1
|
Wu K, Zou D, Long Y, Xue L, Shuai S, Tian F, Li M, Fan G, Zheng Y, Sun X, Wang W, Wang L, Ni X, Zhang X, Fan Y, Li H. Contamination of Vibrio parahaemolyticus in crayfish for sale. Front Microbiol 2024; 15:1388658. [PMID: 39206361 PMCID: PMC11349636 DOI: 10.3389/fmicb.2024.1388658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Crayfish (Procambarus clarkii) are economically important freshwater crustaceans. With the growth of the crayfish industry, the associated food-safety risks should be seriously considered. Although Vibrio parahaemolyticus is commonly recognized as a halophilic foodborne pathogen associated with seafood, it has been found to be a major pathogen in crayfish-associated food poisoning cases. In this study, the V. parahaemolyticus contamination level in crayfish production-sale chain was investigated using crayfish and environmental samples collected from crayfish farms and markets. Serious V. parahaemolyticus contamination (detection rate of 66%) was found in the entire crayfish production-sale chain, while the V. parahaemolyticus contamination level of the market samples was extremely high (detection rate of 92%). The V. parahaemolyticus detection rate of crayfish surface was similar to that of whole crayfish, indicating that crayfish surface was important for V. parahaemolyticus contamination. The simulation experiments of crayfish for sale being contaminated by different V. parahaemolyticus sources were performed. All the contamination sources, containing V. parahaemolyticus-positive tank, water, and crayfish, were found to be efficient to contaminate crayfish. The crayfish tank displayed the most significant contaminating role, while the water seemed to inhibit the V. parahaemolyticus contamination. The contamination extent of the crayfish increased with the number of V. parahaemolyticus cells the tank carried and the contact time of the crayfish and the tank, but decreased with the time that the crayfish were maintained in the water. It was also confirmed that the crayfish surface was more susceptible to V. parahaemolyticus contamination than the crayfish intestine. Furthermore, the adsorption of V. parahaemolyticus onto the crayfish shell was analyzed. Over 90% of the V. parahaemolyticus cells were adsorbed onto the crayfish shell in 6 h, indicating a significant adsorption effect between V. parahaemolyticus and the crayfish shell. In conclusion, within a water-free sale style, the fresh crayfish for sale in aquatic products markets uses its shell to capture V. parahaemolyticus cells from the V. parahaemolyticus-abundant environments. The V. parahaemolyticus contamination in crayfish for sale exacerbates the crayfish-associated food-safety risk. This study sheds light on V. parahaemolyticus control and prevention in crayfish industry.
Collapse
Affiliation(s)
- Kui Wu
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Dazhao Zou
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yongyan Long
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Lin Xue
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Shufen Shuai
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Feiyan Tian
- Jiangxi Provincial Center for Agricultural Technical Extension, Nanchang, China
| | - Mei Li
- Donghu District Center for Disease Control and Prevention, Nanchang, China
| | - Guoyin Fan
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Yangyun Zheng
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Xiangrong Sun
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Wei Wang
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Li Wang
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Xiansheng Ni
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Xiaoling Zhang
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Yibing Fan
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Hui Li
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| |
Collapse
|
2
|
Di Salvo E, Panebianco F, Panebianco A, Ziino G. Quantitative Detection of Viable but Nonculturable Vibrio parahaemolyticus in Frozen Bivalve Molluscs. Foods 2023; 12:2373. [PMID: 37372584 DOI: 10.3390/foods12122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Vibrio parahaemolyticus is a foodborne pathogen diffusely distributed in the marine environment and often isolated from raw seafood belonging to different species, mostly shellfish. Ingestion of under- or uncooked seafood contaminated by V. parahaemolyticus can cause severe gastrointestinal symptoms in humans. Due to its ability to withstand low temperatures, Vibrio spp. could survive in frozen seafoods for long periods by entering the viable but nonculturable state (VBNC) and may constitute an unrecognized source of food contamination and infection. In the present study, seventy-seven frozen bivalve molluscs (35 mussels; 42 clams) were subjected to the detection and enumeration of viable V. parahaemolyticus using standard culture methods. VBNC forms were detected and quantified by applying an optimized protocol based on Propidium Monoazide (PMA) and Quantitative PCR (qPCR). All samples were negative for both the detection and enumeration of V. parahaemolyticus by the standard culture methods. VBNC forms were detected in 11.7% of the samples (9/77), with values ranging from 1.67 to 2.29 Log CFU/g. Only clam samples were positive for the detection of VBNC forms. The results of this study highlighted that VBNC V. parahaemolyticus may be present in frozen bivalve molluscs. Further data on the prevalence of VBNC V. parahaemolyticus in frozen seafood are needed in order to perform a robust risk assessment.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| | - Felice Panebianco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Antonio Panebianco
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| | - Graziella Ziino
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
3
|
Zheng H, Liu Y, Cai J, Zhang M, Wen Y, Guo L. The exploration of anti-Vibrio parahaemolyticus substances from Phellodendri Chinensis Cortex as a preservative for shrimp storage. Front Microbiol 2022; 13:1004262. [PMID: 36177459 PMCID: PMC9514719 DOI: 10.3389/fmicb.2022.1004262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to optimize the ultrasonic-assisted extraction of the anti-Vibrio parahaemolyticus substances of Phellodendri Chinensis Cortex (ASPC), identify their active substances, and investigate their application in shrimp storage. The ultrasonic-assisted extraction conditions of ASPC were optimized through a single-factor experiment combined with response surface methodology. The optimal parameters were the ethanol concentration of 81%, the ultrasonic power of 500 W, the temperature of 80°C, the extraction time of 23 min, and the liquid/solid ratio 25 ml/g. The antibacterial zone diameter of the obtained extract determined by agar well diffusion method was 15.56 ± 0.22 mm, which was not significantly different from the predicted value (15.92 mm). Berberine was identified as one of the main chemical components of ASPC through high-performance liquid chromatography combined with standard control. The minimum inhibitory concentrations of ASPC and berberine determined by the tube dilution method were 0.25 and 0.03 mg/ml, respectively. The application of ASPC in shrimp storage showed that it could effectively inhibit the proliferation of V. parahaemolyticus on shrimps. This report offers good prospects for the use of Phellodendri Chinensis Cortex as a potential preservative against V. parahaemolyticus in aquatic products.
Collapse
Affiliation(s)
- Huifang Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Yang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Jing Cai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Miao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Ying Wen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Lei Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Lei Guo,
| |
Collapse
|
4
|
Panebianco F, Nava V, Giarratana F, Gervasi T, Cicero N. Assessment of heavy- and semi-metals contamination in edible seaweed and dried fish sold in ethnic food stores on the Italian market. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Igbinosa EO, Beshiru A, Igbinosa IH, Ogofure AG, Uwhuba KE. Prevalence and Characterization of Food-Borne Vibrio parahaemolyticus From African Salad in Southern Nigeria. Front Microbiol 2021; 12:632266. [PMID: 34168622 PMCID: PMC8217614 DOI: 10.3389/fmicb.2021.632266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
The demand for minimally processed vegetables (African salad) has increased partly due to its inclusion in ready-to-eat foods. Nevertheless, the associated risk of the presence of emergent foodborne pathogens, such as Vibrio parahaemolyticus might be underestimated. The present study was designed to isolate and characterize foodborne V. parahaemolyticus from minimally processed vegetables using culture-based methods and molecular approach. A total of 300 samples were examined from retail outlets between November 2018 and August 2019 from Southern Nigeria. The prevalence of vibrios from the overall samples based on the colonial proliferation of yellow, blue-green and/or green colonies on thiosulfate citrate bile salts sucrose agar was 74/300 (24.6%). An average of two green or blue-green colonies from respective plates was screened for V. parahaemolyticus using analytical profile index (API) 20 NE. Polymerase chain reaction further confirmed the identity of positive V. parahaemolyticus. The counts of V. parahaemolyticus ranged from 1.5 to 1,000 MPN/g. A total of 63 recovered V. parahaemolyticus were characterized further. The resistance profile of the isolates include ampicillin 57/63 (90.5%), cefotaxime 41/63 (65.1%), ceftazidime 30/63 (47.6%), amikacin 32/63 (50.8%), kanamycin 15/63 (23.8%), and oxytetracycline 16/63 (25.4%). The multiple antibiotic index ranged from 0–0.81. The formation of biofilm by the isolates revealed the following: strong formation 15/63 (23.8%), moderate formation 31/63 (49.2%), weak formation 12/63 (19.1%), and no formation 5/63 (7.9%). A total of 63/63 (100%), 9/63 (14.3%), and 20/63 (31.8%) of the isolates harbored the tox R gene, TDH-related hemolysin (trh) and thermostable direct hemolysin (tdh) determinants respectively. The isolates with O2 serogroup were most prevalent via PCR. Isolates that were resistant to tetracycline, kanamycin, and chloramphenicol possessed resistant genes. The presence of multidrug-resistant vibrios in the minimally processed vegetables constitutes a public health risk and thus necessitates continued surveillance.
