1
|
Ouyang H, Liu X, Huo J, Wang P, Xie T, Yu X, Li S, Gao Y. Screening, identification, and mechanism of novel antioxidant peptides in walnut meal under aerobic stress. Food Chem 2025; 470:142677. [PMID: 39871436 DOI: 10.1016/j.foodchem.2024.142677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/05/2024] [Accepted: 12/25/2024] [Indexed: 01/29/2025]
Abstract
Walnut (Juglans regia L.) meal, being the primary by-product of walnut oil processing, is rich in high-quality proteins and of significant potential for development and utilization. The study used multi-stage gradient purification, liquid-quantity chromatography, and computerized virtual screening to isolate and characterize antioxidant peptides from walnut meal. Active sites and mechanism actions of antioxidant peptides were examined using oxidative damage model of HepG2 cells. Five novel peptides exhibiting high antioxidant activity were identified, among which YR-10 significantly increased the cell viability of HepG2 oxidatively damaged cells to 20.64 %. Meanwhile, YR-10 significantly reduced the ROS content to 42.54 % and apoptosis level to 11.80 % in HepG2 oxidatively damaged cells. In addition, YR-10 competed with Nrf2 for Keap1 binding site, inhibited Keap1 (13.83 %) expression, and promoted Nrf2 (27.15 %), HO-1 (34.59 %), and SOD1 (42.67 %) expression, which ultimately activated the Keap1/Nrf2/HO-1 pathway and alleviated oxidative damage.
Collapse
Affiliation(s)
- Hui Ouyang
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xiaolong Liu
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jiaying Huo
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ping Wang
- Construction Corps Key Laboratory of Deep Processing on Featured Agricultural Products in South Xinjiang, Tarim University, Alar 843300, China
| | | | - Xiongwei Yu
- Wuhan Xudong Food Co., Ltd., Wuhan 430000, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Ying Gao
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
2
|
Echavarría JAC, Mathé C, Girardet JM, Paris C, Udenigwe CC, Selmeczi K, Canabady-Rochelle L. Identification of Ni 2+-binding peptides in sunflower meal protein hydrolysate for deeper understanding of peptide-metal interactions. J Inorg Biochem 2025; 269:112877. [PMID: 40101340 DOI: 10.1016/j.jinorgbio.2025.112877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/11/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
Sunflower (Helianthus annus L.) is one of the most important oil crops in the world. Once oil extracted, sunflower meal by-product could offer a potential alternative for various food applications due to its high protein content. Derived from food protein hydrolysates, metal-binding peptides have attracted attention as bioactive compounds to prevent metal-induced oxidation and diseases. This study aimed to investigate the Ni2+-binding ability of sunflower meal protein hydrolysates and ten peptides theoretically present in sunflower proteins using IMAC, switchSENSE®, UV-vis and CD techniques. Single and sequential enzymatic treatments were applied to produce hydrolysates using Protamex® (Prot) and Protamex followed by Flavourzyme® (Prot+Flav), respectively. MS/MS analysis of enriched Ni2+-binding peptides fractions revealed different composition of His-containing peptides among hydrolysates; however, similar to the His-containing pure peptides, the Ni2+-binding ability of all the hydrolysates was almost identical in IMAC. On the contrary, switchSENSE® studies indicated that the Ni2+-binding ability of sunflower peptides does not depend only on the presence of His residues, but also on their position along the polypeptide chain and the presence of proline, suggesting that Prot hydrolysates exhibited the highest Ni2+-binding ability. UV-vis and CD data confirmed that sunflower peptides bound onto Ni2+ through nitrogen atoms from imidazole sidechain of His residues, deprotonated amide bonds and N-terminal amino group, indicating square-planar and also octahedral geometries in the formed complexes. Finally, His-containing peptides without proline could offer a suitable strategy to design metal-binding peptides from sunflower meal by-product, with the most promising motifs being LLHVT and WLH.
