1
|
Jiachang F, Liuyang C, Yan W, Weiguang Z, Hao W, Shaobowen Y, Jiacheng L, He W, Qiyang W, Dianlei H. Preparation of temperature-responsive pickering emulsions for encapsulating compound essential oils and their application in fresh noodle preservation. Food Chem 2025; 479:143822. [PMID: 40086380 DOI: 10.1016/j.foodchem.2025.143822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
In the present study, corn starch was modified to create temperature-responsive particles, which were employed as an emulsifier to formulate Pickering emulsions (PE) for the encapsulation of compound essential oils (CEO). The temperature responsiveness of CEOPE endows PE with the characteristics of faster release rate at lower temperature and more stability at room temperature, aligning with the typical low-temperature storage conditions of fresh noodles. The characteristics of CEOPE with different oil-water ratios were analyzed by morphology, particle size, PDI, zeta-potential, FTIR and rheological measurements. The CEOPE exhibited antibacterial activity against E. coli and S. aureus, making it an ideal candidate for non-contact antibacterial packaging. The antibacterial effect was further confirmed in the storage experiment of fresh noodles. The results have significant implications for the development of a temperature-responsive, bacteriostatic packaging material derived from natural components, offering a novel approach to the preservation of fresh noodles.
Collapse
Affiliation(s)
- Feng Jiachang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Chen Liuyang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Wang Yan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Zhao Weiguang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Wang Hao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yan Shaobowen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Liu Jiacheng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Wang He
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Wang Qiyang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Han Dianlei
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Idahagbon NB, Nicholas RJ, Wei A. Pectin-Cellulose Nanofiber Composites: Biodegradable Materials for Modified Atmosphere Packaging. Food Hydrocoll 2025; 162:110976. [PMID: 39720107 PMCID: PMC11666126 DOI: 10.1016/j.foodhyd.2024.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Pectin blended with cellulose nanofiber (CNF) sourced from wood pulp has excellent potential for modified atmosphere packaging (MAP), as demonstrated with refrigerated or sliced fruits enclosed in parchment coated with pectin-CNF composites. Addition of sodium borate (NaB) augments the antioxidant capacity of the composite, most likely through the generation of unsaturated pectic acid units. Packaging materials coated with pectin-CNF-NaB composites demonstrate better humidity regulation in refrigerated spaces over a 3-week period relative to uncoated controls (50% less variation), with improved preservation of strawberries as well as a reduction in the oxidative browning of sliced apples. Pectin-CNF films are both biorenewable and biodegradable as confirmed by their extensive decomposition in soil over several weeks, establishing their potential as a sustainable MAP material. Lastly, self-standing films are mechanically robust at 80% RH with tensile strength and toughness as high as 150 MPa and 8.5 MJ/m2 respectively. These values are on par with other bioplastic composites and support the practical utility of pectin-CNF composites in functional packaging applications.
Collapse
Affiliation(s)
- Nosa B Idahagbon
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907
| | - Robert J Nicholas
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907
| | - Alexander Wei
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907
| |
Collapse
|
3
|
Gao Z, Cao T, Hu B, Chen L, Li H, Wang C, Guo CY. Gas sensing by long-wavelength and long-afterglow pectin/melamine-formaldehyde aerogel via resonance energy transfer. J Colloid Interface Sci 2025; 685:876-888. [PMID: 39870005 DOI: 10.1016/j.jcis.2025.01.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed. It exhibits a stable and persistent afterglow, with a phosphorescence lifetime reaching up to 1.99 s. Simultaneously, this aerogel possesses excellent mechanical properties, having a compressive modulus of 4.14 MPa, which is 490.8 times that of the PC aerogel. Its friction coefficient is also much lower than that of the single MF aerogel, enabling the material to achieve a better balance between rigidity and service life in practical applications. Moreover, through resonance energy transfer, the afterglow wavelength was redshifted from 504 nm to 576 nm and 620 nm, and aerogels with ultra-long yellow and red afterglows were successfully obtained. PCMF@PA aerogels display specific chemical stability in different organic solvents. Notably, PCMF@PA has a characteristic recognition for formic acid gas. The change in the luminous intensity and lifetime of the aerogel after gas absorption distinguishes it from gases such as ammonia and acetic acid. These phosphorescent polymer aerogels with self-monitoring and tracing capabilities not only foster the advancement of ordered phosphorescent materials but also broaden the application scope of RTP materials in environmental monitoring.
Collapse
Affiliation(s)
- Zeyu Gao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Tengyang Cao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Bingxuan Hu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Lei Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Helang Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China
| | - Caiqi Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China.
| | - Cun-Yue Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China.
| |
Collapse
|
4
|
Zhan Q, Xuan S, Su L, Hou Y, Jin P, Zheng Y, Wu Z. Exploring the wonders of polysaccharides in porous materials. MATERIALS HORIZONS 2025. [PMID: 40272379 DOI: 10.1039/d4mh01670j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Porous materials are a class of materials with abundant micro-nano pore structures, low density, light weight, and large specific surface area, and they have been widely used in various fields. Polysaccharides have the characteristics of designability, adjustability, biodegradability and safety and have been widely and deeply studied by researchers working on porous materials. Based on previous studies and in combination with our own research, this review describes the basic concepts and types of polysaccharide-based porous materials (including aerogels, sponges, foams, porous carbons and hydrogels), summarizes their preparation methods, and offers an in-depth analysis and discussion of their applications in medicine, food, environment and other applications. Finally, the current challenges and future prospects of polysaccharides-based porous materials are summarized. This review aims to systematically analyze and summarize the application value of polysaccharide-based porous materials and provide theoretical guidance for their further research.
Collapse
Affiliation(s)
- Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Simin Xuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Linying Su
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yujie Hou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Zhou Y, Wu W, Hileuskaya K, Shao P. Oriented structure design of pectin/Ag nanosheets film with improved barrier and long-term antimicrobial properties for edible fungi preservation. Food Chem 2025; 484:144451. [PMID: 40279900 DOI: 10.1016/j.foodchem.2025.144451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/07/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Improving the antimicrobial control, barrier properties, and mechanical performance of bio-based food packaging materials is crucial for advancing their practical applications. In this study, oriented pectin/Ag nanosheet composite films were fabricated using a uniaxial stretching method. By adjusting the stretching ratio, the horizontal alignment of Ag nanosheets and pectin chains was promoted, resulting in increased crystallinity and orientation of the composite films. The stretching orientation improved the tensile strength and anti-UV capability of the composite films. In particular, the gas permeability was further reduced. The Pec/PAg-S30 % composite films, with a 30 % stretching ratio, exhibited more than a 70 % improvement in water vapour and oxygen barrier properties compared to pure pectin films. Additionally, the stretching orientation effect slowed and reduced Ag+ release, contributing to the long-term antimicrobial effect of the composite films. The films demonstrated excellent biosafety and effectively delayed the browning and spoilage of Agaricus bisporus.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Weina Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, 36 F. Skaryna Str., Belarus
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China.
