13162524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigated the changes in the aroma of jasmine tea during storage. Solid-phase micro-extraction (SPME)-gas chromatography (GC)-mass spectrometry (MS) and stir bar sorptive extraction (SBSE)-GC-MS were combined to detect all volatile compounds. GC-olfactometry (GC-O), odor activity value (OAV), and p-value were employed to analyze and identify the key aroma compounds in six jasmine tea samples stored for different durations. Nine key aroma compounds were discovered, namely (Z)-3-hexen-1-yl acetate, methyl anthranilate, methyl salicylate, trans-β-ionone, linalool, geraniol, (Z)-4-heptenal, benzoic acid methyl ester, and benzoic acid ethyl ester. The importance of these compounds was confirmed through the aroma addition experiment. Correlation analysis showed that (Z)-4-heptenal might be the main reason for the increase in the stale aroma of jasmine tea. Through sensory evaluation and specific experimental analysis, it can be concluded that jasmine tea had the best aroma after 3 years of storage, and too long a storage time may cause the overall aroma of the tea to weaken and produce an undesirable odor. The findings can provide a reference for the change in aroma during the storage of jasmine tea and provide the best storage time (3 years) in terms of jasmine tea aroma.
Collapse
Affiliation(s)
| | | | | | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (Z.Q.); (W.H.); (Q.L.)
| |
Collapse
|
17
|
Li ZQ, Yin XL, Gu HW, Peng ZX, Ding B, Li Z, Chen Y, Long W, Fu H, She Y. Discrimination and prediction of Qingzhuan tea storage year using quantitative chemical profile combined with multivariate analysis: Advantages of MRM HR based targeted quantification metabolomics. Food Chem 2024; 448:139088. [PMID: 38547707 DOI: 10.1016/j.foodchem.2024.139088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/24/2024]
Abstract
The duration of storage significantly influences the quality and market value of Qingzhuan tea (QZT). Herein, a high-resolution multiple reaction monitoring (MRMHR) quantitative method for markers of QZT storage year was developed. Quantitative data alongside multivariate analysis were employed to discriminate and predict the storage year of QZT. Furthermore, the content of the main biochemical ingredients, catechins and alkaloids, and free amino acids (FAA) were assessed for this purpose. The results show that targeted marker-based models exhibited superior discrimination and prediction performance among four datasets. The R2Xcum, R2Ycum and Q2cum of orthogonal projection to latent structure-discriminant analysis discrimination model were close to 1. The correlation coefficient (R2) and the root mean square error of prediction of the QZT storage year prediction model were 0.9906 and 0.63, respectively. This study provides valuable insights into tea storage quality and highlights the potential application of targeted markers in food quality evaluation.
Collapse
Affiliation(s)
- Zhi-Quan Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Xiao-Li Yin
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China.
| | - Hui-Wen Gu
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Zhi-Xin Peng
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Zhenshun Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Ying Chen
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
18
|
Chen X, Wang Y, Chen Y, Dai J, Cheng S, Chen X. Formation, physicochemical properties, and biological activities of theabrownins. Food Chem 2024; 448:139140. [PMID: 38574720 DOI: 10.1016/j.foodchem.2024.139140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Theabrownins (TBs) are heterogeneous mixtures of water-soluble brown tea pigments, and important constituents to evaluate the quality of dark tea. TBs have numerous hydroxyl and carboxyl groups and are formed by the oxidative polymerization of tea polyphenols. Many biological activities attributed to TBs, including antioxidant, anti-obesity, and lipid-regulating, have been demonstrated. This review summarizes the research progress made on the formation mechanism and physicochemical properties of TBs. It also discusses their protective effects against various diseases and associated potential molecular mechanisms. Additionally, it examines the signaling pathways mediating the bioactivities of TBs and highlights the difficulties and challenges of TBs research as well as their research prospects and applications.
Collapse
Affiliation(s)
- Xiujuan Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongyong Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Shuiyuan Cheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
19
|
Chen H, Liu Y, Zhang X, Chu J, Pu S, Wang W, Wen S, Jiang R, Ouyang J, Xiong L, Huang J, Liu Z. "Age" of tea: The impact of long-term storage on the aroma of Tuo tea and age prediction. Food Res Int 2024; 187:114316. [PMID: 38763629 DOI: 10.1016/j.foodres.2024.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
This study investigates the dynamic changes in the aroma profile of Tuo tea during long-term storage, a process not well understood yet critical to the formation of aged tea's unique characteristics. Aroma profiling of Tuo tea samples stored for 2 to 25 years was conducted using sensory evaluation and the HS-SPME/GC × GC-QTOFMS technique, revealing a progressive transition from fresh, fruity, and floral scents to more stale, woody, and herbal notes. Among 275 identified volatiles, 55 were correlated with storage duration (|r| > 0.8, p < 0.05), and 49 differential compounds (VIP > 1, FC > 1.2, FC < 0.833, p < 0.05) were identified across three storage stages (2-4, 5-10, and 13-25 years). Furthermore, theaspirane, eucalyptol, o-xylene, and 1-ethylidene-1H-indene were selected as potential markers of Tuo tea aging, incorporating the implementation of a Random Forest (RF) model. Additionally, our model exhibited high accuracy in predicting the age of Tuo tea within a prediction error range of -2.51 to 2.84 years. This research contributes to a comprehensive understanding of the impact of storage time on tea aroma and aids in the precise identification of tea age.
Collapse
Affiliation(s)
- Hongyu Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yang Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Xinyi Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jiuyun Chu
- Yunnan Xiaguan Tuo Tea (Group) Co. Ltd, Dali 671000, China
| | - Songtao Pu
- Yunnan Xiaguan Tuo Tea (Group) Co. Ltd, Dali 671000, China
| | - Weitao Wang
- Yunnan Xiaguan Tuo Tea (Group) Co. Ltd, Dali 671000, China
| | - Shuai Wen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Ronggang Jiang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Ligui Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
20
|
Liu H, Huang Y, Liu Z, Pang Y, Yang C, Li M, Wu Q, Nie J. Determination of the variations in the metabolic profiles and bacterial communities during traditional craftsmanship Liupao tea processing. Food Chem X 2024; 22:101516. [PMID: 38911914 PMCID: PMC11190490 DOI: 10.1016/j.fochx.2024.101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
In this study, the metabolic profiles of traditional craftsmanship (TC) Liupao tea presented great changes at different processing stages. The contents of flavonoids and their glycosides generally exhibited a continuing downward trend, resulting in the sensory quality of TC-Liupao tea gradually improved. However, the taste of TC-Liupao tea faded when piling exceeded 12 h, as a result of the excessive degradation of some key flavor substances. Therefore, it could be deduced that piling for 10 h might be optimum for the quality formation of TC-Liupao tea. Sphingomonas, Acrobacter, Microbacterium, and Methylobacterium were the dominant bacteria during piling. The correlation analysis between differential metabolites and bacteria showed that only Sphingomonas and Massilia were significantly correlated to metabolites, demonstrating that the bacteria had less effect on the transformation of metabolites. Thus, the metabolic structure change during the process of TC-Liupao tea might be mainly attributed to the high temperature and humidity environment.
