1
|
Xie Y, Sun C, Zhang Y, Yang Z, Gao X, Liu L, Zhu W, Xue D, Zou J, Pei F, Yue L. Curcumin encapsulation in self-assembled nanoparticles based on amphiphilic stearic acid-grafted inulin: Preparation, characterization, and functional evaluation. Int J Biol Macromol 2025; 301:140302. [PMID: 39864681 DOI: 10.1016/j.ijbiomac.2025.140302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
The clinical application of curcumin (CUR) is restricted by its low solubility, instability, and poor bioavailability. To overcome these limitations, we developed a novel stearic acid-grafted inulin-based nano-delivery system for CUR encapsulation. The structure of stearoyl inulin (SA-IN) was characterized using Fourier-transform infrared spectroscopy, hydrogen nuclear magnetic resonance, thermogravimetric analysis, and contact angle measurements. CUR-loaded SA-IN nanoparticles (CUR@SA-IN NPs) demonstrated a high encapsulation efficiency of 91.59 % ± 3.26 %, nanoscale dispersion, and an average particle size of 190.6 ± 11.2 nm. The CUR@SA-IN NPs exhibited excellent stability and sustained-release properties. Compared with free CUR, the minimum inhibitory concentration of CUR@SA-IN NPs against Escherichia coli and Staphylococcus aureus decreased by 1.5- and 1.6-fold, respectively. The antioxidant activity increased by 2.34-fold with CUR@SA-IN NPs compared with free CUR. Also, the NPs showed superior efficacy in suppressing the expression of inflammatory cytokines and inhibiting cancer cell proliferation. The cellular uptake studies confirmed enhanced CUR absorption from the NPs compared with free CUR. The CUR@SA-IN NPs exhibited good biocompatibility. These findings highlighted the potential of amphiphilic SA-IN as an effective delivery vector for hydrophobic bioactive compounds, thereby offering a promising approach for developing efficient nanoparticle-based delivery systems.
Collapse
Affiliation(s)
- Yinzhuo Xie
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Jiangsu, Nanjing 210009, China.
| | - Chenxi Sun
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Yongrui Zhang
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Zilong Yang
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Xiuli Gao
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Likun Liu
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Wenbin Zhu
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Di Xue
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Jiaqi Zou
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China
| | - Fangyi Pei
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China.
| | - Liling Yue
- Qiqihar Medical University, Heilongjiang, Qiqihar 161006, China.
| |
Collapse
|
2
|
Wang X, Fu S, Han Y, Yang X, Wang J, Yang X. Ursolic acid- betulinic acid-CCM NPs: A delivery system for improving the stability and bioavailability of CCM. Food Res Int 2025; 205:115947. [PMID: 40032459 DOI: 10.1016/j.foodres.2025.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/24/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
The research constructed a co-assembly nanoparticles (NPs) of ursolic acid (UA) and betulinic acid (BA) as carriers to load the active substance curcumin (CCM) by co-precipitation method, aiming to improve the stability and bioavailability of CCM in the human body and enabling CCM to play more functions in the production of functional foods. The average particle size of UA-BA-CCM NPs was 222.6 nm and zeta potential was -26.63 mV. The UA-BA-CCM NPs had small size and great stability. The drug loading was up to 20.42 %. Moreover, the hydrogen bonds and π-π stacking existed in the three molecules. The result was verified by Molecular Dynamics Simulation, FITR, and UV experiments. In simulated in vitro release experiments, the release rate of the NPs was lower than free CCM in gastric phase, improving CCM bioavailability. Meanwhile, the UA-BA-CCM NPs performed better clearing free radicals than free CCM. Thus, UA-BA-CCM NPs delivery system not only could improve stability and bioavailability of CCM, but also might make CCM play a role in the functional food.
Collapse
Affiliation(s)
- Xiaoting Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001 China
| | - Shiyao Fu
- Institute of Plant Virology, Ningbo University, Ningbo 315000 China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 China
| | - Ying Han
- Institute of Plant Virology, Ningbo University, Ningbo 315000 China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 China
| | - Xuening Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001 China
| | - Jing Wang
- Institute of Plant Virology, Ningbo University, Ningbo 315000 China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001 China; Institute of Plant Virology, Ningbo University, Ningbo 315000 China.
| |
Collapse
|
3
|
Chen A, Gong Y, Wu S, Du Y, Liu Z, Jiang Y, Li J, Miao YB. Navigating a challenging path: precision disease treatment with tailored oral nano-armor-probiotics. J Nanobiotechnology 2025; 23:72. [PMID: 39893419 PMCID: PMC11786591 DOI: 10.1186/s12951-025-03141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/19/2025] [Indexed: 02/04/2025] Open
Abstract
Oral probiotics have significant potential for preventing and treating many diseases. Yet, their efficacy is often hindered by challenges related to survival and colonization within the gastrointestinal tract. Nanoparticles emerge as a transformative solution, offering robust protection and enhancing the stability and bioavailability of these probiotics. This review explores the innovative application of nanoparticle-armored engineered probiotics for precise disease treatment, specifically addressing the physiological barriers associated with oral administration. A comprehensive evaluation of various nano-armor probiotics and encapsulation methods is provided, carefully analyzing their respective merits and limitations, alongside strategies to enhance probiotic survival and achieve targeted delivery and colonization within the gastrointestinal tract. Furthermore, the review explores the potential clinical applications of nano-armored probiotics in precision therapeutics, critically addressing safety and regulatory considerations, and proposing the innovative concept of 'probiotic intestinal colonization with nano armor' for brain-targeted therapies. Ultimately, this review aspires to guide the advancement of nano-armored probiotic therapies, driving progress in precision medicine and paving the way for groundbreaking treatment modalities.
Collapse
Affiliation(s)
- Anmei Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ying Gong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Shaoquan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ye Du
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
| |
Collapse
|
4
|
Liu C, Deng Z, Wang L, Zhang M, Liu J. Complexation between curcumin and walnut protein isolate modified by pH shifting combined with protein-glutaminase. Food Chem 2025; 464:141693. [PMID: 39447261 DOI: 10.1016/j.foodchem.2024.141693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The poor techno-functional properties of walnut protein isolate (WPI) limit its application as carrier to improve bioavailability of curcumin. In this study, WPI was modified by pH-shifting (PS) and protein-glutaminase (PG). Changes on the physicochemical and structural characteristics of WPI and effects on complexation with curcumin were investigated. Treatment of PS plus PG increased electrostatic repulsion of WPI with altered secondary and tertiary structure. Solubility of WPI was greatly improved from 18.09% to 52.90%. The increased flexibility resulted in reduced particle size and increased exposure of hydrophobic groups. The improved amphiphilicity of WPI provided more binding sites for complexation with curcumin. Encapsulation efficiency of curcumin was increased from 32.50% to 94.48%. Interestingly, the formed complexes were able to protect curcumin from degradation with improved storage stability and bioaccessibility. Thus, PS plus PG could serve as effective modification strategy for utilization of WPI as a promising delivery vehicle for hydrophobic bioactives.
Collapse
Affiliation(s)
- Caiyi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiyang Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Feng J, Cui Y, Jiang C, Bai X, Zhao D, Liu M, Dong Z, Yu S, Wang S. Analysis of sediment re-formation factors after ginseng beverage clarification based on XGBoost machine learning algorithm. Food Chem 2025; 463:141304. [PMID: 39321649 DOI: 10.1016/j.foodchem.2024.141304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
The aim of this study was to explore the sediment re-formation factors of ginseng beverages subjected to four clarification ways (11 subgroups) including the ethanol precipitation, enzymatic treatment, clarifier clarification, and Hollow Fiber Column (HFC) methods, based on the Extreme Gradient Boosting (XGBoost) model. The results showed that the clarity of the ginseng beverages was significantly improved by all the clarification treatments, but still formed sediment after storage. HFC method exhibited the highest transmittance, the least sediment, and stronger antioxidant activity in the clarification treatment groups. According to the results of chemical composition analyses and partition coefficients, carbohydrates, saponins, proteins and metal elements were involved in varying degrees in the re-formation of the sediments in ginseng beverage after clarification. Based on the above data, the XGBoost model predicted that protein, Rd, Na, K, and total saponins were the five most important chemical components affecting the sediment re-formation in ginseng beverages.