Collapse
Affiliation(s)
- Etinosa O Igbinosa
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Abeni Beshiru
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.,Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
| | - Isoken H Igbinosa
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Abraham G Ogofure
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Kate E Uwhuba
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.,Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
| |
Collapse
|
6
|
da Silva LV, Ossai S, Chigbu P, Parveen S. Antimicrobial and Genetic Profiles of Vibrio vulnificus and Vibrio parahaemolyticus Isolated From the Maryland Coastal Bays, United States. Front Microbiol 2021; 12:676249. [PMID: 34093499 PMCID: PMC8175909 DOI: 10.3389/fmicb.2021.676249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Vibrio vulnificus and V. parahaemolyticus, found naturally in marine and estuarine environments, are the leading cause of seafood associated gastrointestinal illness and death. Consumption of improperly cooked crabs and handling of live crabs are potential routes of exposure to pathogenic bacteria such as V. vulnificus and V. parahaemolyticus. Little information is available on serotype genetic and antimicrobial profiles of V. vulnificus and V. parahaemolyticus recovered from Maryland estuaries. The aim of the present study was to determine the serotype of V. parahaemolyticus, evaluate antimicrobial susceptibility and genetic profiles of V. vulnificus and V. parahaemolyticus isolated from water and blue crab (Callinectes sapidus) samples collected from the Maryland Coastal Bays. One hundred and fifty (150) PCR confirmed V. parahaemolyticus including 52 tdh+ (pathogenic) and 129 V. vulnificus strains were tested for susceptibility to twenty (20) different antibiotics chosen by clinical usage for Vibrio species. The O serogroups were determined using an agglutination test with V. parahaemolyticus antisera. Pulsed-field gel electrophoresis (PFGE) was used for molecular subtyping to investigate the genetic diversity among tested strains. The most prevalent serotypes were O5 (33.3%), O3 (18.7%) and O1 (14.7%). More than 41% of all tested Vibrio isolates were resistant to three or more antibiotics. Cephalothin showed the highest resistance (42% and 61%), followed by cefoxitin (42% and 31%) and ceftazidime (36% and 29%) for V. vulnificus and V. parahaemolyticus, respectively. Most strains (99–100%) were susceptible to ampicillin/sulbactam, levofloxacin, piperacillin, piperacillin/tazobactam, and tetracycline. Fifty percent (50%) of the cephalothin resistant strains were crab isolates. Vibrio vulnificus and V. parahaemolyticus isolates demonstrated a high genetic diversity and 31% of V. vulnificus and 16% of V. parahaemolyticus strains were PFGE untypeable. No correlations were found between the V. parahaemolyticus serotype, pathogenicity, genetic and antimicrobial resistance profiles of both species of Vibrio. The observed high multiple drug resistance of V. vulnificus and V. parahaemolyticus from blue crab and its environment is of public health concern. Therefore, there is a need for frequent antibiotic sensitivity surveillance for Vibrio spp.
Collapse
Affiliation(s)
- Ligia V da Silva
- Department of Natural Sciences, CREST Center for the Integrated Study of Coastal Ecosystem Processes and Dynamics in the Mid-Atlantic Region, NOAA Living Marine Resources Cooperative Science Center, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Sylvia Ossai
- Department of Agriculture, Food and Resource Sciences, Food and Agricultural Sciences Program, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Paulinus Chigbu
- Department of Natural Sciences, CREST Center for the Integrated Study of Coastal Ecosystem Processes and Dynamics in the Mid-Atlantic Region, NOAA Living Marine Resources Cooperative Science Center, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Salina Parveen
- Department of Natural Sciences, CREST Center for the Integrated Study of Coastal Ecosystem Processes and Dynamics in the Mid-Atlantic Region, NOAA Living Marine Resources Cooperative Science Center, University of Maryland Eastern Shore, Princess Anne, MD, United States.,Department of Agriculture, Food and Resource Sciences, Food and Agricultural Sciences Program, University of Maryland Eastern Shore, Princess Anne, MD, United States
| |
Collapse
|
7
|
Yoon JH, Bae YM, Song H, Lee S, Moon SK, Oh SW, Lee SY. Development of enhanced selective media for detection of Vibrio parahaemolyticus in oysters. Food Sci Biotechnol 2021; 30:475-485. [PMID: 33868758 DOI: 10.1007/s10068-021-00877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022] Open
Abstract
This study was undertaken to develop enhanced selective media for detection of Vibrio parahaemolyticus in oysters. Primarily, tryptic soy agar (TSA) was supplemented with 4.5-5% NaCl, 0.1-0.5% oxgall, and/or 1-2% sodium citrate, and adjusted to pH 8-9. A total of 21 Vibrio spp., 24 indicators, and 26 food-borne isolates were streaked on the modified media, followed by 24 h of incubation at 37 °C. While all the indicators and isolates failed to grow on TSA containing 5% NaCl, 0.5% oxgall, and 2% sodium citrate (TSAOSS1; pH 9), V. parahaemolyticus was culturable on this selective medium. Particularly, the ability of TSAOSS1 to quantify V. parahaemolyticus in oysters was superior to thiosulphate citrate bile salts sucrose (TCBS) agar. V. parahaemolyticus distinctly produced its white-yellowish, round, and edge-pointed colony on TSAOSS1. TSAOSS1 with high selectivity potentials over TCBS may be a promising alternative for detection of V. parahaemolyticus in seafoods or natural reservoirs. Supplementary Information The online version contains supplementary material available at (10.1007/s10068-021-00877-0).
Collapse
Affiliation(s)
- Jae-Hyun Yoon
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, 55365 Republic of Korea
| | - Young-Min Bae
- Department of Food and Nutrition, Chung-Ang University, Seodong-daero, 4726 Anseong-si, Gyeonggi-do Republic of Korea
| | - Hana Song
- Department of Food and Nutrition, Chung-Ang University, Seodong-daero, 4726 Anseong-si, Gyeonggi-do Republic of Korea
| | - Soyul Lee
- Department of Food and Nutrition, Chung-Ang University, Seodong-daero, 4726 Anseong-si, Gyeonggi-do Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Seodong-daero, 4726 Anseong-si, Gyeonggi-do Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul-si, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, Seodong-daero, 4726 Anseong-si, Gyeonggi-do Republic of Korea
| |
Collapse
|
8
|
Jeamsripong S, Khant W, Chuanchuen R. Distribution of phenotypic and genotypic antimicrobial resistance and virulence genes in Vibrio parahaemolyticus isolated from cultivated oysters and estuarine water. FEMS Microbiol Ecol 2021; 96:5828078. [PMID: 32358958 DOI: 10.1093/femsec/fiaa081] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023] Open
Abstract
A total of 594 Vibrio parahaemolyticus isolates from cultivated oysters (n = 361) and estuarine water (n = 233) were examined for antimicrobial resistance (AMR) phenotype and genotype and virulence genes. Four hundred forty isolates (74.1%) exhibited resistance to at least one antimicrobial agent and 13.5% of the isolates were multidrug-resistant strains. Most of the V. parahaemolyticus isolates were resistant to erythromycin (54.2%), followed by sulfamethoxazole (34.7%) and trimethoprim (27.9%). The most common resistance genes were qnr (77.8%), strB (27.4%) and tet(A) (22.1%), whereas blaTEM (0.8%) was rarely found. Four isolates (0.7%) from oysters (n = 2) and estuarine water (n = 2) were positive to tdh, whereas no trh-positive isolates were observed. Significantly positive associations among AMR genes were observed. The SXT elements and class 1, 2 and 3 integrons were absent in all isolates. The results indicated that V. parahaemolyticus isolates from oysters and estuarine water were potential reservoirs of resistance determinants in the environment. This increasing threat of resistant bacteria in the environment potentially affects human health. A 'One Health' approach involved in multidisciplinary collaborations must be implemented to effectively manage antimicrobial resistance.
Collapse
Affiliation(s)
- Saharuetai Jeamsripong
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, 39 Henry Dunant Road, Pathumwan, Bangkok 10330, Thailand
| | - Winn Khant
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, 39 Henry Dunant Road, Pathumwan, Bangkok 10330, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, 39 Henry Dunant Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Yu X, Liang Y, Zhou Y, He L, Liu Y, Fu L, Lin H, Zhang Y, Lu D. 23S rRNA from Vibrio parahaemolyticus regulates the innate immune response via recognition by TLR13 in orange-spotted grouper (Epinephelus coioides). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103837. [PMID: 32841623 DOI: 10.1016/j.dci.2020.103837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Toll-like receptors (TLRs) are major pattern recognition receptors (PRRs) that recognize multiple pathogen-associated molecular patterns (PAMPs) through the leucine-rich repeat (LRR) domain and mount effective immune responses. Vibrio parahaemolyticus is the main pathogen that causes vibriosis in aquatic animals, yet the mechanisms of its recognition by innate immune system in teleost fish remain unknown. Here, the results reveal that TLR13 in orange-spotted grouper (Epinephelus coioides) (EcTLR13) recognizes a conserved 23S ribosomal RNA (23S rRNA) sequence in V. parahaemolyticus, and the 13-nucleotide motif near the 23S rRNA ribozyme activation site (VP13) acts as a PAMP. After challenge with RNA and 23S rRNA from V. parahaemolyticus and with the synthetic oligoribonucleotide VP13, the expression of EcTLR13 in grouper spleen cells (GS cells) was significantly increased. EcTLR13-knockdowned GS cells were stimulated with the same stimulants as listed above, the expression of IL-6, IL-12, IL-1β and TNFα was significantly reduced. RNA-protein immunoprecipitation revealed that VP13 could directly bind to EcTLR13. The dual-luciferase reporter assay also showed that EcTLR13 enhanced the fluorescence activity of IFNβ rather than that of NF-κB when the cells were challenged with RNA from V. parahaemolyticus or with synthetic VP13. Our study established the mechanism of fish TLR13-mediated recognition of microbial products during V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Xue Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China
| | - Yaosi Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ying Zhou
- College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Liangge He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuqi Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lijun Fu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China.
