1
|
Restrepo Salazar IC, Peñuela Mesa GA. Influence of temperature, relative humidity, and storage time conditions on ochratoxin a production by Aspergillus niger fungi in dry parchment coffee. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:491-502. [PMID: 39903872 DOI: 10.1080/19440049.2025.2459211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
The influence of temperature, relative humidity, and storage time on the production of Ochratoxin A by the fungus Aspergillus niger in dry parchment coffee was determined under controlled laboratory conditions. Additionally, the roasting curve that would achieve maximum reduction of OTA concentration in roasted coffee was evaluated. The objective was to establish strategies to reduce the risk of product contamination by this mycotoxin in coffee farms and its presence in coffee ready for consumption. For the analysis of the influence of temperature, relative humidity, and storage times on OTA production, sterilized coffee samples incubated with the A. niger strain were used. To obtain the roasting curves, coffee samples stored for 15 days at a temperature of 23 °C and relative humidity of 60% were employed. The OTA concentration of each study samples was quantified by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). The results obtained enabled: (1) The understanding of the conditions of temperature, relative humidity, and storage time that favor the production of the toxin by A. niger, thus allowing the development of coffee storage protocols that reduce grain contamination by this toxin, as it was found that increases in storage time and decreases in temperature and relative humidity to certain values are associated with increases in OTA concentration in the DPC. (2) Identifying the roasting curve whereby the coffee was subjected to temperatures from 180 °C to 208.8 °C for 11.23 min, achieving an OTA degradation of 76.4%. This curve serves as a guide for the adjustment of the temperatures and roasting times around the variables present in the process, achieving different roasting profiles, a significant reduction of OTA without affecting the quality of the coffee, and facilitating different chemical, physical, and organoleptic characteristics that can accommodate consumers' tastes and ensure a safe beverage.
Collapse
Affiliation(s)
- Isabel Cristina Restrepo Salazar
- Faculty of Engineering, Environmental School, Pollution Diagnosis and Control Group, University of Antioquia, Medellín, Colombia
| | - Gustavo Antonio Peñuela Mesa
- Faculty of Engineering, Environmental School, Pollution Diagnosis and Control Group, University of Antioquia, Medellín, Colombia
| |
Collapse
|
2
|
Massahi T, Kiani A, Moradi M, Soleimani H, Omer AK, Habibollahi MH, Mansouri B, Sharafi K. A worldwide systematic review of ochratoxin A in various coffee products - human exposure and health risk assessment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1594-1610. [PMID: 39259858 DOI: 10.1080/19440049.2024.2400697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Coffee is one of the most commonly consumed beverages worldwide, so assessing its quality for potential health risks is essential. Therefore, this review aimed to determine the levels of ochratoxin A (OTA) in coffee worldwide and then estimate its human intake and health risks. The systematic search took place from June 1997 to April 2024 and 40 of 254 articles were selected based on the selection criteria. The results showed significant differences in average levels of OTA between countries, continents and coffee types (p < 0.001). Of 3256 samples, OTA was detected in 1778, accounting for 54.6% of the total, with the percentage of positive results varying between 7.5% and 100%. Only two studies reported OTA average levels in roasted coffee exceeding the maximum limit (ML) set by the European Commission (ML-EC = 5 μg/kg). The average OTA in soluble coffee was lower than ML-EC (10 μg/kg) in all studies, and in instant coffee, the level of OTA was higher than ML-EC (10 μg/kg) only in one study. The estimated daily intake (EDI) of OTA in all coffee types was lower than the provisional tolerable daily intake (PTDI) values set by joint FAO/WHO Expert Committee on Food Additives (JECFA) (14 ng/kg bw/day) and proposed by the European Food Safety Authority (EFSA) (17 ng/kg bw/day). Non-carcinogenic risk assessment through coffee consumption indicated that the hazard quotient (HQ) was below the acceptable level, HQ = 1. The Margin of Exposure (MoE) for neoplastic effects was acceptable and unacceptable for non-neoplastic effects (NNE) in 4.5% (one of 22 cases) of the roasted and soluble coffees, but acceptable for all instant coffees. In conclusion, the study shows that the OTA content of coffee is not toxic to consumers worldwide. However, preventative measures should be taken, including inhibiting fungal growth and reducing OTA-producing fungal growth.