Collapse
Affiliation(s)
- Huahong Liu
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Yingyi Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Zhusheng Liu
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Yuelan Pang
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Chun Yang
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Min Li
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Qianhua Wu
- Guangxi Research Institute of Tea Science, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| |
Collapse
|
21
|
Fang X, Xu W, Jiang G, Sui M, Xiao J, Ning Y, Niaz R, Wu D, Feng X, Chen J, Huang Y, Lei G. Monitoring the dynamic changes in aroma during the whole processing of Qingzhuan tea at an industrial scale: From fresh leaves to finished tea. Food Chem 2024; 439:137810. [PMID: 38043275 DOI: 10.1016/j.foodchem.2023.137810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023]
Abstract
Aroma is one of the most outstanding quality characteristics of Qingzhuan tea (QZT), but its formation is still unclear. Thus, the volatile organic compounds (VOCs) during the whole processing of QZT were investigated by headspace solid-phase microextraction/gas chromatography-mass spectrometry. Based on 144 identified VOCs, the results showed that de-enzyming, sun-drying, and piling fermentation were the key processes of QZT aroma formation. Furtherly, 42 differential VOCs (VIP > 1.0 and p < 0.05) and 16 key VOCs (rOAV > 1.0 and/or ROAV > 1.0) were screened. Especially, sulcatone and β-ionone (rOAV > 100 and ROAV > 10) were considered the most important contributors to the aroma of QZT. The metabolisms of key VOCs were mainly involved in oxidative degradation of fatty acids, degradation of carotenoids, and methylation of gallic acid. This study could help to more comprehensively understand the aroma formation in QZT processing at an industrial scale.
Collapse
Affiliation(s)
- Xin Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan 430070, China
| | - Wencan Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan 430070, China
| | - Guangxian Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyuan Sui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyi Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan 430070, China
| | - Yaoyao Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan 430070, China
| | - Rida Niaz
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan 430070, China
| | - Dewen Wu
- Hubei Dongzhuang Tea Industry Co., Ltd., Chibi 437300, China
| | | | - Junhai Chen
- Hubei Zhaoliqiao Tea Factory Co. Ltd., Chibi 437300, China
| | - Youyi Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences of Huazhong Agricultural University, Wuhan 430070, China.
| | - Gaixiang Lei
- Academy of Chibi Qingzhuan Tea, Chibi 437300, China.
| |
Collapse
|
22
|
Wang H, Feng X, Blank I, Zhu Y, Liu Z, Ni L, Lin CC, Zhang Y, Liu Y. Differences of Typical Wuyi Rock Tea in Taste and Nonvolatiles Profile Revealed by Multisensory Analysis and LC-MS-Based Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8715-8730. [PMID: 38564531 DOI: 10.1021/acs.jafc.3c08694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Wuyi Rock tea, specifically Shuixian and Rougui, exhibits distinct sensory characteristics. In this study, we investigated the sensory and metabolite differences between Shuixian and Rougui. Quantitative description analysis revealed that Rougui exhibited higher intensity in bitter, thick, harsh, and numb tastes, while Shuixian had stronger salty and umami tastes. Nontargeted metabolomics identified 151 compounds with 66 compounds identified as key differential metabolites responsible for metabolic discrimination. Most of the catechins and flavonoids were enriched in Rougui tea, while epigallocatechin-3,3'-di-O-gallate, epigallocatechin-3,5-di-O-gallate, gallocatechin-3,5-di-O-gallate, isovitexin, and theaflavanoside I were enriched in Shuixian tea. Catechins, kaempferol, quercetin, and myricetin derivatives were positively correlated with bitter taste and numb sensation. Sour taste was positively correlated to organic acids. Amino acids potentially contributed to salty and umami tastes. These results provide further insights into the taste characteristics and the relationship between taste attributes and specific metabolites in Wuyi Rock tea.
Collapse
Affiliation(s)
- Haoli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxiao Feng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Imre Blank
- IBK Food & Beverage Consultancy Sàrl, 1073 Savigny, Switzerland
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhibin Liu
- Institute of Food Science &Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Li Ni
- Institute of Food Science &Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan 30015, China
| | - Yin Zhang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Li J, Han S, Mei X, Wang M, Han B. Changes in profiles of volatile compounds and prediction of the storage year of organic green tea during the long-term storage. Food Chem 2024; 437:137831. [PMID: 37897818 DOI: 10.1016/j.foodchem.2023.137831] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
In the present study, the volatile compounds in organic green tea with a continuous storage period (ranging from 1 to 16 years) were comprehensively analyzed and compared through SDE-GC-MS and chemometrics. The results revealed that the total of 124 volatiles were identified, and their total amount was increased with the prolongation of the storage years. Ketones, alcohols, esters, and aromatic hydrocarbons were the main types of volatiles in organic green tea, among which 26 volatile compounds were significantly correlated with storage years, and six volatile compounds that were most seriously affected by the storage years. The results of the support vector machine classification combined with multiple linear regression analysis showed that the content-period prediction model for the six volatile compounds can accurately predict the storage years of organic green tea. Therefore, this study offers novel insights into volatile compounds changes during the storage of green tea.
Collapse
Affiliation(s)
- Jia Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shanjie Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Hangzhou Tea & Chrysanthemum Technology Co. Ltd., Hangzhou 310018, China
| | - Xianshan Mei
- Zhejiang Meifeng Tea Industry Co., Ltd., Lishui 323000, China
| | - Mengxin Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Baoyu Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
24
|
Xing L, Lei J, Liu J, Yang Z, Chai Z, Cai W, Zhang M, Meng D, Wang Y, Yin H. Enhancing the quality of fermented plant leaves: the role of metabolite signatures and associated fungi. FRONTIERS IN PLANT SCIENCE 2024; 15:1335850. [PMID: 38571709 PMCID: PMC10987691 DOI: 10.3389/fpls.2024.1335850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Fungi play a pivotal role in fermentation processes, influencing the breakdown and transformation of metabolites. However, studies focusing on the effects of fungal-metabolite correlations on leaf fermentation quality enhancement are limited. This study investigated specific metabolites and fungi associated with high- and low-quality fermented plant leaves. Their changes were monitored over fermentation periods of 0, 8, 16, and 24 days. The results indicated that organoheterocyclic compounds, lipids, lipid-like molecules, organic nitrogen compounds, phenylpropanoids, and polyketides were predominant in high-quality samples. The fungi Saccharomyces (14.8%) and Thermoascus (4.6%) were predominantly found in these samples. These markers exhibited significant changes during the 24-day fermentation period. The critical influence of fungal community equilibrium was demonstrated by interspecies interactions (e.g., between Saccharomyces and Eurotium). A co-occurrence network analysis identified Saccharomyces as the primary contributor to high-quality samples. These markers collectively enhance the quality and sensory characteristics of the final product.
