1
|
Jiang K, Bai Y, Hou R, Chen G, Liu L, Ciftci ON, Farag MA, Liu L. Advances in dietary polyphenols: Regulation of inflammatory bowel disease (IBD) via bile acid metabolism and the gut-brain axis. Food Chem 2025; 472:142932. [PMID: 39862607 DOI: 10.1016/j.foodchem.2025.142932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Dietary polyphenols represent a diverse group of plant-derived compounds known for their extensive biological activities, offering significant promise in the prevention and treatment of various chronic illnesses. Despite their potential, advancements in their research have been curtailed by challenges in structural analysis and limitations in existing research models. This review marks a pioneering exploration into how bile acids, gut microbiota, and the gut-brain axis serve as conduits through which dietary polyphenols can exert therapeutic effects on Inflammatory Bowel Disease (IBD). This review enriches understanding of their biological functions and addresses common obstacles in the study of natural polyphenols. It provides a comprehensive examination of the role of dietary polyphenols in modulating bile acid metabolism and mitigating IBD, covering aspects such as polyphenols, bile acid metabolism, oxidative stress, inflammation, and the nervous system. This work opens new vistas in appreciating the full spectrum of polyphenol benefits, laying the groundwork for future explorations in this domain.
Collapse
Affiliation(s)
- Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Yinuo Bai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lingyi Liu
- Department of food science and technology, University of Nebraska, Lincoln 68588, NE, USA
| | - Ozan N Ciftci
- Department of food science and technology, University of Nebraska, Lincoln 68588, NE, USA
| | - Mohamed A Farag
- Pharmacognosy department, faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Liu L, Zhang Z, Xiao H, Li Z, Lin H. Dietary AGEs and food allergy: insights into the mechanisms of AGEs-induced food allergy and mitigation strategies. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 40129068 DOI: 10.1080/10408398.2025.2481990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Food allergy (FA) is a significant public health concern, with over one billion individuals globally affected, and its prevalence continues to rise. Advanced glycation end products (AGEs) are common hazards in various diet. Recent investigations have shown that AGEs could influence the pathogenesis of FA by interacting with AGEs receptors. This paper provides a comprehensive review of recent advances on diet AGEs, summarized the mechanisms of AGEs in regulating food allergy and mitigation strategies, analyzed the limitations of current research on AGEs and prospected the future research. AGEs could combine with the receptors for AGEs (RAGE) to induce oxidative stress, inflammation and allergic signaling pathways. AGEs can affect allergen epitopes and conformation and regulate intestinal flora in a non-receptor-dependent manner, as well as affect the intestinal barrier and Th1/Th2 immune balance through receptor-dependent pathways to regulate food allergy. Currently, the approaches to reduce the AGEs-induced food allergy mainly depended on improving food processing methods (e.g., low temperature, short time, low pH and non-thermal processing methods), natural AGEs inhibitors and RAGE inhibitors. This review elucidates the influences of AGEs on food allergy and mitigation strategies, which could provide novel insights into reducing food allergy induced by diet AGEs.
Collapse
Affiliation(s)
- Lichun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ziye Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zhenxing Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Long H, Guo Y, Wang J, Yang W, Chen F, Zhong Y, Gong P, Wang H. Anti-glycation activity and mechanism of Siraitia grosvenorii polysaccharide based on bovine serum albumin-fructose and Caco-2 cell models. Int J Biol Macromol 2025:142267. [PMID: 40112993 DOI: 10.1016/j.ijbiomac.2025.142267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Advanced glycation end products (AGEs) are dietary risk factors formed through the non-enzymatic glycation of reducing sugars with proteins, lipids, and other compounds. Siraitia grosvenorii polysaccharide (SGP) exhibits strong antioxidant activity and holds potential as a natural inhibitor of glycation. This study aims to investigate the anti-glycation activity and mechanisms of SGP, providing a theoretical basis for the anti-glycation effects of SGP. The results demonstrated that SGP inhibited the formation of AGEs during biscuit baking in a food matrix. In the bovine serum albumin-fructose (BSA-Fru) model, SGP reduced the formation of AGEs by chelating metal ions. SGP, Fru, and BSA were found to share the same binding sites, enabling SGP to compete with Fru for the aspartic acid 108 and arginine 144 binding sites on BSA, thereby directly inhibiting AGEs formation. In the Caco-2 cell model, SGP alleviated N-ε- (Carboxymethyl)-l-lysine (CML)-induced damage by reducing oxidative stress and regulating metabolic pathways, including the glycine-serine-threonine metabolism pathway, glyoxylate and dicarboxylate metabolism pathway, and the tricarboxylic acid (TCA) cycle. In summary, SGP not only serves as a natural inhibitor of in vitro AGEs formation but also alleviates intestinal barrier damage. This study provides a theoretical foundation for developing SGP as a functional food additive.
Collapse
Affiliation(s)
- Hui Long
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an 710021, China
| | - Yuxi Guo
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an 710021, China
| | - Jie Wang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yujun Zhong
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, China
| | - Pin Gong
- School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, China; Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Xi'an 710021, China.
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Tirosh O, Verman M, Ivancovsky-Wajcman D, Grinshpan LS, Fliss-Isakov N, Webb M, Shibolet O, Kariv R, Zelber-Sagi S. Differential effects of low or high-fat dairy and fat derived from dairy products on MASLD. JHEP Rep 2024; 6:101194. [PMID: 39492926 PMCID: PMC11530594 DOI: 10.1016/j.jhepr.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 11/05/2024] Open
Abstract
Background & Aims Metabolic dysfunction-associated steatotic liver disease (MASLD) is strongly related to nutrition. However, only a few human and animal studies have tested the association between MASLD and dairy consumption and the effect of milk fat on liver damage. Therefore, we aimed at testing the association between consumption of dairy product and the incidence of MASLD and fibrosis markers in humans, and the effect of milk fat vs. other fats on MASLD in animal studies. Methods A prospective 7-year follow-up cohort study was performed including baseline and follow-up fasting blood tests, liver evaluation and a face-to-face interview on health status and behaviour using structured questionnaires. MASLD was determined by ultrasonography or by controlled attenuation parameter (CAP), and liver fibrosis by FibroTest™ or FibroScan®. An animal study was performed in which 6-week-old C57BL/6j male mice were fed a high-fat diet (HFD) consisting of lard, soybean oil, and milk fat for 12 weeks. Metabolic impairment was assessed during the animal experiment, and serum advanced glycation end-products (AGEs) and liver damage were evaluated. Results A total of 316 patients were included in the prospective cohort. In multivariable analysis, high consumption of low-medium fat low-sugar dairy products (g/day above the baseline sex-specific median) was associated with a lower risk for MASLD incidence (OR 0.42, 95% CI 0.18-0.95, p = 0.037) or incidence/persistence at follow-up (OR 0.58, 0.34-0.97, p = 0.039). Constantly high consumption of high-fat low-sugar dairy products was associated with greater odds for new onset/persistence of MASLD. Neither low-medium nor high-fat dairy consumption was related to fibrosis markers. In mice, all HFDs induced similar weight gain and steatosis and did not affect liver enzymes. Milk fat increases serum cholesterol and AGEs levels more than lard or soybean oil. Conclusions Low-medium fat low-sugar dairy products may be protective and should be preferred over high-fat dairy to prevent MASLD. HFDs from different fat sources with a wide spectrum of fatty acid saturation content are equally deleterious. Impact and implications MASLD is related to nutrition, but evidence of an association between high-fat and low-fat dairy products is lacking, therefore, we evaluated this association by performing experimental studies in mice and an observational human study. For MASLD prevention, a differential effect based on the type of dairy products should be considered: low-medium fat low-sugar dairy products were found to be protective, in contrast high-fat dairy and generally high-fat diets may be harmful. It would be advisable to prefer low-fat low-sugar dairy products and minimise intake of high-fat dairy products; however, additional evidence is needed to allow generalisability of our findings.