| |
Collapse
|
6
|
Ning H, Lu L, Zhang Y, Pan L, Lu L. Development of novel sodium alginate-based light-responsive controlled-release active packaging film. Int J Biol Macromol 2025; 304:140780. [PMID: 39924028 DOI: 10.1016/j.ijbiomac.2025.140780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Developing intelligent active packaging films with responsive controlled-release properties for food preservation is highly desirable. Herein, a light-responsive carrier material PBA-IRMOF-3 was prepared by modifying azobenzene 4-carboxylic acid (PBA) with azobenzene photosensitive group on isoreticular metal-organic framework material-3 (IRMOF-3). PBA-IRMOF-3 loaded with active substance carvacrol (CA) was added to the sodium alginate (SA) matrix to prepare the light-responsive controlled-release active film PMC@SA. Upon alternating ultraviolet (UV) and visible light (Vis) irradiation, the azobenzene group of PBA-IRMOF-3 underwent structural isomerization, which played the role of "impeller-stirring" to promote the release of CA, resulting in the PMC@SA film exhibited light-responsive controlled release characteristics. Furthermore, the PMC@SA film demonstrated notable hydrophobicity (water contact angle: 69.67 ± 1.21°), excellent water vapor barrier properties (water vapor transmission rate: 559.68 ± 5.99 g·d-1·m-2), and effective light-blocking performance (nearly zero transmittance in the 250-380 nm). UV radiation did not significantly affect the mechanical and physical properties of the film. Evaluation of pork preservation revealed that the PMC@SA film significantly improved the pork quality, particularly after UV irradiation (P < 0.05). These results highlight the potential application value of the film in the field of responsive controlled-release food packaging.
Collapse
Affiliation(s)
- Haoyue Ning
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Lixin Lu
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China.
| | - Yuemei Zhang
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liao Pan
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China
| | - Lijing Lu
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Xu Y, Guo J, Wei Z, Xue C. Cellulose-based delivery systems for bioactive ingredients: A review. Int J Biol Macromol 2025; 299:140072. [PMID: 39842568 DOI: 10.1016/j.ijbiomac.2025.140072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/24/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Considering the outstanding advantages including abundant resources, structure-performance designability, impressive mechanical strength, and 3D network structure-forming ability, cellulose is an ideal material for encapsulating bioactive ingredients. Due to its low solubility in water, large-scaled morphology and poor flexibility, cellulose is unsuitable for the construction of carriers. Consequently, the majority of cellulose is employed following physical or chemical modification. Cellulose and its derivatives are extensively employed in the food industry, including fat replacement, food packaging composites, food additives, 3D-printed food and delivery systems. Their benefits in food delivery systems are particularly pronounced. Therefore, the distinguishing features, preparation methods, recent developments and effectiveness of different cellulose-based delivery systems for bioactive ingredients are discussed. Cellulose-based delivery systems offer unique advantages in terms of environmental impact reduction, modification facilitation, stimuli-responsive release as well as tailored design, and their application has gained widespread recognition. However, they are facing challenges in the application process comprising modification methods for cellulose-based materials, new methods for commercial preparation on a wide scale, cellulose-based multifunctional conveyance systems and systematic evaluation using in vivo experiments. In conclusion, this review provides theoretical references for the development of novel delivery carriers as well as the efficient application and popularization of cellulose-based delivery systems.
Collapse
Affiliation(s)
- Yanan Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Jiarui Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
8
|
Akhouy G, Eticha AK, Dogan C, Dogan N, Calisir MD, Toptas A, Aziz F, Akgul Y. A green approach to tangerine preservation: composite electro-blown nanofibers activated with cedarwood oil. Food Sci Biotechnol 2025; 34:1093-1106. [PMID: 39974867 PMCID: PMC11832856 DOI: 10.1007/s10068-024-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 02/21/2025] Open
Abstract
In this study, a novel active food packaging hybrid nanofibrous mats were fabricated from gelatin (G), chitosan (Ch), polyamide-6 (PA6), and Cedrus atlantica essential oil (CAEO) via an electroblowing technique. The G-Ch-PA6 nanofibrous mats containing varying concentrations (0, 1, 3, and 5%, m/m) of CAEO were produced and thermally crosslinked. These hybrid mats underwent comprehensive characterization, including morphology assessment, surface wetting analysis, thermal stability examination, antioxidant evaluation, bioactivity testing, and more. Morphological investigation revealed that the incorporation of different CAEO concentrations influenced the average diameter of the nanofibers, which ranged from 335.09 to 541.90 nm. Moreover, the antioxidant properties of nanofibrous mats were assessed using DPPH and ABTS methods, revealing a linear relationship between antioxidant activity and the loading amount of CAEO. These findings underscore the potential of the G-Ch-PA6-CAEO5 nanofibrous mat as a multifunctional active packaging material, promising in the preservation and freshness monitoring of fruits such as tangerines. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01736-4.
Collapse
Affiliation(s)
- Ghizlane Akhouy
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000 Marrakesh-Safi, Morocco
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco
| | - Andinet Kumella Eticha
- School of Mechanical and Industrial Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
- Mechanical Engineering Department, Karabuk University, Karabuk, Turkey
| | - Cemhan Dogan
- Department of Food Technology, Bogazliyan Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - Nurcan Dogan
- Department of Food Technology, Bogazliyan Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - Mehmet D. Calisir
- Department of Electrical and Electronics Engineering, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ali Toptas
- TEMAG Labs, Faculty of Textile Tech and Design, Istanbul Technical University, Istanbul, Turkey
| | - Faissal Aziz
- Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000 Marrakesh-Safi, Morocco
- National Center for Research and Studies On Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco
| | - Yasin Akgul
- Iron and Steel Institute, Karabuk University, Karabuk, Turkey
| |
Collapse
|
9
|
Chai Y, Zhou Y, Zhang K, Shao P. Resveratrol nanoparticles coated by metal-polyphenols supramolecular enhance antioxidant activity and long-term stability of dietary gel. Food Chem 2025; 465:141987. [PMID: 39608093 DOI: 10.1016/j.foodchem.2024.141987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
Resveratrol (RES) is an important functional substance with multiple active properties. However, RES is susceptible to natural environmental conditions that reduce its bioactivity. To improve the bioavailability of RES, in this study, Catechin and Fe3+/Ca2+ were selected to form supramolecules, which were then coated on the surface of hydrophobic RES nanoparticles (RES NPs) to create composite RES NPs. The obtained composite RES NPs demonstrated higher antioxidant capacity and better photo-thermal stability than RES NPs. Additionally, a pectin (PE) dietary gel was designed as a delivery carrier for RES. The results showed that the incorporation of composite RES NPs not only endowed the gels with significant dietary activity but also enhanced the texture, water retention capacity and hydrophobicity. After 28 days of storage, the retention rate of RES could be maintained above 90 % in the dietary gels. Meanwhile, the controlled release of RES was achieved in in vitro simulated digestion.