Collapse
Affiliation(s)
- Tooraj Massahi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamed Soleimani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiomars Sharafi
- Social Development and Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Fakhri Y, Mahdavi V, Ranaei V, Pilevar Z, Sarafraz M, Mahmudiono T, Khaneghah AM. Ochratoxin A in coffee and coffee-based products: a global systematic review, meta-analysis, and probabilistic risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:211-220. [PMID: 36372738 DOI: 10.1515/reveh-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Contamination of food with mycotoxins can pose harmful effects on the health of consumers in the long term. Coffee contamination with mycotoxins has become a global concern. This study attempted to meta-analyze the concentration and prevalence of ochratoxin A (OTA) in coffee products and estimate consumers' health risks. The search was conducted among international databases, including Scopus, PubMed, Embase, and Web of Science, for 1 January 2010 to 1 May 2022. The concentration and prevalence of OTA in coffee products were meta-analyzed according to country subgroups. Health risk assessment was conducted based on Margin of Exposures (MOEs) using the Monte Carlo simulation (MCS) technique. The three countries that had the highest Pooled concentration of OTA in coffee were observed in Chile (100.00%), Kuwait (100.00%), and France (100.00%). The overall prevalence of OTA in coffee products was 58.01%, 95% CI (48.37-67.39). The three countries that had the highest concentration of OTA were Philippines (39.55 μg/kg) > Turkey (39.32 μg/kg) > and Panama (21.33 μg/kg). The mean of MOEs in the adult consumers in Panama (9,526) and the Philippines (8,873) was lower than 10,000, while the mean of MOEs in other countries was higher than 10,000. Therefore, monitoring and control plans should be carried out in different countries.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Vahid Ranaei
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Mansour Sarafraz
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
4
|
Ji J, Wang D, Wang Y, Hou J. Relevant mycotoxins in oil crops, vegetable oils, de-oiled cake and meals: Occurrence, control, and recent advances in elimination. Mycotoxin Res 2024; 40:45-70. [PMID: 38133731 DOI: 10.1007/s12550-023-00512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Mycotoxins in agricultural commodities have always been a concern due to their negative impacts on human and livestock health. Issues associated with quality control, hot and humid climate, improper storage, and inappropriate production can support the development of fungus, causing oil crops to suffer from mycotoxin contamination, which in turn migrates to the resulting oil, de-oiled cake and meals during the oil processing. Related research which supports the development of multi-mycotoxin prevention programs has resulted in satisfactory mitigation effects, mainly in the pre-harvest stage. Nevertheless, preventive actions are unlikely to avoid the occurrence of mycotoxins completely, so removal strategies may still be necessary to protect consumers. Elimination of mycotoxin has been achieved broadly through the physical, biological, or chemical course. In view of the steadily increasing volume of scientific literature regarding mycotoxins, there is a need for ongoing integrated knowledge systems. This work revisited the knowledge of mycotoxins affecting oilseeds, food oils, cake, and meals, focusing more on their varieties, toxicity, and preventive strategies, including the methods adopted in the decontamination, which supplement the available information.