Collapse
Affiliation(s)
- Jiabao Feng
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Yuan Cui
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Chunyan Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Zhengqi Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development, Beijing 100193, PR China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| |
Collapse
|
6
|
Li Y, Ni Y, He W, Li H, Zhang W, Tan L, Zhao J, Xu B. Mussel-inspired highly adhesive carrageenan-based coatings with self-activating enhanced activity for meat preservation. Carbohydr Polym 2025; 348:122840. [PMID: 39562113 DOI: 10.1016/j.carbpol.2024.122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
In order to solve the problem of poor adhesion of polysaccharide coatings in meat storage and inconvenient secondary spraying, which leads to poor preservation effect, this study was inspired by the property of mussels to adhere firmly to surfaces and design a bioactive composite coating. Here, curcumin-loaded zein nanoparticles (CZ NPs) were successfully prepared and incorporated into carrageenan-based biocomposite coatings for chilled meat preservation. The prepared curcumin-zein-riboflavin-carrageenan (CZRC) coating featured smooth spherical morphology and the solubility of hydrophobic substances, the adhesion and stability of the composite coating were respectively improved to 3.8 and 6 times compared to CZ NPs. The CZRC coating also shows desirable antioxidant activity (89.78 ± 4.8 % on DPPH and 91.40 ± 2.1 % on ABTS+) and the treatment based on CZRC coating under light irradiation reduced Pseudomonas fragi (by 2.02 log CFU/mL) and Brochothrix thermosphacta (by 4.35 log CFU/mL), which prolonged the shelf life of lamb and pork to 1.8 and 2.3 times at 4 °C storage condition. This work provides a viable strategy for the development of highly adhesive coatings with self-activation enhanced activity to achieve long-lasting preservation.
Collapse
Affiliation(s)
- Yumeng Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China.
| | - Wei He
- Shandong Huifa Foodstuff Co., Ltd., Zhucheng 262200, Shandong Province, China
| | - Haoran Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui, China; Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China
| |
Collapse
|
7
|
Lan S, Chen K, Feng L, Sima P, Ji X, Wu F, Lin Y. Tea Saponins: a Novel Stabilizer for Enhancing the Oral Bioavailability of Albendazole Nanocrystals. AAPS PharmSciTech 2025; 26:22. [PMID: 39779633 DOI: 10.1208/s12249-024-03015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Albendazole serves as a broad-spectrum anthelmintic medication for treating hydatid cysts and neurocysticercosis. However, its therapeutic effectiveness is limited by poor solubility. Nanocrystals offer a promising technology to address this limitation by enhancing drug solubility. The objective of this study is to evaluate an effective stabilizer for creating an albendazole nanocrystal formulation to improve oral absorption. Among different surfactants and polymers examined, tea saponins were used as the stabilizer to develop a nanosuspension with the particle size of 180 nm through a wet grinding approach. The physical characteristics of the nanocrystals were assessed using SEM, DSC, and XRPD. The nanocrystals significantly enhanced solubility by 2.9-2602 fold in different media and showed significant enhancement in dissolution rate compared to albendazole crystals in both pH 1.0 and pH 6.8 medium. Everted gut sacs experiments demonstrated that the nanocrystals increased Papp by 3.60-fold in duodenum, 3.76-fold in jejunum, 3.71-fold in ileum, and 5.26-fold in colon, respectively. Furthermore, pharmacokinetic studies revealed that the nanocrystals significantly enhanced oral bioavailability, resulting in a 4.65-fold increase in plasma AUC0-t value of albendazole sulfoxide (the primary active metabolite of albendazole) compared to the albendazole group. The present data indicates that tea saponins are potential natural stabilizers for preparing nanocrystals with enhanced oral bioavailability for insoluble drugs.
Collapse
Affiliation(s)
- Sumin Lan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kexi Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Liqiang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Panle Sima
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoyao Ji
- Xizang Provincial Center for Disease Control and Prevention, Lasa, 850000, China.
| | - Feihua Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yining Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Gong X, Wang M, Lu P, Zhou H. An Improved pH-Driven Method for Upcycling Polyphenols from Plants or Byproducts into Foods. Foods 2024; 13:3945. [PMID: 39683017 DOI: 10.3390/foods13233945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The incorporation of polyphenols into food systems provides various health benefits, yet their stability and bioactivity are often compromised by processing conditions. In this study, we advanced the pH-driven method for processing highly pH-sensitive polyphenols, such as quercetin, by optimizing operating conditions, including minimizing oxygen exposure and reducing operating times. As a result, an improved post-pH-driven (PPD) method was developed to encapsulate pH-sensitive quercetin into nanoemulsions with an encapsulation efficiency exceeding 95%, indicating that this method could be broadly applicable for incorporating various polyphenols. For example, it has been successfully applied to upcycle plant polyphenols from peanut skin into nanoemulsions, serving as a representative food model. The PPD method demonstrated superior performance compared to a conventional water-based method, achieving 1.8 times higher remaining percentage of total polyphenolic content. Additionally, the PPD-based nanoemulsions exhibited significantly enhanced antioxidant properties, with DPPH and ABTS radical scavenging activities increasing by 3.7 and 2.8 times, respectively, compared to the water-based method. These findings underscore the potential of the PPD method as a versatile and efficient approach for developing polyphenol-powered foods by upcycling plant byproducts and improving processing efficiency.
Collapse
Affiliation(s)
- Xiping Gong
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA 30223, USA
| | - Minghe Wang
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA 30223, USA
| | - Peng Lu
- Department of Agricultural Leadership, Education and Communication, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Hualu Zhou
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA 30223, USA
| |
Collapse
|
9
|
Xiao M, Li S, Xiong L, Duan J, Chen X, Luo X, Wang D, Zou L, Li J, Hu Y, Zhang J. Pickering emulsion gel of polyunsaturated fatty acid-rich oils stabilized by zein-tannic acid green nanoparticles for storage and oxidation stability enhancement. J Colloid Interface Sci 2024; 675:646-659. [PMID: 38991279 DOI: 10.1016/j.jcis.2024.06.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
HYPOTHESIS Poor storage stability and oxidative deterioration are the common drawbacks of edible oils rich in polyunsaturated fatty acids (PUFAs). We hypothesized that the natural zein/tannic acid self-assembly nanoparticles (ZT NPs) could be employed as stabilizers to anchor at the oil-water interface, thus constructing Pickering emulsion gel (PKEG) system for three types of PUFA-rich oils, soybean oil (SO), fish oil (FO) and cod liver oil (CLO), to improve the storage and oxidation stability. EXPERIMENTS ZT NPs were prepared by the anti-solvent coprecipitation method, and the three-phase contact angle, FT-IR, and XRD were mainly characterized. To observe the shell-core structure and oil-water interface details of SO/FO/CLO PKEGs by confocal laser scanning microscope and cryo-scanning electron microscope. Accelerated oxidation of FO was performed to assess the protective effect of PKEG on lipids. FINDINGS The SO, FO, and CLO PKEGs stabilized by 2 % ZT NPs, with oil fraction (φ = 0.5-0.6), were obtained. PKEGs show high viscoelasticity, clear shell-core structure spatial network structure, and ideal storage stability. Under accelerated oxidation, the degree of oxidative rancidity of FO PKEG was obviously lower than that of free FO. Overall, this work opens up new possibilities for using natural PKEG to prevent oxidative deterioration and prolong the shelf-life of PUFA-rich oils.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuyao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Li Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaozhuo Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Luo
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Chengdu, China
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong S.A.R., China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
10
|
Li S, Wu Z, Chen J, Ye F, Wang Y, Zhao G. Lignin nanoparticle as a vehicle to load, release, and improve the stability and antioxidant activity of curcumin: Comparison between dropping and pouring regimes. Food Chem 2024; 460:140513. [PMID: 39053278 DOI: 10.1016/j.foodchem.2024.140513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Curcumin (Cur) was loaded in lignin nanoparticles (LNP) via an antisolvent method by pouring (P-) and dropping (D-) regimes, respectively, and Cur-loaded LNP (Cur/LNP) were comparatively characterized. The results indicated that P-Cur/LNP (62-92 nm) was much smaller than D-Cur/LNP (134-139 nm). For both regimes, their maximum loading efficiencies were comparable (91 ± 3%), while dropping regime (236.2 mg/g) demonstrated a higher loading capacity than pouring regime (174.6 mg/g). In both regimes, Cur was loaded in an amorphous form via the hydrophobic, hydrogen-bonding, and π-π interactions with lignin matrix and it demonstrated a controlled release in in vitro digestion test. In comparison, Cur in D-Cur/LNP showed higher stabilities against photodegradation, thermal treatment, and 30-d storage than that in P-Cur/LNP, while P-Cur/LNP concluded a higher antioxidant activity than D-Cur/LNP. The present findings attested that LNP was a valuable tool to stabilize and controlled release of lipophilic phytochemicals as well as improve their bioactivities.