Collapse
Affiliation(s)
- Yiyang Chai
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Ying Zhou
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Dept, Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany; Biotechnology Center (Biotechnikum), University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China; Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang, Huzhou 313200, PR China.
| |
Collapse
|
10
|
Wang N, Zheng D, He J, Liu X, Liu T. Preparation and characterization of a thymol nanoemulsion-loaded multifunctional sustained-release corn straw cellulose nanocrystal/acetylated starch-based aerogel and its application in chilled meat preservation. Carbohydr Polym 2025; 348:122758. [PMID: 39562054 DOI: 10.1016/j.carbpol.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/21/2024] [Accepted: 09/14/2024] [Indexed: 11/21/2024]
Abstract
Chilled meat is prone to microbial contamination during storage, resulting in a shortened shelf life. This study developed multifunctional biodegradable aerogel with water absorption, antibacterial, and sustained release properties as a preservation pad for meat, using corn straw cellulose nanocrystals (CSCNCs) and acetylated starch (AS) as the structural skeleton and thymol (TMO) nanoemulsions as antimicrobials. The effects of different mass ratios of CSCNCs/AS on the morphology, structure, physical properties, and release behavior of aerogels were systematically analyzed. Additionally, their antibacterial properties, biocompatibility, and biodegradability were investigated. The results showed that the aerogels with CSCNC/AS mass ratio of 1:5 had a tailored structure for loading TMO nanoemulsions, as well as excellent water absorption, mechanical properties, and thermal stability. Due to strong hydrogen bonding and a porous structure, the TMO in the aerogels was continuously and uniformly released into high-water-activity and fatty food simulants, mainly controlled by Fickian diffusion. Furthermore, it exhibited superior antibacterial properties and biocompatibility. The application of aerogels for chilled beef preservation extended the shelf life from 8 days to approximately 12 days, which was superior to commercially available preservation pads. Notably, the aerogels exhibited superior biodegradability in soil. Therefore, the prepared aerogel preservation pads showed great potential in preserving chilled meat.
Collapse
Affiliation(s)
- Nan Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Technological Innovations for Grain Deep-processing and High-effeciency Utilization of By-products of Jilin Province, Changchun 130118, China
| | - Dongyang Zheng
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Jialu He
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Xiaolong Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China.
| |
Collapse
|
11
|
Tian R, Zhao Y, Fu Y, Yang S, Jiang L, Sui X. Sacrificial hydrogen bonds enhance the performance of covalently crosslinked composite films derived from soy protein isolate and dialdehyde starch. Food Chem 2024; 456:140055. [PMID: 38876072 DOI: 10.1016/j.foodchem.2024.140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/29/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Soy protein films have the advantage of being eco-friendly and renewable, but their practical applications are hindered by the mechanical properties. The exceptional tensile strength and fracture toughness of natural silk stem from sacrificial hydrogen bonds it contains that effectively dissipates energy. In this study, we draw inspiration from silk's structural principles to create biodegradable films based on soy protein isolate (SPI). Notably, composite films containing sodium lignosulfonate (LS) demonstrate exceptional strain at break (up to 153%) due to the augmentation of reversible hydrogen bonding, contrasted to films with the addition of solely dialdehyde starch (DAS). The enhancement of tensile strength is realized through a combination of Schiff base cross-linking and sacrificial hydrogen bonding. Furthermore, the incorporation of LS markedly improves the films' ultraviolet (UV) blocking capabilities and hydrophobicity. This innovative design strategy holds great promise for advancing the production of eco-friendly SPI-based films that combine strength and toughness.
Collapse
Affiliation(s)
- Ran Tian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuan Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yidan Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuyuan Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Hedayati S, Tarahi M, Iraji A, Hashempur MH. Recent developments in the encapsulation of lavender essential oil. Adv Colloid Interface Sci 2024; 331:103229. [PMID: 38878587 DOI: 10.1016/j.cis.2024.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 07/31/2024]
Abstract
The unregulated and extensive application of synthetic compounds, such as preservatives, pesticides, and drugs, poses serious concerns to the environment, food security, and global health. Essential oils (EOs) are valid alternatives to these synthetic chemicals due to their therapeutic, antioxidant, and antimicrobial activities. Lavender essential oil (LEO) can be potentially applied in food, cosmetic, textile, agricultural, and pharmaceutical industries. However, its bioactivity can be compromised by its poor stability and solubility, which severely restrict its industrial applications. Encapsulation techniques can improve the functionality of LEO and preserve its bioactivity during storage. This review reports recent advances in the encapsulation of LEO by different methods, such as liposomes, emulsification, spray drying, complex coacervation, inclusion complexation, and electrospinning. It also outlines the effects of different processing conditions and carriers on the stability, physicochemical properties, and release behavior of encapsulated LEO. Moreover, this review focuses on the applications of encapsulated LEO in different food and non-food products.
Collapse
Affiliation(s)
- Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Liufang Y, Wu Y, Zhou H, Qu H, Yang H. Recent Advances in the Application of Natural Products for Postharvest Edible Mushroom Quality Preservation. Foods 2024; 13:2378. [PMID: 39123569 PMCID: PMC11312085 DOI: 10.3390/foods13152378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Edible mushrooms are favored by consumers for their excellent nutritional value and pharmacological properties. However, fresh mushrooms are highly perishable and undergo rapid quality deterioration induced by a series of intrinsic and extrinsic factors during postharvest storage. In recent years, the application of natural products derived from plants, animals, microorganisms, and other sources in mushroom quality preservation has drawn increasing attention. Compared to chemical preservatives, natural products show similar or higher biological activity and have few side effects on human health. This review summarizes the recent advances in the application of natural products used for quality maintenance of postharvest mushrooms. These natural substances mainly include essential oils, polyphenols, polysaccharides, bacteriocins, and other extracts. They have the potential to inhibit mushroom weight loss, softening, and browning, reduce the count of pathogenic microorganisms, and retain nutrients and flavor, effectively improving the quality of mushrooms and extending their shelf-life. The preservation techniques for natural products and their preservation mechanisms are also discussed here. Overall, this review provides current knowledge about natural products in edible mushroom preservation and aims to inspire more in-depth theoretical research and promote further practical application.
Collapse
Affiliation(s)
- Yuxin Liufang
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.L.); (Y.W.); (H.Z.)
| | - Yi Wu
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.L.); (Y.W.); (H.Z.)
| | - Huabin Zhou
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.L.); (Y.W.); (H.Z.)
| | - Hang Qu
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.L.); (Y.W.); (H.Z.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Hailong Yang
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.L.); (Y.W.); (H.Z.)
| |
Collapse
|
14
|
Hou T, Wang F, Wang L. Facile preparation of pH-responsive antimicrobial complex and cellulose nanofiber/PVA aerogels as controlled-release packaging for fresh pork. Food Sci Biotechnol 2024; 33:1871-1883. [PMID: 39677984 PMCID: PMC11636900 DOI: 10.1007/s10068-023-01487-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2024] Open
Abstract
Intelligent controlled release technologies that rely on environmental changes to control the release rate of antimicrobial agents have attracted attention in the field of food preservation. In this paper, cinnamaldehyde (CN) was grafted onto chitosan (CS) to form a pH-responsive controlled-release complex, CS-CN, via the Schiff base reaction. Then, tempo oxidized cellulose nanofibers (CNF) and PVA were prepared as aerogels loaded with CS-CN with different pore parameters (PCNF@CN). Release experiments showed that acid triggered the release of CN and increased the release from 10.3 to 68.4% with increasing pH. In addition, PCNF@CN showed significant pH-responsive antimicrobial properties against Escherichia coli and Staphylococcus aureus. Utilizing the water absorption of the aerogel and triggering the release of CN, the shelf life of fresh meat could be delayed for 4 days. This study demonstrated the potential application of PCNF@CN aerogel in functional food preservation packaging. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01487-8.