Collapse
Affiliation(s)
- Lei Xing
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinshan Lei
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Jie Liu
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhen Yang
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhishun Chai
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Wen Cai
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yujie Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| |
Collapse
|
25
|
Lei Y, Chen Y, Zhang S, Wang W, Zheng M, Zhang R. Qingzhuan dark tea Theabrownin alleviates hippocampal injury in HFD-induced obese mice through the MARK4/NLRP3 pathway. Heliyon 2024; 10:e26923. [PMID: 38455533 PMCID: PMC10918207 DOI: 10.1016/j.heliyon.2024.e26923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Background Feeding on a high-fat diet (HFD) results in obesity and chronic inflammation, which may have long-term effects on neuroinflammation and hippocampal injury. Theabrownin, a biologically active compound derived from the microbial fermentation of Qingzhuan dark tea, exhibits anti-inflammatory properties and lipid-lowering effects. Nevertheless, its potential in neuroprotection has yet to be investigated. Consequently, this study aims to investigate the neuroprotective effects of Theabrownin extracted from Qingzhuan dark tea, as well as its potential therapeutic mechanisms. Methods Male C57 mice were subjected to an 8-week HFD to induce obesity, followed by oral administration of Theabrownin from Qingzhuan dark tea. Lipid levels were detected by Elisa kit, hippocampal morphological damage was evaluated by HE and Nissl staining, and the expression levels of GFAP, IBA1, NLRP3, MARK4, and BAX in the hippocampus were detected by immunofluorescence (IF), and protein expression levels of NLRP3, MARK4, PSD95, SYN1, SYP, and Bcl-2 were detected by Western Blot (WB). Results Theabrownin treatment from Qingzhuan dark tea prevents alterations in body weight and lipid levels in HFD-fed mice. Furthermore, Theabrownin decreased hippocampal morphological damage and reduced the activation of astrocytes and microglia in HFD-fed mice. Moreover, Theabrownin decreased the expression of MARK4 and NLRP3 in HFD-fed mice. Besides, Theabrownin elevated the expression of PSD95, SYN1, and SYP in HFD-fed obese mice. Finally, Theabrownin prevented neuronal apoptosis, reduced the expression of BAX, and increased the expression of Bcl-2 in HFD-fed obese mice. Conclusions In summary, our current study presents the first demonstration of the effective protective effect of Theabrownin from Qingzhuan dark tea against HFD-induced hippocampal damage in obese mice. This protection may result from the regulation of the MARK4/NLRP3 signaling pathway, subsequently inhibiting neuroinflammation, synaptic plasticity, and neuronal apoptosis.
Collapse
Affiliation(s)
- Yining Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Yong Chen
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Shuo Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Wei Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Min Zheng
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, Hubei, 437100, China
| | - Ruyi Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| |
Collapse
|
26
|
Wei L, Hu Q, He L, Li G, Zhang J, Chen Y. Diversity in storage age enables discrepancy in quality attributes and metabolic profile of Citrus grandis "Tomentosa" in China. J Food Sci 2024; 89:1454-1472. [PMID: 38258880 DOI: 10.1111/1750-3841.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
The folk proverb "the older, the better" is usually used to describe the quality of Citrus grandis "Tomentosa" (CGT) in China. In this study, CGT aged for 6-, 12-, 16-, and 19-years were collected for the investigation of infusion color, main bioactive components, antioxidant activity, metabolic composition, and pathway. The results found that infusion color, the total phenolic and flavonoid, and antioxidant activity of CGT were obviously changed by aging process. Through untargeted metabolomics, 55 critical metabolites were identified to in discrimination of CGT with different storage ages, mainly including phenylpropanoids, lipids, and organic oxygen compounds. Twenty compounds that showed good linear relationships with storage ages could be used for year prediction of CGT. Kyoto encyclopedia of genes and genomes enrichment pathway analysis uncovered important metabolic pathways related to the accumulation of naringin, kaempferol, and choline as well as the degradation of benzenoids, thus supporting that aged CGT might be more beneficial to health. Correlation analysis provided that some key metabolites with bitter taste and biological activity were involved in the darkening and reddening of CGT infusion during aging, and total phenolic and flavonoid were more strongly associated with the antioxidant activity of CGT. This study systematically revealed the quality changes and key metabolic pathways during CGT aging at first time. PRACTICAL APPLICATION: This study reveals the differences in quality attributes and metabolic profile between CGT with different storage ages, providing guidance for consumers' consumption, and also providing more scientific basis for the quality evaluation and improvement of CGT.
Collapse
Affiliation(s)
- Liyang Wei
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
- School of Biotechnology and Food Engineering, Anhui Polytechnic University, Wuhu, People's Republic of China
| | - Qian Hu
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Guoping Li
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| |
Collapse
|
27
|
Wen X, Han S, Wang J, Zhang Y, Tan L, Chen C, Han B, Wang M. The Flavor Characteristics, Antioxidant Capability, and Storage Year Discrimination Based on Backpropagation Neural Network of Organic Green Tea ( Camellia sinensis) during Long-Term Storage. Foods 2024; 13:753. [PMID: 38472869 DOI: 10.3390/foods13050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The storage period of tea is a major factor affecting tea quality. However, the effect of storage years on the non-volatile major functional components and quality of green tea remains largely unknown. In this study, a comparative analysis of organic green teas with varying storage years (1-16 years) was conducted by quantifying 47 functional components, using electronic tongue and chromatic aberration technology, alongside an evaluation of antioxidative capacity. The results indicated a significant negative correlation between the storage years and levels of tea polyphenols, total amino acids, soluble sugars, two phenolic acids, four flavonols, three tea pigments, umami amino acids, and sweet amino acids. The multivariate statistical analysis revealed that 10 functional components were identified as effective in distinguishing organic green teas with different storage years. Electronic tongue technology categorized organic green teas with different storage years into three classes. The backpropagation neural network (BPNN) analysis demonstrated that the classification predictive ability of the model based on the electronic tongue was superior to the one based on color difference values and 10 functional components. The combined analysis of antioxidative activity and functional components suggested that organic green teas with shorter storage periods exhibited stronger abilities to suppress superoxide anion radicals and hydroxyl radicals and reduce iron ions due to the higher content of eight components. Long-term-stored organic green teas, with a higher content of substances like L-serine and theabrownins, demonstrated stronger antioxidative capabilities in clearing both lipid-soluble and water-soluble free radicals. Therefore, this study provided a theoretical basis for the quality assessment of green tea and prediction of green tea storage periods.