Collapse
Affiliation(s)
- Sheng Li
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China
| | - Zhen Wu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China
| | - Jia Chen
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yongde Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
11
|
Wang Q, An J, Xia Q, Pan D, Du L, He J, Sun Y, Wang Y, Cao J, Zhou C. Insights into the fabrication and antibacterial effect of fibrinogen hydrolysate-carrageenan loading apigenin and quercetin composite hydrogels. Int J Biol Macromol 2024; 279:135517. [PMID: 39260642 DOI: 10.1016/j.ijbiomac.2024.135517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Escherichia coli and Staphylococcus aureus are the most prevalent pathogenic bacteria, often resulting in the foodborne disease outbreaks through food spoilage and foodborne infections. To prevent and control food spoilage and foodborne infections induced by Escherichia coli and Staphylococcus aureus, the antibacterial hydrogels were fabricated using fibrinogen hydrolysate-carrageenan (AHs-C) and flavonoids (apigenin and quercetin), and the antibacterial effect of the composite hydrogels against Escherichia coli and Staphylococcus aureus was further investigated. The results of mechanical property exhibited that the composite hydrogels with 0.2 % of apigenin and quercetin (AHs-C-Ap/Que) showed the highest hardness and swelling property compared with the separate addition of apigenin or quercetin. Scanning electron microscopy and atomic force microscopy showed that the dense networks were formed in the hydrogels of AHs-C-Ap/Que., and the average roughness of AHs-C-Ap/Que. significantly increased to 30.70 nm compared with AHs-C. 1H NMR and FTIR spectra demonstrated that apigenin and quercetin were bound to AHs-C by hydrogen bond, hydrophobic interaction and Schiff base, where the interactions between Ap/Que. and AHs-C was stronger compared with the separate addition of apigenin or quercetin. The hydrogels of AHs-C-Ap/Que. showed the highest antibacterial capacity and antibacterial adhesion against Escherichia coli and Staphylococcus aureus. The antibacterial adhesion assay showed that 99 % removal ratios for E. coli and S. aureus were observed in AHs-C-Ap/Que. hydrogels, which showed a great potential to prevent food spoilage and foodborne infections.
Collapse
Affiliation(s)
- Qiaoyan Wang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jie An
- Faculty of Engineering, The University of Hong Kong (HKU), Hong Kong 999077, China
| | - Qiang Xia
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Lihui Du
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jun He
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, Beijing 100048, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, Beijing 100048, China
| | - Changyu Zhou
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
12
|
Huang J, Liao J, Li X, Zhao H, Li H, Kuang J, Li J, Guo J, Huang T, Li J. Tea saponin-Zein binary complex as a quercetin delivery vehicle: preparation, characterization, and functional evaluation. Int J Biol Macromol 2024; 279:135485. [PMID: 39255893 DOI: 10.1016/j.ijbiomac.2024.135485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
In this study, in order to solve the application problems of poor water solubility and low bioavailability of quercetin, we prepared a nano-delivery system with core-shell structure by anti-solvent method, including a hydrophilic shell composed of tea saponin and a hydrophobic core composed of Zein, which was used to improve the delivery efficiency and biological activity of quercetin. Through the optimal experiments, the loading rate and encapsulation rate of nanoparticles reached 89.41 % and 7.94 % respectively. And the water solubility of quercetin is improved by 30.16 times. At the same time, the quercetin acted with Zein through non-covalent interaction and destroyed its spatial network through structural characterization, while tea saponin covered the surface of Zein through electrostatic interaction, making it change into amorphous state. In addition, the addition of tea saponin makes the nanoparticles remain stable under the changes of external environment. During simulating gastrointestinal digestion procedure, ZQTNPs has higher release rate and bioavailability than free quercetin. Importantly, ZQTNPs can overcome the limitations of a single substance through synergy. These results will promote the innovative development of quercetin precision nutrition delivery system.
Collapse
Affiliation(s)
- Jianyu Huang
- College of Food Science and Engineering, Ningbo University, Ningbo, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiahao Liao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hui Zhao
- Changzhi Traditional Chinese Medicine Research Institute Affiliated Hospital, Changzhi, China
| | - Hongxia Li
- Changzhi Traditional Chinese Medicine Research Institute Affiliated Hospital, Changzhi, China
| | - Jian Kuang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianqiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinbin Guo
- Changzhi Traditional Chinese Medicine Research Institute Affiliated Hospital, Changzhi, China
| | - Tao Huang
- College of Food Science and Engineering, Ningbo University, Ningbo, China.
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
13
|
Cs J, Haider M, Rawas-Qalaji M, Sanpui P. Curcumin-loaded zein nanoparticles: A quality by design approach for enhanced drug delivery and cytotoxicity against cancer cells. Colloids Surf B Biointerfaces 2024; 245:114319. [PMID: 39461183 DOI: 10.1016/j.colsurfb.2024.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Zein, a maize protein, has been explored for constructing potential biomaterial due to its hydrophobic nature, self-assembly capability, and biocompatibility. In its nanoparticulate form, zein is a promising material for drug delivery applications, particularly in cancer treatment. Despite the importance of colloidal stability for effective drug delivery, systematic studies investigating the effect of various surface modifying agents (MAs) on the zein nanoparticles (ZNPs)-based formulations are limited. This study employs quality-by-design (QbD) approach to optimize curcumin-loaded ZNPs, enhancing colloidal stability, size, and drug-encapsulation efficiency using different MAs for potential cancer therapy. Gum arabic (GA) emerged as the optimal stabilizer, with GA-stabilized curcumin-loaded ZNPs (GA-Cur-ZNPs) achieving a particle size of 184.8 ± 2.85 nm, zeta potential of -23.4 ± 0.56 mV and 87.1 ±1.55 % drug encapsulation efficiency, along with excellent colloidal stability over two months. The optimal formulation also demonstrated sustained release of Cur over 72 h. GA-Cur-ZNPs demonstrated lower IC50 values and higher anti-proliferative effects on three different cancer cell lines compared to the free drug, while also exhibiting superior intracellular uptake. With negligible toxicity to human dermal fibroblast cells, the optimized Cur-GA-ZNPs show promise for safe and effective killing of cancer cells.