Collapse
Affiliation(s)
- Tianmeng Hou
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
15
|
Cao Y, Wu L, Xia Q, Yi K, Li Y. Novel Post-Harvest Preservation Techniques for Edible Fungi: A Review. Foods 2024; 13:1554. [PMID: 38790854 PMCID: PMC11120273 DOI: 10.3390/foods13101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Edible fungi are well known for their rich nutrition and unique flavor. However, their post-harvest shelf-life is relatively short, and effective post-harvest preservation techniques are crucial for maintaining their quality. In recent years, many new technologies have been used for the preservation of edible fungi. These technologies include cold plasma treatment, electrostatic field treatment, active packaging, edible coatings, antimicrobial photodynamic therapy, and genetic editing, among others. This paper reviews the new methods for post-harvest preservation of mainstream edible fungi. By comprehensively evaluating the relative advantages and limitations of these new technologies, their potential and challenges in practical applications are inferred. The paper also proposes directions and suggestions for the future development of edible fungi preservation, aiming to provide reference and guidance for improving the quality of edible fungi products and extending their shelf-life.
Collapse
Affiliation(s)
- Yuping Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Li Wu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Qing Xia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Kexin Yi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| |
Collapse
|
16
|
Lu Z, Zhang H, Toivakka M, Xu C. Current progress in functionalization of cellulose nanofibers (CNFs) for active food packaging. Int J Biol Macromol 2024; 267:131490. [PMID: 38604423 DOI: 10.1016/j.ijbiomac.2024.131490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
There is a growing interest in utilizing renewable biomass resources to manufacture environmentally friendly active food packaging, against the petroleum-based polymers. Cellulose nanofibers (CNFs) have received significant attention recently due to their sustainability, biodegradability, and widely available sources. CNFs are generally obtained through chemical or physical treatment, wherein the original surface chemistry and interfacial interactions can be changed if the functionalization process is applied. This review focuses on promising and sustainable methods of functionalization to broaden the potential uses of CNFs in active food packaging. Novel aspects, including functionalization before, during and after cellulose isolation, and functionalization during and after material processing are addressed. The CNF-involved structural construction including films, membranes, hydrogels, aerogels, foams, and microcapsules, is illustrated, which enables to explore the correlations between structure and performance in active food packaging. Additionally, the enhancement of CNFs on multiple properties of active food packaging are discussed, in which the interaction between active packaging systems and encapsulated food or the internal environment are highlighted. This review emphasizes novel approaches and emerging trends that have the potential to revolutionize the field, paving the way for advancements in the properties and applications of CNF-involved active food packaging.
Collapse
Affiliation(s)
- Zonghong Lu
- Laboratory of Natural Materials Technology, Åbo Akademi University, 20500 Turku, Finland
| | - Hao Zhang
- Laboratory of Natural Materials Technology, Åbo Akademi University, 20500 Turku, Finland
| | - Martti Toivakka
- Laboratory of Natural Materials Technology, Åbo Akademi University, 20500 Turku, Finland.
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, 20500 Turku, Finland.
| |
Collapse
|
17
|
Wang X, Wu Y, Yue C, Song Y, Shen Z, Zhang Y. Enhanced adsorption of dye wastewater by low-temperature combined NaOH/urea pretreated hydrochar: Fabrication, performance, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32800-32812. [PMID: 38664320 DOI: 10.1007/s11356-024-33230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/02/2024] [Indexed: 05/29/2024]
Abstract
The highly stable biomass structure formed by cellulose, hemicellulose, and lignin results in incomplete conversion and carbonization under hydrothermal conditions. In this study, pretreated corn straw hydrochar (PCS-HC) was prepared using a low-temperature alkali/urea combination pretreatment method. The Mass loss rate of cellulose, hemicellulose, and lignin from pretreated biomass, as well as the effects of the pretreatment method on the physicochemical properties of PCS-HC and the adsorption performance of PCS-HC for alkaline dyes (rhodamine B and methylene blue), were investigated. The results showed that the low-temperature NaOH/urea pretreatment effectively disrupted the stable structure formed by cellulose, hemicellulose, and lignin. NaOH played a dominant role in solubilizing cellulose and the combination of low temperature and urea enhanced the ability of NaOH to remove cellulose, hemicellulose, and lignin. Compared to the untreated hydrochar, PCS-HC exhibited a rougher surface, a more abundant pore structure, and a larger specific surface area. The unpretreated hydrochar exhibited an adsorption capacity of 64.8% for rhodamine B and 66.32% for methylene blue. However, the removal of rhodamine B and methylene blue by PCS-BC increased to 89.12% and 90.71%, respectively, under the optimal pretreatment conditions. The PCS-HC exhibited a favorable adsorption capacity within the pH range of 6-9. However, the presence of co-existing anions such as Cl-, SO42-, CO32-, and NO3- hindered the adsorption capacity of PCS-HC. Among these anions, CO32- exhibited the highest level of inhibition. Chemisorption, including complexation, electrostatic attraction, and hydrogen bonding, were the primary mechanism for dye adsorption by PCS-HC. This study provides an efficient method for utilizing agricultural waste and treating dye wastewater.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Yuhao Wu
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Chang Yue
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Yuanbo Song
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Zheng Shen
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China.
- Shanghai Research Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai, China.
- Key Laboratory of Rural Toilet and SewageTreatment Technology, Ministry of Agricultureand Rural Affairs, Tongji University, Shanghai, China.
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Research Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai, China
- Key Laboratory of Rural Toilet and SewageTreatment Technology, Ministry of Agricultureand Rural Affairs, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Wang F, Hu Z, Ouyang S, Wang S, Liu Y, Li M, Wu Y, Li Z, Qian J, Wu Z, Zhao Z, Wang L, Jia C, Ma S. Application progress of nanocellulose in food packaging: A review. Int J Biol Macromol 2024; 268:131936. [PMID: 38692533 DOI: 10.1016/j.ijbiomac.2024.131936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
With the increasing environmental and ecological problems caused by petroleum-based packaging materials, the focus has gradually shifted to natural resources for the preparation of functional food packaging materials. In addition to biodegradable properties, nanocellulose (NC) mechanical properties, and rich surface chemistry are also fascinating and desired to be one of the most probable green packaging materials. In this review, we firstly introduce the recent progress of novel applications of NC in food packaging, including intelligent packaging, nano(bio)sensors, and nano-paper; secondly, we focus on the modification techniques of NC to summarize the properties (antimicrobial, mechanical, hydrophobic, antioxidant, and so on) that are required for food packaging, to expand the new synthetic methods and application areas. After presenting all the latest advances related to material design and sustainable applications, an overview summarizing the safety of NC is presented to promote a continuous and healthy movement of NC toward the field of truly sustainable packaging.