Collapse
Affiliation(s)
- Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Michal Verman
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dana Ivancovsky-Wajcman
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Laura Sol Grinshpan
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Naomi Fliss-Isakov
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
- Department of Health Promotion, School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Muriel Webb
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Shibolet
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Revital Kariv
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| |
Collapse
|
5
|
Wu Y, Liu W, Jiang Y, Lv H, Lu Y, Zhang Y, Wang S. Long-Term Casein-Bound Lactulosyllysine Consumption Induced Nonobese Nonalcoholic Fatty Liver Disease by Promoting Carbonyl Glycation in the Liver of C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356723 DOI: 10.1021/acs.jafc.4c05588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lactulosyllysine (LL) is abundant in thermally processed dairy products, with its concentration increasing in response to more intense heat treatment. However, there are limited studies on the potential harmful effects of LL on human health. This study investigated the negative impact of casein-bound LL on liver health by feeding healthy C57BL/6 mice diets containing varying levels of casein-bound LL. After 16 weeks of LL diet administration, mice exhibited a nonobese nonalcoholic fatty liver disease (NONAFLD) phenotype, characterized by reduced body weight gain, hypolipidemia, and intrahepatic lipid accumulation. Nontarget metabolomic analysis showed that casein-bound LL induced alterations in plasma levels of compounds associated with lipid degradation. Mechanistically, casein-bound LL may impair the function of 5'-adenosine monophosphate-activated protein kinase and apolipoprotein B100 by inducing dicarbonyl stress, thereby promoting carbonyl glycation in the liver. Consequently, the long-term consumption of LL-rich dairy products may be a contributing factor to the risk of developing NONAFLD.
Collapse
Affiliation(s)
- Yuekun Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Weiye Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yu Jiang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Lin M, Sun G, Hu X, Chen F, Zhu Y. Role of galacturonic acid in acrylamide formation: Insights from structural analysis. Food Chem 2024; 452:139282. [PMID: 38723562 DOI: 10.1016/j.foodchem.2024.139282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 04/06/2024] [Indexed: 06/01/2024]
Abstract
Acrylamide (AA) is a neoformed compound in heated foods, mainly produced between asparagine (Asn) and glucose (Glc) during the Maillard reaction. Galacturonic acid (GalA), the major component of pectin, exhibits high activity in AA formation. This study investigated the pathway for AA formation between GalA and Asn. Three possible pathways were proposed: 1) The carbonyl group of GalA directly interacts with Asn to produce AA; 2) GalA undergoes an oxidative cleavage reaction to release α-dicarbonyl compounds, which subsequently leads to AA production; 3) 5-formyl-2-furancarboxylic acid, the thermal degradation product of GalA, reacts with Asn to generate AA. Structural analysis revealed that the COOH group in GalA accelerated intramolecular protonation and electron transfer processes, thereby increasing the formation of AA precursors such as decarboxylated Schiff base and α-dicarbonyl compounds, promoting AA formation. This study provides a theoretical basis and new insights into the formation and control of AA.
Collapse
Affiliation(s)
- Mengyi Lin
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Guoyu Sun
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Mondragon Portocarrero ADC, Lopez-Santamarina A, Lopez PR, Ortega ISI, Duman H, Karav S, Miranda JM. Substitutive Effects of Milk vs. Vegetable Milk on the Human Gut Microbiota and Implications for Human Health. Nutrients 2024; 16:3108. [PMID: 39339708 PMCID: PMC11435326 DOI: 10.3390/nu16183108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: In the last two decades, the consumption of plant-based dairy substitutes in place of animal-based milk has increased in different geographic regions of the world. Dairy substitutes of vegetable origin have a quantitative composition of macronutrients such as animal milk, although the composition of carbohydrates, proteins and fats, as well as bioactive components, is completely different from that of animal milk. Many milk components have been shown to have relevant effects on the intestinal microbiota. Methods: Therefore, the aim of this review is to compare the effects obtained by previous works on the composition of the gut microbiota after the ingestion of animal milk and/or vegetable beverages. Results: In general, the results obtained in the included studies were very positive for animal milk intake. Thus, we found an increase in gut microbiota richness and diversity, increase in the production of short-chain fatty acids, and beneficial microbes such as Bifidobacterium, lactobacilli, Akkermansia, Lachnospiraceae or Blautia. In other cases, we found a significant decrease in potential harmful bacteria such as Proteobacteria, Erysipelotrichaceae, Desulfovibrionaceae or Clostridium perfingens after animal-origin milk intake. Vegetable beverages have also generally produced positive results in the gut microbiota such as the increase in the relative presence of lactobacilli, Bifidobacterium or Blautia. However, we also found some potential negative results, such as increases in the presence of potential pathogens such as Enterobacteriaceae, Salmonella and Fusobacterium. Conclusions: From the perspective of their effects on the intestinal microbiota, milks of animal origin appear to be more beneficial for human health than their vegetable substitutes. These different effects on the intestinal microbiota should be considered in those cases where the replacement of animal milks by vegetable substitutes is recommended.
Collapse
Affiliation(s)
- Alicia del Carmen Mondragon Portocarrero
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Patricia Regal Lopez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| | - Israel Samuel Ibarra Ortega
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4.5, Pachuca 42076, Hidalgo, Mexico;
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.d.C.M.P.); (A.L.-S.); (P.R.L.)
| |
Collapse
|
8
|
Zhang Y, Chen Y, Liu H, Sun B. Advances of nanoparticle derived from food in the control of α-dicarbonyl compounds-A review. Food Chem 2024; 444:138660. [PMID: 38330613 DOI: 10.1016/j.foodchem.2024.138660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
α-Dicarbonyl compounds (α-DCs) are predominantly generated through the thermal processing of carbohydrate and protein-rich food. They are pivotal precursors to hazard formation, such as advanced glycation end products (AGEs), acrylamide, and furan. Their accumulation within the body will be genotoxicity and neurotoxicity. Recently, significant advancements have been made in nanotechnology, leading to the widespread utilization of nanomaterials as functional components in addressing the detrimental impact of α-DCs. This review focuses on the control of α-DCs through the utilization of nanoparticle-based functional factors, which were prepared by using edible components as resources. Four emerging nanoparticles are introduced including phenolic compounds-derived nanoparticle, plant-derived nanoparticle, active peptides-derived nanoparticle, and functional minerals-derived nanoparticle. The general control mechanisms as well as the recent evidence pertaining to the aforementioned aspects were also discussed, hoping to valuable helpful references for the development of innovative α-DCs scavengers and identifying the further scope of research.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Yunhai Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
9
|
Wu Y, Shi A, Li W, Zhang J, Lu Y, Zhang Y, Wang S. The metabolism and transformation of casein-bound lactulosyllysine in vivo: Promoting dicarbonyl stress and the formation of advanced glycation end products accompanied by systemic inflammation. Food Chem 2024; 444:138681. [PMID: 38335684 DOI: 10.1016/j.foodchem.2024.138681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Lactulosyllysine (LL) widely exists in thermally processed dairy products, while the metabolism and transformation of LL remain poorly understood. We aimed to elucidate the metabolic pathways of LL and its impact on body health by subjecting C57BL/6 mice to a short-term ll-fortified casein diet. Our findings indicated that casein-bound LL might be metabolized and transformed into 3-deoxyglucosone through fructosamine-3-kinase (FN3K) in vivo, which promoted α-dicarbonyl stress, ultimately leading to the formation of advanced glycation end products (AGEs) in various tissues/organs, accompanied by systemic inflammation. The levels of AGEs formation in tissues/organs at various stages of casein-bound LL intake exhibited dynamic changes, correlating with alterations in the expression of FN3K and α-dicarbonyl compounds metabolic detoxification enzymes. The negative effects induced by casein-bound LL cannot be fully reversed by switching to a standard diet for equal periods. Consumption of dairy products rich in LL raises concerns as a potential risk factor for healthy individuals.