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
10
|
Sadat A, El-Sherbiny H, Zakaria A, Ramadan H, Awad A. Prevalence, antibiogram and virulence characterization of Vibrio isolates from fish and shellfish in Egypt: a possible zoonotic hazard to humans. J Appl Microbiol 2020; 131:485-498. [PMID: 33187023 DOI: 10.1111/jam.14929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/31/2023]
Abstract
AIMS Infection of seafood with pathogenic species of the genus Vibrio causes human food-borne illnesses. This study was executed to examine the antimicrobial resistance phenotypes, biofilm-forming capability and virulence-associated genes of Vibrio from fish and shellfishes. METHODS AND RESULTS Three hundred fresh water and marine fish and shellfish samples were collected from wet markets and supermarkets in Mansoura, Egypt. Bacteriological examination and PCR amplification identified 92 Vibrio spp., including 42 Vibrio parahaemolyticus and 50 Vibrio alginolyticus isolates from the examined fish and shellfish (infection rate: 30·67%). However, V. vulnificus was not found in this study. Vibrio spp. exhibited variable frequencies of antimicrobial resistance with higher percentages to ampicillin and penicillin. Multidrug resistance (MDR) was detected in 69·04 and 38% of V. parahaemolyticus and V. alginolyticus respectively. PCR testing of virulence genes, tdh, trh and tlh revealed the presence of tlh and trh in 100 and 11·9% of V. parahaemolyticus isolates respectively and none of V. alginolyticus carried any of these genes. Biofilm-forming capability was displayed by 76% of V. parahaemolyticus and 73·8% of V. alginolyticus isolates. Both V. parahaemolyticus and V. alginolyticus showed nonsignificant weak positive correlations (r < 0·4) between antimicrobial pairs belonging to different classes; however, a significant positive correlation (P <0·05) between trh and resistance to erythromycin (r = 0·45) and imipenem (r = 0·38) was only identified in V. parahaemolyticus. CONCLUSIONS This study reports the existence of MDR strains of V. parahaemolyticus and V. alginolyticus from the common types of fishes and shellfishes in Egypt. Furthermore, the presence of virulence genes in these isolates and the ability to produce a biofilm in vitro pose potential health hazards to consumers. SIGNIFICANCE AND IMPACT OF THE STUDY Frequent monitoring of seafood for the presence of Vibrio spp. and their antimicrobial susceptibility, virulence determinants and biofilm-forming capability is important for assessing the risk posed by these organisms to the public and for improving food safety.
Collapse
Affiliation(s)
- A Sadat
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - H El-Sherbiny
- Educational Veterinary Hospital, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - A Zakaria
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - H Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - A Awad
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Zhou Q, Tan X, Meng X, Wang J, Ji F, Wang X. Identification of four secondary acyltransferases for lipid A biosynthesis in Vibrio parahaemolyticus. Biotechnol Appl Biochem 2020; 68:1486-1500. [PMID: 33150647 DOI: 10.1002/bab.2070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
In this study, four genes encoding secondary acyltransferases of lipid A in Vibrio parahaemolyticus ATCC33846 were identified. When the four genes were overexpressed in Escherichia coli MLK1067 that which produces the penta-acylated lipid A lacking the secondary acylation at the C3' position, a C12:0 secondary acyl chain was added at the C3' position of lipid A only in E. coli overexpressing VP_RS01045, but not VP_RS00880, VP_RS08405, or VP_RS12170. When the four genes were overexpressed in E. coli MKV15b that produces lipid IVA , a C12:0 secondary acyl chain was again added at the C3' position in E. coli overexpressing VP_RS01045, but a C14:0 secondary acyl chain was added at the C2' position of lipid A in E. coli overexpressing VP_RS00880, VP_RS08405, or VP_RS12170. The results indicate that four acyltransferases of lipid A are encoded by VP_RS01045, VP_RS00880, VP_RS08405, or VP_RS12170 in V. parahaemolyticus. The acyltransferase encoded by VP_RS01045 adds a C12:0 secondary acyl chain at the C3' position of lipid A, whereas the acyltransferase encoded by VP_RS00880, VP_RS08405, or VP_RS12170 adds a C14:0 secondary acyl chain at the C2' position of lipid A. This work contributes to understanding the biosynthetic pathway of lipid A in V. parahaemolyticus.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiangyu Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Fan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
12
|
Pang R, Li Y, Chen M, Zeng H, Lei T, Zhang J, Ding Y, Wang J, Wu S, Ye Q, Zhang J, Wu Q. A database for risk assessment and comparative genomic analysis of foodborne Vibrio parahaemolyticus in China. Sci Data 2020; 7:321. [PMID: 33009407 PMCID: PMC7532206 DOI: 10.1038/s41597-020-00671-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/13/2020] [Indexed: 01/23/2023] Open
Abstract
Vibrio parahaemolyticus is a major foodborne pathogen worldwide. The increasing number of cases of V. parahaemolyticus infections in China indicates an urgent need to evaluate the prevalence and genetic diversity of this pathogenic bacterium. In this paper, we introduce the Foodborne Vibrio parahaemolyticus genome database (FVPGD), the first scientific database of foodborne V. parahaemolyticus distribution and genomic data in China, based on our previous investigations of V. parahaemolyticus contamination in different kinds of food samples across China from 2011 to 2016. The dataset includes records of 2,499 food samples and 643 V. parahaemolyticus strains from supermarkets and marketplaces distributed over 39 cities in China; 268 whole-genome sequences have been deposited in this database. A spatial view on the risk situations of V. parahaemolyticus contamination in different food types is provided. Additionally, the database provides a functional interface of sequence BLAST, core genome multilocus sequence typing, and phylogenetic analysis. The database will become a powerful tool for risk assessment and outbreak investigations of foodborne pathogens in China.
Collapse
Affiliation(s)
- Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yanping Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Haiyan Zeng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Junhui Zhang
- Department of Food Science and Technology, Jinan University, Guangzhou, 510000, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, 510000, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
13
|
Xie T, Wu G, He X, Lai Z, Zhang H, Zhao J. Prevalence and genetic diversity of Vibrio parahaemolyticus strains from salmon in Chinese markets. FEMS Microbiol Lett 2020; 366:5487891. [PMID: 31074824 DOI: 10.1093/femsle/fnz103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/09/2019] [Indexed: 11/14/2022] Open
Abstract
Consumption of contaminated salmon in China has led to pathogenic Vibrio parahaemolyticus infections in humans. In this study, 420 salmon samples were collected from supermarkets and restaurants in China that showed a contamination rate of 9.05 and 15.24%, respectively. Eighteen antibiotics were used to test the antibiotic susceptibility of all 51 isolates. The most common resistance was observed to β-lactam antibiotics and aminoglycosides, including ampicillin (92.16%), streptomycin (88.24%), kanamycin (45.10%) and cephazolin (45.10%). Meanwhile, many strains were resistant to more than two antibiotics (48/51, 94.12%). Only two and five isolates were positive for tdh and trh, respectively. Serotyping results demonstrated that O2 was most prevalence serotype (15/51, 29.41%). Molecular typing (enterobacterial repetitive intergenic consensus sequence polymerase chain reaction and multilocus sequence typing) allowed classification of all the isolates into 5 clusters and 44 sequence types, highlighting genetic variation and relatedness. In general, the high antibiotic resistance is alarming and raises public health concerns. Frequent monitoring of salmon for V. parahaemolyticus contamination, genetic diversity and antibiotic susceptibility is essential to improve seafood safety.