Collapse
Affiliation(s)
- Xiaomei Wen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shanjie Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Hangzhou Tea & Chrysanthemum Technology, Co., Ltd., Hangzhou 310018, China
| | - Jiahui Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanxia Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lining Tan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chen Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baoyu Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Mengxin Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
28
|
Zhu R, Chen Z, Lv H, Pan Y, Feng X, Chen G, Hu W, Xu T, Fan F, Gong S, Chen P, Chu Q. Another thread to uncover the aging mystery of white tea: Focusing on the natural nanoparticles in tea infusion. Food Chem 2023; 429:136838. [PMID: 37494755 DOI: 10.1016/j.foodchem.2023.136838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Aged white tea (WT) has promising medicinal potential, but how to accurately identify aged white tea is still a difficult problem. Inspired by tea cream, the relationship between the characteristics of nanoparticles in tea infusion and aging time was studied. The results showed that with the increase of aging time, the particle size of white tea nanoparticles (WTNs) decreased gradually. Microscopic images showed that the surface structure of WTNs was changed in three aspects: the waxy layer, the cuticle layer and the palisade tissue. Additional in vitro modeling demonstrated a strong correlation between nanoparticle size and protein and tea polyphenol content. The correlation between nanoparticle sizes and aging time was further verified in aged Pu'er raw tea. Starting with the tea infusion's nanoparticles, this study showed that the aging time of WT would impact the nanoparticles' properties, offering a unique way to determine the aging period of WT.
Collapse
Affiliation(s)
- Ruiyu Zhu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Helin Lv
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Guicai Chen
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Weilian Hu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Tianhua Xu
- Zhejiang Esigma Biotechnology Co., Ltd, No.3, Chunchao Rd, Chang'an Town, Haining City 314422, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Li ZQ, Yin XL, Gu HW, Zou D, Ding B, Li Z, Chen Y, Long W, Fu H, She Y. Revealing the chemical differences and their application in the storage year prediction of Qingzhuan tea by SWATH-MS based metabolomics analysis. Food Res Int 2023; 173:113238. [PMID: 37803551 DOI: 10.1016/j.foodres.2023.113238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
It's generally believed that the longer the storage, the better the quality of dark tea, but the chemical differences of Qingzhuan tea (QZT) with different storage years is still unclear. Herein, in this work, an untargeted metabolomic approach based on SWATH-MS was established to investigate the differential compounds of QZT with 0-9 years' storage time. These QZT samples were roughly divided into two categories by principal component analysis (PCA). After orthogonal projections to latent structures discriminant analysis (OPLS-DA), 18 differential compounds were putatively identified as chemical markers for the storage year variation of QZT. Heatmap visualization showed that the contents of catechins, fatty acids, and some phenolic acids significantly reduced, flavonoid glycosides, triterpenoids, and 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) increased with the increase of storage time. Furthermore, these chemical markers were verified by the peak areas corresponding to MS2 ions from SWATH-MS. Based on the extraction chromatographic peak areas of MS and MS2 ions, a duration time prediction model was built for QZT with correlation coefficient R2 of 0.9080 and 0.9701, and RMSEP value of 0.85 and 1.24, respectively. This study reveals the chemical differences of QZT with different storage years and provides a theoretical basis for the quality evaluation of stored dark tea.
Collapse
Affiliation(s)
- Zhi-Quan Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Xiao-Li Yin
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China.
| | - Hui-Wen Gu
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Dan Zou
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Zhenshun Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Ying Chen
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
30
|
Xu W, Zhao Y, Lv Y, Bouphun T, Jia W, Liao S, Zhu M, Zou Y. Variations in microbial diversity and chemical components of raw dark tea under different relative humidity storage conditions. Food Chem X 2023; 19:100863. [PMID: 37780317 PMCID: PMC10534245 DOI: 10.1016/j.fochx.2023.100863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Raw dark tea (RDT) usually needs to be stored for a long time to improve its quality under suitable relative humidity (RH). However, the impact of RH on tea quality is unclear. In this study, we investigated the metabolites and microbial diversity, and evaluated the sensory quality of RDT stored under three RH conditions (1%, 57%, and 88%). UHPLC-Q-TOF-MS analysis identified 144 metabolites, including catechins, flavonols, phenolic acids, amino acids, and organic acids. 57% RH led to higher levels of O-methylated catechin derivatives, polymerized catechins, and flavonols/flavones when compared to 1% and 88% RH. The best score in sensory evaluation was also obtained by 57% RH. Aspergillus, Gluconobacter, Kluyvera, and Pantoea were identified as the core functional microorganisms in RDT under different RH storage conditions. Overall, the findings provided new insights into the variation of microbial communities and chemical components under different RH storage conditions.
Collapse
Affiliation(s)
- Wei Xu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiqiao Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yating Lv
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tunyaluk Bouphun
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand
| | - Wenbao Jia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyu Liao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yao Zou
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
31
|
Guo J, Yu Z, Liu M, Guan M, Shi A, Hu Y, Li S, Yi L, Ren D. Analysis of Volatile Profile and Aromatic Characteristics of Raw Pu-erh Tea during Storage Based on GC-MS and Odor Activity Value. Foods 2023; 12:3568. [PMID: 37835224 PMCID: PMC10572200 DOI: 10.3390/foods12193568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Volatile constituents are critical to the flavor of tea, but their changes in raw Pu-erh tea (RAPT) during storage have not been clearly understood. This work aimed to investigate the volatile composition and their changes at various storage durations. The volatile profile of RAPT was determined using headspace solid-phase microextraction in combination gas chromatography-mass spectrometry. A total of 130 volatile compounds were identified in RAPT samples, and 64 of them were shared by all samples. The aroma attributes of RAPT over a storage period ranging from 0 to 10 years were assessed through the combination of odor activity value (OAV), aroma characteristic influence(ACI) value, and multivariate statistical analysis. The results revealed that RAPT exhibited a distinct floral and fruity aroma profile after storage for approximately 3-4 years. A notable shift in aroma was observed after 3-4 years of storage, indicating a significant turning point. Furthermore, the likely notable shift after 10 years of storage may signify the second turning point. According to the odor activity value (OAV ≥ 100), eight key volatile compounds were identified: linalool, α-terpineol, geraniol, trans-β-ionone, α-ionone, (E,E)-2,4-heptadienal, 1-octanol, and octanal. Combining OAV (≥100) and ACI (≥1), five compounds, namely linalool, (E,E)-2,4-heptadienal, (Z)-3-hexen-1-ol, 2,6,10,10-tetramethyl-1-oxaspiro [4.5]dec-6-ene, and octanal, were identified as significant contributors to the aroma. The results offer a scientific foundation and valuable insights for understanding the volatile composition of RAPT and their changes during storage.