Collapse
Affiliation(s)
- Jayalakshmi Cs
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, UAE; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE
| | - Mohamed Haider
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE.
| | - Mutasem Rawas-Qalaji
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, UAE.
| |
Collapse
|
14
|
Alavi F, Ciftci ON. Increasing the bioavailability of curcumin using a green supercritical fluid technology-assisted approach based on simultaneous starch aerogel formation-curcumin impregnation. Food Chem 2024; 455:139468. [PMID: 38850979 DOI: 10.1016/j.foodchem.2024.139468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 06/10/2024]
Abstract
A green approach based on simultaneous starch aerogel formation-curcumin impregnation via supercritical fluid technology was used to increase the bioavailability of curcumin. The loading amounts of curcumin were 16.4, 21.4, and 24.9 mg/g of aerogel for the 25% Amyl-loaded, 55% Amyl-loaded, and 72% Amyl-loaded samples, respectively. Curcumin-loaded aerogels showed the eventual distribution of curcumin in the hydrophobic area of the internal structure of the aerogels. In vitro gastrointestinal release profiles demonstrated the enhanced curcumin release from the curcumin-loaded aerogel formulations produced by the SC-CO2 technology over free curcumin. After intestinal digestion, the percentage of released curcumin from 25% Amyl-loaded, 55% Amyl-loaded, and 72% Amyl-loaded was 7.2, 12.1, and 12.1%, respectively, while the release of native curcumin was only 0.5%. Caco-2 cell permeation studies revealed superior bioavailability of curcumin from the curcumin-loaded aerogels. Curcumin-loaded aerogels exhibited improved storage stability than free curcumin.
Collapse
Affiliation(s)
- Farhad Alavi
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA; Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA.
| |
Collapse
|
15
|
He F, Yu Z, Luo S, Meng X, Wang L, Jin X, Huang Z, Zhang Y, Deng P, Peng WK, Ke L, Wang H, Zhou J, Wall P, Rao P. Why are clams steamed with wine in Mediterranean cuisine? NPJ Sci Food 2024; 8:44. [PMID: 38992032 PMCID: PMC11239664 DOI: 10.1038/s41538-024-00279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Wine is renowned for its rich content of polyphenols, including resveratrol (Res), known for their health promoting properties. Steamed clam with wine, a popular Mediterranean delicacy that highlights the role of wine as a key ingredient. However, despite these benefits, resveratrol's low bioavailability poses challenges. Could the process of steaming together with clam alter the digestive fate of resveratrol from wine? This study explores the potential of proteoglycan-based nanoparticles from freshwater clam (CFNPs) as a delivery vehicle for enhancing the stability and bioavailability of resveratrol, compared with wine and free Res' solution, aiming to elucidate mechanisms facilitating Res' absorption. The results demonstrated that CFNPs can effectively encapsulate Res with an efficiency over 70%, leading to a uniform particle size of 70.5±0.1 nm (PDI < 0.2). Resveratrol loaded in CFNPs (CFNPs-Res) exhibited an improved antioxidant stability under various conditions, retaining over 90% of antioxidant capacity after three-day storage at room temperature. The controlled-release profile of Res loaded in CFNPs fits both first and Higuchi order kinetics and was more desirable than that of wine and the free Res. Examined by the simulated gastrointestinal digestion, CFNPs-Res showed a significantly higher bioaccessibility and antioxidant retention compared to free Res and the wines. The discovery and use of food derived nanoparticles to carry micronutrients and antioxidants could lead to a shift in functional food design and nutritional advice, advocating much more attention on these entities over solely conventional molecules.
Collapse
Affiliation(s)
- Fangzhou He
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
- Songshan Lake Materials Laboratory, University Innovation Park, Dongguan, 523-808, China
| | - Zhaoshuo Yu
- National Nutrition Surveillance Centre, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sihao Luo
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xiangyu Meng
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Leying Wang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xuanlu Jin
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Zongke Huang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yue Zhang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Peishan Deng
- Songshan Lake Materials Laboratory, University Innovation Park, Dongguan, 523-808, China
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, University Innovation Park, Dongguan, 523-808, China
| | - Lijing Ke
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China.
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| | - Huiqin Wang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China.
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, 310300, China.
| | - Jianwu Zhou
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, 310300, China
| | - Patrick Wall
- National Nutrition Surveillance Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Pingfan Rao
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
16
|
Lin Z, Zhan L, Qin K, Li Y, Qin Y, Yang L, Sun Q, Ji N, Xie F. Design and Characterization of a Novel Core-Shell Nano Delivery System Based on Zein and Carboxymethylated Short-Chain Amylose for Encapsulation of Curcumin. Foods 2024; 13:1837. [PMID: 38928779 PMCID: PMC11202432 DOI: 10.3390/foods13121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin is a naturally occurring hydrophobic polyphenolic compound with a rapid metabolism, poor absorption, and low stability, which severely limits its bioavailability. Here, we employed a starch-protein-based nanoparticle approach to improve the curcumin bioavailability. This study focused on synthesizing nanoparticles with a zein "core" and a carboxymethylated short-chain amylose (CSA) "shell" through anti-solvent precipitation for delivering curcumin. The zein@CSA core-shell nanoparticles were extensively characterized for physicochemical properties, structural integrity, ionic stability, in vitro digestibility, and antioxidant activity. Fourier-transform infrared (FTIR) spectroscopy indicates nanoparticle formation through hydrogen-bonding, hydrophobic, and electrostatic interactions between zein and CSA. Zein@CSA core-shell nanoparticles exhibited enhanced stability in NaCl solution. At a zein-to-CSA ratio of 1:1.25, only 15.7% curcumin was released after 90 min of gastric digestion, and 66% was released in the intestine after 240 min, demonstrating a notable sustained release effect. Furthermore, these nanoparticles increased the scavenging capacity of the 1,1-diphenyl-2-picrylhydrazyl (DPPH•) free radical compared to those composed solely of zein and were essentially nontoxic to Caco-2 cells. This research offers valuable insights into curcumin encapsulation and delivery using zein@CSA core-shell nanoparticles.
Collapse
Affiliation(s)
- Zhiwei Lin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Linjie Zhan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Kaili Qin
- School of Public Health, Anhui University of Science and Technology, Huainan 232001, China;
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Lu Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.L.); (L.Z.); (Y.L.); (Y.Q.); (L.Y.); (Q.S.)
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK;
| |
Collapse
|
17
|
Li H, Liu M, Ju X, Zhang H, Xia N, Wang J, Wang Z, Rayan AM. Physico-Chemical Characteristics of pH-Driven Active Film Loading with Curcumin Based on the Egg White Protein and Sodium Alginate Matrices. Foods 2024; 13:1340. [PMID: 38731711 PMCID: PMC11083475 DOI: 10.3390/foods13091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The low solubility and stability of fat-soluble curcumin in water limit its application in active packaging. This study explored the use of a pH-driven method to investigate the preparation and enhancement of the performance of films loaded with curcumin in a matrix of sodium alginate (Alg) and egg white protein (EWP). In this study, the EWP, Alg, and curcumin primarily bind through hydrogen bonding, electrostatic interactions, and hydrophobic interactions. Compared to EWP films, the films loaded with curcumin through the pH-driven method exhibited enhanced extensibility and water resistance, with an elongation at break (EB) of 103.56 ± 3.13% and a water vapor permeability (WVP) of 1.67 ± 0.03 × 10-10 g·m/m2·Pa·s. The addition of Alg improved the encapsulation efficiency and thermal stability of curcumin, thereby enhancing the antioxidant activity of the film through the addition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, which resulted in 106.95 ± 2.61 μg TE/g and 144.44 ± 8.89 μg TE/g, respectively. It is noteworthy that the detrimental effect of Alg on the color responsiveness of films containing curcumin has also been observed. This study provides a potential strategy and consideration for the loading of low water-soluble active substances and the preparation of active packaging.
Collapse
Affiliation(s)
- Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Xinyi Ju
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Jing Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (N.X.)
| | - Ahmed M. Rayan
- Agricultural College, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
18
|
Yue XJ, Xu PW, Luo XC, Zhao B. Multi-spectroscopies and molecular docking insights into the interaction mechanism and antioxidant activity of isoquercetin and zein nanoparticles. Int J Biol Macromol 2024; 263:130412. [PMID: 38401577 DOI: 10.1016/j.ijbiomac.2024.130412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
The purpose of this study was to compare and characterize the theoretical properties and interaction mechanisms of zein and isoquercetin (ISO) from experimental and theoretical perspectives. Zein nanoparticles with different ISO concentrations (ZINPs) were prepared by the antisolvent precipitation method. The experimental results indicated all particles appeared spherical. When the mass ratio of zein to ISO was 10:1, the encapsulation efficiency of ZINPs reached 88.19 % with an average diameter of 126.67 nm. The multispectral method and molecular docking results confirmed that hydrogen bonding and van der Waals force played a dominant role for the binding of ISO to zein, and the primary fluorescence quenching mechanism for zein by ISO was static quenching. Furthermore, ZINPs had greater solubility and antioxidant activity, as well as inhibited the release of ISO during simulated gastrointestinal digestion processes. This research contributes to the understanding of the non-covalent binding mechanism between zein and ISO, providing a theoretical basis for the construction of ISO active carriers.