Collapse
Affiliation(s)
- Tengfei Xie
- Research Center of Plant Pest Management and Bioenvironmental Health technology, Guangdong Eco-engineering Polytechnic, Guangzhou, China
| | - Gang Wu
- Research Center of Plant Pest Management and Bioenvironmental Health technology, Guangdong Eco-engineering Polytechnic, Guangzhou, China
| | - Xujun He
- Research Center of Plant Pest Management and Bioenvironmental Health technology, Guangdong Eco-engineering Polytechnic, Guangzhou, China
| | - Zengzhe Lai
- Research Center of Plant Pest Management and Bioenvironmental Health technology, Guangdong Eco-engineering Polytechnic, Guangzhou, China
| | - Huatong Zhang
- Research Center of Plant Pest Management and Bioenvironmental Health technology, Guangdong Eco-engineering Polytechnic, Guangzhou, China
| | - Jing Zhao
- Research Center of Plant Pest Management and Bioenvironmental Health technology, Guangdong Eco-engineering Polytechnic, Guangzhou, China
| |
Collapse
|
14
|
Hu Y, Li F, Zheng Y, Jiao X, Guo L. Isolation, Molecular Characterization and Antibiotic Susceptibility Pattern of Vibrio parahaemolyticus from Aquatic Products in the Southern Fujian Coast, China. J Microbiol Biotechnol 2020; 30:856-867. [PMID: 32160689 PMCID: PMC9728269 DOI: 10.4014/jmb.2001.01005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Vibrio parahaemolyticus is a major gastroenteritis-causing pathogen in many Asian countries. Antimicrobial resistance in V. parahaemolyticus has been recognized as a critical threat to food safety. In this study, we determined the prevalence and incidence of antimicrobial resistance in V. parahaemolyticus in the southern Fujian coast, China. A total of 62 isolates were confirmed in retail aquatic products from June to October of 2018. The serotype O3:K6 strains, the virulence genes tdh and trh, antibiotic susceptibility and molecular typing were investigated. Then plasmid profiling analysis and curing experiment were performed for multidrug-resistant strains. The results showed that the total occurrence of V. parahaemolyticus was 31% out of 200 samples. Five strains (8.1%) out of 62 isolates were identified as the V. parahaemolyticus O3:K6 pandemic clone. A large majority of isolates exhibited higher resistance to penicillin (77.4%), oxacillin (71%), ampicillin (66.1%) and vancomycin (59.7%). Seventy-one percent (44/62) of the isolates exhibited multiple antimicrobial resistance. All 62 isolates were grouped into 7 clusters by randomly amplified polymorphic DNA, and most of the isolates (80.6%) were distributed within cluster A. Plasmids were detected in approximately 75% of the isolates, and seven different profiles were observed. Seventy-six percent (25/33) of the isolates carrying the plasmids were eliminated by 0.006% SDS incubated at 42°C, a sublethal condition. The occurrence of multidrug-resistant strains could be an indication of the excessive use of antibiotics in aquaculture farming. The rational use of antimicrobial agents and the surveillance of antibiotic administration may reduce the acquisition of resistance by microorganisms in aquatic ecosystems.
Collapse
Affiliation(s)
- Yuanqing Hu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 5000, P.R. China,Corresponding author Phone: +86-596-2528735 Fax: +86-596-2528735 E-mail:
| | - Fengxia Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China
| | - Yixian Zheng
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 5000, P.R. China
| | - Liqing Guo
- Zhangzhou Center for Disease Control and Prevention, Zhangzhou 6000, P.R. China
| |
Collapse
|
15
|
Moon HJ, Lee JY, Lim JY, Kim SJ, Song KY, Yoon KS. The fate of cold‐stressed or
tetracycline‐resistant
Vibrio
spp. in precooked shrimp during frozen storage. J Food Saf 2020. [DOI: 10.1111/jfs.12798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hye J. Moon
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Jeong Y. Lee
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Ju Y. Lim
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Su J. Kim
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Ki Y. Song
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| | - Ki S. Yoon
- Department of Food and NutritionCollege of Human Ecology, Kyung Hee University Seoul Republic of Korea
| |
Collapse
|
16
|
Zhao L, Lv X, Cao X, Zhang J, Gu X, Zeng H, Wang L. Improved quantitative detection of VBNC Vibrio parahaemolyticus using immunomagnetic separation and PMAxx-qPCR. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
|
18
|
Jeong HW, Kim JA, Jeon SJ, Choi SS, Kim MK, Yi HJ, Cho SJ, Kim IY, Chon JW, Kim DH, Bae D, Kim H, Seo KH. Prevalence, Antibiotic-Resistance, and Virulence Characteristics of Vibrio parahaemolyticus in Restaurant Fish Tanks in Seoul, South Korea. Foodborne Pathog Dis 2019; 17:209-214. [PMID: 31692375 DOI: 10.1089/fpd.2019.2691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vibrio parahaemolyticus is a marine bacterium that causes foodborne diarrhea. Many seafood restaurants keep live fish and shellfish in fish tanks for use in raw seafood dishes; thus, the present study aimed to investigate the prevalence, antibiotic-resistance, and virulence characteristics exhibited by V. parahaemolyticus detected in restaurant fish-tank water samples collected in Seoul, South Korea. Fish-tank water samples were collected from 69 restaurants in Seoul, and screened for the presence of V. parahaemolyticus via both a commercial detection kit, and a real-time polymerase chain reaction (RT-PCR) to detect the toxR gene. Antibiotic susceptibility and virulence determinants of V. parahaemolyticus isolates were evaluated and identified using standard disk-diffusion and RT-PCR methods, respectively. Thirty-five (50.7%) of the 69 analyzed water samples were found to be contaminated with V. parahaemolyticus. Those isolates were most often resistant to ampicillin (51.4% of isolates), followed by amikacin and tetracycline (11.4%), and ceftazidime (8.6%). Thirty (85.7%) out of the 35 isolates carried all four cytotoxicity-inducing type III secretion system 1 (T3SS1) genes [specifically, 34 (97.1%), 33 (94.3%), 35 (100%), and 32 (91.4%) isolates carried genes encoding the VP1670, VP1686, VP1689, and VP1694 T3SS1 proteins, respectively]. The type VI secretion systems (T6SS1 and T6SS2) genes were also detected in 11 (31.4%) and 27 (77.1%) isolates, respectively. However, virulence determinants such as the hemolysin (tdh and trh), urease (ureC), T3SS2α, or T3SS2β genes that are known to be associated with enterotoxicity were not detected in all isolates. Although some known major virulence genes were not detected in the V. parahaemolyticus isolates, the results of this study indicate that restaurant fish tanks are a potential source of antibiotic-resistant V. parahaemolyticus. The presented data support the need for strict guidelines to regulate the maintenance of restaurant fish tanks to prevent antibiotic-resistant foodborne vibriosis.
Collapse
Affiliation(s)
- Hyo-Won Jeong
- KU Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea.,Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Jin-Ah Kim
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Su-Jin Jeon
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Seong-Seon Choi
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Min-Kyeong Kim
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Hye-Jin Yi
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Seok-Ju Cho
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Il-Young Kim
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Korea
| | - Jung-Whan Chon
- KU Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Dong-Hyeon Kim
- KU Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Dongryeoul Bae
- KU Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Hyunsook Kim
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul, Korea
| | - Kun-Ho Seo
- KU Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
19
|
Ethnic seafood products sold on the Italian market: labelling assessment and biological, chemical and physical risk characterization. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production. Microorganisms 2019; 7:microorganisms7100387. [PMID: 31554228 PMCID: PMC6843219 DOI: 10.3390/microorganisms7100387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023] Open
Abstract
Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based preparations toward the substrate strongly relies on the enzyme purity. However, the overall activity may depend on the cooperation with other proteases, the presence of which may be essential for the overall enzymatic activity, but potentially harmful for cells and tissues. Vibrios produce some of the most promising bacterial proteases (including collagenases), and their exo-proteome includes several enzymes with different substrate specificities, the production and relative abundances of which strongly depend on growth conditions. We evaluated the effects of different media compositions on the proteolytic exo-proteome of Vibrio alginolyticus and its closely relative Vibrio parahaemolyticus, in order to improve the overall proteases production, as well as the yield of the desired enzymes subset. Substantial biological responses were achieved with all media, which allowed defining culture conditions for targeted improvement of selected enzyme classes, besides giving insights in possible regulatory mechanisms. In particular, we focused our efforts on collagenases production, because of the growing biotechnological interest due to their pharmaceutical/biomedical applications.
Collapse
|
21
|
Detection of viable but nonculturable Vibrio parahaemolyticus in shrimp samples using improved real-time PCR and real-time LAMP methods. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Mougin J, Copin S, Bojolly D, Raguenet V, Robert-Pillot A, Quilici ML, Midelet-Bourdin G, Grard T, Bonnin-Jusserand M. Adhesion to stainless steel surfaces and detection of viable but non cultivable cells of Vibrio parahaemolyticus and Vibrio cholerae isolated from shrimps in seafood processing environments: Stayin’ alive? Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Chen YR, Hwang CA, Huang L, Wu VC, Hsiao HI. Kinetic analysis and dynamic prediction of growth of vibrio parahaemolyticus in raw white shrimp at refrigerated and abuse temperatures. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
24
|
Zhong Q, Wang B, Wang J, Liu Y, Fang X, Liao Z. Global Proteomic Analysis of the Resuscitation State of Vibrio parahaemolyticus Compared With the Normal and Viable but Non-culturable State. Front Microbiol 2019; 10:1045. [PMID: 31134040 PMCID: PMC6517545 DOI: 10.3389/fmicb.2019.01045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/25/2019] [Indexed: 11/24/2022] Open
Abstract
Vibrio parahaemolyticus is a common pathogen which has become a major concern of seafood products. The bacteria in the viable but non-culturable (VBNC) state are unable to form colonies on growth media, but under appropriate conditions they can regain culturability. In this study, V. parahaemolyticus was induced into VBNC state at low temperature and oligotrophic condition, and was resuscitated to culturable state. The aim of this study is to explore the comparative proteomic profiles of the resuscitation state compared with the VBNC state and the exponential phase of V. parahaemolyticus using isobaric tags for relative and absolute quantitation (iTRAQ) technique. The differentially expressed proteins (DEPs) were subjected to GO functional annotations and KEGG pathway analysis. The results indicated that a total of 429 proteins were identified as the significant DEPs in the resuscitation cells compared with the VBNC cells, including 330 up-regulated and 99 down-regulated DEPs. Meanwhile, the resuscitation cells displayed 25 up-regulated and 36 down-regulated DEPs (total of 61 DEPs) in comparison with the exponential phase cells. The remarkable DEPs including ribosomal proteins, ABC transporters, outer membrane proteins and flagellar proteins. GO annotation showed that the 429 DEPs were classified into 37 GO terms, of which 17 biological process (BP) terms, 9 cellular component (CC) terms and 11 molecular function (MF) terms. The up-regulated proteins presented in all GO terms except two terms of developmental process and reproduction. The 61 DEPs were assigned to 23 GO terms, the up- and down-regulated DEPs were both mainly involved in cellular process, establishment of localization, metabolic process and so on. KEGG pathway analysis revealed that the 429 DEPs were assigned to 35 KEGG pathways, and the pathways of ribosome, glyoxylate and dicarboxylate metabolism were significantly enriched. Moreover, the 61 DEPs located in 26 KEGG pathways, including the significantly enriched KEGG pathways of ABC transporters and two-component system. This study would contribute to a better understanding of the molecular mechanism underlying the resuscitation of the VBNC state of V. parahaemolyticus.