Collapse
Affiliation(s)
- Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zihan Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shiqiang Ouyang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Suyang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yichi Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengdi Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiting Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhihua Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Qian
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhen Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhicheng Zhao
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
19
|
Wang H, Yuan D, Meng Q, Zhang Y, Kou X, Ke Q. Pickering nanoemulsion loaded with eugenol contributed to the improvement of konjac glucomannan film performance. Int J Biol Macromol 2024; 267:131495. [PMID: 38614180 DOI: 10.1016/j.ijbiomac.2024.131495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Konjac glucomannan (KGM) is becoming a very potential food packaging material due to its good film-forming properties and stability. However, KGM film has several shortcomings such as low mechanical strength, strong water absorption, and poor self-antibacterial performance, which limits its application. Therefore, in order to enhance the mechanical and functional properties of KGM film, this study prepared Pickering nanoemulsion loaded with eugenol and added it to the KGM matrix to explore the improvement effect of Pickering nanoemulsion on KGM film properties. Compared to pure KGM film and eugenol directly added film, the mechanical strength of Pickering-KGM film was significantly improved due to the establishment of ample hydrogen bonding interactions between the β-cyclodextrin inclusion complex system and KGM. Pickering-KGM film had significant antioxidant capacity than pure KGM film and eugenol directly added KGM film (eugenol-KGM film) (~3.21 times better than KGM film, ~0.51 times better than eugenol-KGM film). In terms of antibacterial activity, Pickering-KGM film had good inhibitory effect on Escherichia coli, Staphylococcus aureus, and Candida albicans, and raspberry preservation experiment showed that the shelf life of the Pickering-KGM film could be extended to about 6 days. To sum up, this study developed a novel means to improve the film performance and provide a new insight for the development and application of food packaging film.
Collapse
Affiliation(s)
- Hui Wang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Dan Yuan
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
| |
Collapse
|
20
|
Lan L, Jiang S, Hu X, Zou L, Ren T. Nanocellulose-based antimicrobial aerogels with humidity-triggered release of cinnamaldehyde. Int J Biol Macromol 2024; 262:130108. [PMID: 38346620 DOI: 10.1016/j.ijbiomac.2024.130108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Active food packaging with controlled release behavior of volatile antimicrobials is highly desirable for enhancing the quality of fresh produce. In this study, humidity-responsive antimicrobial aerogels were developed using chitosan and dialdehyde nanocellulose, loading with cyclodextrin-cinnamaldehyde inclusion complexes (ICs) for achieving humidity-triggered release of the encapsulated antimicrobial agent. Results showed that the prepared aerogels had capable water absorption ability, which could be served as absorbent pads to take in excessive exudate from packaged fresh produce. More importantly, the accumulative release rate of cinnamaldehyde from the antimicrobial aerogels was significantly improved at RH 98 % compared to that at RH 70 %, which accordingly inactivated all the inoculated Escherichia coli, Staphylococcus aureus and Botrytis cinerea. Additionally, strawberries packaged with the antimicrobial aerogels remained in good conditions after 5 d of storage at 22 ± 1 °C. The prepared composite aerogels had the potential to extend the shelf life of fresh strawberries.
Collapse
Affiliation(s)
- Lu Lan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Tian Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
21
|
Zhang Q, Kong B, Liu H, Du X, Sun F, Xia X. Nanoscale Pickering emulsion food preservative films/coatings: Compositions, preparations, influencing factors, and applications. Compr Rev Food Sci Food Saf 2024; 23:e13279. [PMID: 38284612 DOI: 10.1111/1541-4337.13279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
Pickering emulsion (PE) technology effectively addresses the issues of poor compatibility and low retention of hydrophobic active ingredients in food packaging. Nonetheless, it is important to recognize that each stage of the preparation process for PE films/coatings (PEFCs) can significantly influence their functional properties. With the fundamental considerations of environmental friendliness and human safety, this review extensively explores the potential of raw materials for PEFC and introduces the preparation methods of nanoparticles, emulsification technology, and film-forming techniques. The critical factors that impact the performance of PEFC during the preparation process are analyzed to enhance food preservation effectiveness. Moreover, the latest advancements in PE packaging across diverse food applications are summarized, along with prospects for innovative food packaging materials. Finally, the preservation mechanism and application safety have been systematically elucidated. The study revealed that the PEFCs provide structural flexibility, where designable nanoparticles offer unique functional properties for intelligent control over active ingredient release. The selection of the dispersed and continuous phases, along with component proportions, can be customized for specific food characteristics and storage conditions. By employing suitable preparation and emulsification techniques, the stability of the emulsion can be improved, thereby enhancing the effectiveness of the films/coatings in preserving food. Including additional substances broadens the functionality of degradable materials. The PE packaging technology provides a safe and innovative solution for extending the shelf life and enhancing the quality of food products by protecting and releasing active components.
Collapse
Affiliation(s)
- Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
22
|
Chen Y, Chen Y, Jiang L, Huang Z, Zhang W, Yun Y. Improvement of emulsifying stability of coconut globulin by noncovalent interactions with coffee polyphenols. Food Chem X 2023; 20:100954. [PMID: 38144812 PMCID: PMC10740014 DOI: 10.1016/j.fochx.2023.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 12/26/2023] Open
Abstract
Coconut milk is an unstable emulsion system, mainly stabilized by proteins, which limits the development of the food industry. The aim of this study was to investigate mechanisms for increasing emulsion stability through the interaction between coffee polyphenols (CPs) and coconut globulin (CG), the main protein in coconut milk. Caffeic acid (CA), chlorogenic acid (CHA), and ferulic acid (FA) were selected as CP models. The results showed that hydrogen bond interactions mainly occurred between CG and CPs (CG-FA < CG-CA < CG-CHA). CHA containing quinic acid preferentially formed a strong interaction with CG. The interaction changed the lipophilicity of CG and facilitated the formation of a dense and thick interfacial film at the oil-water interface. Furthermore, the emulsion stabilized by CG-CPs showed excellent stability after storage, centrifugation, pH, and salt treatment, especially CG-CHA. This study could provide a theoretical basis for improving the stability of coconut milk products.
Collapse
Affiliation(s)
- Yile Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yang Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, Hainan 570228, China
| | - Yonghuan Yun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
23
|
Vrabič-Brodnjak U. Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels 2023; 10:27. [PMID: 38247750 PMCID: PMC10815338 DOI: 10.3390/gels10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
This review explores the field of hybrid materials in the context of bio-based aerogels for the development of sustainable packaging solutions. Increasing global concern over environmental degradation and the growing demand for environmentally friendly alternatives to conventional packaging materials have led to a growing interest in the synthesis and application of bio-based aerogels. These aerogels, which are derived from renewable resources such as biopolymers and biomass, have unique properties such as a lightweight structure, excellent thermal insulation, and biodegradability. The manuscript addresses the innovative integration of bio-based aerogels with various other materials such as nanoparticles, polymers, and additives to improve their mechanical, barrier, and functional properties for packaging applications. It critically analyzes recent advances in hybridization strategies and highlights their impact on the overall performance and sustainability of packaging materials. In addition, the article identifies the key challenges and future prospects associated with the development and commercialization of hybrid bio-based aerogel packaging materials. The synthesis of this knowledge is intended to contribute to ongoing efforts to create environmentally friendly alternatives that address the current problems associated with conventional packaging while promoting a deeper understanding of the potential of hybrid materials for sustainable packaging solutions.