Collapse
Affiliation(s)
- Xiao-Jie Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Peng-Wei Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Chuan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
19
|
Xie F, Zhu Z, Zeng J, Xia Y, Zhang H, Wu Y, Song Z, Ai L. Fabrication of zein-tamarind seed polysaccharide-curcumin nanocomplexes: their characterization and impact on alleviating colitis and gut microbiota dysbiosis in mice. Food Funct 2024; 15:2563-2576. [PMID: 38353040 DOI: 10.1039/d3fo04594c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
In this work, a zein-tamarind seed polysaccharide (TSP) co-delivery system was fabricated using an anti-solvent precipitation method. The formation mechanism, characterization, and effect on alleviating colitis and gut microbiota dysbiosis in mice of zein-TSP-curcumin (Z/T-Cur) nanocomplexes were investigated. Hydrogen bonding and the hydrophobic effect played a key role in the formation of Z/T-Cur nanocomplexes, and the interactions were spontaneous and driven by enthalpy. The encapsulation efficiency, loading capacity, and bioavailability increased from 60.8% (Zein-Cur) to 91.7% (Z/T-Cur1:1), from 6.1% (Zein-Cur) to 18.3% (Z/T-Cur1:1), and from 4.7% (Zein-Cur) to 20.0% (Z/T-Cur1:1), respectively. The Z/T-Cur significantly alleviated colitis symptoms in DSS-treated mice. Additionally, the prepared nanocomplexes rebalanced the gut microbiota composition of colitis mice by increasing the abundance of Akkermansia. Odoribacter and Monoglobus were rich in the Z-T-Cur treatment group, and Turicibacter and Bifidobacterium were rich in the zein-TSP treatment group. This study demonstrated that the TSP could be helpful in the targeted drug delivery system.
Collapse
Affiliation(s)
- Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zengjin Zhu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Jingyi Zeng
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd, Yuxi 653100, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
20
|
Ge Q, Rong S, Yin C, McClements DJ, Fu Q, Li Q, Han Y, Liu F, Wang S, Chen S. Calcium ions induced ι-carrageenan-based gel-coating deposited on zein nanoparticles for encapsulating the curcumin. Food Chem 2024; 434:137488. [PMID: 37741234 DOI: 10.1016/j.foodchem.2023.137488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Zein, curcumin (Cur), and ι-carrageenan (ιCar) were used to prepare core-shell biopolymer nanoparticles (Zein-Cur-ιCar). These nanoparticles consisted of a nutraceutical-loaded protein core (curcumin-loaded zein nanoparticles) and a gelled polysaccharide shell (calcium cross-linked ι-carrageenan). The size, charge, morphology, and interactions of the nanoparticles were characterized by dynamic light scattering, zeta-potential analysis, scanning electron microscopy, and Fourier Transform infrared analysis. Ionic bridging, electrostatic attraction, hydrogen bonding, and hydrophobic attraction were involved in particle formation. The high encapsulation efficiency (93.2%) and loading capacity (6.2%) indicated that curcumin was well encapsulated within nanoparticles with optimized compositions (zein:ι-carrageenan 100:40). These particles had relatively small diameters (351.8 nm) and effectively delayed the light and thermal degradation of curcumin. Moreover, the curcumin within the nanoparticles was released in a sustained manner under simulated gastrointestinal conditions, which may improve its oral bioavailability. In summary, calcium carrageenan-coated zein nanoparticles have potential for the encapsulation, protection, and controlled release of hydrophobic nutrients.
Collapse
Affiliation(s)
- Qingyuan Ge
- School of Public Health, Wuhan University, 430071, China.
| | - Shuang Rong
- School of Public Health, Wuhan University, 430071, China.
| | - Chenxi Yin
- School of Public Health, Wuhan University, 430071, China.
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - Qi Fu
- School of Public Health, Wuhan University, 430071, China.
| | - Qi Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yahong Han
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest Agriculture & Forestry University, Yangling, China.
| | - Suqing Wang
- School of Nursing, Wuhan University, 430071, China.
| | - Shuai Chen
- School of Public Health, Wuhan University, 430071, China.
| |
Collapse
|
21
|
Wang Y, Shen J, Zou B, Zhang L, Xu X, Wu C. Determination of the critical pH for unfolding water-soluble cod protein and its effect on encapsulation capacities. Food Res Int 2023; 174:113621. [PMID: 37986474 DOI: 10.1016/j.foodres.2023.113621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Hydrophobic polyphenols, with a variety of physiological activities, are often practically limited due to their low water solubility and chemical instability, among which curcumin (Cur) is a representative hydrophobic polyphenol. To improve Cur, the cod protein (CP)-Cur composite particles (CP-Cur) were successfully prepared using the pH-shift method, but this pH-shift method (7-12-7) required a higher pH, which limited application and increased cost. The critical pH of CP structure unfolding during pH-shift and its encapsulation effect on Cur were investigated in this paper. During the pH-shift process, the critical pH of the structural unfolding of CP was pH 10, and the degree of protein structure unfolding was higher, which was attributed to the increasing electrostatic repulsion, and the weakened hydrogen bond and hydrophobic interaction. The encapsulation efficiency of CP-Cur formed after pH 10-shift was higher than that formed after pH 9.8-shift, which increased by 22.17 %. At pH 9.8, the binding sites in CP reached saturation at the molar ratio of 10, while at pH 10 and 10.2, the binding sites in CP both reached saturation at the molar ratio of 14, also indicating that the protein treated with critical pH could bind more Cur. The binding between Cur and CP was mostly hydrophobic interaction, accompanied by hydrogen bonding and electrostatic interactions. The above results verified the necessity of critical pH in the experiment, indicating that critical pH could indeed improve the encapsulation effect and obtain a higher encapsulation efficiency. This work will help improve the large-scale application of hydrophobic functional substances in production.
Collapse
Affiliation(s)
- Yuying Wang
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Jing Shen
- Ningjin Market Supervision Administration, Dezhou 253400, China
| | - Bowen Zou
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Ling Zhang
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Xianbing Xu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Chao Wu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China.
| |
Collapse
|
22
|
Ding R, Zhang M, Zhu Q, Qu Y, Jia X, Yin L. Curcumin loaded Zein-alginate nanogels with "core-shell" structure: formation, characterization and simulated digestion. Int J Biol Macromol 2023; 251:126201. [PMID: 37562470 DOI: 10.1016/j.ijbiomac.2023.126201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/22/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Zein nanoparticles tend to aggregate in water and are readily digested by enzymes in the gastrointestinal tract. In current study, the Zein-alginate nanogels loaded with curcumin (Cur@ZA) were fabricated with the "core-shell" structure. The Zein "core" was prepared via antisolvent precipitation method, and the alginate gel "shell" was formed by calcium-induced gelation method. The physicochemical properties, microstructure, encapsulation efficiency, stability and simulated digestion characteristics of nanogels were investigated. The results showed that Cur@ZA formed uniform gel spheres with small particle size (415.10 nm), while possessing a dense gel shell on the surface. The Zein "core" and alginate gel "shell" of Cur@ZA are tightly bound to each other by electrostatic adsorption, hydrophobic interaction and hydrogen bonding. Curcumin was able to be loaded in the Cur@ZA nanogels with a higher encapsulation rate (>92 %). Compared with the system which was not induced by calcium ion, the addition of calcium ions improved the photostability and thermal stability of curcumin, and facilitated slow and sustained release of curcumin in the simulated digestion. Therefore, this novel nanogel delivery system has the ideal physicochemical properties, stability and control-release ability, which has the potential to be used in the food industry.