Collapse
Affiliation(s)
- Jie Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Zhihao Yu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Meiyan Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Mengdi Guan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Aiyun Shi
- Yunnan TAETEA Group Co., Ltd., Kunming 650500, China;
| | - Yongdan Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Siyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (J.G.); (Z.Y.); (M.L.); (M.G.); (Y.H.); (S.L.); (L.Y.)
| |
Collapse
|
32
|
Liang J, Li Y, Bin Y, Qiao R, Ke L, Zhong S, Liang Y. Quantitative analysis and survey of 9,10-anthraquinone contaminant in Chinese Liupao tea. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023:1-12. [PMID: 37379456 DOI: 10.1080/19440049.2023.2227722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023]
Abstract
Recently, 9,10-anthraquinone (AQ) contamination in Chinese Liupao tea has attracted much attention because the tea for export must meet the EU limit (10 µg kg-1). In this study, a method was developed in which the sample was extracted with n-hexane-acetone solution, then purified with Florisil adsorbent, detected by GC-MS/MS and contamination levels of AQ determined using an internal standard. This method was found to be more suitable for Liupao tea and other dark tea complex substrates than the QuEChERS procedure. The sample pre-treatment method was optimized with respect to extraction reagent and clean-up column adsorbent and n-hexane-acetone selected as the optimal extraction solvent. When the content of Florisil in the column was 1.0 g, the optimum clean-up was achieved. The new method reduced the limit of quantification (LOQ) of AQ to 10 μg kg-1, and accuracy was also further improved. The recovery of AQ-fortified tea samples containing 20-100 µg·kg-1 was 94.5-100.4%, and the relative standard deviation (RSD) was less than 1.3%. In a small survey, 98 Liupao tea samples on the market were tested by the new method. It was found that 61 samples were positive (occurrence rate 63.3%), and thus exceeded the EU limit (10 µg kg-1). This study also found that the contamination of AQ in Liupao tea increased with the length of ageing. The source of AQ in the Liupao tea ageing process will be the focus of further research.
Collapse
Affiliation(s)
- Jianfeng Liang
- College of Food and Pharmaceutical Engineering, Wuzhou University, Guangxi, China
- Liupao Tea Modern Industry College, Guangxi, China
| | - Ya Li
- College of Food and Pharmaceutical Engineering, Wuzhou University, Guangxi, China
- Liupao Tea Modern Industry College, Guangxi, China
| | - Yuejing Bin
- College of Food and Pharmaceutical Engineering, Wuzhou University, Guangxi, China
- Liupao Tea Modern Industry College, Guangxi, China
| | - Ruying Qiao
- College of Food and Pharmaceutical Engineering, Wuzhou University, Guangxi, China
- Liupao Tea Modern Industry College, Guangxi, China
| | - Lijian Ke
- Wuzhou Food and Drug Inspection Institute, Guangxi, China
| | - Shuiqiao Zhong
- Wuzhou Food and Drug Inspection Institute, Guangxi, China
| | - Yanni Liang
- College of Food and Pharmaceutical Engineering, Wuzhou University, Guangxi, China
- Liupao Tea Modern Industry College, Guangxi, China
| |
Collapse
|
33
|
Shen S, Wu H, Li T, Sun H, Wang Y, Ning J. Formation of aroma characteristics driven by volatile components during long-term storage of An tea. Food Chem 2023; 411:135487. [PMID: 36669341 DOI: 10.1016/j.foodchem.2023.135487] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
The aim of this study was to reveal the molecular basis of aroma changes during storage of An tea (AT). The key volatile compounds in AT were screened using SPME-GC-MS and SPE-GC-MS analytical techniques in combination with odor activity value (OAV) and flavor dilution factor (FD). The results showed that with the increase of storage time the stale and woody aromas were revealed. Esters, acids and hydrocarbons are the main types of volatile compounds in AT, and their content accounts for 52.69 %-61.29 % of the total volatile compounds. The key volatile compounds with stale and woody aromas during AT storage were obtained by OAV value and FD value, namely ketoisophorone (flavor dilution factor, FD = 64), linalool oxide C (FD = 64), 1-octen-3-ol (OAV > 1, FD = 32), 1,2-dimethoxybenzene (FD = 16), naphthalene (OAV > 1, FD = 32), 3,4-dimethoxytoluene (FD = 16), and 1,2,3-trimethoxybenzene (FD = 8). Our research provides a scientific basis and insights for the improvement of quality during the storage of dark tea.
Collapse
Affiliation(s)
- Shanshan Shen
- Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Huiting Wu
- Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Tiehan Li
- Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Haoran Sun
- Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Yujie Wang
- Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China.
| | - Jingming Ning
- Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China.
| |
Collapse
|
34
|
Yang S, Fan L, Tan P, Lei W, Liang J, Gao Z. Effects of Eurotium cristatum on chemical constituents and α-glucosidase activity of mulberry leaf tea. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
35
|
Wang H, Teng J, Huang L, Wei B, Xia N. Determination of the variations in the metabolic profile and sensory quality of Liupao tea during fermentation through UHPLC–HR–MS metabolomics. Food Chem 2023; 404:134773. [DOI: 10.1016/j.foodchem.2022.134773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022]
|
36
|
Lu W, Chen J, Li X, Qi Y, Jiang R. Flavor components detection and discrimination of isomers in Huaguo tea using headspace-gas chromatography-ion mobility spectrometry and multivariate statistical analysis. Anal Chim Acta 2023; 1243:340842. [PMID: 36697178 DOI: 10.1016/j.aca.2023.340842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Aroma components are one of the crucial factors in dynamic processes analysis, quality control, and origin traceability. Various categories of Huaguo Tea possessed different taste due to the generation of aroma. In this study, a comprehensive analysis of volatiles was conducted for five popular Huaguo Tea samples (Lemon Slices, Bitter Gourd Slices, Citri Reticulatae Pericarpium, Red Lycium Barbarum, and Black Lycium Barbarum) via gas chromatography-ion mobility spectrometry (GC-IMS) combining with multivariate statistical strategies. Comparison analysis was achieved with the properties of visually and intuitively by drawing of topography plots. A total of one hundred and eighty volatiles were distinguished. Aliphatic isomers were identified simultaneously by fingerprint spectra. Alcohols, aldehydes, esters, and ketones were the most abundant volatiles in Huaguo Tea samples. To characterize the Huaguo Tea precisely and establish an analysis model for their classification, multivariate statistical analysis was applied to distinguish different Huaguo Tea. Satisfied discrimination was obtained by principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA) based on the HS-GC-IMS results with the robustness parameter (R2Y) of 99.4%, and prediction ability parameter (Q2) of 98.6%, respectively. The results provide a theoretical basis for aroma discrimination, isomer identification, and categories analysis of Huaguo Tea.