Collapse
Affiliation(s)
- Junmin Ji
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| | - Dan Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yan Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Jie Hou
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
5
|
Alkuwari A, Hassan ZU, Zeidan R, Al-Thani R, Jaoua S. Occurrence of Mycotoxins and Toxigenic Fungi in Cereals and Application of Yeast Volatiles for Their Biological Control. Toxins (Basel) 2022; 14:toxins14060404. [PMID: 35737064 PMCID: PMC9228409 DOI: 10.3390/toxins14060404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Fungal infections in cereals lead to huge economic losses in the food and agriculture industries. This study was designed to investigate the occurrence of toxigenic fungi and their mycotoxins in marketed cereals and explore the effect of the antagonistic yeast Cyberlindnera jadinii volatiles against key toxigenic fungal strains. Aspergillus spp. were the most frequent contaminating fungi in the cereals, with an isolation frequency (Fr) of 100% in maize, followed by wheat (88.23%), rice (78.57%) and oats (14.28%). Morphological and molecular identification confirmed the presence of key toxigenic fungal strains in cereal samples, including A. carbonarius, A. flavus, A. niger, A. ochraceus and A. parasiticus. Aflatoxins (AFs) were detected in all types of tested cereal samples, with a significantly higher level in maize compared to wheat, rice, oats and breakfast cereals. Ochratoxin A (OTA) was only detected in wheat, rice and maize samples. Levels of mycotoxins in cereals were within EU permissible limits. The volatiles of Cyberlindnera jadinii significantly inhibited the growth of A. parasiticus, A. niger and P. verrucosum. The findings of this study confirm the presence of toxigenic fungi and mycotoxins in cereals within the EU permissible limits and the significant biocontrol ability of Cyberlindnera jadinii against these toxigenic fungi.
Collapse
|
6
|
Zapaśnik A, Bryła M, Waśkiewicz A, Ksieniewicz-Woźniak E, Podolska G. Ochratoxin A and 2' R-Ochratoxin A in Selected Foodstuffs and Dietary Risk Assessment. Molecules 2021; 27:188. [PMID: 35011417 PMCID: PMC8746423 DOI: 10.3390/molecules27010188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to estimate the contamination of grain coffee, roasted coffee, instant coffee, and cocoa purchased in local markets with ochratoxin A (OTA) and its isomerization product 2'R-ochratoxin A (2'R-OTA), and to assess risk of dietary exposure to the mycotoxins. OTA and 2'R-OTA content was determined using the HPLC chromatography with immunoaffinity columns dedicated to OTA. OTA levels found in all the tested samples were below the maximum limits specified in the European Commission Regulation EC 1881/2006. Average OTA concentrations calculated for positive samples of grain coffee/roasted coffee/instant coffee/cocoa were 0.94/0.79/3.00/0.95 µg/kg, with the concentration ranges: 0.57-1.97/0.44-2.29/0.40-5.15/0.48-1.97 µg/kg, respectively. Average 2'R-OTA concentrations calculated for positive samples of roasted coffee/instant coffee were 0.90/1.48 µg/kg, with concentration ranges: 0.40-1.26/1.00-2.12 µg/kg, respectively. In turn, diastereomer was not found in any of the tested cocoa samples. Daily intake of both mycotoxins with coffee/cocoa would be below the TDI value even if the consumed coffee/cocoa were contaminated with OTA/2'R-OTA at the highest levels found in this study. Up to now only a few papers on both OTA and 2'R-OTA in roasted food products are available in the literature, and this is the first study in Poland.
Collapse
Affiliation(s)
- Agnieszka Zapaśnik
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland;
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Grażyna Podolska
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|
7
|
Al Attiya W, Hassan ZU, Al-Thani R, Jaoua S. Prevalence of toxigenic fungi and mycotoxins in Arabic coffee (Coffea arabica): Protective role of traditional coffee roasting, brewing and bacterial volatiles. PLoS One 2021; 16:e0259302. [PMID: 34714880 PMCID: PMC8555823 DOI: 10.1371/journal.pone.0259302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022] Open
Abstract