Collapse
Affiliation(s)
| | | | | | - Cédric Paris
- Université de Lorraine, LIBIO, F-54000 Nancy, France
| | - Chibuike C Udenigwe
- School of Nutrition Science, University of Ottawa, Ottawa, Ontario, K1H8M5, Canada
| | | | | |
Collapse
|
3
|
Quan Y, Chen L, Fan M, Zhao X, Hao J. Antioxidant Peptides from Tiger Nut ( Cyperus esculentus L.): Chemical Analysis and Cytoprotective Functions on HepG2 and Caco-2 Cells. Foods 2025; 14:349. [PMID: 39941943 PMCID: PMC11817487 DOI: 10.3390/foods14030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Tiger nuts were enzymatically hydrolyzed by Alcalase and then separated and purified by ultrafiltration classification and Sephadex G-15 fractionation to obtain tiger nut peptides. Their chemical antioxidant activities and cytoprotective functions on HepG2 and Caco-2 cells were systematically evaluated in this study. The tiger nut peptides (TNP) were found to perform excellent antioxidant activity supported by their chemical and cell antioxidant behaviors, amino acid composition, and morphological observation. Higher 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (DPPH• RSA, 64.05-124.07%) and ferric ion-reducing antioxidant power (FRAP, 0.17-1.78 μmol/mL) were observed in the TNP with more hydrophobic amino acids (41.77 ± 1.36 g/100 g) compared with traditional soybean and peanut peptides. Furthermore, the peptides from tiger nut (TNP, TNP-4, T1, T2, T3) could effectively protect H2O2-induced HepG2 and Caco-2 cells from oxidative damage by enhancing endogenous antioxidant enzyme activities and reducing oxidative stress levels, especially the T3 peptides purified from the fraction less than 1 kDa molecular weight. The catalase, superoxide dismutase, and glutathione peroxidase activities significantly increased, and the contents of intracellular reactive oxygen species and malondialdehyde decreased. This study highlights the potential of the peptides from tiger nuts as antioxidant ingredients for food applications.
Collapse
Affiliation(s)
| | | | | | - Xia Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.Q.); (L.C.); (M.F.)
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.Q.); (L.C.); (M.F.)
| |
Collapse
|
4
|
Tonolo F, Fiorese F, Rilievo G, Grinzato A, Latifidoost Z, Nikdasti A, Cecconello A, Cencini A, Folda A, Arrigoni G, Marin O, Rigobello MP, Magro M, Vianello F. Bioactive peptides from food waste: New innovative bio-nanocomplexes to enhance cellular uptake and biological effects. Food Chem 2025; 463:141326. [PMID: 39316902 DOI: 10.1016/j.foodchem.2024.141326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Mastitis is the most important bovine disease, causing dramatic economic losses to the dairy industry, worldwide. This study explores the valorization of whey from cows affected by mastitis, through a novel separation approach. Surface Active Maghemite Nanoparticles (SAMNs) were used as magnetic baits to selectively bind bioactive peptides with potential health benefits. Advanced techniques such as HPLC and LC-MS/MS highlighted SAMN capability of isolating a restricted group of peptides, drastically diverging from the control profile (Solid Phase Extraction, SPE) and characterized by a peculiar acidic residue distribution. Most importantly, both magnetically purified and nano-immobilized peptides (SAMN@peptides) showed protective activity against oxidative stress and inflammation, when tested on Caco-2 cells; with SAMN@peptides being associated with the strongest biological effect. SAMNs exhibited excellent characteristics, they are environmentally sustainable, and their synthesis is cost-effective prompting at a scalable and selective tool for capturing bioactive peptides, with potential applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Federico Fiorese
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alessandro Grinzato
- ESRF: European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Zahra Latifidoost
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Ali Nikdasti
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Aura Cencini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
5
|
Aït-Kaddour A, Hassoun A, Tarchi I, Loudiyi M, Boukria O, Cahyana Y, Ozogul F, Khwaldia K. Transforming plant-based waste and by-products into valuable products using various "Food Industry 4.0" enabling technologies: A literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176872. [PMID: 39414050 DOI: 10.1016/j.scitotenv.2024.176872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The last several years have seen unprecedented strain on food systems as a result of pandemics, climate change, population growth, and urbanization. Thus, academic and scientific communities now view global food security as a critical issue. However, food loss and waste are a major challenge when adopting food security and sustainability strategies, since a large proportion of food is lost or wasted along the food supply chain. In order to use resources efficiently and enhance food security and sustainability, food waste and by-products must be reduced and properly valorized. Plant-based food production generates various by-products which are generally rich in nutrients and bioactive compounds. Emerging technologies have been effectively employed to extract these valuable compounds with health benefits. Recently, Industry 4.0 technologies such as artificial intelligence, the Internet of Things, blockchain, robotics, smart sensors, 3D printing, and digital twins have a great deal of potential for waste reduction and by-products valorization in food industry. Reducing food waste not only benefits the environment, but also reduces greenhouse gas emissions and thus contributes to sustainable resource management. This review provides up-to-date information on the potential of Industry 4.0 for converting plant-based waste and by-products into valuable products. Recent studies showed that innovations in Industry 4.0 provide attractive opportunities to increase the effectiveness of manufacturing operations and improve food quality, safety and traceability. By leveraging Food Industry 4.0, companies can transform plant-based waste and by-products into valuable products and contribute to a more sustainable and efficient food production system.