Collapse
Affiliation(s)
- Yuekun Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Aiying Shi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Wanhua Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Jinhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
10
|
Wang H, Zhang X, Yao Y, Huo Z, Cui X, Liu M, Zhao L, Ge W. Oligosaccharide profiles as potential biomarkers for detecting adulteration of caprine dairy products with bovine dairy products. Food Chem 2024; 443:138551. [PMID: 38301550 DOI: 10.1016/j.foodchem.2024.138551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Adulteration of caprine dairy products raises concerns among consumers. This study aimed to identify the differences in oligosaccharide profiles of caprine dairy products, including raw milk, colostrum powder, and lactose powder, and their corresponding bovine dairy products, and provide new insights for detecting adulteration of bovine dairy products in caprine dairy products. Twenty-seven oligosaccharides were detected in caprine and bovine dairy products. The principal component analysis plot of the oligosaccharide profiles clearly differentiated among the six types of dairy products. Specific oligosaccharides that were most distinctive for caprine and bovine dairy products were identified. Lacto-N-triose (LNTri) could be used as a potential biomarker for distinguishing caprine milk from bovine milk, caprine colostrum powder from bovine colostrum powder, and caprine lactose powder from bovine lactose powder. The results demonstrated that oligosaccharides could be used as biomarkers for detecting bovine dairy products in caprine dairy products, especially caprine lactose powder.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Xiaoying Zhang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Yu Yao
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Zhenquan Huo
- Zhejiang Zhongmengchang Health Technology Co., Ltd., Hangzhou 310000, China
| | - Xiuxiu Cui
- Xi'an Baiyue Goat Dairy Group Co., Ltd., Yanliang 710089, China
| | - Mengjia Liu
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Lili Zhao
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China.
| | - Wupeng Ge
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Nawaz M, Afridi MN, Ullah I, Khan IA, Ishaq MS, Su Y, Rizwan HM, Cheng KW, Zhou Q, Wang M. The inhibitory effects of endophytic metabolites on glycated proteins under non-communicable disease conditions: A review. Int J Biol Macromol 2024; 269:131869. [PMID: 38670195 DOI: 10.1016/j.ijbiomac.2024.131869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Protein glycation in human body is closely linked to the onset/progression of diabetes associated complications. These glycated proteins are commonly known as advanced glycation end products (AGEs). Recent literature has also highlighted the involvement of AGEs in other non-communicable diseases (NCDs) such as cardiovascular, cancer, and Alzheimer's diseases and explored the impact of plant metabolites on AGEs formation. However, the significance of endophytic metabolites against AGEs has recently garnered attention but has not been thoroughly summarized thus far. Therefore, the objective of this review is to provide a comprehensive overview of the importance of endophytic metabolites in combating AGEs under NCDs conditions. Additionally, this review aims to elucidate the processes of AGEs formation, absorption, metabolism, and their harmful effects. Collectively, endophytic metabolites play a crucial role in modulating signaling pathways and enhancing the digestibility properties of gut microbiota (GM) by targeting on AGEs/RAGE (receptor for AGEs) axis. Furthermore, these metabolites exhibit anti-AGEs activities similar to those derived from host plants, but at a lower cost and higher production rate. The use of endophytes as a source of such metabolites offers a risk-free and sustainable approach that holds substantial potential for the treatment and management of NCDs.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Naveed Afridi
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Irfan Ullah
- CPSP/REU/SGR-2016-021-8421, College of Physicians and Surgeons, Pakistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Saqib Ishaq
- Department of Health and Biological Sciences, Abasyn University Peshawar, KP, Pakistan
| | - Yuting Su
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Hafiz Muhammad Rizwan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
12
|
Chu J, Lin S, Yuan Y, Zhang S, Zhang S. Effects of quercetin and l-ascorbic acid on heterocyclic amines and advanced glycation end products production in roasted eel and lipid-mediated inhibition mechanism analysis. Food Chem 2024; 441:138394. [PMID: 38199115 DOI: 10.1016/j.foodchem.2024.138394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Eel is a commercially important marine fish, frequently featured as sushi or roasted preparations. This study determined the formation of heterocyclic amines (HAs) and advanced glycation end products (AGEs) in roasted eel and evaluated the inhibitory mechanism of quercetin and l-ascorbic acid on their formation. The results indicate a respective reduction of 75.07% and 84.72% in total HAs, alongside a decline of 23.03% and 39.14% in AGEs. Additionally, fundamental parameters of roasted eel, lipid oxidation indicators and precursors were measured to elucidate the mechanisms and impact of natural antioxidants on HAs and AGEs formation in roasted eel. Furthermore, endeavors were made to probe into the molecular mechanisms governing the influence of key differential lipids on the generation of HAs and AGEs through lipid-mics analysis. This research emphasizes the potential of natural antioxidants in preventing harmful substances formation during eel thermal processing, which is helpful to food manufacturers for healthier food production.
Collapse
Affiliation(s)
- Junbo Chu
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yi Yuan
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Siqi Zhang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Simin Zhang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
13
|
Ansari S, Mohammadifard N, Hajihashemi P, Haghighatdoost F, Zarepur E, Mahmoudi S, Nouri F, Nouhi F, Kazemi T, Salehi N, Solati K, Ghaffari S, Gholipour M, Dehghani M, Cheraghi M, Heybar H, Alikhasi H, Sarrafzadegan N. The relationship between fermented and nonfermented dairy products consumption and hypertension among premature coronary artery disease patients: Iran premature coronary artery disease study. Food Sci Nutr 2024; 12:3322-3335. [PMID: 38726444 PMCID: PMC11077223 DOI: 10.1002/fsn3.3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 05/12/2024] Open
Abstract
Dairy products may affect hypertension (HTN) risk. The aim of this study was to examine the association between fermented and nonfermented dairy foods and HTN in a sample of premature coronary artery disease (PCAD) subjects. This cross-sectional study was performed on 1854 PCAD patients. A 110-item food frequency questionnaire was used to assess dietary intakes. HTN was considered if systolic blood pressure was 140 mmHg and higher and/or diastolic blood pressure was 90 mmHg and higher. The odds ratio of HTN across the quartiles of different types of dairy products was evaluated by binary logistic regression. The mean (SD) of dairy products consumption was 339.8 (223.5) g/day, of which 285.4 g/day was fermented dairy products. In the crude model, participants in the fourth quartile of fermented dairy products had lesser risk of HTN compared to the bottom quartile (OR = 0.70, 95% CI: 0.52, 0.96; p for trend = .058). However, after considering the possible confounders, the significance disappeared. Subjects in the top quartile of high-fat fermented dairy products had 34% lower risk for HTN compared to the bottom quartile (95% CI: 0.49, 0.88; p for trend < .001). Adjustment for potential risk factors weakened the association but remained significant (OR = 0.73, 95% CI: 0.53, 1.01; p for trend = .001). Nonsignificant relation was detected between low-fat fermented, low-fat nonfermented, and high-fat nonfermented dairy products and HTN. Moderate consumption of high-fat fermented dairy products, in a population with low consumption of dairy foods, might relate to reduced likelihood of HTN.
