1
|
Maalaoui A, Trimeche A, Marnet PG. Alternative approaches to antibiotics in the control of mastitis in dairy cows: a review. Vet Res Commun 2025; 49:150. [PMID: 40126814 DOI: 10.1007/s11259-025-10720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/15/2025] [Indexed: 03/26/2025]
Abstract
Bovine mastitis is the most widespread and economically burdensome condition affecting dairy herds worldwide, causing substantial financial losses in the livestock and dairy sectors. The main approach to treating mastitis in dairy cows is based on the administration of antibiotics. However, their widespread use has led to the emergence of antibiotic-resistant pathogens, and thus to numerous food safety problems. Consequently, a growing body of scientific research has been directed towards exploring new and effective therapeutic alternatives for the management of bovine mastitis, which could replace conventional antibiotic therapy. This review surveys the various alternative strategies employed in the prevention and treatment of mastitis in dairy cattle. These strategies include nanoparticle therapy, bacteriophage therapy, vaccination, phytotherapy, the use of animal proteins, probiotics and bacteriocins. In addition, the potential synergistic effects resulting from the combination of these treatments has shown real benefits that will be highlighted.
Collapse
Affiliation(s)
- Abir Maalaoui
- Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, 9000, Tunisia.
- Laboratoire de recherche gestion de la santé et de la qualité des productions animales, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet, Université de La Manouba, Ariana, 2020, Tunisia.
| | - Abdesselem Trimeche
- Laboratoire de recherche gestion de la santé et de la qualité des productions animales, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet, Université de La Manouba, Ariana, 2020, Tunisia
| | - Pierre Guy Marnet
- Département Productions animales, agroalimentaire, nutrition, service des sciences et productions animales, Institut Agro Rennes-Angers, 65 rue de St Brieuc, Rennes, 35000, France
- Laboratoire SELMET (Systèmes d'élevage méditerranéens et tropicaux), CIRAD/Inrae/Institut Agro, Campus international de Baillarguet, Montpellier Cedex 5, 34398, France
| |
Collapse
|
2
|
Faramarzi H, Fazeli F, Shariatifar N, Ghorbani-HasanSaraei A, Shahidi SA. Investigating the inhibitory effect of nettle (Urtica dioica L.) essential oil and Pickering nanoemulsion on some pathogenic bacteria inoculated into pizza cheese. Int J Food Microbiol 2025; 430:111060. [PMID: 39798382 DOI: 10.1016/j.ijfoodmicro.2025.111060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The aim of the present research was to evaluate the effect of Urtica dioica L. (nettle) essential oil (in the forms of Pickering nanoemulsion (NEO) and free (EO)) on microbial, chemical and sensory changes of pizza cheese stored at 4 °C for 12 days. For this purpose, Escherichia coli and Listeria monocytogenes were inoculated into pizza cheese. In all tests, the control group had the lowest score after 12 days of storage. In the antimicrobial assay test in different treatments, NEO4% treatment decreased the growth of E.coli from 4 (0th day) to 3.3 log CFU/g (12th day) and the growth of L. monocytogenes from 3.8 (0th day) to 3.1 log CFU/g (12th day). The minimum inhibitory concentration (MIC) of NEO and EO for E.coli and L. monocytogenes was 0.62 ± 0.01 mg/mL. Additionally, the minimum bactericidal concentration (MBC) of EO and NEO for E. coli was 25 ± 0.1 mg/mL, and for L. monocytogenes was 1.25 ± 0.1 mg/mL. At day 12, almost all treatments (free form and nano) had relatively similar pH. In our study, the minimum and maximum value of DPPH was detected in the treatment of NEO1% (31.25 ± 1.50 %) and BHT200 (96.40 ± 2.5 %), respectively. Also, on the 12th day of the test, the NEO treatment obtained the highest score in all sensory tests (appearance & color, body & texture, odor and overall acceptability). According to the findings of the present study, Pickering emulsion form of nettle EO increases the storage period of pizza cheese.
Collapse
Affiliation(s)
- Hossein Faramarzi
- Department of Food Science and Technology, Ayatollah Amoi Branch, Islamic Azad University, Amol, Iran
| | - Fatemeh Fazeli
- Department of Food Science and Technology, Ayatollah Amoi Branch, Islamic Azad University, Amol, Iran.
| | - Nabi Shariatifar
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoi Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
3
|
Yu L, Peng J, Han Q, Huang W, Jiang Y, Ruan Y, Liu X, Milcovich G, Weng X. Encapsulation of thyme essential oil in dendritic mesoporous silica nanoparticles: Enhanced antimycotic properties and ROS-mediated inhibition mechanism. Int J Pharm 2025; 669:125057. [PMID: 39653292 DOI: 10.1016/j.ijpharm.2024.125057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Dendritic mesoporous silica nanoparticles (DMSNs) have emerged as promising nanocarriers due to their unique three-dimensional structure and tunable pore characteristics. This study investigates the potential of DMSNs to deliver thyme essential oil (TEO) for enhanced antifungal activity against Fusarium oxysporum (F. oxysporum), a major plant pathogen. DMSNs were successfully synthesized and characterized, followed by the encapsulation of TEO within their porous structure. The resulting TEO@DMSNs composites exhibited significant antifungal activity against F. oxysporum, with inhibition rates reaching 70%, indicating an effective crop protection with a dose-dependent effect. The enhanced antifungal efficacy of TEO@DMSNs compared to free TEO is attributed to the sustained release of TEO and the synergistic effect of the nanocarrier itself. In-depth mechanism investigations revealed that TEO@DMSNs likely disrupted the fungal cell membrane, leading to leakage of cellular contents and ultimately cell death. Moreover, DMSNs and TEO@DMSNs were found to be safe for plant growth, demonstrating their potential as environmentally friendly antifungal agents. This study provides valuable insights into the design and development of advanced nanocarriers for targeted drug delivery and disease management in agriculture.
Collapse
Affiliation(s)
- Liyuan Yu
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jianqin Peng
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Qun Han
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Wanxin Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Yijie Jiang
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Yongming Ruan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xia Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Gesmi Milcovich
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy.
| | - Xuexiang Weng
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
4
|
Costa JCCP, Bolívar A, Alberte TM, Zurera G, Pérez-Rodríguez F. Listeria monocytogenes in aquatic food products: Spotlight on epidemiological information, bio-based mitigation strategies and predictive approaches. Microb Pathog 2024; 197:106981. [PMID: 39349150 DOI: 10.1016/j.micpath.2024.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Listeria monocytogenes is the foodborne pathogen responsible for listeriosis in humans. Its ability to grow at refrigeration temperatures, particularly in products that support its growth and have a long-refrigerated shelf-life, poses a significant health risk, especially for vulnerable consumer groups such as pregnant women and immunocompromised individuals. A comprehensive analysis of L. monocytogenes in aquatic food products (AFPs) was conducted, examining the prevalence of the bacterium, the associated outbreaks, and the resulting deaths. Data from 66 studies, comprising a total of 19,373 samples, were analysed from the scientific literature to determine prevalence of the pathogen. The mean pooled prevalence of L. monocytogenes was 11 % (95 % CI: 8-14 %) among different AFPs categories. An overview of worldwide listeriosis outbreaks associated with contaminated AFPs between 1980 and 2023 was provided, totalling 1824 cases, including 41 deaths. Furthermore, a compilation of bio-based mitigation strategies was presented, including the use of lactic acid bacteria (LAB) and bacteriophages as bio-protective cultures to inhibit L. monocytogenes in AFPs. A variety of predictive microbiology models, based on growth prediction and interaction for L. monocytogenes, were reviewed to assess the effectiveness of control strategies in different types of AFPs, offering insights into pathogen behaviour throughout the production chain. The reported growth models describe primarily the impact of storage temperature on pathogen growth parameters, while interaction models, which reflect the inhibitory effect of LAB against L. monocytogenes, were generally defined using the Jameson-effect approach and Lotka-Volterra models' family (i.e., predator-prey models). Both models can be used to describe the simultaneous growth of two bacterial populations and their interactions (i.e., amensalism and antagonisms). Several Quantitative Risk assessment studies have been conducted for AFP, identifying the food category as a relevant contributor to Listeriosis risk, and providing predictive insight critical influence of storage temperature, food microbiota, product shelf-life, and population aging on the risk posed by L. monocytogenes. More importantly, this quantitative approach can serve as a key tool to assess the effectiveness of specific mitigation and intervention strategies to control the pathogen, such as sampling schemes or bio-preservation techniques.
Collapse
Affiliation(s)
- Jean Carlos Correia Peres Costa
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Universidad de Córdoba, 14014, Córdoba, Spain.
| | - Araceli Bolívar
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Universidad de Córdoba, 14014, Córdoba, Spain
| | - Tânia Maria Alberte
- Department of Food Engineering, Campus de Ariquemes, Federal University of Rondônia, 76872-848, Ariquemes, Brazil
| | - Gonzalo Zurera
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Universidad de Córdoba, 14014, Córdoba, Spain
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, ceiA3, Universidad de Córdoba, 14014, Córdoba, Spain
| |
Collapse
|
5
|
Hassanzadeh M, Mirzaie S, Pirmahalle FR, Yahyaraeyat R, Razmyar J. Effects of Thyme (Thymus vulgaris) Essential Oil on Bacterial Growth and Expression of Some Virulence Genes in Salmonella enterica Serovar Enteritidis. Vet Med Sci 2024; 10:e70088. [PMID: 39474775 PMCID: PMC11522824 DOI: 10.1002/vms3.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The investigation on natural antimicrobial compounds against zoonotic pathogens has gained more attention due to the public health concerns regarding the emergence of antimicrobial resistance. OBJECTIVES The current study aimed to assess the effects of thyme essential oil at sub-minimal inhibitory concentrations (sub-MICs) on bacterial growth and expression of some virulence genes in Salmonella enteritidis. METHODS The bacterial growth rate and the expression of four virulence genes in S. enteritidis during 18-72 h of exposure to the essential oil at 25%-75% MIC were evaluated via colony counting and real-time polymerase chain reaction (PCR), respectively. RESULTS Sub-inhibitory concentrations of thyme essential oil significantly reduced the growth rate compared to the control. Expression of all tested virulence genes was also reduced by the essential oil in a significant dose- and time-dependent manner. As an example, decreased down-regulation of hilA, spv, sefA and invA as 1.7-, 4.14-, 2.92- and 1.04-fold in 25% MIC and 6.42-, 7.81-, 4.4- and 3.75-fold in 75% MIC was observed, respectively, after 24 h of incubation. Likewise, levels of transcription for hilA, spv, sefA and invA were reduced 4.75-, 6.95-, 3.75- and 2.98-fold after 18 h and 9.54-, 8.81-, 5.65- and 4.77-fold, respectively, after 72 h in 75% MIC compared to the control. CONCLUSIONS According to our data, aside from the growth inhibitory effect of thyme essential oil, the results of current study highlight the potential of thyme for reducing the transcriptional level of virulence genes and therefore the pathogenicity of S. enteritidis.