Fungal infection and synthesis of mycotoxins in coffee leads to significant economic losses. This study aimed to investigate the prevalence of toxigenic fungi, their metabolites, and the effect of traditional roasting and brewing on ochratoxin A (OTA) and aflatoxins (AFs) contents of naturally contaminated coffee samples. In addition, in vivo biocontrol assays were performed to explore the antagonistic activities of Bacillus simplex 350–3 (BS350-3) on the growth and mycotoxins synthesis of Aspergillus ochraceus and A. flavus. The relative density of A. niger, A. flavus, Penicillium verrucosum and A. carbonarius on green coffee bean was 60.82%, 7.21%, 3.09% and 1.03%, respectively. OTA contents were lowest in green coffee beans (2.15 μg/kg), followed by roasted (2.76 μg/kg) and soluble coffee (8.95 μg/kg). Likewise, AFs levels were highest in soluble coffee (90.58 μg/kg) followed by roasted (33.61 μg/kg) and green coffee (9.07 μg/kg). Roasting naturally contaminated coffee beans at three traditional methods; low, medium and high, followed by brewing resulted in reduction of 58.74% (3.50 μg/kg), 60.88% (3.72 μg/kg) and 64.70% (4.11 μg/kg) in OTA and 40.18% (34.65 μg/kg), 47.86% (41.17 μg/kg) and 62.38% (53.73 μg/kg) AFs contents, respectively. Significant inhibitions of AFs and OTA synthesis by A. flavus and A. carbonarius, respectively, on infected coffee beans were observed in presence of Bacillus simplex BS350-3 volatiles. Gas chromatography mass spectrochemistry (GC-MS/MS) analysis of head-space BS350-3 volatiles showed quinoline, benzenemethanamine and 1-Octadecene as bioactive antifungal molecules. These findings suggest that marketed coffee samples are generally contaminated with OTA and AFs, with a significant level of roasted and soluble coffee contaminated above EU permissible limits for OTA. Further, along with coffee roasting and brewing; microbial volatiles can be optimized to minimize the dietary exposure to mycotoxins.
Collapse
Affiliation(s)
- Wadha Al Attiya
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
- * E-mail:
| |
Collapse
|
8
|
|
9
|
Ochratoxin A Induces Oxidative Stress in HepG2 Cells by Impairing the Gene Expression of Antioxidant Enzymes. Toxins (Basel) 2021; 13:toxins13040271. [PMID: 33918675 PMCID: PMC8068875 DOI: 10.3390/toxins13040271] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin frequently found in raw and processed foods. While it is considered a possible human carcinogen, the mechanism of action remains unclear. OTA has been shown to be hepatotoxic in both in vitro and in vivo models and oxidative stress may be one of the factors contributing to its toxicity. Hence, the effect of OTA on human hepatocellular carcinoma, HepG2 cells, was investigated on oxidative stress parameters. The cytotoxicity of OTA on HepG2 was time- and dose-dependent within a range between 0.1 and 10 µM; while 100 μM of OTA increased the intracellular reactive oxygen species (ROS) in a time-dependent manner. Additionally, the levels of glutathione (GSH) were increased by 9.7% and 11.3% at 10 and 100 nM of OTA, respectively; while OTA at 100 μM depleted GSH by 40.5% after 24 h exposure compared with the control. Finally, the mRNA level of catalase (CAT) was downregulated by 2.33-, 1.92-, and 1.82-fold after cells were treated with 1, 10, and 10 μM OTA for 24 h, respectively; which was linked to a decrease in CAT enzymatic activity. These results suggest that oxidative stress is involved in OTA-mediated toxicity in HepG2 cells.
Collapse
|
10
|
Ochratoxin A and citrinin in green coffee and dietary supplements with green coffee extract. Toxicon 2020; 188:172-177. [PMID: 33096150 DOI: 10.1016/j.toxicon.2020.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022]
Abstract
The aim of this study was to determine the degree of mold contamination and mycotoxin levels in commercially available green coffee products and dietary supplements with green coffee extract. The study included 34 samples from green coffee products: raw beans (n = 16), ground coffee (n = 15) and instant coffee (n = 3), as well as 22 samples from dietary supplements in form of capsules (n = 19), tablets (n = 2) and sachets (n = 1). Total mold count was determined with spread-plate method. Anamorphic mold were identified based on their microscopic morphology and the type of sporulation. Concentrations of mycotoxins, ochratoxin A and citrinin, were quantified by means of HPLC-fluorescence detection. Molds, typically Aspergillus spp. and Penicillium spp., were found in 94% of green coffee beans, 100% of ground and instant coffee samples, and 55% of dietary supplement samples. None of the samples contained detectable levels of citrinin. Ochratoxin A (0.4 ng/g) was detected in only one sample of raw green coffee beans, but in up to 40% and 67% of ground and instant coffee samples, respectively. Mean concentrations of ochratoxin A in ground and instant coffee samples were 3.28 ng/g and 4.09 ng/g, respectively, and maximum concentrations amounted to 6.65 ng/g and 7.44 ng/g, respectively. Ochratoxin A (mean concentration 9.60 ng/g, maximum level 31.4 ng/g) was also detected in up to 58% of the supplement capsules, but in none of tablets and sachets.