Collapse
Affiliation(s)
- Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China.,SCAU (Chaozhou) Food Institute Co. Ltd., Chaozhou, China
| | - Bin Wang
- Guangdong Scau Assets Management Co., Ltd., South China Agricultural University, Guangzhou, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yufei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Ndraha N, Hsiao HI. Exposure Assessment and Sensitivity Analysis for Chilled Shrimp During Distribution: A Case Study of Home Delivery Services in Taiwan. J Food Sci 2019; 84:859-870. [PMID: 30912864 DOI: 10.1111/1750-3841.14498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Abstract
In this study, we evaluated the temperature requirements for home delivery in Taiwan by considering food safety risks of chilled shrimp that may be contaminated with Vibrio parahaemolyticus. Pathogenic V. parahaemolyticus was chosen because it was the main cause of foodborne outbreaks originating from contaminated seafood in Taiwan. The risk of becoming ill due to consumption of raw shrimp was estimated to be 7.3 × 10-3 per serving, estimated based on the real-time temperature profile. Lowering the maximum temperature to 7 °C during transit and cooking shrimps at 100 °C for 5 min could reduce the risk by more than 94%. These interventions, therefore, were suggested to be used as an integral part of temperature management control in the home delivery cold chain. These findings can help food authorities to institute temperature management policies and regulations to prevent broken cold chains and reduce food safety risks. PRACTICAL APPLICATION: This research may be applicable to home delivery services that deliver low-temperature food products, such as seafood products.
Collapse
Affiliation(s)
- Nodali Ndraha
- Dept. of Food Science, National Taiwan Ocean Univ., No.2, Pei-Ning Rd., Keelung City, 20224, Taiwan
| | - Hsin-I Hsiao
- Dept. of Food Science, National Taiwan Ocean Univ., No.2, Pei-Ning Rd., Keelung City, 20224, Taiwan
| |
Collapse
|
26
|
Yoon JH, Lee SY. Characteristics of viable-but-nonculturable Vibrio parahaemolyticus induced by nutrient-deficiency at cold temperature. Crit Rev Food Sci Nutr 2019; 60:1302-1320. [DOI: 10.1080/10408398.2019.1570076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
27
|
Gao X, Pi D, Chen N, Li X, Liu X, Yang H, Wei W, Zhang X. Survival, Virulent Characteristics, and Transcriptomic Analyses of the Pathogenic Vibrio anguillarum Under Starvation Stress. Front Cell Infect Microbiol 2018; 8:389. [PMID: 30505805 PMCID: PMC6250815 DOI: 10.3389/fcimb.2018.00389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Many bacteria have developed strategies for metamorphosis into sophisticated survival forms to survive extended periods of environmental stress. As a global causative agent of vibriosis in marine fish farming, Vibrio anguillarum (V. anguillarum) can efficiently grow and proliferate under environmental stress, but the specific mechanism is not clear. In the present study, survival, virulent characteristics, and transcriptomic analysis of the V. anguillarum BH1 were performed under starvation stress. The results demonstrated that V. anguillarum was still culturable and showed rippled surface after 6 months of starvation. Starved cells maintained their infectivity in half-smooth tongue sole (Cynoglossus semilaevi). Detection of virulence factors and virulence-associated genes in starved cells showed that the starved strain still produced β-hemolysis on rabbit blood agar, caseinase, dnase, and gelatinase, and possessed empA, vah1, vah2, vah3, vah4, vah5, rtxA, flaA, flaD, flaE, virC, tonB, mreB, toxR, rpoS, and ftsZ virulence-related genes. In addition, we first reported the RNA-seq study for V. anguillarum with and without starvation treatment for a period of 6 months and emphasized the regulation of gene expression at the whole transcriptional level. It indicated that V. anguillarum expressed 3,089 and 3,072 genes in the control group and starvation stress group, respectively. The differently expressed genes (DEGs) of the starved strain were thereby identified, including 251 up-regulated genes and 272 down-regulated genes in comparison with the non-starved strain. Gene Ontology (GO) analysis and Kyto Encyclopedia Genes and Genomes (KEGG) enrichment analysis of DEGs were also analyzed. GO functional classification revealed that among the significantly regulated genes with known function categories, more genes affiliated with signal transducer activity, molecular transducer activity, and cell communication were significantly up-regulated, and more genes affiliated with cellular macromolecule, cellular component, and structural molecule activity were significantly down-regulated. In addition, the DEGs involved in the pathway of two-component system was significantly up-regulated, and the pathways of ribosome and flagellar assembly were significantly down-regulated. This study provides valuable insight into the survival strategies of V. anguillarum and suggests that a portion of the bacterial populations may remain pathogenic while persisting under starvation stress by up-regulating or down-regulating a series of genes.
Collapse
Affiliation(s)
- Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Daming Pi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Nan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wanhong Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
28
|
Rapid subtyping of pathogenic and nonpathogenic Vibrio parahaemolyticus by fourier transform infrared spectroscopy with chemometric analysis. J Microbiol Methods 2018; 155:70-77. [PMID: 30414402 DOI: 10.1016/j.mimet.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
Vibrio parahaemolyticus which naturally inhabits marine and estuarine environment represents pathogenic strains (virulence genes tdh or trh positive) and non-pathogenic strains (virulence genes negative). In this study, a rapid method for subtyping pathogenic and non-pathogenic V. parahaemolyticus was established using fourier transform infrared (FTIR) spectroscopy with chemometric analysis. This method targeted three strains of genotypes of V. parahaemolyticus including tdh positive, trh positive and virulence gene-negative (nonpathogenic) V. parahaemolyticus. The FTIR absorption spectra between 1800 and 900 cm-1 highlighted the most distinctive variations and were the most useful for characterizing the three bacteria. The successful differentiation and identification of the three bacteria could be accomplished in less than 1 h by FTIR using principal component analysis (PCA), or another cluster model of hierarchical cluster analysis (HCA). The method was verified by analyzing spiked V. parahaemolyticus fish samples. Furthermore, all of ten clinical isolates of V. parahaemolyticus were identified as tdh-positive, none of the clinical isolates were trh-positive, and all of ten environmental isolates were identified as non-pathogenic by the subtyping method, which were confirmed by PCR assays. All data demonstrated that the newly established subtyping method by FTIR is practical, time-saving, labor-saving, specific and cost-effective, especially suitable for the basic laboratories of CDC and port quarantine departments to perform suiveillance and epidemiological traceability of pathogenic V. parahaemolyticus.
Collapse
|
29
|
Zhao S, Ma L, Wang Y, Fu G, Zhou J, Li X, Fang W. Antimicrobial resistance and pulsed-field gel electrophoresis typing of Vibrio parahaemolyticus isolated from shrimp mariculture environment along the east coast of China. MARINE POLLUTION BULLETIN 2018; 136:164-170. [PMID: 30509797 DOI: 10.1016/j.marpolbul.2018.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 05/25/2023]
Abstract
Environmental antimicrobial resistance (AMR) has drawn increasing attention due to its great risk to human health. The aim of this study was to investigate AMR and genotyping of Vibrio parahaemolyticus isolates (n = 114) recovered from shrimp mariculture environment in China. The isolates exhibited a high rate of resistance to streptomycin (78.9%), ampicillin (64.9%) and gentamicin (53.5%). Furthermore, multi-drug resistance was highly prevalent (61.4%), in which 95.9% of these ampicillin-resistant isolates were primarily mediated by blaCARB-17. Surprisingly, doxycylcine, florfenicol, and trimethoprim/sulfamethoxazole (TMP/SMZ) resistance genes occurred in susceptible isolates. Moreover, 114 isolates were grouped into unique pulsed field gel electrophoresis patterns. These findings suggest the need for the prudent use of antimicrobial agents on mariculture farms, in order to control the dissemination of antimicrobial resistant V. parahaemolyticus.