Collapse
Affiliation(s)
- Mohammad Hassanzadeh
- Department of Avian DiseasesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Sara Mirzaie
- Department of AnimalPoultry and AquaticsInstitute of AgricultureIranian Research Organization for Science and Technology (IROST)TehranIran
| | | | - Ramak Yahyaraeyat
- Department of PathobiologyFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Jamshid Razmyar
- Department of Avian DiseasesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| |
Collapse
|
6
|
Singh A, Ahuja A, Madan M, Singh D, Rastogi VK. Active packaging film of poly(lactic acid) incorporated with plant-based essential oils of Trachyspermum ammi as an antimicrobial agent and vanilla as an aroma corrector for waffles. Int J Biol Macromol 2024; 278:135086. [PMID: 39191339 DOI: 10.1016/j.ijbiomac.2024.135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
This study developed active packaging films of Polylactic acid incorporated with the plant-based essential oils of Trachyspermum ammi, T. ammi and Vanilla to package waffles, where the antimicrobial property was provided by T. ammi and its odor was masked by vanilla essential oil. Compared to conventional solvent-cast films of smaller sizes requiring a huge amount of solvents, bigger-size PLA-oil films with lower solvent demand were prepared by tape casting technique with 10, 30, and 50 wt% essential oil blends. Films were studied for their morphological, chemical, mechanical, barrier, and antimicrobial properties. The presence and time-bound release of volatile oils from the films was confirmed by infrared spectroscopy, with a continuous decrease of oils from the films till day 30. The plasticizing effect of oils in films was evidenced by decreased tensile strength and crystallinity. In contrast, an increase in elongation at break and water vapor permeability of oil films were also measured. Finally, when packed in PLA films containing 50 wt% blend of both oils, waffles shelf-life extended up to 30 days compared to 2 days for the neat PLA film, where Vanilla was found effective in masking the unpleasant odor of T.ammi as confirmed by sensory analysis.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Arihant Ahuja
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Manisha Madan
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Dimple Singh
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Vibhore Kumar Rastogi
- Department of Pulp and Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
7
|
de Mello NP, Carlos Ramos Espinoza F, da Silva Claudiano G, Yunis-Aguinaga J, Graça de Oliveira Carvalho J, Elizabeth Almeida Silva J, Cristina Pacheco de Oliveira E, Rodini Engrácia de Moraes J. Copaiba oil's bactericidal activity and its effects on health and zootechnical performance for Nile tilapia after oral supplementation. Sci Rep 2024; 14:17405. [PMID: 39075092 PMCID: PMC11286787 DOI: 10.1038/s41598-024-66024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Tilapia is one of the most important farmed fish in the world and the most cultivated in Brazil. The increase of this farming favors the appearance of diseases, including bacterial diseases. Therefore, the aim of this study was to evaluate the bactericidal activity of copaiba oil, Copaifera duckei, against Streptococcus agalactiae and Flavobacterium columnare and the dietary effect of copaiba oil on zootechnical performance, hematological, biochemical, immunological, and histological analysis before and after an intraperitoneal infection (body cavity) with S. agalactiae in Nile tilapia. For this, fish were randomly distributed into 15 fiber tanks in five treatments (0, 0.25, 0.50, 0.75, and 1.0%) and fed with a commercial diet supplemented with copaiba oil for 30 days. After this period, the fish were randomly redistributed for the experimental challenge with S. agalactiae into six treatments (T0, T1, T2, T3, T4, and T5), the fish were anesthetized, and blood samples were collected to assess hematological, biochemical, immunological, and histological parameters. Copaiba oil showed bactericidal activity against Streptococcus spp. and Flavobacterium spp. in vitro. In addition, concentrations of 0.75 and 1.0% of copaiba oil have an anti-inflammatory effect and improve hematological and immunological parameters, increasing leukocyte numbers, albumin, and serum lytic activity. Furthermore, there is an increase in the intestinal villus length and tissue damage in groups at concentrations of 0.75 and 1.0% of copaiba oil. In conclusion, copaiba oil presented bactericidal activity against Streptococcus spp. and Flavobacterium spp. in vitro, and oral supplementation at concentrations of 0.75 and 1.0% compared to the control group enhanced non-specific immune parameters and digestibility in Nile Tilapia.
Collapse
Affiliation(s)
- Nicoli Paganoti de Mello
- Postgraduated Program in Aquaculture/Aquaculture Center of UNESP, Caunesp, Jaboticabal, , São Paulo, Brazil
| | | | - Gustavo da Silva Claudiano
- Institute of Biodversity and Forests, Federal University of Western Pará, UFOPA-IBEF, Rua Vera Paz, s/n (Unidade Tapajós) Bairro Salé, Santarém, PA, CEP 68040-255, Brazil.
| | | | | | | | - Elaine Cristina Pacheco de Oliveira
- Institute of Biodversity and Forests, Federal University of Western Pará, UFOPA-IBEF, Rua Vera Paz, s/n (Unidade Tapajós) Bairro Salé, Santarém, PA, CEP 68040-255, Brazil
| | - Julieta Rodini Engrácia de Moraes
- Department of Pathology, Theriogenology and One Health, Faculty of Agrarian and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil.
- UNESP / Access Road Professor Paulo Donato Castelane Castellane S/N - Vila Industrial, Jaboticabal, 14884-900, Brazil.
| |
Collapse
|
8
|
Zheng L, Guo H, Zhu M, Xie L, Jin J, Korma SA, Jin Q, Wang X, Cacciotti I. Intrinsic properties and extrinsic factors of food matrix system affecting the effectiveness of essential oils in foods: a comprehensive review. Crit Rev Food Sci Nutr 2024; 64:7363-7396. [PMID: 36861257 DOI: 10.1080/10408398.2023.2184767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Essential oils (EOs) have been proved as natural food preservatives because of their effective and wide-spectrum antimicrobial activity. They have been extensively explored for potential applications in food industry, and substantial progresses have been achieved. However well EOs perform in antibacterial tests in vitro, it has generally been found that a higher level of EOs is needed to achieve the same effect in foods. Nevertheless, this unsimilar effect has not been clearly quantified and elaborated, as well as the underlying mechanisms. This review highlights the influence of intrinsic properties (e.g., oils and fats, carbohydrates, proteins, pH, physical structure, water, and salt) and extrinsic factors (e.g., temperature, bacteria characteristics, and packaging in vacuum/gas/air) of food matrix systems on EOs action. Controversy findings and possible mechanism hypotheses are also systematically discussed. Furthermore, the organoleptic aspects of EOs in foods and promising strategies to address this hurdle are reviewed. Finally, some considerations about the EOs safety are presented, as well as the future trends and research prospects of EOs applications in foods. The present review aims to fill the evidenced gap, providing a comprehensive overview about the influence of the intrinsic and extrinsic factors of food matrix systems to efficiently orientate EOs applications.
Collapse
Affiliation(s)
- Liyou Zheng
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Hongyan Guo
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Miaomiao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
| | - Liangliang Xie
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma, Italy
| |
Collapse
|
9
|
Hosseini SM, Tavakolipour H, Mokhtarian M, Armin M. Co-encapsulation of Shirazi thyme ( Zataria multiflora) essential oil and nisin using caffeic acid grafted chitosan nanogel and the effect of this nanogel as a bio-preservative in Iranian white cheese. Food Sci Nutr 2024; 12:4385-4398. [PMID: 38873443 PMCID: PMC11167143 DOI: 10.1002/fsn3.4105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 03/03/2024] [Indexed: 06/15/2024] Open
Abstract
The current study aims to co-encapsulate Shirazi thyme (Zataria multiflora) essential oil (ZEO) and nisin into chitosan nanogel as an antimicrobial and antioxidant agent to enhance the shelf-life of cheese. Chitosan-caffeic acid (CS-CA) nanogel was produced to co-encapsulate Zataria multiflora essential oil and nisin. This nanogel was characterized by dynamic light scattering (DLS), Fourier Transform Infrared (FTIR) spectroscopic analysis, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) images. The effect of free (TFZN) and encapsulated ZEO-nisin in chitosan nanogel (TCZN) on the chemical and microbiological properties of Iranian white cheese was assessed. The particle size, polydispersity index value (PDI), zeta potential, antioxidant activity, and encapsulation efficiency of the optimal chitosan-ZEO-nisin nanogel were 421.6 nm, 0.343, 34.0 mV, 71.06%-82.69%, and 41.3 ± 0.5%, 0.79 ± 0.06 mg/mL. respectively. FTIR and XRD approved ZEO and nisin entrapment within chitosan nanogel. The chitosan nanogel showed a highly porous surface with an irregular shape. The bioactive compounds of ZEO and nisin decreased the pH changes in cheese. On the 60th day of storage, the acidity of treated samples was significantly lower than that of control. Although the lowest anisidine index value was observed in samples treated with sodium nitrate (NaNO3) (TS), there was no significant difference between this sample and TCZN. The lowest microbial population was observed in TCZN and TS. After 60 days of ripening, Coliforms were not detected in the culture medium of TCZN and TS. The results can contribute to the development of a natural preservative with the potential for application in the dairy industry.
Collapse
Affiliation(s)
- Seyed Mohammad Hosseini
- Department of Food Science and Technology, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| | - Hamid Tavakolipour
- Department of Food Science and Technology, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| | - Mohsen Mokhtarian
- Department of Food Science and Technology, Roudehen BranchIslamic Azad UniversityRoudehenIran
| | - Mohammad Armin
- Department of Agronomy, Sabzevar BranchIslamic Azad UniversitySabzevarIran
| |
Collapse
|
10
|
Azizi M, Jahanbin K, Shariatifar N. Evaluation of whey protein coating containing nanoliposome dill ( Anethum graveolens L.) essential oil on microbial, physicochemical and sensory changes of rainbow trout fish. Food Chem X 2024; 21:101110. [PMID: 38282826 PMCID: PMC10818196 DOI: 10.1016/j.fochx.2023.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
The aim of this study was to investigate the effect of whey coating containing dill (Anethum graveolens L.) essential oil nanoliposome on the physicochemical, microbiological and sensory characteristics of rainbow trout (Oncorhynchus mykiss). Treatments comprise: sample without coating (control), coating containing whey, coating containing whey with essential oil (whey-EO) and coating containing whey with nano EO (whey-NEO). The particle size, zeta potential, polydispersity index and the encapsulation efficiency were ranged from 142 to 159 nm, -16.3 to -11.7 mV, 0.79 to 0.88 Mw/Mn and 45.85-70.01 %, respectively. Microbial analysis, after 21 days, the maximum and minimum of TVC (total viable counts), TPC (total psychrophilic counts) and LAB (lactic acid bacteria) counts were related to control (8.16 for TVC, 8.46 for TPC and 7.7 log CFU/g for LAB) and whey + NEO (7 for TVC, 7.3 for TPC and 6.16 log CFU/g for LAB), respectively. Also, results of pH, peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and total volatile base-nitrogen (TVB-N) after 21 days were ranged from 6.3 (whey-NEO) to 7.5 (control), from 11.5(whey-NEO) to 20.9 mEq/Kg (control), from 5.23(whey-NEO) to 8.34 mg MDA/kg (control) and from 22.5 (whey-NEO) to 37 mg N/100 g (control), respectively. Finally, in all sensory evaluation items (texture, off-odor, discoloration and red color), the best result after 21 days was related to whey-NEO (score = 1). Consequently, the edible coating comprising whey and nanoliposome of EO could be effective to the maintenance of fish's microbiological, physicochemical, and sensory properties.