Collapse
Affiliation(s)
- Shakila Ansari
- Department of Community Nutrition, Nutrition and Food Security Research Center, School of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| | - Noushin Mohammadifard
- Interventional Cardiology Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Parisa Hajihashemi
- Isfahan Gastroenterology and Hepatology Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Fahimeh Haghighatdoost
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Ehsan Zarepur
- Interventional Cardiology Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
- Department of Cardiology, Medicine SchoolIsfahan University of Medical SciencesIsfahanIran
| | - Shirin Mahmoudi
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Fatemeh Nouri
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Fereydoon Nouhi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
- Iranian Network of Cardiovascular Research (INCVR)TehranIran
| | - Tooba Kazemi
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Nahid Salehi
- Cardiovascular Research Center, Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Kamal Solati
- Department of PsychiatryShahrekord University of Medical SciencesShahrekordIran
| | - Samad Ghaffari
- Cardiovascular Research CenterTabriz University of Medical sciencesTabrizIran
| | - Mahboobeh Gholipour
- Department of Cardiology, Healthy Heart Research Center, Heshmat Hospital, School of MedicineGuilan University of Medical SciencesRashtIran
| | - Mostafa Dehghani
- Department of Cardiovascular Research Center, Shahid Rahimi HospitalLorestan University of Medical SciencesKhorramabadIran
| | - Mostafa Cheraghi
- Department of Cardiovascular Research Center, Shahid Rahimi HospitalLorestan University of Medical SciencesKhorramabadIran
| | - Habib Heybar
- Atherosclerosis Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hassan Alikhasi
- Heart Failure Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
- Faculty of Medicine, School of Population and Public HealthUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
14
|
Shi B, Guo X, Liu H, Jiang K, Liu L, Yan N, Farag MA, Liu L. Dissecting Maillard reaction production in fried foods: Formation mechanisms, sensory characteristic attribution, control strategy, and gut homeostasis regulation. Food Chem 2024; 438:137994. [PMID: 37984001 DOI: 10.1016/j.foodchem.2023.137994] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Foods rich in carbohydrates or fats undergo the Maillard reaction during frying, which promotes the color, flavor and sensory characteristics formation. In the meanwhile, Maillard reaction intermediates and advanced glycation end products (AGEs) have a negative impact on food sensory quality and gut homeostasis. This negative effect can be influenced by food composition and other processing factors. Whole grain products are rich in polyphenols, which can capture carbonyl compounds in Maillard reaction, and reduce the production of AGEs during frying. This review summarizes the Maillard reaction production intermediates and AGEs formation mechanism in fried food and analyzes the factors affecting the sensory formation of food. In the meanwhile, the effects of Maillard reaction intermediates and AGEs on gut homeostasis were summarized. Overall, the innovative processing methods about the Maillard reaction are summarized to optimize the sensory properties of fried foods while minimizing the formation of AGEs.
Collapse
Affiliation(s)
- Boshan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, NE, USA.
| | - Ning Yan
- Ning Yan, Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
15
|
Abdisa KB, Szerdahelyi E, Molnár MA, Friedrich L, Lakner Z, Koris A, Toth A, Nath A. Metabolic Syndrome and Biotherapeutic Activity of Dairy (Cow and Buffalo) Milk Proteins and Peptides: Fast Food-Induced Obesity Perspective-A Narrative Review. Biomolecules 2024; 14:478. [PMID: 38672494 PMCID: PMC11048494 DOI: 10.3390/biom14040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic syndrome (MS) is defined by the outcome of interconnected metabolic factors that directly increase the prevalence of obesity and other metabolic diseases. Currently, obesity is considered one of the most relevant topics of discussion because an epidemic heave of the incidence of obesity in both developing and underdeveloped countries has been reached. According to the World Obesity Atlas 2023 report, 38% of the world population are presently either obese or overweight. One of the causes of obesity is an imbalance of energy intake and energy expenditure, where nutritional imbalance due to consumption of high-calorie fast foods play a pivotal role. The dynamic interactions among different risk factors of obesity are highly complex; however, the underpinnings of hyperglycemia and dyslipidemia for obesity incidence are recognized. Fast foods, primarily composed of soluble carbohydrates, non-nutritive artificial sweeteners, saturated fats, and complexes of macronutrients (protein-carbohydrate, starch-lipid, starch-lipid-protein) provide high metabolic calories. Several experimental studies have pointed out that dairy proteins and peptides may modulate the activities of risk factors of obesity. To justify the results precisely, peptides from dairy milk proteins were synthesized under in vitro conditions and their contributions to biomarkers of obesity were assessed. Comprehensive information about the impact of proteins and peptides from dairy milks on fast food-induced obesity is presented in this narrative review article.
Collapse
Affiliation(s)
- Kenbon Beyene Abdisa
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - Emőke Szerdahelyi
- Department of Nutrition, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, HU-1118 Budapest, Hungary;
| | - Máté András Molnár
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - László Friedrich
- Department of Refrigeration and Livestock Product Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, HU-1118 Budapest, Hungary
| | - Zoltán Lakner
- Department of Agricultural Business and Economics, Institute of Agricultural and Food Economics, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, HU-1118 Budapest, Hungary
| | - András Koris
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Móricz Zsigmond út 22, HU-4032 Debrecen, Hungary
| | - Arijit Nath
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 44, HU-1118 Budapest, Hungary; (K.B.A.)
| |
Collapse
|
16
|
Hou H, Wang M, Yang S, Yang X, Sun W, Sun X, Guo Q, Debrah AA, Zhenxia D. Evaluation of Prebiotic Glycan Composition in Human Milk and Infant Formula: Profile of Galacto-Oligosaccharides and Absolute Quantification of Major Milk Oligosaccharides by UPLC-Cyclic IM-MS and UPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7980-7990. [PMID: 38562102 DOI: 10.1021/acs.jafc.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Prebiotic oligosaccharides have attracted immense interest in the infant formula (IF) industry due to their unique health benefits for infants. There is a need for the reasonable supplementation of prebiotics in premium IF products. Herein, we characterized the profile of galacto-oligosaccharides (GOS) in human milk (HM) and IF using ultrahigh-performance liquid chromatography-cyclic ion mobility-mass spectrometry (UPLC-cIM-MS) technique. Additionally, we further performed a targeted quantitative analysis of five essential HM oligosaccharides (HMOs) in HM (n = 196), IF (n = 50), and raw milk of IF (n = 10) by the high-sensitivity UPLC-MS/MS method. HM exhibited a more abundant and variable HMO composition (1183.19 to 2892.91 mg/L) than IF (32.91 to 56.31 mg/L), whereas IF contained extra GOS species and non-negligible endogenous 3'-sialyllactose. This also facilitated the discovery of secretor features within the Chinese population. Our study illustrated the real disparity in the prebiotic glycome between HM and IF and provided crucial reference for formula improvement.
Collapse
Affiliation(s)
- Haiyue Hou
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyu Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuya Yang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuexin Yang
- Waters Technology (Beijing) Co., Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Wenjun Sun
- Waters Technology (Beijing) Co., Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Xuechun Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Augustine Atta Debrah
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Du Zhenxia
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Zhang J, Wang L, Shen Y, Wan L, Zhuang K, Yang X, Man C, Zhao Q, Jiang Y. Effects of different reducing carbohydrate types on the physicochemical characteristics of infant formula food stored for special medical purposes. Food Chem X 2024; 21:101055. [PMID: 38173901 PMCID: PMC10762361 DOI: 10.1016/j.fochx.2023.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
The formula of food for special medical purpose has a direct impact on physicochemical stability, especially in hot climes and high temperature transport storage environments. An accelerated test (50 °C for 7 weeks) was used to analyze the mechanism of the physicochemical instability of formula A with lactose and maltodextrin, and formula B with maltodextrin. Deep dents and wrinkles were observed on the surface of the formula B, and more fat globules covered the surface of formula A particles after storage for a long time. Significantly higher amounts of furosine and Nε-carboxymethl-l-lysine (CML) were formed and the loss of available lysine was greater in formula A than in formula B. No significant difference was observed in lipid oxidation indicators between the two formulas. The results of this research demonstrated lactose was more active than maltodextrin and led to physicochemical instability.