Collapse
Affiliation(s)
- Wenhui Lu
- Key Laboratory of Forensic Science, Ministry of Justice (Academy of Forensic Science), PR China; Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, 250014, Shandong Province, PR China
| | - Jing Chen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong Province, PR China
| | - Xuebo Li
- Key Laboratory of Forensic Science, Ministry of Justice (Academy of Forensic Science), PR China; Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, 250014, Shandong Province, PR China.
| | - Yinghua Qi
- Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, 250014, Shandong Province, PR China
| | - Rui Jiang
- Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, 250014, Shandong Province, PR China
| |
Collapse
|
37
|
Zhang X, Su M, Zhou H, Leng F, Du J, Li X, Zhang M, Hu Y, Gao Y, Ye Z. Effect of 1-methylcyclopropene on flat peach fruit quality based on electronic senses, LC-MS, and HS-SPME-GC-MS during shelf storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Zhang X, Huang H, Sun S, Li D, Sun L, Li Q, Chen R, Lai X, Zhang Z, Zheng X, Wong WL, Wen S. Induction of Apoptosis via Inactivating PI3K/AKT Pathway in Colorectal Cancer Cells Using Aged Chinese Hakka Stir-Fried Green Tea Extract. Molecules 2022; 27:molecules27238272. [PMID: 36500365 PMCID: PMC9737789 DOI: 10.3390/molecules27238272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Food extract supplements, with high functional activity and low side effects, play a recognized role in the adjunctive therapy of human colorectal cancer. The present study reported a new functional beverage, which is a type of Chinese Hakka stir-fried green tea (HSGT) aged for several years. The extracts of the lyophilized powder of five HSGT samples with different aging periods were analyzed with high-performance liquid chromatography. The major components of the extract were found to include polyphenols, catechins, amino acids, catechins, gallic acid and caffeine. The tea extracts were also investigated for their therapeutic activity against human colorectal cancer cells, HT-29, an epithelial cell isolated from the primary tumor. The effect of different aging time of the tea on the anticancer potency was compared. Our results showed that, at the cellular level, all the extracts of the aged teas significantly inhibited the proliferation of HT-29 in a concentration-dependent manner. In particular, two samples prepared in 2015 (15Y, aged for 6 years) and 2019 (19Y, aged for 2 years) exhibited the highest inhibition rate for 48 h treatment (cell viability was 50% at 0.2 mg/mL). Further, all the aged tea extracts examined were able to enhance the apoptosis of HT-29 cells (apoptosis rate > 25%) and block the transition of G1/S phase (cell-cycle distribution (CSD) from <20% to >30%) population to G2/M phase (CSD from nearly 30% to nearly 10%) at 0.2 mg/mL for 24 h or 48 h. Western blotting results also showed that the tea extracts inhibited cyclin-dependent kinases 2/4 (CDK2, CDK4) and CylinB1 protein expression, as well as increased poly ADP-ribose polymerase (PRAP) expression and Bcl2-associated X (Bax)/B-cell lymphoma-2 (Bcl2) ratio. In addition, an upstream signal of one of the above proteins, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling, was found to be involved in the regulation, as evidenced by the inhibition of phosphorylated PI3K and AKT by the extracts of the aged tea. Therefore, our study reveals that traditional Chinese aged tea (HSGT) may inhibit colon cancer cell proliferation, cell-cycle progression and promoted apoptosis of colon cancer cells by inactivating PI3K/AKT signalling.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiying Huang
- Tea Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou 514071, China
| | - Shili Sun
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (W.-L.W.); (S.W.)
| | - Shuai Wen
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (W.-L.W.); (S.W.)
| |
Collapse
|
39
|
D’Auria JC, Cohen SP, Leung J, Glockzin K, Glockzin KM, Gervay-Hague J, Zhang D, Meinhardt LW. United States tea: A synopsis of ongoing tea research and solutions to United States tea production issues. FRONTIERS IN PLANT SCIENCE 2022; 13:934651. [PMID: 36212324 PMCID: PMC9538180 DOI: 10.3389/fpls.2022.934651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/25/2022] [Indexed: 06/01/2023]
Abstract
Tea is a steeped beverage made from the leaves of Camellia sinensis. Globally, this healthy, caffeine-containing drink is one of the most widely consumed beverages. At least 50 countries produce tea and most of the production information and tea research is derived from international sources. Here, we discuss information related to tea production, genetics, and chemistry as well as production issues that affect or are likely to affect emerging tea production and research in the United States. With this review, we relay current knowledge on tea production, threats to tea production, and solutions to production problems to inform this emerging market in the United States.