Collapse
Affiliation(s)
- Urška Vrabič-Brodnjak
- Department of Textiles, Graphic Arts and Design, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Wu W, Zhou Y, Pan J, Wu Y, Goksen G, Shao P. Multibranched flower-like ZnO anchored on pectin/cellulose nanofiber aerogel skeleton for enhanced comprehensive antibacterial capabilities. Carbohydr Polym 2023; 322:121320. [PMID: 37839838 DOI: 10.1016/j.carbpol.2023.121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 10/17/2023]
Abstract
In this study, F-ZnO NPs were used as antibacterial agents, mussel bionic dopamine exerted its adhesive action to immobilize F-ZnO NPs on the pectin/CNF aerogel skeleton. Fruit and vegetable antimicrobial mats with safety, long duration of action and high efficiency were prepared and its potential application has been investigated. The results showed that a dopamine layer was deposited on the surface of the CNF, which promoted the tight adhesion of the F-ZnO NPs to the aerogel skeleton. The F-ZnO@D-CNF aerogel exhibited a slow release of zinc ions, with the first two days being 0.40 ± 0.16 and 1.01 ± 0.13 mg/mL. The aerogel was light, can stand on the petals without collapsing, has regular and uniform pore structure, good tensile/compressive properties and high antibacterial/anti-fungal properties. Strawberries packaged with F-ZnO@D-CNF aerogel exhibited an extended shelf life of 5 days. Additionally, the strawberries maintained a soluble solid content of 6.9 ± 0.82 % and a Vc content of 44.67 ± 3.51 mg/100 g. The weight loss, color and firmness were also notably superior to the other four groups. The final concentration of zinc ions in strawberries was 3.71 ± 0.28 μg/g, which is far below the recommended dietary intake.
Collapse
Affiliation(s)
- Weina Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Ying Zhou
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Jiefeng Pan
- Department of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Yingying Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China.
| |
Collapse
|
25
|
Hou T, Ma S, Wang F, Wang L. A comprehensive review of intelligent controlled release antimicrobial packaging in food preservation. Food Sci Biotechnol 2023; 32:1459-1478. [PMID: 37637837 PMCID: PMC10449740 DOI: 10.1007/s10068-023-01344-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 08/29/2023] Open
Abstract
Intelligent responsive packaging provides informative feedback or control the release of active substances like antimicrobial agents in response to stimuli in food or the environment to ensure food safety. This paper provides an overview of two types of intelligent packaging, information-responsive and intelligent controlled-release, focusing on the recent research progress of intelligent controlled-release antimicrobial packaging with enzyme, pH, relative humidity, temperature, and light as triggering factors. It also summarizes the current status of application in different food categories, as well as the challenges and future prospects. Intelligent controlled-release technology aims to optimize the antimicrobial effect and ensure the quality of food products by synchronizing the release of active substances with food preservation needs through sensing stimuli, which is an innovative and challenging packaging technology. The paper seeks to provide a reference for the research and industrial development of responsive intelligent packaging and controlled-release packaging applications in food.
Collapse
Affiliation(s)
- Tianmeng Hou
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
26
|
Said NS, Olawuyi IF, Lee WY. Pectin Hydrogels: Gel-Forming Behaviors, Mechanisms, and Food Applications. Gels 2023; 9:732. [PMID: 37754413 PMCID: PMC10530747 DOI: 10.3390/gels9090732] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Pectin hydrogels have garnered significant attention in the food industry due to their remarkable versatility and promising properties. As a naturally occurring polysaccharide, pectin forms three-dimensional (3D) hydrophilic polymer networks, endowing these hydrogels with softness, flexibility, and biocompatibility. Their exceptional attributes surpass those of other biopolymer gels, exhibiting rapid gelation, higher melting points, and efficient carrier capabilities for flavoring and fat barriers. This review provides an overview of the current state of pectin gelling mechanisms and the classification of hydrogels, as well as their crosslinking types, as investigated through diverse research endeavors worldwide. The preparation of pectin hydrogels is categorized into specific gel types, including hydrogels, cryogels, aerogels, xerogels, and oleogels. Each preparation process is thoroughly discussed, shedding light on how it impacts the properties of pectin gels. Furthermore, the review delves into the various crosslinking methods used to form hydrogels, with a focus on physical, chemical, and interpenetrating polymer network (IPN) approaches. Understanding these crosslinking mechanisms is crucial to harnessing the full potential of pectin hydrogels for food-related applications. The review aims to provide valuable insights into the diverse applications of pectin hydrogels in the food industry, motivating further exploration to cater to consumer demands and advance food technology. By exploiting the unique properties of pectin hydrogels, food formulations can be enhanced with encapsulated bioactive substances, improved stability, and controlled release. Additionally, the exploration of different crosslinking methods expands the horizons of potential applications.
Collapse
Affiliation(s)
- Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (N.S.S.); (I.F.O.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
27
|
Tabassum Z, Girdhar M, Kumar A, Malik T, Mohan A. ZnO Nanoparticles-Reinforced Chitosan-Xanthan Gum Blend Novel Film with Enhanced Properties and Degradability for Application in Food Packaging. ACS OMEGA 2023; 8:31318-31332. [PMID: 37663466 PMCID: PMC10468839 DOI: 10.1021/acsomega.3c03763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
Nations all over the world are imposing ban on single-use plastics, which are difficult to recycle and lead to creations of nonsustainable and nondegradable piles. To match the requirement in the market, suitable food packaging alternatives have to be developed that are biodegradable and environment-friendly. The current work is designed for the fabrication of a novel nanocomposite by blending xanthan gum in a chitosan matrix and reinforcing it with ZnO nanoparticles, through a solution casting method. Surface morphology of the film was investigated through field emission scanning electron microscopy, along with energy-dispersive X-ray spectroscopy mapping, and characterized through thermogravimetric analysis, Fourier transform infrared (FTIR) spectroscopy, mechanical testing, and ultraviolet spectroscopy. FTIR spectroscopy analysis corroborated the interaction between the components and the H-bond formation. Polyelectrolyte complex formation materializes between the oppositely charged chitosan and xanthan gum, and further nanoparticle incorporation significantly improves the mechanical properties. The synthesized nanocomposite was found to have increases in the tensile strength and elongation at break of pure chitosan by up to 6.65 and 3.57 times, respectively. The transmittance percentage of the bionanocomposite film was reduced compared to that of the pure chitosan film, which aids in lowering the oxidative damage brought on by UV radiation in packed food products. Moreover, the film also showed an enhanced barrier property against water vapor and oxygen gas. The film was totally biodegradable in soil burial at the end of the second month; it lost almost around 88% of its initial weight. The fabricated film does not pose a threat to the environment and hence has great potential for application in the future sustainable food packaging industry.