Collapse
Affiliation(s)
- Mozhgan Azizi
- Department of Food Science and Technology, Faculty of Agriculture Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Kambiz Jahanbin
- Department of Food Science and Technology, Faculty of Agriculture Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Zernadji W, Jebri S, Rahmani F, Amri I, Aissaoui D, Trabelsi MH, Yahya M, Amri I, Hmaied F. Effect of Gamma Irradiation on Pathogenic Staphylococcus aureus in Packaged Ready-to-Eat Salads Treated with Biological Extracts. J Food Prot 2024; 87:100232. [PMID: 38278487 DOI: 10.1016/j.jfp.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/06/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Providing pathogen-free ready-to-eat (RTE) salads is critical for all consumers, especially individuals with weakened immunity. In this study, the efficacy of γ-irradiation on Staphylococcus aureus (S. aureus) in freshly packaged salads (4.24 log CFU/g) treated with essential oil (EO) and myrtle juice during 10 days of storage and their impact on organoleptic properties were investigated. EO was extracted by hydrodistillation and the chemical composition was analyzed by gas chromatography with Flame Ionization Detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS). Myrtle juice was prepared from fresh fruits. The cytotoxic effects of Thymus capitatus (T. capitatus) EO against a normal human umbilical vein endothelial cell (HUVEC) were assessed. GC/FID and GC-MS analysis of the thyme EO revealed the presence of 13 compounds, including carvacrol (79.55%) and p-cymene (7.93%) as major components. The EO was found to be noncytotoxic, with concentrations lower than 0.16 µL/mL. A reduction of more than 3 log CFU/g and a total inactivation of S. aureus were achieved with the combination of gamma irradiation at 0.5 kGy with myrtle juice at 6 µL/mL and EO at 0.08 µL/mL, respectively. The treatment of fresh RTE salads with thyme and myrtle juice was evaluated as acceptable by the sensory panel. The combined effect showed a synergistic potential on the inactivation of S. aureus.
Collapse
Affiliation(s)
- Widad Zernadji
- University of Carthage, Higher School of Food Industries, 1003 Tunis, Tunisia; Laboratoire de Biotechnologies et Technologie Nucléaire, CNSTN, Sidi Thabet 2020, Tunisia.
| | - Sihem Jebri
- Laboratoire de Biotechnologies et Technologie Nucléaire, CNSTN, Sidi Thabet 2020, Tunisia.
| | - Faten Rahmani
- Laboratoire de Biotechnologies et Technologie Nucléaire, CNSTN, Sidi Thabet 2020, Tunisia.
| | - Ismail Amri
- Laboratoire de Biotechnologies et Technologie Nucléaire, CNSTN, Sidi Thabet 2020, Tunisia.
| | - Dorra Aissaoui
- Institut Pasteur of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia.
| | | | - Mariem Yahya
- Laboratoire de Biotechnologies et Technologie Nucléaire, CNSTN, Sidi Thabet 2020, Tunisia.
| | - Islem Amri
- Laboratoire de Biotechnologies et Technologie Nucléaire, CNSTN, Sidi Thabet 2020, Tunisia.
| | - Fatma Hmaied
- Laboratoire de Biotechnologies et Technologie Nucléaire, CNSTN, Sidi Thabet 2020, Tunisia.
| |
Collapse
|
12
|
Mehmood N, Akram MW, Majeed MI, Nawaz H, Aslam MA, Naman A, Wasim M, Ghaffar U, Kamran A, Nadeem S, Kanwal N, Imran M. Surface-enhanced Raman spectroscopy for the characterization of bacterial pellets of Staphylococcus aureus infected by bacteriophage. RSC Adv 2024; 14:5425-5434. [PMID: 38348301 PMCID: PMC10859908 DOI: 10.1039/d3ra07575c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Drug-resistant pathogenic bacteria are a major cause of infectious diseases in the world and they have become a major threat through the reduced efficacy of developed antibiotics. This issue can be addressed by using bacteriophages, which can kill lethal bacteria and prevent them from causing infections. Surface-enhanced Raman spectroscopy (SERS) is a promising technique for studying the degradation of infectious bacteria by the interaction of bacteriophages to break the vicious cycle of drug-resistant bacteria and help to develop chemotherapy-independent remedial strategies. The phage (viruses)-sensitive Staphylococcus aureus (S. aureus) bacteria are exposed to bacteriophages (Siphoviridae family) in the time frame from 0 min (control) to 50 minutes with intervals of 5 minutes and characterized by SERS using silver nanoparticles as SERS substrate. This allows us to explore the effects of the bacteriophages against lethal bacteria (S. aureus) at different time intervals. The differentiating SERS bands are observed at 575 (C-C skeletal mode), 620 (phenylalanine), 649 (tyrosine, guanine (ring breathing)), 657 (guanine (COO deformation)), 728-735 (adenine, glycosidic ring mode), 796 (tyrosine (C-N stretching)), 957 (C-N stretching (amide lipopolysaccharides)), 1096 (PO2 (nucleic acid)), 1113 (phenylalanine), 1249 (CH2 of amide III, N-H bending and C-O stretching (amide III)), 1273 (CH2, N-H, C-N, amide III), 1331 (C-N stretching mode of adenine), 1373 (in nucleic acids (ring breathing modes of the DNA/RNA bases)) and 1454 cm-1 (CH2 deformation of saturated lipids), indicating the degradation of bacteria and replication of bacteriophages. Multivariate data analysis was performed by employing principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to study the biochemical differences in the S. aureus bacteria infected by the bacteriophage. The SERS spectral data sets were successfully differentiated by PLS-DA with 94.47% sensitivity, 98.61% specificity, 94.44% precision, 98.88% accuracy and 81.06% area under the curve (AUC), which shows that at 50 min interval S. aureus bacteria is degraded by the replicating bacteriophages.
Collapse
Affiliation(s)
- Nasir Mehmood
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Waseem Akram
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, Faculty of Veterinary, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Abdul Naman
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Wasim
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Usman Ghaffar
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Ali Kamran
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Sana Nadeem
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Naeema Kanwal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University P.O. Box 9004 Abha (61413) Saudi Arabia
| |
Collapse
|
13
|
Chen M, Xia H, Zuo X, Tang D, Zhou H, Huang Z, Guo A, Lv J. Screening and characterization of lactic acid bacteria and fermentation of gamma-aminobutyric acid-enriched bamboo shoots. Front Microbiol 2024; 15:1333538. [PMID: 38374919 PMCID: PMC10876094 DOI: 10.3389/fmicb.2024.1333538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
In order to produce fermented bamboo shoots with functional properties, two strains of lactic acid bacteria were selected for inoculation and fermentation. One strain, Lactiplantibacillus plantarum R1, exhibited prominent potential probiotic properties (including gastrointestinal condition tolerance, adhesion ability, antimicrobial ability, and antibiotic resistance), while the other, Levilactobacillus brevis R2, demonstrated the capability of high γ-aminobutyric acid (GABA) production (913.99 ± 14.2 mg/L). The synergistic inoculation of both strains during bamboo shoot fermentation led to a remarkable increase in GABA content (382.31 ± 12.17 mg/kg), surpassing that of naturally fermented bamboo shoots by more than 4.5 times and outperforming mono-inoculated fermentation. Simultaneously, the nitrite content was maintained at a safe level (5.96 ± 1.81 mg/kg). Besides, inoculated fermented bamboo shoots exhibited an increased crude fiber content (16.58 ± 0.04 g/100 g) and reduced fat content (0.39 ± 0.02 g/100 g). Sensory evaluation results indicated a high overall acceptability for the synergistically inoculated fermented bamboo shoots. This study may provide a strategy for the safe and rapid fermentation of bamboo shoots and lay the groundwork for the development of functional vegetable products enriched with GABA.
Collapse
Affiliation(s)
- Meilin Chen
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Hongqiu Xia
- Liunan District Modern Agricultural Industry Service Center of Liuzhou City, Liuzhou, Guangxi, China
| | - Xifeng Zuo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Danping Tang
- Liunan District Modern Agricultural Industry Service Center of Liuzhou City, Liuzhou, Guangxi, China
| | - Haoyu Zhou
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Zijun Huang
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Jun Lv
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
14
|
Aminzare M, Soltan Ahmadi S, Azar HH, Nikfarjam N, Roohinejad S, Greiner R, Tahergorabi R. Characteristics, antimicrobial capacity, and antioxidant potential of electrospun zein/polyvinyl alcohol nanofibers containing thymoquinone and electrosprayed resveratrol nanoparticles. Food Sci Nutr 2024; 12:1023-1034. [PMID: 38370090 PMCID: PMC10867463 DOI: 10.1002/fsn3.3816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 02/20/2024] Open
Abstract
The aim of the present study was to fabricate, characterize, and evaluate the in vitro antimicrobial and antioxidant properties of zein/polyvinyl alcohol (ZN/PVA) nanofibers containing 2% and 4% of thymoquinone (TQ), either alone or in combination with electrosprayed ZN nanoparticles containing 1% and 2% of resveratrol (RS). According to scanning electron microscopy analysis, the diameter of nanofibers and nanoparticles increased with increasing TQ and RS concentrations, respectively. The molecular interaction between ZN or PVA polymers and TQ or RS was confirmed by Fourier transform infrared spectroscopy. Thermogravimetric analysis showed that the thermal stability of nanofibers did not change with the addition of TQ and RS. Moreover, incorporation of TQ in nanofibers along with RS nanoparticles increased their antibacterial and free radical scavenging activities based on broth dilution and DPPH methods, respectively (p ≤ .05). Escherichia coli O157:H7 (as a Gram-negative pathogenic bacteria) was more resistant to all treatments than Staphylococcus aureus (as a Gram-positive pathogenic bacteria). In addition, the combined use of TQ in nanofibers and RS nanoparticles had antagonistic antibacterial and synergistic antioxidant effects. The best results were obtained with ZN/PVA nanofiber containing 4% TQ and electrosprayed with 2% RS nanoparticles (p ≤ .05). According to the results of the present study, biodegradable ZN/PVA nanofiber containing TQ and electrosprayed with RS nanoparticles can be used as a novel active packaging material in the food industry.