Collapse
Affiliation(s)
| | | | - Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Longyu Wan
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Kejin Zhuang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
18
|
Zhang M, Yang Y, Zhang H, Li C, He L, Deng L. Changes in food quality and characterization under thermal accumulation conditions during Chinese cooking. Food Sci Nutr 2024; 12:2081-2092. [PMID: 38455167 PMCID: PMC10916625 DOI: 10.1002/fsn3.3908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 03/09/2024] Open
Abstract
Chinese cooking is the primary treatment method for table food in China. The process is complex and large-scale, which is important to the macroeconomy and national nutrition and health. First, this article puts forward the concept of thermal accumulation for Chinese cooking by taking pork tenderloin fried at different oil temperatures, explaining changes in moisture content, hardness, and color with different thermal accumulation conditions, and measuring kinetic parameters. The variations of L* and b* obtained by the experimental results belong to the first-order reaction kinetic model, while the changes in water content and shear force belong to the zero-order reaction kinetic model. Simultaneously, the superheat value is used as a thermal accumulation indicator, combined with sensory evaluation to determine that the Z value of the human sensory overheating of pork tenderloin is 99°C, and O s,max (Z = 99°C, the reference temperature is 110°C) is 5.86 min.
Collapse
Affiliation(s)
- Mingzan Zhang
- Guizhou Industry Polytechnic CollegeGuiyangP.R. China
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou ProvinceGuiyangP.R. China
| | - Yun Yang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou ProvinceGuiyangP.R. China
- College of Liquor and Food EngineeringGuizhou UniversityGuiyangP.R. China
| | - Hongwen Zhang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou ProvinceGuiyangP.R. China
- College of Liquor and Food EngineeringGuizhou UniversityGuiyangP.R. China
| | - Cuiqin Li
- School of Chemistry and Chemical EngineeringGuizhou UniversityGuiyangP.R. China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou ProvinceGuiyangP.R. China
- College of Liquor and Food EngineeringGuizhou UniversityGuiyangP.R. China
| | - Li Deng
- Guizhou Industry Polytechnic CollegeGuiyangP.R. China
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou ProvinceGuiyangP.R. China
| |
Collapse
|
19
|
Xu L, Liu H, Dong L, Liu Y, Liu L, Cao H, Wang W, Liu L. Research advance on AGEs generation, detection, influencing factors and inhibition mechanism in bakery products processing. FOOD BIOSCI 2024; 57:103404. [DOI: 10.1016/j.fbio.2023.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Niu L, Lai K, Huang Y. Sodium chloride inhibits the heat-induced formation of advanced glycation end-products in myofibrillar protein–reducing sugar–oleic acid model systems. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2024; 18:1293-1301. [DOI: 10.1007/s11694-023-02288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2025]
|
21
|
Chen Q, Lai S, Dong L, Liu Y, Pan D, Wu Z, Wu Z, Zhou Y, Ren Y, Zhang J, Liu L, Liu L. Characterization and determination of casein glycomacropeptide in dairy products by UHPLC-MS/MS based on its characteristic peptide. Food Chem 2024; 430:137049. [PMID: 37544157 DOI: 10.1016/j.foodchem.2023.137049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
The ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS) method was built to quantify the casein glycomacropeptide (CGMP) in bovine dairy products accurately based on targeted proteomics. Qualitative analysis of theoretical peptides was carried out using high-resolution mass spectrometry (HRMS) and protein software. Isotope-labeled characteristic peptides were acquired via the labeled amino acid condensation method to correct the matrix effects. Peptide MAIPPK was the representative characteristic peptide for distinguishing the CGMP from κ-casein through trypsin digestion. After optimizing the pre-treatment conditions, the final 8% oxidant concentration was selected and the 10% formic acid concentration with 2.5 h oxidation time. Moreover, the results of methodological verification showed that the recovery rate was 103.7%, meanwhile the precision of inter-day and intra-day was less than 5%. In conclusion, the research demonstrated the characteristic peptide MAIPPK could quantitatively applied to detect CGMP in dairy products.
Collapse
Affiliation(s)
- Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Shiyun Lai
- Hangzhou Pupai Technology Co., Ltd, Hangzhou 310000, China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yiping Ren
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Jingshun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, 68588 NE, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
22
|
Sharma H, Sharma N, An SSA. Unique Bioactives from Zombie Fungus ( Cordyceps) as Promising Multitargeted Neuroprotective Agents. Nutrients 2023; 16:102. [PMID: 38201932 PMCID: PMC10780653 DOI: 10.3390/nu16010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cordyceps, also known as "zombie fungus", is a non-poisonous mushroom that parasitizes insects for growth and development by manipulating the host system in a way that makes the victim behave like a "zombie". These species produce promising bioactive metabolites, like adenosine, β-glucans, cordycepin, and ergosterol. Cordyceps has been used in traditional medicine due to its immense health benefits, as it boosts stamina, appetite, immunity, longevity, libido, memory, and sleep. Neuronal loss is the typical feature of neurodegenerative diseases (NDs) (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS)) and neurotrauma. Both these conditions share common pathophysiological features, like oxidative stress, neuroinflammation, and glutamatergic excitotoxicity. Cordyceps bioactives (adenosine, N6-(2-hydroxyethyl)-adenosine, ergosta-7, 9 (11), 22-trien-3β-ol, active peptides, and polysaccharides) exert potential antioxidant, anti-inflammatory, and anti-apoptotic activities and display beneficial effects in the management and/or treatment of neurodegenerative disorders in vitro and in vivo. Although a considerable list of compounds is available from Cordyceps, only a few have been evaluated for their neuroprotective potential and still lack information for clinical trials. In this review, the neuroprotective mechanisms and safety profile of Cordyceps extracts/bioactives have been discussed, which might be helpful in the identification of novel potential therapeutic entities in the future.
Collapse
Affiliation(s)
| | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
23
|
Takeda K, Sakai-Sakasai A, Kajinami K, Takeuchi M. A Novel Approach: Investigating the Intracellular Clearance Mechanism of Glyceraldehyde-Derived Advanced Glycation End-Products Using the Artificial Checkpoint Kinase 1 d270KD Mutant as a Substrate Model. Cells 2023; 12:2838. [PMID: 38132156 PMCID: PMC10741459 DOI: 10.3390/cells12242838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Advanced glycation end-products (AGEs), formed through glyceraldehyde (GA) as an intermediate in non-enzymatic reactions with intracellular proteins, are cytotoxic and have been implicated in the pathogenesis of various diseases. Despite their significance, the mechanisms underlying the degradation of GA-derived AGEs (GA-AGEs) remain unclear. In the present study, we found that N-terminal checkpoint kinase 1 cleavage products (CHK1-CPs) and their mimic protein, d270WT, were degraded intracellularly post-GA exposure. Notably, a kinase-dead d270WT variant (d270KD) underwent rapid GA-induced degradation, primarily via the ubiquitin-proteasome pathway. The high-molecular-weight complexes formed by the GA stimulation of d270KD were abundant in the RIPA-insoluble fraction, which also contained high levels of GA-AGEs. Immunoprecipitation experiments indicated that the high-molecular-weight complexes of d270KD were modified by GA-AGEs and that p62/SQSTM1 was one of its components. The knockdown of p62 or treatment with chloroquine reduced the amount of high-molecular-weight complexes in the RIPA-insoluble fraction, indicating its involvement in the formation of GA-AGE aggregates. The present results suggest that the ubiquitin-proteasome pathway and p62 play a role in the degradation and aggregation of intracellular GA-AGEs. This study provides novel insights into the mechanisms underlying GA-AGE metabolism and may lead to the development of novel therapeutic strategies for diseases associated with the accumulation of GA-AGEs.
Collapse
Affiliation(s)
- Kenji Takeda
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-Machi, Ishikawa 920-0293, Japan; (A.S.-S.); (M.T.)