Collapse
Affiliation(s)
- Zeba Tabassum
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara 144401, Punjab, India
| | - Madhuri Girdhar
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara 144401, Punjab, India
| | - Anil Kumar
- Gene
Regulation Laboratory, National Institute
of Immunology, New Delhi 110067, India
| | - Tabarak Malik
- Department
of Biomedical Sciences, Institute of Health, Jimma University, Jimma 0000, Ethiopia
| | - Anand Mohan
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara 144401, Punjab, India
| |
Collapse
|
28
|
Saleh WM, Ahmad MI, Yahya EB, H P S AK. Nanostructured Bioaerogels as a Potential Solution for Particulate Matter Pollution. Gels 2023; 9:575. [PMID: 37504454 PMCID: PMC10379271 DOI: 10.3390/gels9070575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
Particulate matter (PM) pollution is a significant environmental and public health issue globally. Exposure to high levels of PM, especially fine particles, can have severe health consequences. These particles can come from a variety of sources, including natural events like dust storms and wildfires, as well as human activities such as industrial processes and transportation. Although an extensive development in air filtration techniques has been made in the past few years, fine particulate matter still poses a serios and dangerous threat to human health and to our environment. Conventional air filters are fabricated from non-biodegradable and non-ecofriendly materials which can cause further environmental pollution as a result of their excessive use. Nanostructured biopolymer aerogels have shown great promise in the field of particulate matter removal. Their unique properties, renewable nature, and potential for customization make them attractive materials for air pollution control. In the present review, we discuss the meaning, properties, and advantages of nanostructured aerogels and their potential in particulate matter removal. Particulate matter pollution, types and sources of particulate matter, health effect, environmental effect, and the challenges facing scientists in particulate matter removal are also discussed in the present review. Finally, we present the most recent advances in using nanostructured bioaerogels in the removal of different types of particulate matter and discuss the challenges that we face in these applications.
Collapse
Affiliation(s)
- Wafa Mustafa Saleh
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Abdul Khalil H P S
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
29
|
Mirmoeini SS, Hosseini SH, Javid AL, Koutamehr ME, Sharafi H, Molaei R, Moradi M. Essential oil-loaded starch/cellulose aerogel: Preparation, characterization and application in cheese packaging. Int J Biol Macromol 2023; 244:125356. [PMID: 37321442 DOI: 10.1016/j.ijbiomac.2023.125356] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Novel antimicrobial emitting aerogels based on starch/cellulose/Thymus daenensis Celak essential oil (SC-TDEO) were developed and optimized for antimicrobial packaging of Koopeh cheese. An aerogel formulation containing cellulose (1 %; extracted from sunflower stalks) and starch (5 %) in a 1:1 ratio was selected for in vitro antimicrobial assay and subsequent cheese application. The minimum inhibitory dose (MID) of TDEO in the vapor phase against Escherichia coli O157:H7 was determined by loading various concentrations of TDEO onto the aerogel, and an MID of 256 μL/Lheadspace was recorded. Aerogels containing TDEO at 25 × MID and 50 × MID were then developed and used for cheese packaging. During a 21-day storage period, cheeses treated with SC-TDEO50 MID aerogel exhibited a significant 3-log reduction in psychrophile counts and a 1-log reduction in yeast-mold counts. Moreover, significant changes in the population of E. coli O157:H7 were observed in cheese samples. After 7 and 14 days of storage with SC-TDEO25 MID and SC-TDEO50 MID aerogels, the initial bacterial count became undetectable, respectively. Sensory evaluations indicated that the samples treated with SC-TDEO25 MID and SC-TDEO50 aerogels received higher scores compared to the control group. These findings demonstrate the potential of the fabricated aerogel to develop antimicrobial packaging suitable for cheese applications.
Collapse
Affiliation(s)
- Seyedeh Sahar Mirmoeini
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Seyede Hanieh Hosseini
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Anita Lotfi Javid
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Mahmoud Esmaeili Koutamehr
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | | | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| |
Collapse
|
30
|
Xia R, Hou Z, Xu H, Li Y, Sun Y, Wang Y, Zhu J, Wang Z, Pan S, Xin G. Emerging technologies for preservation and quality evaluation of postharvest edible mushrooms: A review. Crit Rev Food Sci Nutr 2023; 64:8445-8463. [PMID: 37083462 DOI: 10.1080/10408398.2023.2200482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Edible mushrooms are the highly demanded foods of which production and consumption have been steadily increasing globally. Owing to the quality loss and short shelf-life in harvested mushrooms, it is necessary for the implementation of effective preservation and intelligent evaluation technologies to alleviate this issue. The aim of this review was to analyze the development and innovation thematic lines, topics, and trends by bibliometric analysis and review of the literature methods. The challenges faced in researching these topics were proposed and the mechanisms of quality loss in mushrooms during storage were updated. This review summarized the effects of chemical processing (antioxidants, ozone, and coatings), physical treatments (non-thermal plasma, packaging and latent thermal storage) and other emerging application on the quality of fresh mushrooms while discussing the efficiency in extending the shelf-life. It also discussed the emerging evaluation techniques based on the various chemometric methods and computer vision system in monitoring the freshness and predicting the shelf-life of mushrooms which have been developed. Preservation technology optimization and dynamic quality evaluation are vital for achieving mushroom quality control. This review can provide a comprehensive research reference for reducing mushroom quality loss and extending shelf-life, along with optimizing efficiency of storage and transportation operations.
Collapse
Affiliation(s)
- Rongrong Xia
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhenshan Hou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Heran Xu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yunting Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yong Sun
- Beijing Academy of Food Sciences, Beijing, China
| | - Yafei Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jiayi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zijian Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
31
|
Roy S, Priyadarshi R, Łopusiewicz Ł, Biswas D, Chandel V, Rhim JW. Recent progress in pectin extraction, characterization, and pectin-based films for active food packaging applications: A review. Int J Biol Macromol 2023; 239:124248. [PMID: 37003387 DOI: 10.1016/j.ijbiomac.2023.124248] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Pectin is an abundant complex polysaccharide obtained from various plants. Safe, biodegradable, and edible pectin has been extensively utilized in the food industry as a gelling agent, thickener, and colloid stabilizer. Pectin can be extracted in a variety of ways, thus affecting its structure and properties. Pectin's excellent physicochemical properties make it suitable for many applications, including food packaging. Recently, pectin has been spotlighted as a promising biomaterial for manufacturing bio-based sustainable packaging films and coatings. Functional pectin-based composite films and coatings are useful for active food packaging applications. This review discusses pectin and its use in active food packaging applications. First, basic information and characteristics of pectin, such as the source, extraction method, and structural characteristics, were described. Then, various methods of pectin modification were discussed, and the following section briefly described pectin's physicochemical properties and applications in the food sector. Finally, the recent development of pectin-based food packaging films and coatings and their use in food packaging were comprehensively discussed.
Collapse
Affiliation(s)
- Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India.