Collapse
Affiliation(s)
- Majid Aminzare
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Saeideh Soltan Ahmadi
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Hassan Hassanzad Azar
- Department of Food Safety and Hygiene, School of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Nasser Nikfarjam
- Department of ChemistryInstitute for Advanced Studies in Basic SciencesZanjanIran
| | - Shahin Roohinejad
- Division of Food and Nutrition, Burn and Wound Healing Research CenterShiraz University of Medical SciencesShirazIran
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner‐InstitutFederal Research Institute of Nutrition and FoodKarlsruheGermany
| | - Reza Tahergorabi
- Food and Nutritional Sciences ProgramNorth Carolina Agricultural and Technical State UniversityGreensboroNorth CarolinaUSA
| |
Collapse
|
15
|
Benamar-Aissa B, Gourine N, Ouinten M, Yousfi M. Synergistic effects of essential oils and phenolic extracts on antimicrobial activities using blends of Artemisia campestris, Artemisia herba alba, and Citrus aurantium. Biomol Concepts 2024; 15:bmc-2022-0040. [PMID: 38353049 DOI: 10.1515/bmc-2022-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
This study explores the synergistic antibacterial effects of essential oils (EOs) and phenolic extracts from three plants against foodborne pathogenic bacteria. The present work aimed to investigate the synergistic effects of the binary and the ternary combinations of extracts using different blend proportions of the following plant extracts: Artemisia campestris (AC), Artemisia herba alba (AHA), and Citrus aurantium (CA). The antimicrobial activities of EOs and phenolic extracts were determined and evaluated against five strains. For the EOs, the results of the DIZ showed the existence of synergism for different combinations of binary blends, such as AC/AHA or AHA/CA against Escherichia coli, and AC/CA against Enterobacter faecalis. In addition, ternary blends of AC:AHA:CA at a ratio of 1/6:2/3:1/6 exhibited a synergy effect, as measured by the CI, against E. coli. On the other hand, for the phenolic extracts, synergistic effects were noticed for binary blends of AC/CA at different ratios against E. coli, E. faecalis, and Pseudomonas aeruginosa strains. Similarly, ternary blends of phenolic extracts presented synergy against E. coli, E. faecalis, P. aeruginosa strains, and even C. albicans. In this case, the blending ratios were crucial determining factors for maximizing the synergy effect. The study established that the proportion of a single drug could play an essential role in determining the bioefficacy of a drug combination treatment. Therefore, the results showed the importance of studying the modulation of antibacterial activities based on the proportions of extracts in the mixture and finding the range of proportions (as determined by SLMD) that have a synergistic/additive/antagonistic effect with no or low side effects, which can be used in a food preservation system.
Collapse
Affiliation(s)
- Boualem Benamar-Aissa
- Laboratoire des Sciences Fondamentales (LSF), University Amar Telidji of Laghouat, BP. 37G (03000), Laghouat, Algeria
| | - Nadhir Gourine
- Laboratoire des Sciences Fondamentales (LSF), University Amar Telidji of Laghouat, BP. 37G (03000), Laghouat, Algeria
| | - Mohamed Ouinten
- Laboratoire des Sciences Fondamentales (LSF), University Amar Telidji of Laghouat, BP. 37G (03000), Laghouat, Algeria
| | - Mohamed Yousfi
- Laboratoire des Sciences Fondamentales (LSF), University Amar Telidji of Laghouat, BP. 37G (03000), Laghouat, Algeria
| |
Collapse
|
16
|
Zomorodian N, Javanshir S, Shariatifar N, Rostamnia S. The effect of essential oil of Zataria multiflora incorporated chitosan (free form and Pickering emulsion) on microbial, chemical and sensory characteristics in salmon ( Salmo trutta). Food Chem X 2023; 20:100999. [PMID: 38144780 PMCID: PMC10740042 DOI: 10.1016/j.fochx.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
The objective of current research was to prepare a new biodegradable coating containing chitosan (Ch) and zataria multiflora essential oil (ZMEO) (free and Pickering emulsion (PEO) forms), in order to enhance the Salmo trutta shelf life. Our results showed, the mean of films thickness, mechanical properties (elastic modulus (EM) and tensile strength (TS) analysis) and WVP in different treatments were ranged from 0.103 ± 0.003 (for Ch) to 0.109 ± 0.003 (for Ch-PEO (2.5 %)) µm for thickness, from 3.2 ± 1.6 (for Ch) to 8.15 ± 2.3 (for Ch-EO) MPa for EM, from 1.3 ± 0.5 (for Ch-EO) to 1.6 ± 0.06 (for Ch) Mpa for TS and from 0.1 ± 0.02 (for Ch) to 0.8 ± 0.05 (for Ch-EO) (×10 - 11(g m/m2 s Pa) for WVP. In current research, the lowest and highest total viable counts (TVC) was related to Ch-PEO (1.7 log CFU/g) and control treatments (4.65 log CFU/g). The lowest and highest of pH was related to the Ch-PEO (6.45) and the control (7.1), the lowest and highest of PV (peroxide value) was related to Ch-PEO (0.34 meq/kg) and control treatment (1.37 meq/kg), the lowest and highest of TBARS (thiobarbituric acid reactive substances) was related to Ch-PEO (0.37 mg/kg) and control treatment (2.23 mg/kg) and also the lowest and highest of TVB-N (total volatile base nitrogen) was related to Ch-PEO (17.7 mg) and control (59 mg). Also, Ch-PEO showed the best sensory properties after sixteen days. Among all the treatments in all the tests, the best maintenance property was related to the Ch-PEO, therefore, chitosan coatings containing ZM Pickering emulsion should be considered as a potential active coating in the fish industry.
Collapse
Affiliation(s)
- Nooshin Zomorodian
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Shahrzad Javanshir
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Rostamnia
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
17
|
Shabani M, Ghorbani-HasanSaraei A, Shariatifar N, Savadkoohi F, Shahidi SA. Effect of Urtica dioica L. Essential oil (forms of free and nanoliposome) on some inoculated pathogens ( Escherichia coli and Listeria monocytogenes) in minced camel meat. Food Chem X 2023; 20:101050. [PMID: 38144767 PMCID: PMC10740059 DOI: 10.1016/j.fochx.2023.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
The goal of research was to investigate the impact of nanoliposome and free forms of nettle (Urtica dioica L.) essential oil (EO) on sensory, chemical and microbial properties of minced camel meat during storage at 4 °C. In our investigation, Listeria monocytogenes and Escherichia coli were inoculated into minced camel meat. The outcomes expressed the zeta potential, particle size, polydispersity index and efficiency of encapsulation of prepared nanoliposome were -17.5 mV to -12.8 mV, 143 to 158 nm, 0.77 ± 0.05 to 0.86 ± 0.07 Mw/Mn and 50.26-67.28 %, respectively. Also, according to the microbial analysis, the MIC of EO and nanoliposome-EO (N-EO) for E.coli was 25 ± 2.5 and 25 ± 2.1 mg/mL, respectively, and for L. monocytogenes was 12.5 ± 2.1 and 12.5 ± 2.1 mg/mL, respectively, and the MBC of EO and N-EO for L. monocytogenes was 50 ± 3.1 and 50 ± 3.2 mg/mL, respectively, and for E. coli was 50 ± 2.2 and 50 ± 2.2 mg/mL, respectively. The highest of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assay were detected in the BHT 200 (94.7 ± 2.7 and 95.6 ± 3.2, respectively) and lowest of them were detected NEO1% (33.7 ± 12.2 and 22.37 ± 0.22, respectively). After 18 days, the minimum value of pH was identified in the N-EO 2 % group incubated with L. monocytogenes (with pH = 6.9) and E. coli (with pH = 6.87). Furthermore, after 18 days of storage, the minimum TVB-N (total volatile basic nitrogen) value was observed in the N-EO group (26.89 mg N/100 g) and the maximum TVB-N value was observed in the control group (33.78 mg N/100 g). Finally, the N-EO and control treatment (during the experiment) had the highest and lowest sensory evaluation score, respectively. Finally, the N-EO group got a highest sensory score, whilst the group of control got the lowest acceptance score, after 18 days of storage. Based on the outcomes obtained from this research, using nettle (Urtica dioica L.) EO (in nanoliposome form) increases the storing time of minced camel meat.
Collapse
Affiliation(s)
- Masoudeh Shabani
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | | | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Savadkoohi
- Department of Biology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
18
|
Roldan-Juarez J, Pinares R, Smith CE, Llerena CA, Machaca V, Pizarro DM. Microencapsulated essential oils influence the growth and foregut histomorphometry of Nile tilapia ( Oreochromis niloticus) fingerlings. Vet Anim Sci 2023; 22:100316. [PMID: 37822454 PMCID: PMC10562909 DOI: 10.1016/j.vas.2023.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Essential oils supplementation has potential growth-promoting, antibacterial, and immunostimulatory effects for various fish species. Dietary supplementation with essential oils improves Nile tilapia's growth and intestinal morphology. The aim of the study was to assess the effect of supplementation with microencapsulated essential oils (MEOs) containing cinnamaldehyde (53.9 %), thymol (24.2 %), and carvacrol (18.7 %) in Nile tilapia fingerlings on growth parameters and foregut histomorphometry. Six thousand fishes with initial body weights and lengths of 1.20 ± 0.32 g and 2.03 ± 0.40 cm, respectively, were reared in two separate 60 m3 circular tanks (control and supplemented with 500 mg/kg of MEOs) at a 5 kg/m3 density. Growth parameters included weight and length. Ten foregut samples per tank were collected at 0-, 15- and 30-days post-treatment. The histological analysis involved the size of intestinal folds and the number of goblet cells. Our results showed that fingerling growth parameters such as final body weight and length increased by 16.9 % and 10.43 %, respectively, with MEOs supplementation compared to the control group. Furthermore, histomorphometry results showed that the supplementation of MEOs led to a significant increase in the growth of both the width and length of intestinal folds and the number of goblet cells (p < 0.05). In conclusion, the early supplementation with MEOs improved the number, length, and width of intestinal folds and increased the number of goblet cells, positively influencing intestinal morphology and health. Additionally, MEOs improved growth parameters in Nile tilapia at 30 days of supplementation.
Collapse
Affiliation(s)
- Jesús Roldan-Juarez
- Universidad Peruana Cayetano Heredia, Facultad de Medicina Veterinaria y Zootecnia, Lima, Peru
- Universidad Nacional Micaela Bastidas de Apurímac, Facultad de Medicina Veterinaria y Zootecnia, Abancay, Peru
| | - Rubén Pinares
- Universidad Nacional de San Antonio Abad del Cusco, Escuela Profesional de Medicina Veterinaria, Sicuani, Peru
| | - Carlos E. Smith
- Universidad Peruana Cayetano Heredia, Facultad de Medicina Veterinaria y Zootecnia, Lima, Peru
| | - Cielo A. Llerena
- Universidad Peruana Cayetano Heredia, Facultad de Medicina Veterinaria y Zootecnia, Lima, Peru
| | - Virgilio Machaca
- Universidad Nacional Micaela Bastidas de Apurímac, Facultad de Medicina Veterinaria y Zootecnia, Abancay, Peru
| | - Dante M. Pizarro
- Universidad Peruana Cayetano Heredia, Facultad de Medicina Veterinaria y Zootecnia, Lima, Peru
| |
Collapse
|
19
|
Mehraie A, Khanzadi S, Hashemi M, Azizzadeh M. New coating containing chitosan and Hyssopus officinalis essential oil (emulsion and nanoemulsion) to protect shrimp ( Litopenaeus vannamei) against chemical, microbial and sensory changes. Food Chem X 2023; 19:100801. [PMID: 37780336 PMCID: PMC10534186 DOI: 10.1016/j.fochx.2023.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/02/2023] [Accepted: 07/15/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, the effect of chitosan coating containing emulsion and nanoemulsion of Hyssopus officinalis essential oil (EO) on the chemical, microbiological and sensory characteristics of shrimp (Litopenaeus vannamei) was investigated. The minimum value of TVB-N (Total volatile basic nitrogen), TBARS (Thiobarbituric acid reactive substances), PV (peroxide value), TMA-N (Trimethylamine-nitrogen) and FFA (Free fatty acids) after 12 days were shown in NE + HEO 1% (coating containing chitosan with nanoemulsion of EO) with 20.53 mg N/100 g, 0.5 µg/kg, 0.88 MAQ peroxide/kg, 1.3 mg/100 g and 12.16 mg 100% of oleic acid, respectively. Also, minimum value of pH after 12 days was related to the CE + HEO 1% (coating containing chitosan with emulsion of EO) with 7.60. The minimum value of psychrophilic and mesophilic microbial count after 12 days were shown in NE + HEO 1%, 4.40 ± 0.36 and 4.03 ± 0.06 cfu/g, respectively. The best score of sensory evaluation was observed in the NE-HEO 1% treatment. As a result, the edible coating containing chitosan-based nanoemulsion could be effective to the preservation of shrimp's microbiological, chemical, and sensory characteristics.