Collapse
Affiliation(s)
- Shu Zhao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, China; Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, China
| | - Licai Ma
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuan Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, China
| | - Guihong Fu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, China
| | - Junfang Zhou
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, China
| | - Xincang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, China
| | - Wenhong Fang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Shanghai 200090, China.
| |
Collapse
|
30
|
Zhou M, Chen W, Shi C, Wang H, Shi X. Combination of Multilocus Sequence Typing and GS-PCR Reveals an Association of Pandemic Vibrio parahaemolyticus Clone with Clinical and Seafood Isolates. J Food Sci 2018; 83:2536-2543. [PMID: 30256419 DOI: 10.1111/1750-3841.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/15/2018] [Accepted: 08/05/2018] [Indexed: 11/27/2022]
Abstract
Vibrio parahaemolyticus is a global leading cause of seafood-borne bacterial gastroenteritis. Clinical, seafood, and environmental V. parahaemolyticus isolates from the eastern coast of China were analyzed for their virulence, and for phenotypic and molecular traits. The frequency of pandemic isolates was 50.9% among clinical isolates and 42.8% among seafood isolates as confirmed by group-specific polymerase chain reaction (GS-PCR). Serological analysis indicated that O3:K6, O1:K25, O1:KUT, O3:K68, and O4:K68 were the predominant serotypes among these pandemic isolates. It is worth noting that the pandemic serotypes were not exclusively identified from clinical samples. Rather, they were also isolated from seafood samples. It was also shown by multilocus sequence typing (MLST) typing that isolates from clinical (59), seafood (28), and environmental samples (18) were grouped into 17, 23, and 17 sequence types (STs), respectively. We updated 17 STs in the MLST database. ST-3 and ST-189 were the dominant ones among clinical isolates. Interestingly, ST-3 was also the most abundant among seafood isolates, and represented a significant risk to food safety due to the clear association with tdh and the GS-PCR marker. A minimum-evolution (ME) tree generated from the concatenated sequences of the 7 loci of the 54 STs uncovered phylogenetic relationships between seafood and clinical isolates. The MLST results also indicated a high degree of nucleotide diversity in recA that had the greatest influence on the phylogenetic relationships. Our findings provided new insight into the phylogenic relationship among pandemic V. parahaemolyticus isolates from various samples and enhanced the MLST database as well as microbiological risk assessment. PRACTICAL APPLICATION Pandemic V. parahaemolyticus isolates have become a serious public health concern. This study demonstrated the characteristics of clinical and seafood V. parahaemolyticus isolates, and determined the phylogenetic relatedness among them. These results can be used for microbiological risk assessment in China.
Collapse
Affiliation(s)
- Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic Univ., Wuhan, 430023, China
| | - Wanyi Chen
- Mérieux NutriSciences China, Sino Silliker Testing Services (Shanghai) Co., Ltd., Shanghai, 200231, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Hongxun Wang
- School of Food Science and Engineering, Wuhan Polytechnic Univ., Wuhan, 430023, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| |
Collapse
|
31
|
Chung HY, Lee B, Na EJ, Lee KH, Ryu S, Yoon H, Lee JH, Kim HB, Kim H, Jeong HG, Kim BS, Choi SH. Potential Survival and Pathogenesis of a Novel Strain, Vibrio parahaemolyticus FORC_022, Isolated From a Soy Sauce Marinated Crab by Genome and Transcriptome Analyses. Front Microbiol 2018; 9:1504. [PMID: 30034383 PMCID: PMC6043650 DOI: 10.3389/fmicb.2018.01504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus can cause gastrointestinal illness through consumption of seafood. Despite frequent food-borne outbreaks of V. parahaemolyticus, only 19 strains have subjected to complete whole-genome analysis. In this study, a novel strain of V. parahaemolyticus, designated FORC_022 (Food-borne pathogen Omics Research Center_022), was isolated from soy sauce marinated crabs, and its genome and transcriptome were analyzed to elucidate the pathogenic mechanisms. FORC_022 did not include major virulence factors of thermostable direct hemolysin (tdh) and TDH-related hemolysin (trh). However, FORC_022 showed high cytotoxicity and had several V. parahaemolyticus islands (VPaIs) and other virulence factors, such as various secretion systems (types I, II, III, IV, and VI), in comparative genome analysis with CDC_K4557 (the most similar strain) and RIMD2210633 (genome island marker strain). FORC_022 harbored additional virulence genes, including accessory cholera enterotoxin, zona occludens toxin, and tight adhesion (tad) locus, compared with CDC_K4557. In addition, O3 serotype specific gene and the marker gene of pandemic O3:K6 serotype (toxRS) were detected in FORC_022. The expressions levels of genes involved in adherence and carbohydrate transporter were high, whereas those of genes involved in motility, arginine biosynthesis, and proline metabolism were low after exposure to crabs. Moreover, the virulence factors of the type III secretion system, tad locus, and thermolabile hemolysin were overexpressed. Therefore, the risk of foodborne-illness may be high following consumption of FORC_022 contaminated crab. These results provided molecular information regarding the survival and pathogenesis of V. parahaemolyticus FORC_022 strain in contaminated crab and may have applications in food safety.
Collapse
Affiliation(s)
- Han Y Chung
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea.,Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea
| | - Byungho Lee
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea.,Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea
| | - Eun J Na
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea.,Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea
| | - Kyu-Ho Lee
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Life Science, Sogang University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea.,Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea
| | - Hyunjin Yoon
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Applied Chemistry & Biological Engineering, Ajou University, Suwon, South Korea
| | - Ju-Hoon Lee
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Hyeun B Kim
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Heebal Kim
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Animal Science and Biotechnology, Seoul National University, Seoul, South Korea
| | - Hee G Jeong
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Food Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Bong-Soo Kim
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Sang H Choi
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea.,Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea
| |
Collapse
|
32
|
Molecular characterization, antibiotic resistance pattern and biofilm formation of Vibrio parahaemolyticus and V. cholerae isolated from crustaceans and humans. Int J Food Microbiol 2018; 274:31-37. [DOI: 10.1016/j.ijfoodmicro.2018.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 01/28/2023]
|
33
|
Beshiru A, Igbinosa EO. Characterization of extracellular virulence properties and biofilm-formation capacity of Vibrio species recovered from ready-to-eat (RTE) shrimps. Microb Pathog 2018; 119:93-102. [DOI: 10.1016/j.micpath.2018.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
|
34
|
Ding C, Li J, Liu X, Liu Q. Development of colloidal gold-based immunochromatographic strip test using two monoclonal antibodies for detection of Vibrio parahaemolyticus. J Food Saf 2018. [DOI: 10.1111/jfs.12468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chengchao Ding
- School of Medical Instrument and Food Engineering; University of Shanghai for Science and Technology; Shanghai China
- Laboratory for Marine Fisheries Science and Food Production Processes; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
| | - Jianwu Li
- School of Medical Instrument and Food Engineering; University of Shanghai for Science and Technology; Shanghai China
| | - Xiao Liu
- The College of Tourism and Culinary Science; Yangzhou University; Yangzhou China
| | - Qing Liu
- School of Medical Instrument and Food Engineering; University of Shanghai for Science and Technology; Shanghai China
- Laboratory for Marine Fisheries Science and Food Production Processes; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
| |
Collapse
|
35
|
Zhong Q, Tian J, Wang J, Fang X, Liao Z. iTRAQ-based proteomic analysis of the viable but nonculturable state of Vibrio parahaemolyticus ATCC 17802 induced by food preservative and low temperature. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Xiao X, Pang H, Wang W, Fang W, Fu Y, Li Y. Modeling Transfer of Vibrio Parahaemolyticus During Peeling of Raw Shrimp. J Food Sci 2018; 83:756-762. [PMID: 29411873 DOI: 10.1111/1750-3841.14064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/07/2018] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
Abstract
This study aimed to qualify the transfer of Vibrio parahaemolyticus during the shrimp peeling process via gloves under 3 different scenarios. The 1st 2 scenarios provided quantitative information for the probability distribution of bacterial transfer rates from (i) contaminated shrimp (6 log CFU/g) to non-contaminated gloves (Scenario 1) and (ii) contaminated gloves (6 log CFU/per pair) to non-contaminated shrimp (Scenario 2). In Scenario 3, bacterial transfer from contaminated shrimp to non-contaminated shrimp in the shrimp peeling process via gloves was investigated to develop a predictive model for describing the successive bacterial transfer. The range of bacterial transfer rate (%) in Scenarios 1 and 2 was 7% to 91.95% and 0.04% to 12.87%, respectively, indicating that the bacteria can be transferred from shrimp to gloves much easier than that from gloves to shrimp. A Logistic (1.59, 0.14) and Triangle distribution (-1.61, 0.12, 1.32) could be used to describe the bacterial transfer rate in Scenarios 1 and 2, respectively. In Scenario 3, a continuously decay patterning with fluctuations as the peeling progressed has been observed at all inoculation levels of the 1st shrimp (5, 6, and 7 log CFU/g). The bacteria could be transferred easier at 1st few peels, and the decreasing bacterial transfer was found in later phase. Two models (exponential and Weibull) could describe the successive bacterial transfer satisfactorily (pseudo-R2 > 0.84, RMSE < 1.23, SEP < 10.37). The result of this study can provide information regarding cross-contamination events in the seafood factory. PRACTICAL APPLICATION This study presented that Vibrio parahaemolyticus cross-contamination could be caused by gloves during the shrimp peeling process. The bacterial transfer rate distribution and predictive model derived from this work could be used in risk assessment of V. parahaemolyticus to ensure peeled shrimp safety.