Collapse
|
11
|
|
12
|
Jalili M, Selamat J, Rashidi L. Effect of thermal processing and traditional flavouring mixture on mycotoxin reduction in pistachio. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of heating (roasting and microwave radiation heating) along with a traditional pistachio flavouring mixture (containing verjuice, thyme extract, and sodium chloride) was investigated on reducing aflatoxins (AFs) and ochratoxin A (OTA) in pistachios. The naturally and artificially contaminated samples were soaked in the flavouring mixture (for 5, 10 and 24 h) and then subjected to roasting (at 120 and 150 °C for 50 min) and heating by microwave radiation (6 and 10 min). The residual mycotoxins were determined by high-performance liquid chromatography. The results showed that all treatments were able to reduce mycotoxin content (aflatoxin B1, B2, G1, G2 and OTA) significantly (P<0.05), up to 85.7±2.5% (during roasting) and up to 72.5±2.6% (during heating by microwave radiation). The highest reduction of AFs and OTA (ranging from 51.7±2.3 to 85.7±2.5%) was found when the contaminated (naturally and artificially) samples were soaked in the traditional mixture for 24 h and roasted at 150 °C. It could be concluded that the traditional flavouring method in combination with the roasting process or heating by microwave radiation could be applied as a useful and safe method for mycotoxin degradation in pistachio. Although, complete elimination of mycotoxins was not achieved, the method reduced mycotoxins more than 60% without adverse effect on the taste and appearance of pistachios.
Collapse
Affiliation(s)
- M. Jalili
- Department of Food Industries and Agricultural Research, Standard Research Institute (SRI), Karaj 78894318, Iran
| | - J. Selamat
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Malaysia
- Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia
| | - L. Rashidi
- Department of Food Industries and Agricultural Research, Standard Research Institute (SRI), Karaj 78894318, Iran
| |
Collapse
|
13
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
14
|
Khaneghah AM, Fakhri Y, Abdi L, Coppa CFSC, Franco LT, de Oliveira CAF. The concentration and prevalence of ochratoxin A in coffee and coffee-based products: A global systematic review, meta-analysis and meta-regression. Fungal Biol 2019; 123:611-617. [DOI: 10.1016/j.funbio.2019.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023]
|
15
|
Sueck F, Hemp V, Specht J, Torres O, Cramer B, Humpf HU. Occurrence of the Ochratoxin A Degradation Product 2'R-Ochratoxin A in Coffee and Other Food: An Update. Toxins (Basel) 2019; 11:toxins11060329. [PMID: 31181754 PMCID: PMC6628416 DOI: 10.3390/toxins11060329] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022] Open
Abstract
Food raw materials can contain the mycotoxin ochratoxin A (OTA). Thermal processing of these materials may result in decreased OTA levels but also in the formation of the thermal isomerization product 2′R-ochratoxin A (2′R-OTA). So far, only 2′R-OTA levels reported from 15 coffee samples in 2008 are known, which is little when compared to the importance of coffee as a food and trading good. Herein, we present results from a set of model experiments studying the effect of temperatures between 120 °C and 270 °C on the isomerization of OTA to 2′R-OTA. It is shown that isomerization of OTA starts at temperatures as low as 120 °C. At 210 °C and above, the formation of 25% 2′R-OTA is observed in less than one minute. Furthermore, 51 coffee samples from France, Germany, and Guatemala were analyzed by HPLC-MS/MS for the presence of OTA and 2′R-OTA. OTA was quantified in 96% of the samples, while 2′R-OTA was quantifiable in 35% of the samples. The highest OTA and 2′R-OTA levels of 28.4 µg/kg and 3.9 µg/kg, respectively, were detected in coffee from Guatemala. The OTA:2′R-OTA ratio in the samples ranged between 2.5:1 and 10:1 and was on average 5.5:1. Besides coffee, 2′R-OTA was also for the first time detected in a bread sample and malt coffee powder.