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Łukasz Łopusiewicz
- Center of Bioimmobilization and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India; Department of Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144011, India
| | - Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
32
|
Bakhori NM, Ismail Z, Hassan MZ, Dolah R. Emerging Trends in Nanotechnology: Aerogel-Based Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1063. [PMID: 36985957 PMCID: PMC10058649 DOI: 10.3390/nano13061063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
At present, aerogel is one of the most interesting materials globally. The network of aerogel consists of pores with nanometer widths, which leads to a variety of functional properties and broad applications. Aerogel is categorized as inorganic, organic, carbon, and biopolymers, and can be modified by the addition of advanced materials and nanofillers. Herein, this review critically discusses the basic preparation of aerogel from the sol-gel reaction with derivation and modification of a standard method to produce various aerogels for diverse functionalities. In addition, the biocompatibility of various types of aerogels were elaborated. Then, biomedical applications of aerogel were focused on this review as a drug delivery carrier, wound healing agent, antioxidant, anti-toxicity, bone regenerative, cartilage tissue activities and in dental fields. The clinical status of aerogel in the biomedical sector is shown to be similarly far from adequate. Moreover, due to their remarkable properties, aerogels are found to be preferably used as tissue scaffolds and drug delivery systems. The advanced studies in areas including self-healing, additive manufacturing (AM) technology, toxicity, and fluorescent-based aerogel are crucially important and are further addressed.
Collapse
Affiliation(s)
- Noremylia Mohd Bakhori
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Mohamad Zaki Hassan
- Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Selangor, Malaysia
| | - Rozzeta Dolah
- Department of Chemical Engineering, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Selangor, Malaysia
| |
Collapse
|
33
|
Tavassoli M, Khezerlou A, Bangar SP, Bakhshizadeh M, Haghi PB, Moghaddam TN, Ehsani A. Functionality developments of Pickering emulsion in food packaging: Principles, applications, and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Sanchez-Salvador JL, Marques MP, Brito MSCA, Negro C, Monte MC, Manrique YA, Santos RJ, Blanco A. Valorization of Vegetable Waste from Leek, Lettuce, and Artichoke to Produce Highly Concentrated Lignocellulose Micro- and Nanofibril Suspensions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4499. [PMID: 36558352 PMCID: PMC9784415 DOI: 10.3390/nano12244499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Vegetable supply in the world is more than double than vegetable intake, which supposes a significant waste of vegetables, in addition to the agricultural residues produced. As sensitive food products, the reasons for this waste vary from the use of only a part of the vegetable due to its different properties to the product appearance and market image. An alternative high-added-value application for these wastes rich in cellulose could be the reduction in size to produce lignocellulose micro- and nanofibrils (LCMNF). In this sense, a direct treatment of greengrocery waste (leek, lettuce, and artichoke) to produce LCMNFs without the extraction of cellulose has been studied, obtaining highly concentrated suspensions, without using chemicals. After drying the wastes, these suspensions were produced by milling and blending at high shear followed by several passes in the high-pressure homogenizer (up to six passes). The presence of more extractives and shorter fiber lengths allowed the obtention of 5-5.5% leek LCMNF suspensions and 3.5-4% lettuce LCMNF suspensions, whereas for artichoke, only suspensions of under 1% were obtained. The main novelty of the work was the obtention of a high concentration of micro- and nanofiber suspension from the total waste without any pretreatment. These high concentrations are not obtained from other raw materials (wood or annual plants) due to the clogging of the homogenizer, requiring the dilution of the sample up to 1% or the use of chemical pretreatments.
Collapse
Affiliation(s)
- Jose Luis Sanchez-Salvador
- Department of Chemical Engineering and Materials, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Mariana P. Marques
- Department of Chemical Engineering and Materials, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Margarida S. C. A. Brito
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carlos Negro
- Department of Chemical Engineering and Materials, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Maria Concepcion Monte
- Department of Chemical Engineering and Materials, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Yaidelin A. Manrique
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ricardo J. Santos
- Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Angeles Blanco
- Department of Chemical Engineering and Materials, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
35
|
Fan S, Wang D, Wen X, Li X, Fang F, Richel A, Xiao N, Fauconnier ML, Hou C, Zhang D. Incorporation of cinnamon essential oil-loaded Pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Biodegradable gelatin/pullulan aerogel modified by a green strategy: Characterization and antimicrobial activity. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Siddiqui SA, Zannou O, Bahmid NA, Fidan H, Alamou AF, Nagdalian АА, Hassoun A, Fernando I, Ibrahim SA, Arsyad M. Consumer behavior towards nanopackaging - A new trend in the food industry. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Liu Y, Weng P, Liu Y, Wu Z, Wang L, Liu L. Citrus pectin research advances: Derived as a biomaterial in the construction and applications of micro/nano-delivery systems. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Zhou Y, Wu W, Wang L, Goksen G, Shao P. Multifunctional pectin films based on mussel-inspired modified 2D Ag nanosheets for long-lasting antibacterial and enhanced barrier properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Cellulose Nanofibers/Pectin/Pomegranate Extract Nanocomposite as Antibacterial and Antioxidant Films and Coating for Paper. Polymers (Basel) 2022; 14:polym14214605. [PMID: 36365599 PMCID: PMC9659057 DOI: 10.3390/polym14214605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
Bio-based polymer composites find increasing research and industrial interest in different areas of our life. In this study, cellulose nanofibers (CNFs) isolated from sugar beet pulp and nanoemulsion prepared from sugar beet pectin and pomegranate extract (PGE) were used for making films and used as coating with antioxidant and antimicrobial activities for paper. For Pectin/PGE nanoemulsion preparation, different ratios of PGE were mixed with pectin using ultrasonic treatment; the antibacterial properties were evaluated to choose the formula with the adequate antibacterial activity. The antioxidant activity of the nanoemulsion with the highest antimicrobial activity was also evaluated. The nanoemulsion with the optimum antibacterial activity was mixed with different ratios of CNFs. Mechanical, greaseproof, antioxidant activity, and antibacterial properties of the CNFs/Pectin/PGE films were evaluated. Finally, the CNFs/Pectin/PGE formulation with the highest antibacterial activity was tested as a coating material for paper. Mechanical, greaseproof, and air porosity properties, as well as water vapor permeability and migration of the coated layer from paper sheets in different media were evaluated. The results showed promising applicability of the CNFs/Pectin/PGE as films and coating material with antibacterial and antioxidant activities, as well as good stability for packaging aqueous, fatty, and acidic food products.
Collapse
|
41
|
Zhang RY, Liu C, Wang XD, Liu HM, Zhu WX. Effects of different concentrations of NaOH on the structure and in vitro digestion of cellulose from sesame kernel. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
42
|
Modulation of ice crystal formation behavior in pectin cryogel by xyloglucan: Effect on microstructural and mechanical properties. Food Res Int 2022; 159:111555. [DOI: 10.1016/j.foodres.2022.111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
|
43
|
Xu Y, Chen L, Zhang Y, Huang Y, Cao J, Jiang W. Antimicrobial and controlled release properties of nanocomposite film containing thymol and carvacrol loaded UiO-66-NH2 for active food packaging. Food Chem 2022; 404:134427. [DOI: 10.1016/j.foodchem.2022.134427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
44
|
Wu W, Liu L, Goksen G, Demir D, Shao P. Multidimensional (0D-3D) nanofillers: fascinating materials in the field of bio-based food active packaging. Food Res Int 2022; 157:111446. [DOI: 10.1016/j.foodres.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
|