Collapse
Affiliation(s)
- Xingning Xiao
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou 310058, China
| | - Haiying Pang
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou 310058, China
| | - Wen Wang
- Inst. of Quality and Standard of Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weihuan Fang
- College of Animal Sciences, Zhejiang Univ., Hangzhou 310058, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou 310058, China
| | - Yanbin Li
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou 310058, China.,Dept. of Biological & Agricultural Engineering, Univ. of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
37
|
Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. Int J Food Microbiol 2018; 280:87-99. [PMID: 29478710 DOI: 10.1016/j.ijfoodmicro.2017.12.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 01/12/2023]
Abstract
Seafood comprising of both vertebrate and invertebrate aquatic organisms are nutritious, rich in omega-3 fatty acids, essential vitamins, proteins, minerals and form part of healthy diet. However, despite the health and nutritional benefits, seafood is highly perishable. Spoilage of seafood could be as a result of microbial activity, autolysis or chemical oxidation. Microbial activity constitutes more spoilage than others. Spoilage bacteria are commonly Gram negative and produce off odours and flavours in seafood as a result of their metabolic activities. Storage temperature, handling and packaging conditions affect microbial growth and thus the shelf-life of seafood. Due to the complexity of the microbial communities in seafood, culture dependent methods of detection may not be useful, hence the need for culture independent methods are necessary to understand the diversity of microbiota and spoilage process. Similarly, the volatile organic compounds released by spoilage bacteria are not fully understood in some seafood. This review therefore highlights current knowledge and understanding of seafood spoilage microbiota, volatile organic compounds, effects of storage temperature and packaging conditions on quality of seafood.
Collapse
|
38
|
Tan CW, Malcolm TTH, Kuan CH, Thung TY, Chang WS, Loo YY, Premarathne JMKJK, Ramzi OB, Norshafawatie MFS, Yusralimuna N, Rukayadi Y, Nakaguchi Y, Nishibuchi M, Radu S. Prevalence and Antimicrobial Susceptibility of Vibrio parahaemolyticus Isolated from Short Mackerels ( Rastrelliger brachysoma) in Malaysia. Front Microbiol 2017; 8:1087. [PMID: 28659901 PMCID: PMC5468395 DOI: 10.3389/fmicb.2017.01087] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/30/2017] [Indexed: 12/12/2022] Open
Abstract
Numerous prevalence studies and outbreaks of Vibrio parahaemolyticus infection have been extensively reported in shellfish and crustaceans. Information on the quantitative detection of V. parahaemolyticus in finfish species is limited. In this study, short mackerels (Rastrelliger brachysoma) obtained from different retail marketplaces were monitored with the presence of total and pathogenic strains of V. parahaemolyticus. Out of 130 short mackerel samples, 116 (89.2%) were detected with the presence of total V. parahaemolyticus and microbial loads of total V. parahaemolyticus ranging from <3 to >105 MPN/g. Prevalence of total V. parahaemolyticus was found highest in wet markets (95.2%) followed by minimarkets (89.1%) and hypermarkets (83.3%). Pathogenic V. parahaemolyticus strains (tdh+ and/or trh+) were detected in 16.2% (21 of 130) of short mackerel samples. The density of tdh+ V. parahaemolyticus strains were examined ranging from 3.6 to >105 MPN/g and microbial loads of V. parahaemolyticus strains positive for both tdh and trh were found ranging from 300 to 740 MPN/g. On the other hand, antibiotic susceptibility profiles of V. parahaemolyticus strains isolated from short mackerels were determined through disc diffusion method in this study. Assessment of antimicrobial susceptibility profile of V. parahaemolyticus revealed majority of the isolates were highly susceptible to ampicillin sulbactam, meropenem, ceftazidime, and imipenem, but resistant to penicillin G and ampicillin. Two isolates (2.99%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.41 which shown resistance to 7 antibiotics. Results of the present study demonstrated that the occurrence of pathogenic V. parahaemolyticus strains in short mackerels and multidrug resistance of V. parahaemolyticus isolates could be a potential public health concerns to the consumer. Furthermore, prevalence data attained from the current study can be further used to develop a microbial risk assessment model to estimate health risks associated with the consumption of short mackerels contaminated with pathogenic V. parahaemolyticus.
Collapse
Affiliation(s)
- Chia W Tan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra MalaysiaSelangor, Malaysia
| | - Tan T H Malcolm
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra MalaysiaSelangor, Malaysia
| | - Chee H Kuan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra MalaysiaSelangor, Malaysia
| | - Tze Y Thung
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra MalaysiaSelangor, Malaysia
| | - Wei S Chang
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra MalaysiaSelangor, Malaysia
| | - Yuet Y Loo
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra MalaysiaSelangor, Malaysia
| | - Jayasekara M K J K Premarathne
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra MalaysiaSelangor, Malaysia.,Department of Livestock and Avian Science, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri LankaMakandura, Sri Lanka
| | - Othman B Ramzi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra MalaysiaSelangor, Malaysia
| | - Mohd F S Norshafawatie
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra MalaysiaSelangor, Malaysia
| | - Nordin Yusralimuna
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra MalaysiaSelangor, Malaysia
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra MalaysiaSelangor, Malaysia
| | | | - Mitsuaki Nishibuchi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra MalaysiaSelangor, Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra MalaysiaSelangor, Malaysia.,Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra MalaysiaSelangor, Malaysia
| |
Collapse
|
39
|
Rong D, Wu Q, Xu M, Zhang J, Yu S. Prevalence, Virulence Genes, Antimicrobial Susceptibility, and Genetic Diversity of Staphylococcus aureus from Retail Aquatic Products in China. Front Microbiol 2017; 8:714. [PMID: 28473827 PMCID: PMC5398012 DOI: 10.3389/fmicb.2017.00714] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/06/2017] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is an important food-borne opportunistic pathogen that frequently causes severe blood and tissue infections or even fatal illnesses. Although S. aureus has been extensively studied in livestock and poultry foods in China, limited information has been reported in aquatic products. Accordingly, in this study, we aimed to characterize S. aureus in aquatic products purchased from retail markets in China. In total, 320 aquatic food samples were collected from 32 provincial capitals in China. The results showed that 119 samples (37.2%, 119/320) were positive for S. aureus by both qualitative and quantitative analyses. The contamination levels of 78.2% of samples ranged from 0.3 to 10 MPN/g, and six samples exceeded 110 MPN/g. A total of 119 S. aureus isolates from positive samples were selected to evaluate virulence factors, antibiotic resistance, and molecular characteristics. All S. aureus isolates were evaluated for the presence of 11 virulence genes by multiplex polymerase chain reaction, and α-hemolysin (hlα, 84.9%), fibronectin-binding protein A (fnbA, 79.0%), S. aureus enterotoxin E (see, 53.8%), and Panton-Valentine leucocidin (pvl, 50.4%) were identified as the major genes. These genes formed 56 different profiles, with the major profile identified as pvl-hlα-fnbA (28.6%). The antimicrobial susceptibility of all isolates was analyzed through the disk diffusion method, and the results showed high resistance to β-lactams, macrolides and tetracyclines, but susceptibility to linezolid and vancomycin. In addition, 26 sequence types (STs) were obtained via multilocus sequence typing, including seven novel STs, among which ST1 (20.2%), ST15 (18.5%), and ST188 (13.4%) were the most common STs. All the isolates were mecC negative, but nine isolates carrying mecA were evaluated by staphylococcal cassette chromosome mec (SCCmec) typing, all of which were SCCmecIII or SCCmecIV types. Isolates of SCCmecIII showed a high prevalence and were multidrug resistant. Our results showed that aquatic products could be a vehicle for transmission of virulence genes and multidrug-resistant S. aureus, representing a potential public health risk. The STs identified in this study indicated the genetic diversity of S. aureus, thereby providing important basic data for the dissemination of S. aureus in aquatic products.