- Department of Cardiology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-Machi, Ishikawa 920-0293, Japan;
| | - Akiko Sakai-Sakasai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-Machi, Ishikawa 920-0293, Japan; (A.S.-S.); (M.T.)
| | - Kouji Kajinami
- Department of Cardiology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-Machi, Ishikawa 920-0293, Japan;
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-Machi, Ishikawa 920-0293, Japan; (A.S.-S.); (M.T.)
| |
Collapse
|
24
|
Wächter K, Longin CFH, Winterhalter PR, Bertsche U, Szabó G, Simm A. The Antioxidant Potential of Various Wheat Crusts Correlates with AGE Content Independently of Acrylamide. Foods 2023; 12:4399. [PMID: 38137203 PMCID: PMC10743060 DOI: 10.3390/foods12244399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Epidemiological studies have indicated that the consumption of whole-grain products is associated with a reduced risk of cardiovascular diseases, type II diabetes, and cancer. In the case of bread, high amounts of antioxidants and advanced glycation end products (AGEs) are formed during baking by the Maillard reaction in the bread crust; however, the formation of potentially harmful compounds such as acrylamide also occurs. This study investigated the antioxidant responses of different soluble extracts from whole-grain wheat bread crust extracts (WBCEs) in the context of the asparagine, AGE, and acrylamide content. For that, we analyzed nine bread wheat cultivars grown at three different locations in Germany (Hohenheim, Eckartsweier, and Oberer Lindenhof). We determined the asparagine content in the flour of the 27 wheat cultivars and the acrylamide content in the crust, and measured the antioxidant potential using the induced expression of the antioxidant genes GCLM and HMOX1 in HeLa cells. Our study uncovered, for the first time, that the wheat crust's antioxidant potential correlates with the AGE content, but not with the acrylamide content. Mass spectrometric analyses of WBCEs for identifying AGE-modified proteins relevant to the antioxidant potential were unsuccessful. However, we did identify the wheat cultivars with a high antioxidant potential while forming less acrylamide, such as Glaucus and Lear. Our findings indicate that the security of BCEs with antioxidative and cardioprotective potential can be improved by choosing the right wheat variety.
Collapse
Affiliation(s)
- Kristin Wächter
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (P.R.W.); (G.S.); (A.S.)
| | | | - Patrick R. Winterhalter
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (P.R.W.); (G.S.); (A.S.)
| | - Ute Bertsche
- Core Facility Hohenheim, Mass Spectrometry Module, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Gábor Szabó
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (P.R.W.); (G.S.); (A.S.)
| | - Andreas Simm
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (P.R.W.); (G.S.); (A.S.)
- Center for Medical Basic Research, Martin-Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
25
|
Picerno P, Crascì L, Iannece P, Esposito T, Franceschelli S, Pecoraro M, Giannone V, Panico AM, Aquino RP, Lauro MR. A Green Bioactive By-Product Almond Skin Functional Extract for Developing Nutraceutical Formulations with Potential Antimetabolic Activity. Molecules 2023; 28:7913. [PMID: 38067642 PMCID: PMC10708410 DOI: 10.3390/molecules28237913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Background: almond peels are rich in polyphenols such as catechin and epicatechin, which are important anti-free-radical agents, anti-inflammatory compounds, and capable of breaking down cholesterol plaques. This work aims to evaluate the biological and technological activity of a "green" dry aqueous extract from Sicilian almond peels, a waste product of the food industry, and to develop healthy nutraceuticals with natural ingredients. Eudraguard® Natural is a natural coating polymer chosen to develop atomized formulations that improve the technological properties of the extract. (2) Methods: the antioxidant and free radical scavenger activity of the extract was rated using different methods (DPPH assay, ABTS, ORAC, NO). The metalloproteinases of the extracts (MMP-2 and MMP-9), the enhanced inhibition of the final glycation products, and the effects of the compounds on cell viability were also tested. All pure materials and formulations were characterized using UV, HPLC, FTIR, DSC, and SEM methods. (3) Results: almond peel extract showed appreciable antioxidant and free radical activity with a stronger NO inhibition effect, strong activity on MMP-2, and good antiglycative effects. In light of this, a food supplement with added health value was formulated. Eudraguard® Natural acted as a swelling substrate by improving extract solubility and dissolution/release (4) Conclusions: almond peel extract has significant antioxidant activity and MMP/AGE inhibition effects, resulting in an optimal candidate to formulate safe microsystems with potential antimetabolic activity. Eudraguard® Natural is capable of obtaining spray-dried microsystems with an improvement in the extract's biological and technological characteristics. It also protects the dry extract from degradation and oxidation, prolonging the shelf life of the final product.
Collapse
Affiliation(s)
- Patrizia Picerno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (P.P.); (T.E.); (S.F.); (M.P.); (R.P.A.)
| | - Lucia Crascì
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95100 Catania, Italy; (L.C.); (A.M.P.)
| | - Patrizia Iannece
- Department of Chemistry and Biology, University of Salerno, Via G. Paolo II 132, 84100 Fisciano, Italy;
| | - Tiziana Esposito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (P.P.); (T.E.); (S.F.); (M.P.); (R.P.A.)
- Unesco Chair Salerno, Plantae Medicinales Mediterraneae, University of Salerno, 84084 Fisciano, Italy
| | - Silvia Franceschelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (P.P.); (T.E.); (S.F.); (M.P.); (R.P.A.)
| | - Michela Pecoraro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (P.P.); (T.E.); (S.F.); (M.P.); (R.P.A.)
| | - Virgilio Giannone
- Department of Agricultural and Forest Sciences, University of Palermo, Viale delle Scienze Ed.4, 90128 Palermo, Italy;
| | - Anna Maria Panico
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 95100 Catania, Italy; (L.C.); (A.M.P.)
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (P.P.); (T.E.); (S.F.); (M.P.); (R.P.A.)
- Unesco Chair Salerno, Plantae Medicinales Mediterraneae, University of Salerno, 84084 Fisciano, Italy
| | - Maria Rosaria Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (P.P.); (T.E.); (S.F.); (M.P.); (R.P.A.)
| |
Collapse
|
26
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
27
|
Dong L, Zhang Y, Li Y, Liu Y, Chen Q, Liu L, Farag M, Liu L. The binding mechanism of oat phenolic acid to whey protein and its inhibition mechanism against AGEs as revealed using spectroscopy, chromatography and molecular docking. Food Funct 2023; 14:10221-10231. [PMID: 37916290 DOI: 10.1039/d3fo02474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Heat sterilization of dairy products can promote the formation of advanced glycation end products (AGEs), protein oxidation products (POPs) and α-dicarbonyl compounds, which have a significant influence on health due to the close association of these products with diabetes complications. In this study, eight oat phenolic acids were first analyzed for their inhibitory effect against AGEs formation. Due to their strong inhibitory effects and structural differences, caffeic acid (CA) and gallic acid (GA) were further selected to assess their anti-glycosylation mechanisms using spectroscopy, chromatography and molecular docking. CA/GA reduced the production of total AGEs and POPs in various bovine milk simulation models and protected whey proteins from structural modifications, oxidation, and cross-linking. Comparative analyses showed a structure-effect relationship between CA/GA and AGEs inhibition. Oat phenolic acids against AGEs and POPs might be related to the unique bonding of key amino acid residues in whey proteins, the inhibitory role of early fructosamine and the trapping of reactive α-dicarbonyl groups to form adducts. In conclusion, oat phenolic acids might present a promising dietary strategy to alleviate AGEs production and glycation of proteins in dairy products upon storage.