Collapse
Affiliation(s)
- Abbas Mehraie
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saied Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Azizzadeh
- Department of Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
20
|
Anvar N, Nateghi L, Shariatifar N, Mousavi SA. The effect of essential oil of Anethum graveolens L. seed and gallic acid (free and nano forms) on microbial, chemical and sensory characteristics in minced meat during storage at 4 °C. Food Chem X 2023; 19:100842. [PMID: 37780295 PMCID: PMC10534171 DOI: 10.1016/j.fochx.2023.100842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
The aim of this study was to evaluate the effect of gallic acid (GA) and essential oil (EO) of Anethum graveolens L. seed (forms of nanoliposome and free) on bacteriological, chemical and sensory properties of minced meat during storage. In this research, Escherichia coli (gram negative) and Staphylococcus aureus (gram positive) were used to examine the effect of these compounds on meat. The particle sizes (z-average diameter) of prepared nanoliposomes of EO and GA were in the range of 141 to 165 nm and 146-160 nm, respectively and the efficiency of encapsulation (EE %) in the current research was 51.76-69.8% in nano EO (NEO) and 53.23-67.07% in nano gallic acid (N-GA). Also, the outcomes indicated the treatment containing nano-liposomes had a better antimicrobial effect in both of bacteria. In present study, the Minimum Inhibitory Concentration (MIC) of GA, N-GA, EO and NEO for S. aureus was 0.62 ± 0.01, 0.62 ± 0.02, 0.62 ± 0.01 and 0.62 ± 0.01 mg/mL, respectively, and for E. coli was 0.62 ± 0.01, 0.62 ± 0.01, 1.25 ± 0.1 and 1.25 ± 0.1 mg/mL, respectively. Also, the results showed MBC (The Minimum Bactericidal Concentration) of GA, N-GA, EO and NEO for S. aureus was 0.62 ± 0.02, 0.62 ± 0.03, 1.25 ± 0.1 and 1.25 ± 0.1 mg/mL, respectively, and for E. coli was0.62 ± 0.01, 1.25 ± 0.1, 2.5 ± 0.2, 2.5 ± 0.2 mg/mL, respectively. The highest and lowest of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging were detected, in the Butylated hydroxytoluene (BHT) 200 and EO1%, respectively. Furthermore, after 18 day, minimum pH and Total volatile basic nitrogen (TVB-N) value were related to the N-GA2% on S. aureus with pH = 6.5 and NEO group (27 mg N/100 g), respectively. Finally, the treatment of NEO showed a higher acceptance score of sensory evaluation after 18 days. According to the outcomes of current investigation, the use of nanocapsulated EO and GA are effective (as a coating for food storage) and can increase the shelf life of minced meat.
Collapse
Affiliation(s)
- Narges Anvar
- Department of Food Science and Technology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Leila Nateghi
- Department of Food Science and Technology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
21
|
Hegde A, Kabra S, Basawa RM, Khile DA, Abbu RUF, Thomas NA, Manickam NB, Raval R. Bacterial diseases in marine fish species: current trends and future prospects in disease management. World J Microbiol Biotechnol 2023; 39:317. [PMID: 37743401 PMCID: PMC10518295 DOI: 10.1007/s11274-023-03755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
The fisheries sub-sector of aquaculture-i.e., the pisciculture industry, contributes significantly to a country's economy, employing a sizable proportion of the population. It also makes important contributions to household food security because the current demand for animal protein cannot be fulfilled by harvesting wild fish from riverines, lakes, dams, and oceans. For good pond management techniques and sustaining fish health, the fisherfolk, and the industry require well-established regulatory structures, efficient disease management strategies, and other extended services. In rearing marine fish, infections resulting from disease outbreaks are a weighty concern because they can cause considerable economic loss due to morbidity and mortality. Consequently, to find effective solutions for the prevention and control of the major diseases limiting fish production in aquaculture, multidisciplinary studies on the traits of potential fish pathogens, the biology of the fish as hosts, and an adequate understanding of the global environmental factors are fundamental. This review highlights the various bacterial diseases and their causative pathogens prevalent in the pisciculture industry and the current solutions while emphasising marine fish species. Given that preexisting methods are known to have several disadvantages, other sustainable alternatives like antimicrobial peptides, synthetic peptides, probiotics, and medicinal treatments have emerged to be an enormous potential solution to these challenges.
Collapse
Affiliation(s)
- Avani Hegde
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Suhani Kabra
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Renuka Manjunath Basawa
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Dnyanada Anil Khile
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Rahil Ummar Faruk Abbu
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Naomi Ann Thomas
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Nava Bharati Manickam
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
22
|
Khan F, Singh P, Joshi AS, Tabassum N, Jeong GJ, Bamunuarachchi NI, Mijakovic I, Kim YM. Multiple potential strategies for the application of nisin and derivatives. Crit Rev Microbiol 2023; 49:628-657. [PMID: 35997756 DOI: 10.1080/1040841x.2022.2112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 12/22/2022]
Abstract
Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Abhayraj S Joshi
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
23
|
Bukvicki D, D’Alessandro M, Rossi S, Siroli L, Gottardi D, Braschi G, Patrignani F, Lanciotti R. Essential Oils and Their Combination with Lactic Acid Bacteria and Bacteriocins to Improve the Safety and Shelf Life of Foods: A Review. Foods 2023; 12:3288. [PMID: 37685221 PMCID: PMC10486891 DOI: 10.3390/foods12173288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The use of plant extracts (e.g., essential oils and their active compounds) represents an interesting alternative to chemical additives and preservatives applied to delay the alteration and oxidation of foods during their storage. Essential oils (EO) are nowadays considered valuable sources of food preservatives as they provide a healthier alternative to synthetic chemicals while serving the same purpose without affecting food quality parameters. The natural antimicrobial molecules found in medicinal plants represent a possible solution against drug-resistant bacteria, which represent a global health problem, especially for foodborne infections. Several solutions related to their application on food have been described, such as incorporation in active packaging or edible film and direct encapsulation. However, the use of bioactive concentrations of plant derivatives may negatively impact the sensorial characteristics of the final product, and to solve this problem, their application has been proposed in combination with other hurdles, including biocontrol agents. Biocontrol agents are microbial cultures capable of producing natural antimicrobials, including bacteriocins, organic acids, volatile organic compounds, and hydrolytic enzymes. The major effect of bacteriocins or bacteriocin-producing LAB (lactic acid bacteria) on food is obtained when their use is combined with other preservation methods. The combined use of EOs and biocontrol agents in fruit and vegetables, meat, and dairy products is becoming more and more important due to growing concerns about potentially dangerous and toxic synthetic additives. The combination of these two hurdles can improve the safety and shelf life (inactivation of spoilage or pathogenic microorganisms) of the final products while maintaining or stabilizing their sensory and nutritional quality. This review critically describes and collects the most updated works regarding the application of EOs in different food sectors and their combination with biocontrol agents and bacteriocins.
Collapse
Affiliation(s)
- Danka Bukvicki
- Faculty of Biology, Institute of Botany and Botanical Garden ‘Jevremovac’, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia;
| | - Margherita D’Alessandro
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Samantha Rossi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
24
|
Farid N, Waheed A, Motwani S. Synthetic and natural antimicrobials as a control against food borne pathogens: A review. Heliyon 2023; 9:e17021. [PMID: 37484319 PMCID: PMC10361103 DOI: 10.1016/j.heliyon.2023.e17021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 07/25/2023] Open
Abstract
Food borne pathogens are one of the most common yet concerning cause of illnesses around the globe. These microbes invade the body via food items, through numerous mediums of contamination and it is impossible to completely eradicate these organisms from food. Extensive research has been made regarding their treatment. Unfortunately, the only available treatment currently is by antibiotics. Recent exponential increase in antibiotic resistance and the side effect of synthetic compounds have established a need for alternate therapies that could be utilized either on their own or along with antibiotics to provide protection against food-borne diseases. The aim of this review is to provide information regarding some common food borne diseases, their current and possible natural treatment. It will include details regarding some common foodborne pathogens, the disease they cause, prevalence, manifestations and treatment of the respective disease. Some natural modes of potential treatment will be summarized, which including phytochemicals, derived from plants either as crude extracts or as purified form and Bacteriocins as microbial based treatment, obtained from various types of bacteria. The paper will describe their mechanism of action, classification, susceptible organisms, some antimicrobial compounds and producing organisms, application in food systems and as potential treatment. Along with that, synthetic treatment i.e., antibiotics will be discussed including the first-line treatment of some common food borne infections, prevalence and mechanism of resistance against antibiotics in the pathogens.
Collapse
Affiliation(s)
- Neha Farid
- Corresponding author. Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Pakistan.
| | | | | |
Collapse
|
25
|
Dos Santos LF, Biduski B, Lopes ST, Bertolin TE, Dos Santos LR. Brazilian native fruit pomace as a source of bioactive compounds on starch-based films: Antimicrobial activities and food simulator release. Int J Biol Macromol 2023; 242:124900. [PMID: 37201884 DOI: 10.1016/j.ijbiomac.2023.124900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
The bioactive compounds extraction from fruit pomace is an ecological alternative for these abundant and low-added-value by-products. This study aimed to evaluate the antimicrobial potential of pomace extracts from Brazilian native fruits (araçá, uvaia, guabiroba and butiá) and the effect on physicochemical, mechanical properties and the migration of antioxidants and phenolic compounds from starch-based films. The film with butiá extract had the lowest mechanical resistance (1.42 MPa) but the highest elongation (63 %). In comparison, uvaia extract had less impact on film mechanical properties (3.70 MPa and 58 %) compared to the other extracts. The extracts and films showed antimicrobial activity against Listeria monocytogenes, L. inoccua, B. cereus and S. aureu. Approximately 2 cm inhibition halo was noticed for the extracts, while films ranged from 0.33 to 1.46 cm inhibition halo. Films with guabiroba extract had the lowest antimicrobial activity (0.33 to 0.5 cm). The phenolic compounds were released from the film matrix in the first hour at 4 °C with maintenance in the stability. The fatty-food simulator showed a controlled release of antioxidant compounds, which can assist in controlling food oxidation. Brazilian native fruit has shown to be a viable alternative to isolate bioactive compounds and produce film packaging with antimicrobial and antioxidant activities.