Collapse
Affiliation(s)
- Ran Ding
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083, China
| | - Minghao Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083, China
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuanyuan Qu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083, China
| | - Xin Jia
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083, China
| | - Lijun Yin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083, China.
| |
Collapse
|
23
|
Cui Q, Wang C, Zhou L, Wei Y, Liu Z, Wu X. Simple and novel icariin-loaded pro-glycymicelles as a functional food: physicochemical characteristics, in vitro biological activities, and in vivo experimental hyperlipidemia prevention evaluations. Food Funct 2023; 14:9907-9919. [PMID: 37853783 DOI: 10.1039/d3fo02838k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A novel functional food for hyperlipidemia named icariin (ICA) pro-glycymicelles (ICA-PGs) using glycyrrhizin as a phytonanomaterial was easily prepared with improved storage, pH, and salt stabilities. ICA-PGs can easily dissolve in water to self-assemble into a clear glycymicelle solution with high ICA encapsulation efficiency. The ICA in ICA-PGs exhibits significantly increased aqueous solubility, faster in vitro release, and higher bioaccessibility than bare ICA. The ICA-PGs exhibited improved in vitro activities including antioxidant, anti-α-glucosidase, anti-lipase, and anti-cholesterol esterase activities. The ICA-PG also demonstrated improved antioxidant activity in cells. In vivo evaluation confirmed that the ICA-PG demonstrated a significant protective effect against experimental hyperlipidemia in mice, exhibiting decreasing levels of triglycerides (TGs), total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) in the serum, and restoring the hepatic morphology to the normal state. These results indicated that the ICA-PG could improve in vitro/in vivo profiles of ICA, providing a new concept and a promising functional food for hyperlipidemia.
Collapse
Affiliation(s)
- Qingchen Cui
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| | - Cuicui Wang
- Department of clinical laboratory, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Liping Zhou
- Department of clinical laboratory, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Yanjun Wei
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
- Viwit Pharmaceutical Co., Ltd. Zaozhuang, Shandong, China
| | - Zongtao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
- Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China.
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
- Viwit Pharmaceutical Co., Ltd. Zaozhuang, Shandong, China
| |
Collapse
|
24
|
Hu L, Zhao P, Wei Y, Guo X, Deng X, Zhang J. Properties of Allicin-Zein Composite Nanoparticle Gelatin Film and Their Effects on the Quality of Cold, Fresh Beef during Storage. Foods 2023; 12:3713. [PMID: 37835366 PMCID: PMC10572519 DOI: 10.3390/foods12193713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Allicin is a kind of natural antimicrobial active substance, but its water solubility is poor, and it is easy to degrade. In order to improve the stability and bioavailability of allicin, allicin-zein composite nanoparticles (Al-Ze) were prepared by the combination method of antisolvent precipitation and electrostatic deposition, and their characteristic parameters, such as average particle size, polydispersity index (PDI), and ζ-potential, were analyzed. Then, Al-Ze was used as the delivery carrier for the active substance (allicin), and gelatin with good film-forming properties was selected as the film-forming matrix to prepare Al-Ze gelatin films. The optical properties, mechanical properties, and characterization parameters were used to analyze the prepared composite materials; the results confirmed that Al-Ze gelatin film has good mechanical properties and barrier properties. The prepared film was applied to the storage of cold, fresh beef, and the quality change of beef was monitored at 4 °C. The results showed that Al-Ze gelatin film could effectively delay the quality deterioration of beef. This paper provides a new idea and data support for the application of Al-Ze gelatin film in meat storage and fresh-keeping, and offers new insight for the promotion and application of allicin in the food industry.
Collapse
Affiliation(s)
- Ling Hu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (L.H.); (P.Z.); (Y.W.); (X.G.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Pengcheng Zhao
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (L.H.); (P.Z.); (Y.W.); (X.G.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (L.H.); (P.Z.); (Y.W.); (X.G.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (L.H.); (P.Z.); (Y.W.); (X.G.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (L.H.); (P.Z.); (Y.W.); (X.G.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (L.H.); (P.Z.); (Y.W.); (X.G.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| |
Collapse
|
25
|
Zhang X, Li C, Hu W, Abdel-Samie MA, Cui H, Lin L. An overview of tea saponin as a surfactant in food applications. Crit Rev Food Sci Nutr 2023; 64:12922-12934. [PMID: 37737159 DOI: 10.1080/10408398.2023.2258392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The residue of Camellia seeds after oil extraction contains many bioactive ingredients, including tea saponin. Tea saponin has many pharmacological effects and is an excellent nonionic surfactant. The development of natural surfactants has become a hot topic in food research. This review gathers the applications of tea saponin as a surfactant in food. It focuses on the application of tea saponin in emulsions, delivery systems, extraction and fermentation, as well as the challenges and development prospects in food applications. Tea saponin shows great potential as a surfactant in food applications, which can replace some synthetic surfactants. The full utilization of tea saponin improves the comprehensive utilization value of Camellia seed residue, contributes to the sustainable development of Camellia industry and avoids resource waste.
Collapse
Affiliation(s)
- Xueli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Mohamed A Abdel-Samie
- Department of Food and Dairy Sciences and technology, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
26
|
Csuti A, Zheng B, Zhou H. Post pH-driven encapsulation of polyphenols in next-generation foods: principles, formation and applications. Crit Rev Food Sci Nutr 2023; 64:12892-12906. [PMID: 37722872 DOI: 10.1080/10408398.2023.2258214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
To meet the needs of a growing global population (∼10 billion by 2050), there is an urgent demand for sustainable, healthy, delicious, and affordable next-generation foods. Natural polyphenols, which are abundant in edible plants, have emerged as promising food additives due to their potential health benefits. However, incorporating polyphenols into food products presents various challenges, including issues related to crystallization, low water-solubility, limited bioavailability, and chemical instability. pH-driven or pH-shifting approaches have been proposed to incorporate polyphenols into the delivery systems. Nevertheless, it is unclear whether they can be generally used for the encapsulation of polyphenols into next-generation foods. Here, we highlight a post pH-driven (PPD) approach as a viable solution. The PPD approach inherits several advantages, such as simplicity, speed, and environmental friendliness, as it eliminates the need for heat, organic solvents, and complex equipment. Moreover, the PPD approach can be widely applied to different polyphenols and food systems, enhancing its versatility while also potentially contributing to reducing food waste. This review article aims to accelerate the implementation of the PPD approach in the development of polyphenol-fortified next-generation foods by providing a comprehensive understanding of its fundamental principles, encapsulation techniques, and potential applications in plant-based foods.