Collapse
Affiliation(s)
- Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yunzhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, 68588, NE, USA
| | - Mohamed Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
28
|
Peker T, Boyraz B. The Relationship between Resistant Hypertension and Advanced Glycation End-Product Levels Measured Using the Skin Autofluorescence Method: A Case-Control Study. J Clin Med 2023; 12:6606. [PMID: 37892744 PMCID: PMC10607128 DOI: 10.3390/jcm12206606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Resistant hypertension is hypertension that cannot be controlled despite the use of three antihypertensive drugs, one of which is a diuretic. Resistant hypertension often coexists with advanced age, obesity, smoking, and diabetes. Advanced glycation end products (AGEs) are substances that are generated as a result of the glycation of proteins, lipids, and nucleic acids due to conditions such as hyperlipidemia, oxidative stress, and hyperglycemia. There are studies showing the relationships between AGE levels and aortic stiffness, hypertension, and microvascular and macrovascular complications in diabetes. In our study, we examined the relationship between resistant hypertension and AGE levels. Our study was planned as a case-control study, and 88 patients with resistant hypertension were included in the focus group, while 88 patients with controlled hypertension were included in the control group. The AGE levels of the patients were measured using the skin autofluorescence method. AGE levels were found to be significantly higher in patients with resistant hypertension than those recorded in the control group. A significant increase in AGE levels was also observed in patients with resistant hypertension and without diabetes compared with the control group. The levels of AGEs, which can be measured cheaply, noninvasively, and quickly with the skin autofluorescence method, may provide benefits in identifying these patients with resistant hypertension.
Collapse
Affiliation(s)
- Tezcan Peker
- Cardiology Department, Medicalpark Hospital, Mudanya University, Bursa 16200, Turkey
| | - Bedrettin Boyraz
- Cardiology Department, Medicalpark Hospital, Mudanya University, Bursa 16200, Turkey
| |
Collapse
|
29
|
Li L, Zhang R, Hu Y, Deng H, Pei X, Liu F, Chen C. Impact of Oat ( Avena sativa L.) on Metabolic Syndrome and Potential Physiological Mechanisms of Action: A Current Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14838-14852. [PMID: 37797345 DOI: 10.1021/acs.jafc.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Oat (Avena sativa L.), an annual herbaceous plant belonging to the Gramineae family, is widely grown in various regions including EU, Canada, America, Australia, etc. Due to the nutritional and pharmacological values, oats have been developed into various functional food including fermented beverage, noodle, cookie, etc. Meanwhile, numerous studies have demonstrated that oats may effectively improve metabolic syndrome, such as dyslipidemia, hyperglycemia, atherosclerosis, hypertension, and obesity. However, the systematic pharmacological mechanisms of oats on metabolic syndrome have not been fully revealed. Therefore, in order to fully explore the benefits of oat in food industry and clinic, this review aims to provide up-to-date information on oat and its constituents, focusing on the effects on metabolic syndrome.
Collapse
Affiliation(s)
- Lin Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan People's Republic of China
| | - Hongdan Deng
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Brisbane, Australia
| |
Collapse
|
30
|
Li L, Zhang R, Hu Y, Deng H, Pei X, Liu F, Chen C. Impact of Oat ( Avena sativa L.) on Metabolic Syndrome and Potential Physiological Mechanisms of Action: A Current Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14838-14852. [DOI: https:/doi.org/10.1021/acs.jafc.3c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
Affiliation(s)
- Lin Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan People’s Republic of China
| | - Hongdan Deng
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People’s Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People’s Republic of China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Brisbane, Australia
| |
Collapse
|
31
|
Yang Y, Miao L, Lu Y, Wang S. The genetics of urinary microbiome, an exploration of the trigger in calcium oxalate stone. Front Genet 2023; 14:1260278. [PMID: 37854058 PMCID: PMC10579592 DOI: 10.3389/fgene.2023.1260278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Background: Kidney stone disease is a global disease; however, it has not been totally understood. Calcium oxalate (CaOx) stone is the dominant type of kidney stone, and the potential factors involved in its formation are yet to be explored. Clinically, we found that the CaOx stones in patients were mainly unilateral; therefore, systemic factors cannot explain them, although some local factors must be involved. Urinary microbiota is involved in stone formation. Therefore, this study aimed to explore the association between the urinary microbiota and CaOx stones and provide insight into the medical treatment and prevention of CaOx stones. Methods: Sixteen pelvic urine samples were collected from the stone and non-stone sides of patients with unilateral CaOx stones following strict criteria. The 16S rRNA gene sequencing was performed on each pair of pelvic urine samples at the species level. Many bioinformatic analyses were conducted to explore the potential factors affecting CaOx stone formation. Results: Although no statistically significant difference was found between the overall microbiota of the pelvis urine from the two sides. Many biologically distinct taxa were observed, including many bacteria found in previous studies, like Proteobacteria, Actinobacteria, Firmicute and Enterobacter cloacae and so on. What's more, despite these common bacteria, our current study added to these bacterial communities with additional identification of Deinococcus-Thermus, Coriobacteriia, Porphyromonas and Ralstonia. To predict the functions of these microbiota, Kyoto Encyclopedia for Genes and Genomes and MetaCyc analysis were conducted and immunometabolism might be an important pathway. Moreover, a random forest predictor was constructed to distinguish the stone side from the non-stone side, with an accuracy of 62.5%. Conclusion: Our research profiled the microbiome in the pelvis urine from both the stone and non-stone sides of patients with unilateral CaOx stones, provided insight into the dominant role of urinary dysbiosis in CaOx stones formation. Furthermore, this study also predicted the potential crosstalk among urinary microbiota, immunometabolism, and CaOx stones.
Collapse
Affiliation(s)
| | | | - Yuchao Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
32
|
Sadeghi M, Miroliaei M, Kamyabiamineh A, Taslimi P, Ghanadian M. The impact of AGEs on human health and the development of their inhibitors based on natural compounds. ARAB J CHEM 2023; 16:105143. [DOI: 10.1016/j.arabjc.2023.105143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
33
|
Nikolaki MD, Kasti AN, Katsas K, Petsis K, Lambrinou S, Patsalidou V, Stamatopoulou S, Karlatira K, Kapolos J, Papadimitriou K, Triantafyllou K. The Low-FODMAP Diet, IBS, and BCFAs: Exploring the Positive, Negative, and Less Desirable Aspects-A Literature Review. Microorganisms 2023; 11:2387. [PMID: 37894045 PMCID: PMC10609264 DOI: 10.3390/microorganisms11102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The literature about the association of branched short-chain fatty acids (BCFAs) and irritable bowel syndrome (IBS) is limited. BCFAs, the bacterial products of the catabolism of branched-chain amino acids, are proposed as markers for colonic protein fermentation. IBS is a gastrointestinal disorder characterized by low-grade inflammation and intestinal dysbiosis. The low-FODMAP diet (LFD) has increasingly been applied as first-line therapy for managing IBS symptoms, although it decreases the production of short-chain fatty acids (SCFA), well known for their anti-inflammatory action. In parallel, high protein consumption increases BCFAs. Protein fermentation alters the colonic microbiome through nitrogenous metabolites production, known for their detrimental effects on the intestinal barrier promoting inflammation. Purpose: This review aims to explore the role of BCFAs on gut inflammation in patients with IBS and the impact of LFD in BCFAs production. Methods: A literature search was carried out using a combination of terms in scientific databases. Results: The included studies have contradictory findings about how BCFAs affect the intestinal health of IBS patients. Conclusions: Although evidence suggests that BCFAs may play a protective role in gut inflammation, other metabolites of protein fermentation are associated with gut inflammation. Further research is needed in order to clarify how diet protein composition and, consequently, the BCFAs are implicated in IBS pathogenesis or in symptoms management with LFD+.