Collapse
Affiliation(s)
- Lára Franco Dos Santos
- Graduate Program in Bioexperimentation, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil
| | - Bárbara Biduski
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin D15 KN3K, Ireland; Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| | - Samuel Teixeira Lopes
- Undergraduate Program in Chemical Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Telma Elita Bertolin
- Graduate Program in Food Science and Technology, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| | - Luciana Ruschel Dos Santos
- Graduate Program in Bioexperimentation, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| |
Collapse
|
26
|
Guo H, Yang W, Lei B, Zhao F, Guo L, Qian J. Synergistic antimicrobial effect of nisin-octanoic acid nanoemulsions against E. coli and S. aureus. Arch Microbiol 2023; 205:203. [PMID: 37086306 DOI: 10.1007/s00203-023-03545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
Food safety is a major public health concern all over the world. Therefore, the prevention of food contamination is becoming extremely crucial. In this study, an antimicrobial nanoemulsion composed of water-soluble nisin and fat-soluble octanoic acid was successfully prepared. The results showed that the average particle size and the polymer dispersity index of the nisin-octanoic acid (NOA) nanoemulsion were around 52.21 nm and 0.253, respectively. The NOA nanoemulsion required less amounts of nisin and octanoic acid to achieve the effective antimicrobial effect against Escherichia coli and Staphylococcus aureus. In addition, the growth curves of E. coli and S. aureus were determined. The OD600 of NOA nanoemulsion was significantly lower than free nisin after being incubated for 24 h (p < 0.001), indicating that the antimicrobial effect of NOA nanoemulsion was outstanding. Meanwhile, the synergistic antimicrobial property of NOA nanoemulsion against E. coli and S. aureus was significantly better than free nisin under nonacid conditions (p < 0.05). Overall, the results of this study may provide guidance for the further application of nisin in more forms.
Collapse
Affiliation(s)
- Hui Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Wei Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bingshuang Lei
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Fengju Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lili Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Junqing Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
27
|
Nabati S, Aminzare M, Roohinejad S, Hassanzad Azar H, Mohseni M, Greiner R, Tahegorabi R. Electrospun polycaprolactone nanofiber containing Ganoderma lucidum extract to improve chemical and microbial stability of rainbow trout fillets during storage at 4°C. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
28
|
Asadi S, Nayeri-Fasaei B, Zahraei-Salehi T, Yahya-Rayat R, Shams N, Sharifi A. Antibacterial and anti-biofilm properties of carvacrol alone and in combination with cefixime against Escherichia coli. BMC Microbiol 2023; 23:55. [PMID: 36864390 PMCID: PMC9983188 DOI: 10.1186/s12866-023-02797-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Plant-derived compounds can be used as antimicrobial agents in medicines and as food preservatives. These compounds can be applied along with other antimicrobial agents to strengthen the effect and/or reduce the required treatment dose. RESULTS In the present study, the antibacterial, anti-biofilm and quorum sensing inhibitory activity of carvacrol alone and in combination with the antibiotic cefixime against Escherichia coli was investigated. The MIC and MBC values for carvacrol were 250 μg/mL. In the checkerboard test, carvacrol showed a synergistic interaction with cefixime against E. coli (FIC index = 0.5). Carvacrol and cefixime significantly inhibited biofilm formation at MIC/2 (125 and 62.5 μg/mL), MIC/4 (62.5 and 31.25 μg/mL) and MIC/8 (31.25 and 15.625 μg/mL) for carvacrol and cefixime, respectively. The antibacterial and anti-biofilm potential effect of carvacrol confirmed by the scanning electron microscopy. Real-time quantitative reverse transcription PCR revealed significant down-regulation of the luxS and pfs genes following treatment with a MIC/2 (125 μg/mL) concentration of carvacrol alone and of only pfs gene following treatment with MIC/2 of carvacrol in combination with MIC/2 of cefixime (p < 0.05). CONCLUSIONS Because of the significant antibacterial and anti-biofilm activity of carvacrol, the present study examines this agent as an antibacterial drug of natural origin. The results indicate that in this study the best antibacterial and anti-biofilm properties are for the combined use of cefixime and carvacrol.
Collapse
Affiliation(s)
- Sepideh Asadi
- Department of Microbiology and Immunology, University of Tehran, Faculty of Veterinary Medicine, Tehran, Iran
| | - Bahar Nayeri-Fasaei
- Department of Microbiology and Immunology, University of Tehran, Faculty of Veterinary Medicine, Tehran, Iran.
| | - Taghi Zahraei-Salehi
- Department of Microbiology and Immunology, University of Tehran, Faculty of Veterinary Medicine, Tehran, Iran
| | - Ramak Yahya-Rayat
- Department of Microbiology and Immunology, University of Tehran, Faculty of Veterinary Medicine, Tehran, Iran
| | - Nemat Shams
- Department of Pathobiology, Lorestan University, Faculty of Veterinary Medicine, Tehran, Iran
| | - Aram Sharifi
- Department of Animal Science, University of Kurdistan, Faculty of Agriculture, Sanandaj, Iran
| |
Collapse
|
29
|
A Review of Regulatory Standards and Advances in Essential Oils as Antimicrobials in Foods. J Food Prot 2023; 86:100025. [PMID: 36916569 DOI: 10.1016/j.jfp.2022.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
As essential oils (EOs) possess GRAS status, there is a strong interest in their application to food preservation. Trends in the food industry suggest consumers are drawn to environmentally friendly alternatives and less synthetic chemical preservatives. Although the use of EOs has increased over the years, adverse effects have limited their use. This review aims to address the regulatory standards for EO usage in food, techniques for delivery of EOs, essential oils commonly used to control pathogens and molds, and advances with new active compounds that overcome sensory effects for meat products, fresh fruits and vegetables, fruit and vegetable juices, seafood, dairy products, and other products. This review will show adverse sensory effects can be overcome in various products by the use of edible coatings containing encapsulated EOs to facilitate the controlled release of EOs. Depending on the method of cooking, the food product has been shown to mask flavors associated with EOs. In addition, using active packaging materials can decrease the diffusion rate of the EOs, thus controlling undesirable flavor characteristics while still preserving or prolonging the shelf life of food. The use of encapsulation in packaging film can control the release of volatile or active ingredients. Further, use of EOs in the vapor phase allows for contact indirectly, and use of nanoemulsion, coating, and film wrap allows for the controlled release of the EOs. Research has also shown that combining EOs can prevent adverse sensory effects. Essential oils continue to serve as a very beneficial way of controlling undesirable microorganisms in food systems.
Collapse
|
30
|
A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use. Food Res Int 2023; 164:112363. [PMID: 36737951 DOI: 10.1016/j.foodres.2022.112363] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen causing serious public health problems. Nisin is a natural antimicrobial agent produced by Lactococcus lactis and widely used in the food industry. However, the anti-L. monocytogenes efficiency of nisin might be decreased due to natural or acquired resistance of L. monocytogenes to nisin, or complexity of the food environment. The limitation of nisin as a bacteriostatic agent in food could be improved using a combination of methods. In this review, the physiochemical characteristics, species, bioengineered mutants, and antimicrobial mechanism of nisin are reviewed. Strategies of nisin combined with other antibacterial methods, including physical, chemical, and natural substances, and nanotechnology to enhance antibacterial effect are highlighted and discussed. Additionally, the antibacterial efficiency of nisin applied in real meat, dairy, and aquatic products is evaluated and analyzed. Among the various binding treatments, the combination with natural substances is more effective than the combination with physical and chemical methods. However, the combination of nisin and nanotechnology has more potential in terms of the impact on food quality.
Collapse
|
31
|
Chen J, Li S, Zheng Q, Feng X, Tan W, Feng K, Liu Y, Hu W. Preparation of Solid Lipid Nanoparticles of Cinnamaldehyde and Determination of Sustained Release Capacity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4460. [PMID: 36558312 PMCID: PMC9785162 DOI: 10.3390/nano12244460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Natural plant essential oils cannot be applied on a large scale due to their high volatility, easy deactivation, etc. This study provides a new method to prepare a long-lasting, slow-release essential oil product by taking advantage of solid lipid nanoparticles, which will provide a scientific guideline for the future essential oil industry. In this article, solid lipid cinnamaldehyde nanoparticles were prepared using an ultrahigh-pressure homogenization method. SLN-CA with a particle size of 74 ± 5 nm, PDI of 0.153 ± 0.032, and zeta potential of -44.36 ± 2.2 mV was screened using an additional amount of cinnamaldehyde, the ratio of oil phase components, and the homogenization pressure and number of times as factors. Differential thermal analysis and spectroscopy demonstrated that cinnamaldehyde was successfully encapsulated inside the nanoparticles. The change in particle size of nanoparticles under different conditions and times was used as an indicator of stability. The stability of the finished nanoparticles was evaluated. The retention and slow-release ability of cinnamaldehyde were investigated using the concentration of cinnamaldehyde in nanoparticles as an indicator. The results showed that after 15 days, SLN-CA retained 52.36% of the concentration from 15 days prior. The bacterial inhibition test shows that SLN-CA can inhibit bacteria.
Collapse
Affiliation(s)
- Jiajia Chen
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Shangjian Li
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Qinhua Zheng
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Xiaolin Feng
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Weijian Tan
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Kexin Feng
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Yuntong Liu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Wenzhong Hu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519040, China
| |
Collapse
|
32
|
Abdalbeygi S, Aminzare M, Hassanzad Azar H. Chitosan edible coating incorporated with resveratrol and Satureja bachtiarica essential oil as natural active packaging: In vitro antibacterial and antioxidant properties, and its impact on the shelf life of fresh chicken fillet and growth of inoculated Escherichia coli O 157:H 7. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
The purpose of this study was to investigate the effects of chitosan coating containing resveratrol (RES) and Satureja bachtiarica essential oil (SEO) on the microbial quality, oxidative stability, and sensory properties of chicken meat as well as inoculated Escherichia coli O157:H7 during 12 day storage at 4 °C. The synergistic in vitro antioxidant effects between RES and SEO in chitosan coatings were observed. Moreover, chicken coated with chitosan solution containing RES 0.001% + SEO 2% indicated better results compared with the control group with the following scores (p≤0.05): Total viable count (6.11 log10 CFU/g), total psychrotrophic count (5.39 log10 CFU/g), Lactic acid bacteria (5.36 log10 CFU/g), pH (6.25), peroxide value (4.32 meq/kg lipid), thiobarbituric acid reactive substance (1.03 mg MDA/kg), sensory analysis (overall acceptability: 5.5), and inoculated E.coli O157:H7 (6.01 log10 CFU/g). The finding of the present study can contribute to the meat industry as a natural active packaging system.