Collapse
Affiliation(s)
- Aron Csuti
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| | - Bingjing Zheng
- Research and Development, GNT Group, Dallas, North Carolina, USA
| | - Hualu Zhou
- Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
27
|
Adnan M, Siddiqui AJ, Ashraf SA, Ashraf MS, Alomrani SO, Alreshidi M, Tepe B, Sachidanandan M, Danciu C, Patel M. Saponin-Derived Silver Nanoparticles from Phoenix dactylifera (Ajwa Dates) Exhibit Broad-Spectrum Bioactivities Combating Bacterial Infections. Antibiotics (Basel) 2023; 12:1415. [PMID: 37760712 PMCID: PMC10525761 DOI: 10.3390/antibiotics12091415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of antibiotic resistance poses a serious threat to humankind, emphasizing the need for alternative antimicrobial agents. This study focuses on investigating the antibacterial, antibiofilm, and anti-quorum-sensing (anti-QS) activities of saponin-derived silver nanoparticles (AgNPs-S) obtained from Ajwa dates (Phoenix dactylifera L.). The design and synthesis of these novel nanoparticles were explored in the context of developing alternative strategies to combat bacterial infections. The Ajwa date saponin extract was used as a reducing and stabilizing agent to synthesize AgNPs-S, which was characterized using various analytical techniques, including UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The biosynthesized AgNPs-S exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria due to their capability to disrupt bacterial cell membranes and the leakage of nucleic acid and protein contents. The AgNPs-S effectively inhibited biofilm formation and quorum-sensing (QS) activity by interfering with QS signaling molecules, which play a pivotal role in bacterial virulence and pathogenicity. Furthermore, the AgNPs-S demonstrated significant antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and cytotoxicity against small lung cancer cells (A549 cells). Overall, the findings of the present study provide valuable insights into the potential use of these nanoparticles as alternative therapeutic agents for the design and development of novel antibiotics. Further investigations are warranted to elucidate the possible mechanism involved and safety concerns when it is used in vivo, paving the way for future therapeutic applications in combating bacterial infections and overcoming antibiotic resistance.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Syed Amir Ashraf
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Mohammad Saquib Ashraf
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Riyadh ELM University, Riyadh 12734, Saudi Arabia
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran 66252, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Bektas Tepe
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Kilis 7 Aralik University, TR-79000 Kilis, Turkey
| | - Manojkumar Sachidanandan
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
- Department of Oral Radiology, College of Dentistry, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| |
Collapse
|
28
|
Yu C, Shan J, Fu Z, Ju H, Chen X, Xu G, Liu Y, Li H, Wu Y. Co-Encapsulation of Curcumin and Diosmetin in Nanoparticles Formed by Plant-Food-Protein Interaction Using a pH-Driven Method. Foods 2023; 12:2861. [PMID: 37569129 PMCID: PMC10418428 DOI: 10.3390/foods12152861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
In this work, a pH-driven method was used to prepare zein-soy protein isolate (SPI) composite nanoparticles (NPs). The mass ratio of SPI to zein influenced the Z-average size (Z-ave). Once the zeta potential stabilized, SPI was completely coated on the periphery of the zein NPs. The optimal mass ratio of zein:SPI was found to be 2:3. After determining the structure using TEM, curcumin (Cur) and/or diosmetin (Dio) were loaded into zein-SPI NPs for co-encapsulation or individual delivery. The co-encapsulation of Cur and Dio altered their protein conformations, and both Cur and Dio transformed from a crystalline structure to an amorphous form. The protein conformation change increased the number of binding sites between Dio and zein NPs. As a result, the encapsulation efficiency (EE%) of Dio improved from 43.07% to 73.41%, and thereby increased the loading efficiency (LE%) of zein-SPI NPs to 16.54%. Compared to Dio-loaded zein-SPI NPs, Cur/Dio-loaded zein-SPI NPs improved the storage stability of Dio from 61.96% to 82.41% within four weeks. The extended release of bioactive substances in the intestine during simulated gastrointestinal digestion improved the bioavailability. When exposed to a concentration of 0-800 µg/mL blank-loaded zein-SPI NPs, the viability of HepG2 and LO-2 cells was more than 90%, as shown in MTT assay tests. The zein-SPI NPs are non-toxic, biocompatible, and have potential applications in the food industry.
Collapse
Affiliation(s)
- Chong Yu
- Harbin Jilida Technology Co., Ltd., Harbin 150001, China;
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jingyu Shan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Ze Fu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Hao Ju
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Xiao Chen
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Guangsen Xu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yang Liu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Huijing Li
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yanchao Wu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
29
|
Caicedo Chacon WD, Verruck S, Monteiro AR, Valencia GA. The mechanism, biopolymers and active compounds for the production of nanoparticles by anti-solvent precipitation: A review. Food Res Int 2023; 168:112728. [PMID: 37120194 DOI: 10.1016/j.foodres.2023.112728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
The anti-solvent precipitation method has been investigated to produce biopolymeric nanoparticles in recent years. Biopolymeric nanoparticles have better water solubility and stability when compared with unmodified biopolymers. This review article focuses on the analysis of the state of the art available in the last ten years about the production mechanism and biopolymer type, as well as the used of these nanomaterials to encapsulate biological compounds, and the potential applications of biopolymeric nanoparticles in food sector. The revised literature revealed the importance to understand the anti-solvent precipitation mechanism since biopolymer and solvent types, as well as anti-solvent and surfactants used, can alter the biopolymeric nanoparticles properties. In general, these nanoparticles have been produced using polysaccharides and proteins as biopolymers, especially starch, chitosan and zein. Finally, it was identified that those biopolymers produced by anti-solvent precipitation were used to stabilize essential oils, plant extracts, pigments, and nutraceutical compounds, promoting their application in functional foods.
Collapse
|
30
|
Zhang X, Guo T, Liu X, Kuang W, Zhong Y, Zhang M, Huang Y, Liu Z. Anti-solvent precipitation for the preparation of nobiletin nano-particles under ultrasonication-cis/reverse homogenization. ULTRASONICS SONOCHEMISTRY 2023; 96:106433. [PMID: 37163955 DOI: 10.1016/j.ultsonch.2023.106433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
In order to address the issue of nobiletin's limited bioavailability, nobiletin nanoparticles (NNP) were created for the first time in this research employing an anti-solvent under ultrasonication-cis/reverse homogenization. Dimethyl sulfoxide (DMSO) was used as the solvent and deionized water as the anti-solvent to create the nobiletin solution. The optimal surfactant dose of surfactant dose of 0.43%; an ultrasonic period of 8.1 min, ultrasonic at a temperature of 64 °C and a solution concentration of 8.33 mg/mL, the method was optimized to obtain the minimum NNP diameter of 199.89 ± 0.02 nm. A dual optimization process of response surface PBD and BBD was used to minimize the size of HNP particles. Additionally, scanning electron microscopy revealed that the specific surface area of the NNP dramatically increased with the reduction of NNP particle size, and dissolving studies indicated the solubility and dissolution studies showed that NNP had substantially greater solubility and dissolution rates than raw nobiletin per unit time; as a result, the NNP produced by anti-solvent precipitation with a twofold homogenization system supported by ultrasound had a realistic potential for growth.
Collapse
Affiliation(s)
- Xiaonan Zhang
- College of Life Science, Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic, Agricultural Resources in Mountainous Areas, Meizhou 514015, China.
| | - Tianqi Guo
- College of Life Science, Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic, Agricultural Resources in Mountainous Areas, Meizhou 514015, China
| | - Xiongjun Liu
- College of Life Science, Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic, Agricultural Resources in Mountainous Areas, Meizhou 514015, China
| | - Wei Kuang
- College of Life Science, Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic, Agricultural Resources in Mountainous Areas, Meizhou 514015, China
| | - Yuping Zhong
- College of Life Science, Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic, Agricultural Resources in Mountainous Areas, Meizhou 514015, China
| | - Manmin Zhang
- College of Life Science, Jiaying University, Meizhou 514015, China
| | - Yan Huang
- College of Life Science, Jiaying University, Meizhou 514015, China
| | - Zhiwei Liu
- College of Life Science, Jiaying University, Meizhou 514015, China; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic, Agricultural Resources in Mountainous Areas, Meizhou 514015, China
| |
Collapse
|
31
|
Zhang X, Liu Z, Huang Y, Niu Y, Zhang L, Xiong T, Zhang Y, Zhang R, Zhang H. Preparation and in vitro evaluation of hesperidin nanoparticles by antisolvent recrystallization in a double homogenate system. Food Chem X 2023; 18:100639. [PMID: 37008721 PMCID: PMC10060592 DOI: 10.1016/j.fochx.2023.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Hesperidin nanoparticles (HNPs) were made for the first time employing an antisolvent recrystallization technique in a double homogenate system with positive and negative clockwise rotation in order to completely use the underutilized nutritional components in citrus peel. Dimethyl sulfoxide (DMSO), ethanol, and deionized water were used as the solvents and antisolvents in the hesperidin solution preparation. Hesperidin solution concentration of 60.26 mg/mL, homogenization speed of 8257 rpm, antisolvent-to-solvent volume ratio of 6.93 mL/mL, and homogenization time of 3.15 min were the ideal experimental conditions. HNPs have to be at least 72.24 nm in size. The structures of the produced hesperidin samples and the raw hesperidin powder were identical, according to the findings of the FTIR, XRD, and TG characterization tests. The HNP sample had an in vitro absorption rate that was 5.63 and 4.23 times greater than that of the raw hesperidin powder, respectively. It was discovered that DMSO was more suited than ethanol for creating HNP particles. In the realms of dietary supplements, therapeutic applications, and health promotion, the HNPs produced by the ARDH technology would be a potential formulation on increasing uses for a wider range of nutraceuticals (synergistic).