Collapse
Affiliation(s)
- Maroulla D. Nikolaki
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
- Department of Nutrition and Dietetics Sciences, Hellenic Mediterranean University, 72300 Crete, Greece
| | - Arezina N. Kasti
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
| | - Konstantinos Katsas
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
- Institute of Preventive Medicine Environmental and Occupational Health Prolepsis, 15125 Athens, Greece
| | - Konstantinos Petsis
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
| | - Sophia Lambrinou
- Department of Clinical Nutrition & Dietetics, General Hospital of Karpathos “Aghios Ioannis o Karpathios”, 85700 Karpathos, Greece;
| | - Vasiliki Patsalidou
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
| | - Sophia Stamatopoulou
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
| | - Katerina Karlatira
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
| | - John Kapolos
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece;
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, 2nd Department of Internal Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, ATTIKON University General Hospital, 12462 Athens, Greece
| |
Collapse
|
34
|
Serin Y, Akbulut G, Yaman M. Investigating Bioaccessibility of Advanced Glycation Product Precursors in Gluten-Free Foods Using In Vitro Gastrointestinal System. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1578. [PMID: 37763697 PMCID: PMC10535651 DOI: 10.3390/medicina59091578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: Gluten-free products have been produced as part of medical therapy and have gained popularity among individuals seeking weight loss or healthier dietary options. Assessing the potential risks associated with these products is essential in optimizing their compositions and developing new dietetic approaches. This study aimed to determine the glyoxal (GO) and methylglyoxal (MGO) contents in gluten-free bread, biscuits, and cookies and to examine their bioaccessibility using an in vitro gastrointestinal model. Materials and Methods: A total of 26 gluten-free and 19 gluten-containing (control) products were analyzed for their GO and MGO levels utilizing a high-performance liquid chromatography (HPLC) device. Results: Post-digestion, the GO and MGO values increased significantly across all food groups compared with pre-digestion values (p < 0.05), and the bioaccessibility exceeded 100%. Specifically, gluten-free bread exhibited higher post-digestion GO and MGO values than the control group (p < 0.05). Conversely, gluten-containing biscuits and cookies had higher post-digestion GO and MGO values compared to gluten-free products (p < 0.05). Conclusions: The detection of precursors to advanced glycation end products (AGEs) in gluten-free products has drawn attention to the potential health risks associated with their consumption. Therefore, reevaluation of the formulations and technologies used in these products and the introduction of new strategies are crucial in mitigating AGE content.
Collapse
Affiliation(s)
- Yeliz Serin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Cukurova University, 01380 Adana, Turkey
| | - Gamze Akbulut
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Turkey;
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Kent University, 34433 Istanbul, Turkey
| | - Mustafa Yaman
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, 34303 Istanbul, Turkey
| |
Collapse
|
35
|
Petakh P, Kamyshna I, Oksenych V, Kainov D, Kamyshnyi A. Metformin Therapy Changes Gut Microbiota Alpha-Diversity in COVID-19 Patients with Type 2 Diabetes: The Role of SARS-CoV-2 Variants and Antibiotic Treatment. Pharmaceuticals (Basel) 2023; 16:904. [PMID: 37375851 DOI: 10.3390/ph16060904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The gut microbiota play a crucial role in maintaining host health and have a significant impact on human health and disease. In this study, we investigated the alpha diversity of gut microbiota in COVID-19 patients and analyzed the impact of COVID-19 variants, antibiotic treatment, type 2 diabetes (T2D), and metformin therapy on gut microbiota composition and diversity. We used a culture-based method to analyze the gut microbiota and calculated alpha-diversity using the Shannon H' and Simpson 1/D indices. We collected clinical data, such as the length of hospital stay (LoS), C-reactive protein (CRP) levels, and neutrophil-to-lymphocyte ratio. We found that patients with T2D had significantly lower alpha-diversity than those without T2D. Antibiotic use was associated with a reduction in alpha-diversity, while metformin therapy was associated with an increase. We did not find significant differences in alpha-diversity between the Delta and Omicron groups. The length of hospital stay, CRP levels, and NLR showed weak to moderate correlations with alpha diversity. Our findings suggest that maintaining a diverse gut microbiota may benefit COVID-19 patients with T2D. Interventions to preserve or restore gut microbiota diversity, such as avoiding unnecessary antibiotic use, promoting metformin therapy, and incorporating probiotics, may improve patient outcomes.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Denis Kainov
- Department for Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
36
|
Chen J, Radjabzadeh D, Medina-Gomez C, Voortman T, van Meurs JBJ, Ikram MA, Uitterlinden AG, Kraaij R, Zillikens MC. Advanced Glycation End Products (AGEs) in Diet and Skin in Relation to Stool Microbiota: The Rotterdam Study. Nutrients 2023; 15:nu15112567. [PMID: 37299529 DOI: 10.3390/nu15112567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Advanced glycation end products (AGEs) are involved in age-related diseases, but the interaction of gut microbiota with dietary AGEs (dAGEs) and tissue AGEs in the population is unknown. OBJECTIVE Our objective was to investigate the association of dietary and tissue AGEs with gut microbiota in the population-based Rotterdam Study, using skin AGEs as a marker for tissue accumulation and stool microbiota as a surrogate for gut microbiota. DESIGN Dietary intake of three AGEs (dAGEs), namely carboxymethyl-lysine (CML), N-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MGH1), and carboxyethyl-lysine (CEL), was quantified at baseline from food frequency questionnaires. Following up after a median of 5.7 years, skin AGEs were measured using skin autofluorescence (SAF), and stool microbiota samples were sequenced (16S rRNA) to measure microbial composition (including alpha-diversity, beta-dissimilarity, and taxonomic abundances) as well as predict microbial metabolic pathways. Associations of both dAGEs and SAF with microbial measures were investigated using multiple linear regression models in 1052 and 718 participants, respectively. RESULTS dAGEs and SAF were not associated with either the alpha-diversity or beta-dissimilarity of the stool microbiota. After multiple-testing correction, dAGEs were not associated with any of the 188 genera tested, but were nominally inversely associated with the abundance of Barnesiella, Colidextribacter, Oscillospiraceae UCG-005, and Terrisporobacter, in addition to being positively associated with Coprococcus, Dorea, and Blautia. A higher abundance of Lactobacillus was associated with a higher SAF, along with several nominally significantly associated genera. dAGEs and SAF were nominally associated with several microbial pathways, but none were statistically significant after multiple-testing correction. CONCLUSIONS Our findings did not solidify a link between habitual dAGEs, skin AGEs, and overall stool microbiota composition. Nominally significant associations with several genera and functional pathways suggested a potential interaction between gut microbiota and AGE metabolism, but validation is required. Future studies are warranted, to investigate whether gut microbiota modifies the potential impact of dAGEs on health.
Collapse
Affiliation(s)
- Jinluan Chen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Djawad Radjabzadeh
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
37
|
Manilla V, Santopaolo F, Gasbarrini A, Ponziani FR. Type 2 Diabetes Mellitus and Liver Disease: Across the Gut-Liver Axis from Fibrosis to Cancer. Nutrients 2023; 15:nu15112521. [PMID: 37299482 DOI: 10.3390/nu15112521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Type 2 diabetes mellitus is a widespread disease worldwide, and is one of the cornerstones of metabolic syndrome. The existence of a strong relationship between diabetes and the progression of liver fibrosis has been demonstrated by several studies, using invasive and noninvasive techniques. Patients with type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) show faster progression of fibrosis than patients without diabetes. Many confounding factors make it difficult to determine the exact mechanisms involved. What we know so far is that both liver fibrosis and T2DM are expressions of metabolic dysfunction, and we recognize similar risk factors. Interestingly, both are promoted by metabolic endotoxemia, a low-grade inflammatory condition caused by increased endotoxin levels and linked to intestinal dysbiosis and increased intestinal permeability. There is broad evidence on the role of the gut microbiota in the progression of liver disease, through both metabolic and inflammatory mechanisms. Therefore, dysbiosis that is associated with diabetes can act as a modifier of the natural evolution of NAFLD. In addition to diet, hypoglycemic drugs play an important role in this scenario, and their benefit is also the result of effects exerted in the gut. Here, we provide an overview of the mechanisms that explain why diabetic patients show a more rapid progression of liver disease up to hepatocellular carcinoma (HCC), focusing especially on those involving the gut-liver axis.
Collapse
Affiliation(s)
- Vittoria Manilla
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center-CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|