Collapse
Affiliation(s)
- John C. D’Auria
- Metabolic Diversity Group, Department of Molecular Genetics, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Stephen P. Cohen
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Jason Leung
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Kyle Mark Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jacquelyn Gervay-Hague
- Department of Chemistry, University of California, University of California, Davis, Davis, CA, United States
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
40
|
Yaqun L, Hanxu L, Wanling L, Yingzhu X, Mouquan L, Yuzhong Z, Lei H, Yingkai Y, Yidong C. SPME-GC-MS combined with chemometrics to assess the impact of fermentation time on the components, flavor, and function of Laoxianghuang. Front Nutr 2022; 9:915776. [PMID: 35983487 PMCID: PMC9378830 DOI: 10.3389/fnut.2022.915776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Laoxianghuang, fermented from Citrus medica L. var. Sarcodactylis Swingle of the Rutaceae family, is a medicinal food. The volatiles of Laoxianghuang fermented in different years were obtained by solid-phase microextraction combined with gas chromatography–mass spectrometry (SPME-GC–MS). Meanwhile, the evolution of its component-flavor function during the fermentation process was explored in depth by combining chemometrics and performance analyses. To extract the volatile compounds from Laoxianghuang, the fiber coating, extraction time, and desorption temperature were optimized in terms of the number and area of peaks. A polydimethylsiloxane/divinylbenzene (PDMS/DVB) with a thickness of 65 μm fiber, extraction time of 30 min, and desorption temperature of 200 °C were shown to be the optimal conditions. There were 42, 44, 52, 53, 53, and 52 volatiles identified in the 3rd, 5th, 8th, 10th, 15th, and 20th years of fermentation of Laoxianghuang, respectively. The relative contents were 97.87%, 98.50%, 98.77%, 98.85%, 99.08%, and 98.36%, respectively. Terpenes (mainly limonene, γ-terpinene and cymene) displayed the highest relative content and were positively correlated with the year of fermentation, followed by alcohols (mainly α-terpineol, β-terpinenol, and γ-terpineol), ketones (mainly cyclohexanone, D(+)-carvone and β-ionone), aldehydes (2-furaldehyde, 5-methylfurfural, and 1-nonanal), phenols (thymol, chlorothymol, and eugenol), esters (bornyl formate, citronellyl acetate, and neryl acetate), and ethers (n-octyl ether and anethole). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed a closer relationship between the composition of Laoxianghuang with similar fermentation years of the same gradient (3rd-5th, 8th-10th, and 15th-20th). Partial least squares discriminant analysis (PLS-DA) VIP scores and PCA-biplot showed that α-terpineol, γ-terpinene, cymene, and limonene were the differential candidate biomarkers. Flavor analysis revealed that Laoxianghuang exhibited wood odor from the 3rd to the 10th year of fermentation, while herb odor appeared in the 15th and the 20th year. This study analyzed the changing pattern of the flavor and function of Laoxianghuang through the evolution of the composition, which provided a theoretical basis for further research on subsequent fermentation.
Collapse
Affiliation(s)
- Liu Yaqun
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China.,Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, China
| | - Liu Hanxu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Lin Wanling
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China.,Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, China
| | - Xue Yingzhu
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou, China
| | - Liu Mouquan
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China.,Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, China
| | - Zheng Yuzhong
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China.,Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, China
| | - Hu Lei
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China.,Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, China
| | - Yang Yingkai
- Guangdong Jigong Healthy Food Co., Ltd, Chaozhou, China
| | - Chen Yidong
- Guangdong Jigong Healthy Food Co., Ltd, Chaozhou, China
| |
Collapse
|
41
|
Zhang X, Su M, Du J, Zhou H, Li X, Zhang M, Hu Y, Ye Z. Analysis of the free amino acid content and profile of 129 peach (Prunus persica (L.) Batsch) germplasms using LC-MS/MS without derivatization. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
42
|
Development and evaluation of a qPCR detection method for citrinin in Liupao tea. Anal Biochem 2022; 653:114771. [DOI: 10.1016/j.ab.2022.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
|
43
|
Xiao Y, He C, Chen Y, Ho CT, Wu X, Huang Y, Gao Y, Hou A, Li Z, Wang Y, Liu Z. UPLC-QQQ-MS/MS-based widely targeted metabolomic analysis reveals the effect of solid-state fermentation with Eurotium cristatum on the dynamic changes in the metabolite profile of dark tea. Food Chem 2022; 378:131999. [PMID: 35081481 DOI: 10.1016/j.foodchem.2021.131999] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023]
Abstract
Eurotium cristatum is the predominant fungus and key contributor to the characteristics of post-fermented Fu brick tea (FBT) during manufacturing. In this study, the influence of solid-state fermentation (SSF) with E. cristatum on the chemical profile dynamic changes of dark tea was investigated. Results indicated that total phenolics, flavonoids, theaflavins, thearubigins, and galloyl catechins consistently decreased, degalloyl catechins and gallic acid increased in the initial stage of fermentation and decreased after long-term fermentation, and theabrownins continually increased. UPLC-QQQ-MS/MS-based widely targeted metabolomic analysis revealed that the metabolites of dark tea processed by SSF with E. cristatum were drastically different from the raw material. A total of 574 differential metabolites covering 11 subclasses were detected in the whole SSF of dark tea, and the most drastic changes occurred in the middle stage. Phenolic acids and flavonoids were the two major classes of differential metabolites. A series of reactions such as degradation, glycosylation, deglycosylation, methylation, and oxidative polymerization occurred during SSF. Overall, SSF with E. cristatum greatly influenced the metabolites of dark tea, which provided valuable insights that E. cristatum is critical in forming the chemical constituents of FBT.
Collapse
Affiliation(s)
- Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China.
| | - Cheng He
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xing Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuxin Huang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yao Gao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Aixiang Hou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China.
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
44
|
Gharibzahedi SMT, Barba FJ, Zhou J, Wang M, Altintas Z. Electronic Sensor Technologies in Monitoring Quality of Tea: A Review. BIOSENSORS 2022; 12:bios12050356. [PMID: 35624658 PMCID: PMC9138728 DOI: 10.3390/bios12050356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
Tea, after water, is the most frequently consumed beverage in the world. The fermentation of tea leaves has a pivotal role in its quality and is usually monitored using the laboratory analytical instruments and olfactory perception of tea tasters. Developing electronic sensing platforms (ESPs), in terms of an electronic nose (e-nose), electronic tongue (e-tongue), and electronic eye (e-eye) equipped with progressive data processing algorithms, not only can accurately accelerate the consumer-based sensory quality assessment of tea, but also can define new standards for this bioactive product, to meet worldwide market demand. Using the complex data sets from electronic signals integrated with multivariate statistics can, thus, contribute to quality prediction and discrimination. The latest achievements and available solutions, to solve future problems and for easy and accurate real-time analysis of the sensory-chemical properties of tea and its products, are reviewed using bio-mimicking ESPs. These advanced sensing technologies, which measure the aroma, taste, and color profiles and input the data into mathematical classification algorithms, can discriminate different teas based on their price, geographical origins, harvest, fermentation, storage times, quality grades, and adulteration ratio. Although voltammetric and fluorescent sensor arrays are emerging for designing e-tongue systems, potentiometric electrodes are more often employed to monitor the taste profiles of tea. The use of a feature-level fusion strategy can significantly improve the efficiency and accuracy of prediction models, accompanied by the pattern recognition associations between the sensory properties and biochemical profiles of tea.