Collapse
Affiliation(s)
- Sepehr Abdalbeygi
- Department of Food Safety and Hygiene , School of Public Health, Zanjan University of Medical Sciences , Zanjan , Iran
| | - Majid Aminzare
- Department of Food Safety and Hygiene , School of Public Health, Zanjan University of Medical Sciences , Zanjan , Iran
| | - Hassan Hassanzad Azar
- Department of Food Safety and Hygiene , School of Public Health, Zanjan University of Medical Sciences , Zanjan , Iran
| |
Collapse
|
33
|
Zakrzewski A, Purkiewicz A, Jakuć P, Wiśniewski P, Sawicki T, Chajęcka-Wierzchowska W, Tańska M. Effectiveness of various solvent-produced thyme (Thymus vulgaris) extracts in inhibiting the growth of Listeria monocytogenes in frozen vegetables. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Kouki H, Polito F, De Martino L, Mabrouk Y, Hamrouni L, Amri I, Fratianni F, De Feo V, Nazzaro F. Chemistry and Bioactivities of Six Tunisian Eucalyptus Species. Pharmaceuticals (Basel) 2022; 15:ph15101265. [PMID: 36297377 PMCID: PMC9611224 DOI: 10.3390/ph15101265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
The complex taxonomy of Eucalyptus genus, the renewed interest in natural compounds able to combat microbial strains, the overuse of synthetic pesticides, the consequent request for alternative control methods were the reasons for this research. The essential oils (Eos) of Eucalyptus bosistoana, Eucalyptus melliodora, Eucalyptus odorata, Eucalyptus paniculata, Eucalyptus salmonopholia, and Eucalyptus transcontinentalis were analyzed by GC/MS and their potential phytotoxic activity was evaluated against the germination and radicle elongation of Sinapis arvensis, Raphanus sativus and Lolium multiflorum. The antibiofilm activity was assayed against both Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative (Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii) bacteria. Monoterpenoids were the most representative constituents in all EOs and eucalyptol was the dominant component except in E. melliodora EO, in which p-cymene was the most abundant. In phytotoxic assays, the EOs from E. odorata and E. paniculata were the most active against germination and radical elongation of the tested seeds. Finally, the Eucalyptus EOs proved their capacity to effectively inhibit the adhesion process of all five pathogen strains, with percentages often reaching and exceeding 90%. These Eucalytpus EOs could have possible employments in the food, health and agricultural fields.
Collapse
Affiliation(s)
- Habiba Kouki
- Faculty of Sciences, Bizerte, Zarzouna 7021, Tunisia
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Ismail Amri
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via San Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Institute of Food Science, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
- Correspondence: ; Tel.: +39-089-969751
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
35
|
Pouryousef N, Ahmady M, Shariatifar N, Jafarian S, Shahidi SA. The Effects of Mentha pulegium L. Aqueous Extract and Nisin (Free and Nonoliposomes Forms) on Chemical, Biological, and Sensory Characteristics of Minced Silver Carp Fish ( Hypophthalmichthys molitrix). JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2120379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Neda Pouryousef
- Department of Food Science and Technology, Islamic Azad University, Ayatollah Amoli Branch, Amol, Mazandaran, Iran
| | - Mohammad Ahmady
- Department of Food Science and Technology, Islamic Azad University, Savadkooh Branch, Savadkooh, Mazandaran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Jafarian
- Department of Food Science and Technology, Islamic Azad University, Ayatollah Amoli Branch, Amol, Mazandaran, Iran
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Islamic Azad University, Ayatollah Amoli Branch, Amol, Mazandaran, Iran
| |
Collapse
|
36
|
Qiu Y, Ruan H. Supercritical CO 2 extraction, chemical composition, and antioxidant effects of Coreopsis tinctoria Nutt. oleoresin. Open Life Sci 2022; 17:816-826. [PMID: 35993096 PMCID: PMC9360582 DOI: 10.1515/biol-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
Coreopsis tinctoria Nutt. was used to extract oleoresin through supercritical CO2 extraction technology. The extraction conditions were optimized using response surface methodology, and the chemical composition of C. tinctoria Nutt. oleoresin (CTO) was analyzed. Under the optimal conditions, the antioxidant activity of oleoresin was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH˙) and 2,2′-azino-bis-(3-ethylbenzo-thiazoline-6-sulphonic acid)diammonium salt (ABTS˙+) free radical scavenging assays. The optimal extraction conditions were a 27.5 MPa extraction pressure, a 45°C extraction temperature, and a 3 h extraction time. Under these extraction conditions, oleoresin yield was up to 3.163%. Compared to steam distillation extraction, the CTO extracted using supercritical CO2 had more abundant components. The EC50 of CTO for DPPH˙ and ABTS˙+ free radical scavengers was 1.54 and 1.07 mg/mL, respectively.
Collapse
Affiliation(s)
- Yiyi Qiu
- Department of Application Engineering, Zhejiang Institute of Economics and Trade, Xuelin Rd. 280, Hangzhou 310018, P. R. China
| | - Hui Ruan
- College of Biosystems Engineering and Food Science, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, P. R. China.,Ningbo Innovation Center, Zhejiang University, Qianhunan Rd. 1, Ningbo 315100, P. R. China
| |
Collapse
|
37
|
Moldovan C, Frumuzachi O, Babotă M, Barros L, Mocan A, Carradori S, Crişan G. Therapeutic Uses and Pharmacological Properties of Shallot ( Allium ascalonicum): A Systematic Review. Front Nutr 2022; 9:903686. [PMID: 35983491 PMCID: PMC9380064 DOI: 10.3389/fnut.2022.903686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 01/09/2023] Open
Abstract
Background Shallot (Allium ascalonicum L.) is a traditional plant species used throughout the world both for culinary purposes and as a folk remedy. To date (i.e., April 2022), there is no report on the main pharmacological activities exerted by shallot preparations and/or extracts. Scope and Approach The aim of this study was to comprehensively review the pharmacological activities exerted by shallot, with rigorous inclusion and exclusion criteria based on the scientific rigor of studies. Prisma guidelines were followed to perform the literature search. Key Findings and Conclusions The literature search yielded 2,410 articles of which 116 passed the required rigorous criteria for inclusion in this review. The extracts exert a potent antioxidant activity both in vitro and in vivo, as well as a strong inhibitory capacity on various pathogens with relevant implications for public health. Moreover, shallot can be used as adjuvant therapy in cardiovascular diseases, diabetes, cancer prevention, and other non-communicable diseases associated with inflammatory and oxidative pathways. Future studies investigating the chemical composition of this species, as well as the molecular mechanisms involved in the empirically observed pharmacological actions are required.
Collapse
Affiliation(s)
- Cadmiel Moldovan
- Pharmaceutical Botany Department, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oleg Frumuzachi
- Pharmaceutical Botany Department, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai Babotă
- Pharmaceutical Botany Department, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Andrei Mocan
- Pharmaceutical Botany Department, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Gianina Crişan
- Pharmaceutical Botany Department, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
38
|
Characteristics and Antibacterial Effect of Chitosan Coating Nanoemulsion Containing Zataria multiflora and Bunium persicum Essential Oils Against Listeria monocytogenes. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-120819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Nowadays, finding natural compounds with antimicrobial properties against pathogens is very important, especially for the food and drug industries. Objectives: The antibacterial activity of chitosan coatings nanoemulsion (NE) containing Zataria multiflora and Bunium persicum essential oils (EOs) was evaluated in a food model (chicken breast fillets) during 15 days of refrigerated storage. Methods: The chicken breast fillets were divided into seven groups: control, chitosan 2%, sonicated chitosan 2%, chitosan NE coating containing Z. muitiflora EO (ZMEO, 0.5%, and 1 %) and chitosan NE coating containing B. persicum EO (BPEO, 0.5%, and 1 %). Characteristics of chitosan NE coatings containing EOs were analyzed. Moreover, the antimicrobial activity of coatings against Listeria monocytogenes was investigated. Results: The results showed good properties of the NE coatings. The analysis of EOs revealed that the major components for ZMEO were carvacrol (51.55%) and thymol (25.49%). In addition, the main components of BPEO were p-cumic aldehyde (38.39%) and p-cymene (18.36%). All treatments exhibited antimicrobial properties; however, the best result was recorded for chitosan NE coating containing 1% ZMEO, which was the lowest amount of L. monocytogenes (7.61 Log CFU/g). Moreover, L. monocytogenes analysis for chitosan NE coating containing 1% BPEO samples was 7.73 Log CFU/g. Conclusions: Therefore, based on the results of this study, chitosan NE coating containing ZMEO and BPEO as natural preservatives can be recommended for meat products, especially chicken meats.
Collapse
|
39
|
Li YX, Erhunmwunsee F, Liu M, Yang K, Zheng W, Tian J. Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chem 2022; 382:132312. [PMID: 35158267 DOI: 10.1016/j.foodchem.2022.132312] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Spice essential oils (SEOs) are commonly used in food flavoring and are considered an effective food preservative. It has a broad range of applications and promising development prospects. As a natural food additive, SEOs' antimicrobial effects have been widely studied and utilized towards food preservation. Many SEOs have exhibited significant antimicrobial activities against food-borne pathogenic and food spoilage microorganisms. We reviewed the antibacterial and antifungal properties of SEOs, the active components, their corresponding mechanisms of actions, as well as their application in the food industry, providing a theoretical basis for SEOs' further development and application as natural preservatives.
Collapse
Affiliation(s)
- Yong-Xin Li
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China.
| | - Famous Erhunmwunsee
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Man Liu
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Kunlong Yang
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Weifa Zheng
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China
| | - Jun Tian
- Department of Biomedicine and Food Science, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China.
| |
Collapse
|
40
|
Pouryousef N, Ahmady M, Shariatifar N, Jafarian S, Shahidi SA. The effects of essential oil Mentha pulegium L. and nisin (free and nanoliposome forms) on inoculated bacterial in minced silver carp fish (Hypophthalmichthys molitrix). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Zhu J, Liu J, Hong X, Sun Y. Synergism With ε-Polylysine Hydrochloride and Cinnamon Essential Oil Against Dual-Species Biofilms of Listeria monocytogenes and Pseudomonas lundensis. Front Microbiol 2022; 13:885502. [PMID: 35756071 PMCID: PMC9226771 DOI: 10.3389/fmicb.2022.885502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Various pathogenic and spoilage bacteria frequently coexist in meat processing environments and can form multispecies biofilms, causing significant health and economic issues. Despite the prevalence and coexistence, only less is known about possible interactions between Listeria monocytogenes (LM) and spoilers like Pseudomonas species, and their community-wide resistance against natural preservatives. This study evaluates the interactions between mono- or dual-species biofilms formed by LM and Pseudomonas lundensis (PL), as well as the sensitivity of these bacteria in dual-species biofilms to ε-polylysine hydrochloride (ε-PLH) alone or combined with cinnamon essential oil (CEO). The results showed that the biofilm cell density of P. lundensis in dual species was higher (p < 0.05) than LM, constituting about 85% of the total population. More biofilms and exopolysaccharide both in mono- or dual species of the two psychrotrophic strains were greatly produced at 15°C than at 30°C. The biomass, biovolume, and thickness of dual-species biofilms were significantly lower than single PL biofilm when tested using crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy, indicating the competitive interactions between them prevail. Additionally, ε-PLH significantly reduced the biofilm development as mono- and dual species in a concentration-dependent manner, especially single LM biofilm, which was consistent with the decrease in autoinducer-2 (AI-2) activity. LM as dual-species biofilms exhibited lower sensitivity to ε-PLH than its mono-biofilm probably due to protective effect conferred by PL. ε-PLH in combination with CEO, at the maximum sublethal concentrations (MSCs), showed enhanced inhibitory activity against dual-species biofilm formation, as evidenced by thin spare spatial structures and reduced AI-2 activity. In addition, the preformed dual biofilms were dramatically eradicated following treatment with ε-PLH combined with CEO at higher than minimum inhibitory concentration in comparison with either of the compounds used alone, indicating the synergistic antibiofilm of the two preservatives. This study reveals the competitive interactions between the two strains in dual-species biofilms, in which the dominant PL significantly contributed toward the tolerance of LM to ε-PLH, and the use of combined preservatives shows it is an effective strategy to control the multispecies biofilms in meat processing.