Collapse
Affiliation(s)
- Abderrahmane Aït-Kaddour
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, F-63370 Lempdes, France; Laboratory of Food Chemistry, Department of Food Technology, Universitas Padjadjaran, Bandung, Indonesia.
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), 62000 Arras, France
| | - Inès Tarchi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, F-63370 Lempdes, France
| | - Mohammed Loudiyi
- Groupe d'Etude et de contrôle des Variétés Et des Semences (GEVES), 25 Rue Georges Morel, 49070 Beaucouzé, France
| | - Oumayma Boukria
- Applied Organic Chemistry Laboratory, Sciences and Techniques Faculty, Sidi Mohamed Ben Abdellah University, BP 2202 route d'Immouzer, Fes, Morocco
| | - Yana Cahyana
- Laboratory of Food Chemistry, Department of Food Technology, Universitas Padjadjaran, Bandung, Indonesia
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey; Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey
| | - Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Biotech Pole, Sidi Thabet 2020, Tunisia
| |
Collapse
|
6
|
Ji Z, Ma W, Liang P, Wang X, Zhang S, Han Y, Guo Y. Anti-inflammatory potential of mycoprotein peptides obtained from fermentation of Schizophyllum commune DS1 with young apples. Int J Biol Macromol 2024; 281:136638. [PMID: 39419141 DOI: 10.1016/j.ijbiomac.2024.136638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Fermenting edible filamentous fungi with food industry by-products, such as young apples, shows promise for producing mycoproteins and functional peptides. This study aimed to evaluate the production of mycoprotein by fermenting different edible-grade filamentous fungi using young apples as a substrate. Schizophyllum commune DS1 (DS1) demonstrated significant potential for generating mycoprotein, yielding 33.56 ± 0.82 %. From the hydrolysis of DS1 mycoprotein, three polypeptides were identified with the capacity of inhibiting nitric oxide synthase (iNOS): DNIQGITKPAIR (DR12), SDNAFGGR (SR8), and ASDPSGF (AF7). Computational analysis, including bioinformatics and molecular docking, indicated their high affinity for inhibiting iNOS, with binding energies of -452.8157 kcal/mol, -388.0222 kcal/mol, and -323.8843 kcal/mol, respectively. This binding was facilitated through various interactions such as electrostatic forces, π-π interactions, hydrogen bonds, and non-covalent interactions, resulting in potential anti-inflammatory properties. Furthermore, cell experiments using RAW264.7 macrophages demonstrated that these peptides effectively suppressed nitric oxide production in a dose-dependent manner. Additionally, they reduced the production of inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β), inducible iNOS, and cell apoptosis. In conclusion, this study presents a novel approach for developing plant-based mycoproteins and a new source for discovering food-derived bioactive peptides.
Collapse
Affiliation(s)
- Zhengmei Ji
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Wenjun Ma
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Pengfei Liang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Shuai Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China
| | - Yanhui Han
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China.
| | - Yurong Guo
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xi'an 710119, PR China.
| |
Collapse
|
7
|
Mendo S, Costa ID, Cattaneo S, Masotti F, Stuknytė M, Noni ID, Foschino R. Fermented blend from sunflower seed press-cake and bovine sweet whey: Protein breakdown during in vitro gastrointestinal digestion. Food Chem X 2024; 23:101745. [PMID: 39257490 PMCID: PMC11385999 DOI: 10.1016/j.fochx.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024] Open
Abstract
Sustainable food production implements circular economic system, valuing side streams and minimizing waste. This study was aimed to develop a new food by fermenting a blend of dehulled sunflower seed protein powder (SSPP) and reconstituted bovine sweet whey powder (RSWP). Blends were inoculated with Lactococcus lactis B12 alone or in association with Saccharomyces cerevisiae L12, and fermentation proceeded until reaching pH 4.8. After in vitro static gastrointestinal digestion, RSWP and SSPP proteins were highly proteolyzed and the soluble nitrogen content was 69-71% of total nitrogen. In digests, 42-75 unique peptides were identified, and most of them weighed 500-1000 Da. Free amino acids accounted for 202-228 mg/g protein in digests. Few bioactive peptides derived from RSWP were identified. These findings demonstrated strong degradability of RSWP and SSPP proteins during digestion and shed light on nutritional properties exploitable for food applications of the developed fermented blend.