Collapse
Affiliation(s)
- Franziska Sueck
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| | - Vanessa Hemp
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| | - Jonas Specht
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| | - Olga Torres
- Laboratorio Diagnostico Molecular S.A, Guatemala City, Guatemala.
- Centro de Investigaciones en Nutrición y Salud, Guatemala City, Guatemala.
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, 48149 Münster, Germany.
| |
Collapse
|
16
|
Oliveira G, Evangelista SR, Passamani FRF, Santiago WD, Cardoso MDG, Batista LR. Influence of temperature and water activity on Ochratoxin A production by Aspergillus strain in coffee south of Minas Gerais/Brazil. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Sousa TMA, Batista LR, Passamani FRF, Lira NA, Cardoso MG, Santiago WD, Chalfoun SM. Evaluation of the effects of temperature on processed coffee beans in the presence of fungi and ochratoxin A. J Food Saf 2018. [DOI: 10.1111/jfs.12584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- T. M. A. Sousa
- Department of Food ScienceFederal University of Lavras (UFLA) Lavras MG Brazil
| | - L. R. Batista
- Department of Food ScienceFederal University of Lavras (UFLA) Lavras MG Brazil
| | - F. R. F. Passamani
- Department of BiologyFederal University of Lavras (UFLA) Lavras MG Brazil
| | - N. A. Lira
- Department of BiologyFederal University of Lavras (UFLA) Lavras MG Brazil
| | - M. G. Cardoso
- Department of ChemistryFederal University of Lavras (UFLA) Lavras MG Brazil
| | - W. D. Santiago
- Department of ChemistryFederal University of Lavras (UFLA) Lavras MG Brazil
| | - S. M. Chalfoun
- Agricultural Research Company of Minas Gerais (EPAMIG) Lavras MG Brazil
| |
Collapse
|
18
|
Mansouri‐Nasrabadi R, Milani JM, Nazari SSJ. Optimization of washing and cooking processes of rice for Ochratoxin A decrement by RSM. Food Sci Nutr 2018; 6:2523-2529. [PMID: 30510753 PMCID: PMC6261198 DOI: 10.1002/fsn3.860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
In this research, effects of washing and cooking processes on the decrease in ochratoxin A (OTA) residue in rice were investigated. Rice samples were washed one, two, and three times in the washing stage. Results showed that the washing stage was effective on OTA residue as 42.68% of OTA was removed. In the cooking stage, the effects of boiling time, salt content, and water-to-rice ratio on OTA residue were studied employing response surface methodology (RSM). The results showed that time and salt content, interaction between time and salt content, and interaction between salt content and water-to-rice ratio were effective on the amount of OTA residue. According to the results, the optimum levels for boiling time, salt content, and water-to-rice ratio were 9.6 min, 3.5% salt, and 4:1, respectively. At these conditions, 76% of the OTA in rice was reduced.
Collapse
Affiliation(s)
- Rezvan Mansouri‐Nasrabadi
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Jafar Mohammadzadeh Milani
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| | | |
Collapse
|
19
|
The efficiency of lactic acid bacteria against pathogenic fungi and mycotoxins. Arh Hig Rada Toksikol 2018; 69:32-45. [PMID: 29604200 DOI: 10.2478/aiht-2018-69-3051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/01/2018] [Indexed: 11/20/2022] Open
Abstract
Mycotoxins are produced by some fungal species of the genera Aspergillus, Penicillium, and Fusarium and are common contaminants of a wide range of food commodities. Numerous strategies are used to minimise fungal growth and mycotoxin contamination throughout the food chain. This review addresses the use of lactic acid bacteria, which can inhibit fungal growth and participate in mycotoxin degradation and/or removal from contaminated food. Being beneficial for human and animal health, lactic acid bacteria have established themselves as an excellent solution to the problem of mycotoxin contamination, yet in practice their application in removing mycotoxins remains a challenge to be addressed by future research.