Collapse
|
32
|
Yuan Y, Ma M, Zhang S, Wang D. Efficient Utilization of Tea Resources through Encapsulation: Dual Perspectives from Core Material to Wall Material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1310-1324. [PMID: 36637407 DOI: 10.1021/acs.jafc.2c07346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the high production and consumption of tea around the world, efficient utilization of tea byproducts (tea pruning, tea residues after production, and drinking) is the focus of improving the economy of the tea industry. This review comprehensively discusses the efficient utilization of tea resources by encapsulation from the dual perspectives of core material and wall material. The core material is mainly tea polyphenols, followed by tea oils. The encapsulation system for tea polyphenols includes microcapsules, nanoparticles, emulsions, gels, conjugates, metal-organic frameworks, liposomes, and nanofibers. In addition, it is also diversified for the encapsulation of tea oils. Tea resources as wall materials refer to tea saponins, tea polyphenols, tea proteins, and tea polysaccharides. The application of the tea-based delivery system widely involves functionally fortified food, meat preservation, film, medical treatment, wastewater treatment, and plant protection. In the future, the coencapsulation of tea resources as core materials and other functional ingredients, the precise targeting of these tea resources, and the wide application of tea resources in wall materials need to be focused on. In conclusion, the described technofunctional properties and future research challenges in this review should be followed.
Collapse
Affiliation(s)
- Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
33
|
Shi Z, Long X, Li Y, Jin J, Li J, Yuan C, Jin R. Protective Effect of Tea Saponins on Alcohol-Induced Gastric Mucosal Injury in Mice. ACS OMEGA 2023; 8:673-681. [PMID: 36643417 PMCID: PMC9835626 DOI: 10.1021/acsomega.2c05880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Excessive alcohol consumption harms the human body, particularly the digestive system, by causing damage to the gastric mucosa. Tea saponin is a natural active substance extracted from tea tree seeds that has gastroprotective potential against alcohol-induced mucosal damage. However, the protective mechanism of tea saponins is not fully understood. The current study aimed to explore the protective mechanism of tea saponins against alcohol-induced gastric mucosal injury in mice. Histopathological changes, immunohistochemistry, immunoblotting, and gastric mucosa-related cytokine levels were analyzed in three groups of male mice: model, control, and tea saponin-treated. Compared to the model group, the tea saponin group prominently ameliorated alcohol-induced gastric mucosal injury by improving cell necrosis, inflammatory cell infiltration, and edema. Downregulation of inflammation-related factors cluster of differentiation 68 (CD68), myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) was also found in the tea saponin group. These results suggest that tea saponins have a protective effect against alcohol-induced gastric mucosal damage in mice. Therefore, tea saponin may serve as a food additive for gastric mucosal protection.
Collapse
Affiliation(s)
- Zhaojuan Shi
- School
of Food and Biological Engineering, Hefei
University of Technology, Hefei 230009, P. R. China
- Engineering
Research Center of Agricultural Product Biochemicals, Ministry of
Education, Hefei 230009, P. R. China
| | - Xue Long
- School
of Food and Biological Engineering, Hefei
University of Technology, Hefei 230009, P. R. China
- Engineering
Research Center of Agricultural Product Biochemicals, Ministry of
Education, Hefei 230009, P. R. China
| | - Yan Li
- School
of Food and Biological Engineering, Hefei
University of Technology, Hefei 230009, P. R. China
- Engineering
Research Center of Agricultural Product Biochemicals, Ministry of
Education, Hefei 230009, P. R. China
| | - Jing Jin
- School
of Food and Biological Engineering, Hefei
University of Technology, Hefei 230009, P. R. China
- Engineering
Research Center of Agricultural Product Biochemicals, Ministry of
Education, Hefei 230009, P. R. China
| | - Jianfang Li
- School
of Food and Biological Engineering, Hefei
University of Technology, Hefei 230009, P. R. China
- Engineering
Research Center of Agricultural Product Biochemicals, Ministry of
Education, Hefei 230009, P. R. China
| | - Chuanxun Yuan
- School
of Food and Biological Engineering, Hefei
University of Technology, Hefei 230009, P. R. China
- Engineering
Research Center of Agricultural Product Biochemicals, Ministry of
Education, Hefei 230009, P. R. China
| | - Risheng Jin
- School
of Food and Biological Engineering, Hefei
University of Technology, Hefei 230009, P. R. China
- Engineering
Research Center of Agricultural Product Biochemicals, Ministry of
Education, Hefei 230009, P. R. China
| |
Collapse
|
34
|
Cui S, Yang Z, McClements DJ, Xu X, Qiao X, Zhou L, Sun Q, Jiao B, Wang Q, Dai L. Stability mechanism of Pickering emulsions co-stabilized by protein nanoparticles and small molecular emulsifiers by two-step emulsification with different adding sequences: From microscopic to macroscopic scales. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
35
|
Li Y, Liu X, Liu H, Zhu L. Interfacial adsorption behavior and interaction mechanism in saponin–protein composite systems: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Xie Y, Gong X, Jin Z, Xu W, Zhao K. Curcumin encapsulation in self-assembled nanoparticles based on amphiphilic palmitic acid-grafted-quaternized chitosan with enhanced cytotoxic, antimicrobial and antioxidant properties. Int J Biol Macromol 2022; 222:2855-2867. [DOI: 10.1016/j.ijbiomac.2022.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
37
|
Yu F, Chen J, Wei Z, Zhu P, Qing Q, Li B, Chen H, Lin W, Yang H, Qi Z, Hong X, Chen XD. Preparation of carrier-free astaxanthin nanoparticles with improved antioxidant capacity. Front Nutr 2022; 9:1022323. [PMID: 36245512 PMCID: PMC9554632 DOI: 10.3389/fnut.2022.1022323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Astaxanthin (AST), a red pigment of the carotenoids, has various advantageous biological activities. Nevertheless, the wide application of AST is restricted due to its poor water solubility and highly unsaturated structure. To overcome these limitations, carrier-free astaxanthin nanoparticles (AST-NPs) were fabricated through the anti-solvent precipitation method. The AST-NPs had a small particle size, negative zeta potential and high loading capacity. Analysis of DSC and XRD demonstrated that amorphous AST existed in AST-NPs. In comparison with free AST, AST-NPs displayed enhanced stability during storage. Besides, it also showed outstanding stability when exposed to UV light. Furthermore, the antioxidant capacity of AST-NPs was significantly increased. In vitro release study showed that AST-NPs significantly delayed the release of AST in the releasing medium. These findings indicated that AST-NPs would be an ideal formulation for AST, which could contribute to the development of novel functional foods.
Collapse
Affiliation(s)
- Fei Yu
- Medical College, Guangxi University, Nanning, China
| | - Jiaxin Chen
- Medical College, Guangxi University, Nanning, China
| | - Zizhan Wei
- Medical College, Guangxi University, Nanning, China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qing Qing
- Medical College, Guangxi University, Nanning, China
| | - Bangda Li
- Medical College, Guangxi University, Nanning, China
| | - Huimin Chen
- Medical College, Guangxi University, Nanning, China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Hua Yang
- Medical College, Guangxi University, Nanning, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
- The Fourth People's Hospital of Nanning, Nanning, China
- Zhongquan Qi
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
- Xuehui Hong
| | - Xiao Dong Chen
- Suzhou Key Lab of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
- *Correspondence: Xiao Dong Chen
| |
Collapse
|