Collapse
Affiliation(s)
- Sofia Mendo
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, Università degli Studi di Milano, Milan, Italy
| | - Irene Da Costa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefano Cattaneo
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabio Masotti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Milda Stuknytė
- Unitech COSPECT - COmprehensive Substances characterization via advanced sPECTtroscopy, Università degli Studi di Milano, Milan, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Roberto Foschino
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Scalcon V, Fiorese F, Albanesi M, Folda A, Betti G, Bellamio M, Feller E, Lodovichi C, Arrigoni G, Marin O, Rigobello MP. By-Products Valorization: Peptide Fractions from Milk Permeate Exert Antioxidant Activity in Cellular and In Vivo Models. Antioxidants (Basel) 2024; 13:1221. [PMID: 39456474 PMCID: PMC11504225 DOI: 10.3390/antiox13101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The discarding of agri-food by-products is a stringent problem due to their high environmental impact. Recovery strategies can lead to a reduction of waste and result in new applications. Agri-food waste represents a source of bioactive molecules, which could promote health benefits. The primary goal of this research has been the assessment of the antioxidant activity of milk permeate, a dairy farm by-product, and the isolation and identification of peptide fractions endowed with antioxidant activity. The chromatographic extraction of the peptide fractions was carried out, and the peptides were identified by mass spectrometry. The fractions showed radical scavenging activity in vitro. Moreover, the results in the Caco-2 cell model demonstrated that the peptide fractions were able to protect from oxidative stress by stimulating the Keap1/Nrf2 antioxidant signaling pathway, increasing the transcription of antioxidant enzymes. In addition, the bioactive peptides can affect cellular metabolism, increasing mitochondrial respiration. The action of the peptide fractions was also assessed in vivo on a zebrafish model and resulted in the protection of the whole organism from the adverse effects of acute cold stress, highlighting their strong capability to protect from an oxidative insult. Altogether, the results unveil novel recovery strategies for food by-products as sources of antioxidant bioactive peptides that might be utilized for the development of functional foods.
Collapse
Affiliation(s)
- Valeria Scalcon
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Federico Fiorese
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Marica Albanesi
- Padova Neuroscience Center (PNC), University of Padova, Via Orus 2, 35129 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Via Giuseppe Orus, 2, 35129 Padova, Italy
| | - Alessandra Folda
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Gianfranco Betti
- Centrale del Latte d’Italia S.p.A., Sede di Firenze, Via dell’Olmatello 20, 50127 Firenze, Italy
| | - Marco Bellamio
- Centrale del Latte d’Italia S.p.A., Sede di Vicenza, Via Faedo 60, 36100 Vicenza, Italy
| | - Emiliano Feller
- Centrale del Latte d’Italia S.p.A., Sede di Vicenza, Via Faedo 60, 36100 Vicenza, Italy
| | - Claudia Lodovichi
- Padova Neuroscience Center (PNC), University of Padova, Via Orus 2, 35129 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Via Giuseppe Orus, 2, 35129 Padova, Italy
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Viale G. Colombo 3, 35121 Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35132 Padova, Italy
| |
Collapse
|
9
|
Zhu Z, Xu Z, Li Y, Fan Y, Zhou Y, Song K, Meng L. Antioxidant Function and Application of Plant-Derived Peptides. Antioxidants (Basel) 2024; 13:1203. [PMID: 39456457 PMCID: PMC11505357 DOI: 10.3390/antiox13101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
With the development of society and the improvement of people's health consciousness, the demand for antioxidants is increasing. As a natural antioxidant with no toxic side effects, antioxidant peptides are widely used in food, cosmetics, medicine, and other fields because of their strong antioxidant capacity and easy absorption by the human body. Plant-derived antioxidant peptides have attracted more attention than animal-derived antioxidant peptides because plants are more diverse than animals and produce a large number of protein-rich by-products during the processing of their products, which are the main source of antioxidant peptides. In this review, we summarize the source, structure and activity, other biological functions, mechanism of action, and comprehensive applications of plant antioxidant peptides, and look forward to their future development trends, which will provide a reference for further research and development of plant antioxidant peptides.
Collapse
Affiliation(s)
- Zhengqing Zhu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Z.Z.); (Y.L.); (Y.Z.); (K.S.)