Collapse
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain; (F.J.B.); (J.Z.); (M.W.)
| | - Zeynep Altintas
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| |
Collapse
|
45
|
Ye X, Tang X, Li F, Zhu J, Wu M, Wei X, Wang Y. Green and Oolong Tea Extracts With Different Phytochemical Compositions Prevent Hypertension and Modulate the Intestinal Flora in a High-Salt Diet Fed Wistar Rats. Front Nutr 2022; 9:892801. [PMID: 35600813 PMCID: PMC9121855 DOI: 10.3389/fnut.2022.892801] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Green tea (GT) and oolong tea (OLT) are widely consumed beverages, and their preventive and regulatory effects on hypertension have been reported. However, the interventional effects of GT and OLT on hypertension induced by a high-salt diet and its mechanism have not been fully explored. This study evaluated the anti-hypertensive effects of GT and OLT and their underlying mechanisms. The in vivo anti-hypertensive effects of GT and OLT and their capability to prevent hypertension and regulate the intestinal microbiota in Wistar rats fed with a high-salt diet were evaluated. Our results show that GT and OLT supplementations could regulate oxidative stress, inflammation, gene expression, and parameter levels related to blood pressure (BP) and prevent the increase in BP induced by a high-salt diet. Furthermore, both GT and OLT boosted the richness and diversity of intestinal microbiota, increased the abundance of beneficial bacteria and reduced the abundance of harmful bacteria and conditionally pathogenic bacteria, and regulated the intestinal microbial metabolism pathway related to BP. Among them, OLT presented better effects than GT. These findings indicate that GT and OLT can prevent hypertension caused by high-salt diets, which may be due to the regulation of intestinal flora by GT and OLT.
Collapse
Affiliation(s)
- Xin Ye
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaojuan Tang
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Fanglan Li
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jiangxiong Zhu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Meirong Wu
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xinlin Wei
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinlin Wei,
| | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Yuanfeng Wang,
| |
Collapse
|
46
|
Hou ZW, Chen CH, Ke JP, Zhang YY, Qi Y, Liu SY, Yang Z, Ning JM, Bao GH. α-Glucosidase Inhibitory Activities and the Interaction Mechanism of Novel Spiro-Flavoalkaloids from YingDe Green Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:136-148. [PMID: 34964344 DOI: 10.1021/acs.jafc.1c06106] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flavoalkaloids are a unique class of compounds in tea, most of which have an N-ethyl-2-pyrrolidinone moiety substituted at the A ring of a catechin skeleton. 1-Ethyl-5-hydroxy-pyrrolidone, a decomposed product of theanine, was supposed to be the key intermediate to form tea flavoalkaloids. However, we have also detected another possible theanine intermediate, 1-ethyl-5-oxopyrrolidine-2-carboxylic acid, and speculated if there are related conjugated catechins. Herein, four novel spiro-flavoalkaloids with a spiro-γ-lactone structural moiety were isolated from Yingde green tea (Camellia sinensis var. assamica) in our continuing exploration of new chemical constituents from tea. The structures of the new compounds, spiro-flavoalkaloids A-D (1-4), were further elucidated by extensive nuclear magnetic resonance (NMR) spectroscopy together with the calculated 13C NMR, IR, UV-vis, high-resolution mass, optical rotation, experimental, and calculated circular dichroism spectra. We also provided an alternative pathway to produce these novel spiro-flavoalkaloids. Additionally, their α-glucosidase inhibitory activities were determined with IC50 values of 3.34 (1), 5.47 (2), 22.50 (3), and 15.38 (4) μM. Docking results revealed that compounds 1 and 2 mainly interacted with residues ASP-215, ARG-442, ASP-352, GLU-411, HIS-280, ARG-315, and ASN-415 of α-glucosidase through hydrogen bonds. The fluorescence intensity of α-glucosidase could be quenched by compounds 1 and 2 in a static style.
Collapse
Affiliation(s)
- Zhi-Wei Hou
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Chen-Hui Chen
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jia-Ping Ke
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Yuan-Yuan Zhang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Yan Qi
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Shi-Yu Liu
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Zi Yang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jing-Ming Ning
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Guan-Hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| |
Collapse
|
47
|
ZHOU H, WANG Z, KE Q, WANG S, CHEN Y, XIE C, WANG C, ZHENG M. Preparation and characterisation of Qingzhuan dark tea polysaccharide–zinc. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.32022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hongfu ZHOU
- Hubei University of Science and Technology, China
| | - Ziyao WANG
- Hubei University of Science and Technology, China
| | - Qinhao KE
- Hubei University of Science and Technology, China
| | - Shiyue WANG
- Hubei University of Science and Technology, China
| | - Yong CHEN
- Hubei University of Science and Technology, China
| | - Chen XIE
- Hubei University of Science and Technology, China
| | - Cai WANG
- Hubei University of Science and Technology, China
| | - Min ZHENG
- Hubei University of Science and Technology, China
| |
Collapse
|
48
|
Untargeted and targeted metabolomics reveals potential marker compounds of an tea during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Cheng X, Ji H, Cheng X, Wang D, Li T, Ren K, Qu S, Pan Y, Liu X. Characterization, Classification, and Authentication of Polygonatum sibiricum Samples by Volatile Profiles and Flavor Properties. Molecules 2021; 27:25. [PMID: 35011257 PMCID: PMC8746527 DOI: 10.3390/molecules27010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
The importance of monitoring key aroma compounds as food characteristics to solve sample classification and authentication is increasing. The rhizome of Polygonatum sibiricum (PR, Huangjing in Chinese) has great potential to serve as an ingredient of functional foods owing to its tonic effect and flavor properties. In this study, we aimed to characterize and classify PR samples obtained from different processing levels through their volatile profiles and flavor properties by using electronic nose, electronic tongue, and headspace gas chromatography-mass spectrometry. Nine flavor indicators (four odor indicators and five taste indicators) had a strong influence on the classification ability, and a total of 54 volatile compounds were identified in all samples. The traditional Chinese processing method significantly decreased the contents of aldehydes and alkanes, while more ketones, nitrogen heterocycles, alcohols, terpenoids, sulfides, and furans/pyrans were generated in the processing cycle. The results confirmed the potential applicability of volatile profiles and flavor properties for classification of PR samples, and this study provided new insights for determining the processing level in food and pharmaceutical industries based on samples with specific flavor characteristics.
Collapse
Affiliation(s)
- Xile Cheng
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.C.); (H.J.); (K.R.); (S.Q.); (Y.P.)
| | - Hongyuan Ji
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.C.); (H.J.); (K.R.); (S.Q.); (Y.P.)
| | - Xiang Cheng
- School of Pharmacy, Bozhou Vocational and Technical College, Bozhou 236000, China;
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianshi Li
- Bozhou Yonggang Pieces Factory Co., Ltd., Bozhou 236000, China;
| | - Kun Ren
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.C.); (H.J.); (K.R.); (S.Q.); (Y.P.)
| | - Shouhe Qu
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.C.); (H.J.); (K.R.); (S.Q.); (Y.P.)
| | - Yingni Pan
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.C.); (H.J.); (K.R.); (S.Q.); (Y.P.)
| | - Xiaoqiu Liu
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.C.); (H.J.); (K.R.); (S.Q.); (Y.P.)
| |
Collapse
|