Collapse
|
20
|
Shanakhat H, Sorrentino A, Raiola A, Romano A, Masi P, Cavella S. Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4003-4013. [PMID: 29412472 DOI: 10.1002/jsfa.8933] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Mycotoxins are secondary metabolites produced by moulds in food that are considered a substantial issue in the context of food safety, due to their acute and chronic toxic effects on animals and humans. Therefore, new accurate methods for their identification and quantification are constantly developed in order to increase the performance of extraction, improve the accuracy of identification and reduce the limit of detection. At the same time, several industrial practices have shown the ability to reduce the level of mycotoxin contamination in food. In particular, a decrease in the amount of mycotoxins could result from standard processes naturally used for food processing or by procedures strategically introduced during processing, with the specific aim of reducing the amount of mycotoxins. In this review, the current methods adopted for accurate analyses of mycotoxins in cereals (aflatoxins, ochratoxins, trichothecenes, fumonisins) are discussed. In addition, both conventional and innovative strategies adopted to obtain safer finished products from common cereals intended for human consumption will be explored and analysed. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hina Shanakhat
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Sorrentino
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Assunta Raiola
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Annalisa Romano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Paolo Masi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Silvana Cavella
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Barcelo JM, Barcelo RC. Post-harvest practices linked with ochratoxin A contamination of coffee in three provinces of Cordillera Administrative Region, Philippines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:328-340. [DOI: 10.1080/19440049.2017.1393109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jonathan M. Barcelo
- Department of Medical Laboratory Science, School of Natural Sciences, Saint Louis University, Baguio City, Philippines
| | - Racquel C. Barcelo
- Department of Biology, School of Natural Sciences, Saint Louis University, Baguio City, Philippines
| |
Collapse
|
22
|
Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T, Dussort P. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res 2016; 32:179-205. [PMID: 27554261 PMCID: PMC5063913 DOI: 10.1007/s12550-016-0257-7] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 11/15/2022]
Abstract
Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.
Collapse
Affiliation(s)
- Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Georg-August-University Göttingen, Grisebachstrasse6, 37077, Göttingen, Germany
| | - Michele Suman
- Barilla G. R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, 43122, Parma, Italy
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430, Tulln, Austria
| | - Johan De Meester
- Cargill R&D Center Europe, Havenstraat 84, B-1800, Vilvoorde, Belgium
| | - Gerhard Eisenbrand
- Department of Chemistry, Division of Food Chemistry and Toxicology, Germany (retired), University of Kaiserslautern, P.O.Box 3049, 67653, Kaiserslautern, Germany
| | - Irène Perrin
- Nestlé Research Center, Vers-chez-les-Blanc, PO Box 44, 1000, Lausanne 26, Switzerland
| | - Isabelle P Oswald
- INRA, UMR 1331 ToxAlim, Research Center in Food Toxicology, 180 chemin de Tournefeuille, BP93173, 31027, Toulouse, France
- Université de Toulouse, INP, UMR1331, Toxalim, Toulouse, France
| | - Gerrit Speijers
- General Health Effects Toxicology Safety Food (GETS), Winterkoning 7, 34353 RN, Nieuwegein, The Netherlands
| | - Alessandro Chiodini
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium
| | - Tobias Recker
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium
| | - Pierre Dussort
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium.
| |
Collapse
|
23
|
Santos JR, Lopo M, Rangel AO, Lopes JA. Exploiting near infrared spectroscopy as an analytical tool for on-line monitoring of acidity during coffee roasting. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Gil-Serna J, Vázquez C, García Sandino F, Márquez Valle A, González-Jaén MT, Patiño B. Evaluation of growth and ochratoxin A production by Aspergillus steynii and Aspergillus westerdijkiae in green-coffee based medium under different environmental conditions. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.01.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|