- College of Biology, Hunan University, Changsha 410012, China;
| | - Ziwu Xu
- College of Biology, Hunan University, Changsha 410012, China;
| | - Yuhang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Z.Z.); (Y.L.); (Y.Z.); (K.S.)
| | - Yutong Fan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| | - Yingqian Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Z.Z.); (Y.L.); (Y.Z.); (K.S.)
| | - Kaixin Song
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Z.Z.); (Y.L.); (Y.Z.); (K.S.)
| | - Lei Meng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Z.Z.); (Y.L.); (Y.Z.); (K.S.)
| |
Collapse
|
10
|
Yu M, Wang Y, Wang D, Cong H, Yu B. Screening and Exploring the Application of the Multifunctional Antioxidant Peptides MSWLC and TSWLC. Adv Healthc Mater 2024:e2401932. [PMID: 39101317 DOI: 10.1002/adhm.202401932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/18/2024] [Indexed: 08/06/2024]
Abstract
In this study, an antioxidant pentapeptide library is created based on antioxidant characteristics. The peptides are then purified and separated using liquid chromatography/mass spectrometry (LC/MS) and time-of-flight mass spectrometry (TOF). Chemical evaluations identify four peptides with excellent antioxidant activity. The four peptides undergo biocompatibility testing with L-929, NIH 3T3, and Hep-G2 cells. A model of hydrogen peroxide-induced cellular damage in G2 cells shows the peptides' protective and reparative effects against oxidative damage. Two peptides, MSWLC and TSWLC, which perform best overall, are chosen for further analysis. To explore the peptides' potential multifunctionality, acute liver inflammation, keratitis, and aging models are established in mice. MSWLC and TSWLC demonstrate anti-inflammatory and anti-aging properties. An antioxidant emulsion prepared by emulsification is found to be non-irritant in a mouse skin irritation test. In a mouse model exposed to ultraviolet radiation, the sunscreen exhibits excellent UV protection and antioxidant effects. These peptides possess potent antioxidant properties and multifunctionality, indicating broad application potential.
Collapse
Affiliation(s)
- Mingtao Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, College of Life Science, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yue Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, College of Life Science, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Dayang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, College of Life Science, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, College of Life Science, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, College of Life Science, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
11
|
Zhuang M, Li J, Wang A, Li G, Ke S, Wang X, Ning M, Sheng Z, Wang B, Zhou Z. Structurally manipulated antioxidant peptides derived from wheat bran: Preparation and identification. Food Chem 2024; 442:138465. [PMID: 38266414 DOI: 10.1016/j.foodchem.2024.138465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Bioactive peptide's development is facing two challenges in terms of its lower yield and limited understanding of structurally orientated functionality. Therefore, peptides were prepared from wheat bran via a cocktail enzyme for achieving a higher level of hydrophobic amino acids than traditional method. The obtained peptides exhibited great antioxidant activities against H2O2-induced oxidative stress in HepG2 cells. Among them, 91 bioactive peptides were selected through the virtual screening, and their N-terminal and C-terminal contained many hydrophobic amino acids. Then the peptides with capacity to interact with Keap1 were identified by in silico simulation, because Keap1 acts as a sensor of redox insults. The results revealed that peptides DLDW and DLGL demonstrated the highest binding affinities, and a bridge was formed between Asp of DLGL and Arg415 of Klech domain, contributing to interfering Keap1-Nrf2 interaction. These findings implied a potential application of wheat bran peptides as nutraceuticals and health-promoting ingredients.
Collapse
Affiliation(s)
- Min Zhuang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiaqing Li
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anqi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Gaoheng Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sheng Ke
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuanyu Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ming Ning
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China
| | - Zhanwu Sheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 570101, China
| | - Bing Wang
- Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China; Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
12
|
Liu C, Wang J, Hong D, Chen Z, Li S, Ma A, Jia Y. Preparation, Isolation and Antioxidant Function of Peptides from a New Resource of Rumexpatientia L. × Rumextianshanicus A. Los. Foods 2024; 13:981. [PMID: 38611286 PMCID: PMC11011613 DOI: 10.3390/foods13070981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Rumexpatientia L. ×Rumextianshanicus A. Los (RRL), known as "protein grass" in China, was recognized as a new food ingredient in 2021. However, the cultivation and product development of RRL are still at an early stage, and no peptide research has been reported. In this study, two novel antioxidant peptides, LKPPF and LPFRP, were purified and identified from RRL and applied to H2O2-induced HepG2 cells to investigate their antioxidant properties. It was shown that 121 peptides were identified by ultrafiltration, gel filtration chromatography, and LC-MS/MS, while computer simulation and molecular docking indicated that LKPPF and LPFRP may have strong antioxidant properties. Both peptides were not cytotoxic to HepG2 cells at low concentrations and promoted cell growth, which effectively reduced the production of intracellular ROS and MDA, and increased cell viability and the enzymatic activities of SOD, GSH-Px, and CAT. Therefore, LKPPF and LPFRP, two peptides, possess strong antioxidant activity, which provides a theoretical basis for their potential as food additives or functional food supplements, but still need to be further investigated through animal models as well as cellular pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (C.L.); (J.W.); (D.H.); (Z.C.); (S.L.); (A.M.)
| |
Collapse
|