Collapse
Affiliation(s)
- Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jingcong Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaoli Hong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yang Sun
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
42
|
Vlčko T, Rathod NB, Kulawik P, Ozogul Y, Ozogul F. The impact of aromatic plant-derived bioactive compounds on seafood quality and safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:275-339. [PMID: 36064295 DOI: 10.1016/bs.afnr.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant-derived bioactive compounds have been extensively studied and used within food industry for the last few decades. Those compounds have been used to extend the shelf-life and improve physico-chemical and sensory properties on food products. They have also been used as nutraceuticals due to broad range of potential health-promoting properties. Unlike the synthetic additives, the natural plant-derived compounds are more acceptable and often regarded as safer by the consumers. This chapter summarizes the extraction methods and sources of those plant-derived bioactives as well as recent findings in relation to their health-promoting properties, including cardio-protective, anti-diabetic, anti-inflammatory, anti-carcinogenic, immuno-modulatory and neuro-protective properties. In addition, the impact of applying those plant-derived compounds on seafood products is also investigated by reviewing the recent studies on their use as anti-microbial, anti-oxidant, coloring and flavoring agents as well as freshness indicators. Moreover, the current limitations of the use of plant-derived bioactive compounds as well as future prospects are discussed. The discoveries show high potential of those compounds and the possibility to apply on many different seafood. The compounds can be applied as individual while more and more studies are showing synergetic effect when those compounds are used in combination providing new important research possibilities.
Collapse
Affiliation(s)
- Tomáš Vlčko
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak Agriculture University in Nitra, Nitra, Slovakia
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha, Maharashtra, India
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
43
|
Pilevar Z, Abhari K, Tahmasebi H, Beikzadeh S, Afshari R, Eskandari S, Bozorg MJA, Hosseini H. Antimicrobial properties of lysozyme in meat and meat products: possibilities and challenges. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v44i1.55262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Meat and meat products are highly perishable as they can provide an appropriate environment for microbial growth due to their high water activity and proper pH level. Quality, safety, sensory and nutritional properties of meat products are highly influenced by pathogenic and spoilage microorganisms. To prevent microbial growth, artificial antimicrobials have been used in food matrices, however safety concerns regarding the use of synthetic preservatives is a challenging issue. Additionally, consumer’s trend towards natural mildly processed products with extended shelf life necessitates the identification of alternative additives originating from natural sources of new acceptable and effective antimicrobials. Although the effectiveness of some natural antimicrobial agents has already been reported, still, there is lack of information regarding the possibility of using lysozyme as a preservative in meat and meat products either alone or in combination with other hurdles. In the present review the applications and beneficial effects of applying lysozyme in meat products, considering its limitations such as allergic problems, interactions with food constituents, reducing sensory changes and toxicity due to high required concentrations to prevent spoilage and oxidation in foods will be discussed
Collapse
|
44
|
Hossain MI, Rahaman Mizan MF, Toushik SH, Roy PK, Jahid IK, Park SH, Ha SD. Antibiofilm effect of nisin alone and combined with food-grade oil components (thymol and eugenol) against Listeria monocytogenes cocktail culture on food and food-contact surfaces. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Dong H, Gai Y, Fu S, Zhang D. Application of Biotechnology in Specific Spoilage Organisms of Aquatic Products. Front Bioeng Biotechnol 2022; 10:895283. [PMID: 35573247 PMCID: PMC9095962 DOI: 10.3389/fbioe.2022.895283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
Aquatic products are delicious and have high nutritive value, however, they are highly perishable during storage due to the growth and metabolism of microorganisms. The spoilage process of aquatic products was demonstrated to be highly related to the composition of microorganisms, in which the specific spoilage organisms (SSOs) are the main factors. In this article, the spoilage indicators of SSOs were systematically described, which could make a comprehensive evaluation of the quality of aquatic products. Quorum sensing (QS) regulates the growth, metabolism and characteristics of SSOs, the common signaling molecules and the QS system in the major SSOs of aquatic products were discussed. Moreover, we compared various technologies for the analysis of SSOs in aquatic products. Besides, quality control techniques based on microbiota regulating of aquatic products, including physical, chemical and biological preservation strategies, were also compared. In conclusion, novel preservation technologies and hurdle techniques are expected to achieve comprehensive inhibition of SSOs.
Collapse
Affiliation(s)
- Huina Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuanming Gai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shaoping Fu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Dawei Zhang,
| |
Collapse
|
47
|
Dos Santos LR, Alía A, Martin I, Gottardo FM, Rodrigues LB, Borges KA, Furian TQ, Córdoba JJ. Antimicrobial activity of essential oils and natural plant extracts against Listeria monocytogenes in a dry-cured ham-based model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1729-1735. [PMID: 34378213 DOI: 10.1002/jsfa.11475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/18/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Listeria monocytogenes is a widespread common contaminant in food production facilities during preparation, storage, and distribution, and minimally processed ready-to-eat products are considered at high risk of contamination by this bacterium. Increased antibiotic resistance has led researchers to search for plant-based natural alternatives to control pathogenic microorganisms. Among these products, essential oils and plant extracts have previously shown antimicrobial activity and are possible alternatives to manage food pathogens. In this study, commercial essential oils (cinnamon, clove, oregano, ginger, and thyme) and plant extracts (pomegranate, acorn, olive, strawberry tree, and dog rose) were tested against L. monocytogenes in a dry-cured ham-based model. RESULTS Essential oils and plant extracts were screened by agar diffusion and minimum inhibitory concentration for anti-L. monocytogenes activity. Cinnamon, pomegranate, and strawberry trees returned the strongest results and were therefore evaluated in a dry-cured ham-based medium assay with water activity of 0.93 or 0.95. The 10% essential oil of cinnamon was capable of completely inhibiting bacterial growth, while strawberry tree and pomegranate extract also showed antilisterial activity (P > 0.05). Water activity influenced the bacterial count of L. monocytogenes in a dry-cured ham-based medium. CONCLUSIONS There was a reduction in L. monocytogenes with the application of cinnamon essential oil but, because of the negative sensory impact of this particular compound in meat products, we suggest the use of pomegranate or strawberry tree for the biocontrol of Listeria in ready-to-eat products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luciana R Dos Santos
- Faculty of Agronomy and Veterinary Medicine, Universidade de Passo Fundo, Passo Fundo, Brazil
- Food Hygiene and Safety, Meat and Meat Products Research Institute, University of Extremadura, Caceres, Spain
| | - Alberto Alía
- Faculty of Agronomy and Veterinary Medicine, Universidade de Passo Fundo, Passo Fundo, Brazil
| | - Irene Martin
- Faculty of Agronomy and Veterinary Medicine, Universidade de Passo Fundo, Passo Fundo, Brazil
| | - Franciele M Gottardo
- Food Hygiene and Safety, Meat and Meat Products Research Institute, University of Extremadura, Caceres, Spain
| | - Laura B Rodrigues
- Food Hygiene and Safety, Meat and Meat Products Research Institute, University of Extremadura, Caceres, Spain
| | | | | | - Juan J Córdoba
- Faculty of Agronomy and Veterinary Medicine, Universidade de Passo Fundo, Passo Fundo, Brazil
| |
Collapse
|
48
|
Yasar S, Nizamlıoğlu NM, Gücüş MO, Bildik Dal AE, Akgül K. Origanum majorana L. Essential Oil-Coated Paper Acts as an Antimicrobial and Antioxidant Agent against Meat Spoilage. ACS OMEGA 2022; 7:9033-9043. [PMID: 35309474 PMCID: PMC8928526 DOI: 10.1021/acsomega.2c00237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 05/13/2023]
Abstract
This study first-ever tested the impact of active packaging paper coated with cationic starch containing Origanum majorana L. essential oil with 69.26% carvacrol polyphenol on the physical, chemical, and microbiological quality of minced beef stored at +4 °C for 0, 6, and 12 days. An analysis of electron scanning microscopy and infrared spectroscopy showed origanum oil entrapment on paper. Meat samples packaged without origanum oil at 6th and 12th days of storage were unfit for consumption. In contrary, origanum oil significantly reduced microbial counts by 2.5 log 10 CFU/g, the peroxide value by 22%, lipid oxidation by 22, the pH-dependent meat spoilage value by 27%, dry matter losses by 7%, and antioxidant activity losses by 40% and restored color and odor reductions. Origanum oil extended the shelf-life of minced beef up to the 6th day of cold storage with no negative effect on meat color and odor.
Collapse
Affiliation(s)
- Sulhattin Yasar
- Department
of Food Engineering, Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman 70200, Turkey
| | - Nizam Mustafa Nizamlıoğlu
- Department
of Food Engineering, Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman 70200, Turkey
| | - Mehmet Onurhan Gücüş
- Department
of Food Engineering, Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman 70200, Turkey
| | - Ahsen Ezel Bildik Dal
- Department
of Forest Products and Chemistry, Forest Industry Engineering, Faculty
of Forestry, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey
| | - Kübra Akgül
- Department
of Food Engineering, Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman 70200, Turkey
| |
Collapse
|
49
|
Prevalence of Multidrug-Resistant Listeria monocytogenes in Dairy Products with Reduction Trials Using Rosmarinic Acid, Ascorbic Acid, Clove, and Thyme Essential Oils. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9696927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Continuous monitoring of Listeria spp., particularly Listeria monocytogenes, in foods is a mandatory task for food safety and microbiology sectors. This study aimed to determine the prevalence and antimicrobial resistance patterns of L. monocytogenes in milk and dairy products retailed in Egypt. Furthermore, an experimental trial was conducted to investigate the antilisterial effects of some phytochemicals. A total of 200 samples (market raw milk, Kareish cheese, Damietta cheese, and plain yoghurt, 50 each) were collected and examined for detection of Listeria spp. The results revealed that 8, 12, 1, and 0 samples of market raw milk, Damietta cheese, Kareish cheese, and plain yoghurt were contaminated with Listeria spp., respectively. Antimicrobial sensitivity testing revealed that all L. monocytogenes isolates (15) were resistant to streptomycin and erythromycin. Molecular analysis revealed that 86.67% of L. monocytogenes harbored hylA virulent gene. Use of rosmarinic acid, ascorbic acid, thyme, and clove essential oils significantly (
) reduced L. monocytogenes growth in soft cheese—artificially contaminated with L. monocytogenes throughout a 4-week incubation period. In conclusion, strict hygienic conditions should be adopted during the preparation and distribution of dairy products. In addition, rosmarinic acid, ascorbic acid, clove, and thyme essential oils are good candidates as food preservatives with antilisterial activities.
Collapse
|
50
|
Physicochemical and thermal characterization of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) films incorporating thyme essential oil for active packaging of white bread. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|