Collapse
Affiliation(s)
- Dongli Rong
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
- College of Life Science and Technology, Jinan UniversityGuangzhou, China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
| | - Mingfang Xu
- College of Life Science and Technology, Jinan UniversityGuangzhou, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
| | - Shubo Yu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
| |
Collapse
|
40
|
Xie T, Wu Q, Zhang J, Xu X, Cheng J. Comparison of Vibrio parahaemolyticus isolates from aquatic products and clinical by antibiotic susceptibility, virulence, and molecular characterisation. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Simultaneous detection of Vibrio cholerae, Vibrio alginolyticus, Vibrio parahaemolyticus and Vibrio vulnificus in seafood using dual priming oligonucleotide (DPO) system-based multiplex PCR assay. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Oladokun MO, Okoh IA. Vibrio cholerae: A historical perspective and current trend. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61154-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Letchumanan V, Ser HL, Tan WS, Ab Mutalib NS, Goh BH, Chan KG, Lee LH. Genome Sequence of Vibrio parahaemolyticus VP152 Strain Isolated from Penaeus indicus in Malaysia. Front Microbiol 2016; 7:1410. [PMID: 27656174 PMCID: PMC5013126 DOI: 10.3389/fmicb.2016.01410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vengadesh Letchumanan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala LumpurMalaysia; Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar SunwayMalaysia
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway Malaysia
| | - Wen-Si Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar SunwayMalaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, PhayaoThailand
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar SunwayMalaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, PhayaoThailand
| |
Collapse
|
44
|
Letchumanan V, Ser HL, Chan KG, Goh BH, Lee LH. Genome Sequence of Vibrio parahaemolyticus VP103 Strain Isolated from Shrimp in Malaysia. Front Microbiol 2016; 7:1496. [PMID: 27708636 PMCID: PMC5030250 DOI: 10.3389/fmicb.2016.01496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/07/2016] [Indexed: 01/20/2023] Open
Affiliation(s)
- Vengadesh Letchumanan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia; Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia Bandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
45
|
He Y, Jin L, Sun F, Hu Q, Chen L. Antibiotic and heavy-metal resistance of Vibrio parahaemolyticus isolated from fresh shrimps in Shanghai fish markets, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15033-40. [PMID: 27083906 PMCID: PMC4956696 DOI: 10.1007/s11356-016-6614-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/03/2016] [Indexed: 04/16/2023]
Abstract
Vibrio parahaemolyticus is a causative agent of human serious seafood-borne gastroenteritis disease and even death. Shrimps, often eaten raw or undercooked, are an important reservoir of the bacterium. In this study, we isolated and characterized a total of 400 V. parahaemolyticus strains from commonly consumed fresh shrimps (Litopenaeus vannamei, Macrobrachium rosenbergii, Penaeus monodon, and Exopalaemon carinicauda) in Shanghai fish markets, China in 2013-2014. The results revealed an extremely low occurrence of pathogenic V. parahaemolyticus carrying two major toxic genes (tdh and trh, 0.0 and 0.5 %). However, high incidences of antibiotic resistance were observed among the strains against ampicillin (99 %), streptomycin (45.25 %), rifampicin (38.25 %), and spectinomycin (25.50 %). Approximately 24 % of the strains derived from the P. monodon sample displayed multidrug resistant (MDR) phenotypes, followed by 19, 12, and 6 % from the E. carinicauda, L. vannamei, and M. rosenbergii samples, respectively. Moreover, tolerance to heavy metals of Cr(3+) and Zn(2+) was observed in 90 antibiotic resistant strains, the majority of which also displayed resistance to Cu(2+) (93.3 %), Pb(2+) (87.8 %), and Cd(2+)(73.3 %). The pulsed-field gel electrophoresis (PFGE)-based genotyping of these strains revealed a total of 71 distinct pulsotypes, demonstrating a large degree of genomic variation among the isolates. The wide distribution of MDR and heavy-metal resistance isolates in the PFGE clusters suggested the co-existence of a number of resistant determinants in V. parahaemolyticus population in the detected samples. This study provided data in support of aquatic animal health management and food safety risk assessment in aquaculture industry.
Collapse
Affiliation(s)
- Yu He
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, Peoples' Republic of China
| | - Lanlan Jin
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, Peoples' Republic of China
| | - Fengjiao Sun
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, Peoples' Republic of China
| | - Qiongxia Hu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, Peoples' Republic of China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999 Hu Cheng Huan Road, Shanghai, 201306, Peoples' Republic of China.
| |
Collapse
|
46
|
Letchumanan V, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Goh BH, Ab Mutalib NS, Lee LH. Insights into Bacteriophage Application in Controlling Vibrio Species. Front Microbiol 2016; 7:1114. [PMID: 27486446 PMCID: PMC4949243 DOI: 10.3389/fmicb.2016.01114] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/04/2016] [Indexed: 01/11/2023] Open
Abstract
Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however, this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non-antibiotic based methods of preventing and treating bacterial infections. Bacteriophages - viruses that infect and result in the death of bacteria - are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy.
Collapse
Affiliation(s)
- Vengadesh Letchumanan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala LumpurMalaysia
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Selangor Darul EhsanMalaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala LumpurMalaysia
| | - Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul EhsanMalaysia
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Selangor Darul EhsanMalaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, PhayaoThailand
- Pharmaceutical Outcomes Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, PhitsanulokThailand
| | - Acharaporn Duangjai
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, PhayaoThailand
- Division of Physiology, School of Medical Sciences, University of Phayao, PhayaoThailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Selangor Darul EhsanMalaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, PhayaoThailand
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala LumpurMalaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Selangor Darul EhsanMalaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, PhayaoThailand
| |
Collapse
|
47
|
Virulence Factors and Antimicrobial Susceptibility of Vibrio parahaemolyticus Isolated from the Oyster Crassostrea gigas. ACTA ACUST UNITED AC 2016. [DOI: 10.5657/kfas.2016.0116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Xie T, Xu X, Wu Q, Zhang J, Cheng J. Prevalence, Molecular Characterization, and Antibiotic Susceptibility of Vibrio parahaemolyticus from Ready-to-Eat Foods in China. Front Microbiol 2016; 7:549. [PMID: 27148231 PMCID: PMC4839030 DOI: 10.3389/fmicb.2016.00549] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of foodborne outbreaks, particularly outbreaks associated with consumption of fish and shellfish, and represents a major threat to human health worldwide. This bacterium harbors two main virulence factors: the thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH). Additionally, various serotypes have been identified. The extensive use of antibiotics is a contributing factor to the increasing incidence of antimicrobial-resistant V. parahaemolyticus. In the current study, we aimed to determine the incidence and features of V. parahaemolyticus in ready-to-eat (RTE) foods in China. We found 39 V. parahaemolyticus strains on Chinese RTE foods through investigation of 511 RTE foods samples from 24 cities in China. All isolates were analyzed for the presence of tdh and trh gene by PCR, serotyping was performed using multiplex PCR, antibiotic susceptibility analysis was carried out using the disk diffusion method, and molecular typing was performed using enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) typing and multilocus sequence typing (MLST). The results showed that none of the isolates were positive for tdh and trh. Most of the isolates (33.3%) were serotype O2. Antimicrobial susceptibility results indicated that most strains were resistant to streptomycin (89.7%), cefazolin (51.3%), and ampicillin (51.3%). The isolates were grouped into five clusters by ERIC-PCR and four clusters by MLST. We updated 10 novel loci and 33 sequence types (STs) in the MLST database. Thus, our findings demonstrated the presence of V. parahaemolyticus in Chinese RTE foods, provided insights into the dissemination of antibiotic-resistant strains, and improved our knowledge of methods of microbiological risk assessment in RTE foods.
Collapse
Affiliation(s)
- Tengfei Xie
- School of Bioscience and Bioengineering, South China University of TechnologyGuangzhou, China; Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China: Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
| | - Xiaoke Xu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China: Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China: Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China: Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China
| | - Jianheng Cheng
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China: Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China
| |
Collapse
|
49
|
Odeyemi OA. Incidence and prevalence of Vibrio parahaemolyticus in seafood: a systematic review and meta-analysis. SPRINGERPLUS 2016; 5:464. [PMID: 27119068 PMCID: PMC4831955 DOI: 10.1186/s40064-016-2115-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/06/2016] [Indexed: 01/12/2023]
Abstract
Vibrio parahaemolyticus is an important seafood borne human pathogen worldwide due to it occurrence, prevalence and ability to cause gastrointestinal infections. This current study aim at investigating the incidence and prevalence of V. parahaemolyticus in seafood using systematic review-meta-analysis by exploring heterogeneity among primary studies. A comprehensive systematic review and meta-analysis of peer reviewed primary studies reported between 2003 and 2015 for the occurrence and prevalence of V. parahaemolyticus in seafood was conducted using “isolation”, “detection”, “prevalence”, “incidence”, “occurrence” or “enumeration” and V. parahaemolyticus as search algorithms in Web of Science (Science Direct) and ProQuest of electronic bibliographic databases. Data extracted from the primary studies were then analyzed with fixed effect meta-analysis model for effect rate to explore heterogeneity between the primary studies. Publication bias was evaluated using funnel plot. A total of 10,819 articles were retrieved from the data bases of which 48 studies met inclusion criteria. V. parahaemolyticus could only be isolated from 2761 (47.5 %) samples of 5811 seafood investigated. The result of this study shows that incidence of V. parahaemolyticus was more prevalent in oysters with overall prevalence rate of 63.4 % (95 % CI 0.592–0.674) than other seafood. Overall prevalence rate of clams was 52.9 % (95 % CI 0.490–0.568); fish 51.0 % (95 % CI 0.476–0.544); shrimps 48.3 % (95 % CI 0.454–0.512) and mussels, scallop and periwinkle: 28.0 % (95 % CI 0.255–0.307). High heterogeneity (p value <0.001; I2 = 95.291) was observed mussel compared to oysters (I2 = 91.024). It could be observed from this study that oysters harbor V. parahaemolyticus based on the prevalence rate than other seafood investigated. The occurrence and prevalence of V. parahaemolyticus is of public health importance, hence, more studies involving seafood such as mussels need to be investigated.
Collapse
Affiliation(s)
- Olumide A Odeyemi
- Ecology and Biodiversity Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Australia
| |
Collapse
|
50
|
Xu X, Cheng J, Wu Q, Zhang J, Xie T. Prevalence, characterization, and antibiotic susceptibility of Vibrio parahaemolyticus isolated from retail aquatic products in North China. BMC Microbiol 2016; 16:32. [PMID: 26955871 PMCID: PMC4784357 DOI: 10.1186/s12866-016-0650-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022] Open
Abstract
Background Vibrio parahaemolyticus is a major foodborne pathogen, particularly in Asian countries. Increased occurrence of outbreaks of V. parahaemolyticus gastroenteritis in China indicates the need to evaluation of the prevalence of this pathogenic species. V. parahaemolyticus distribution in shellfish from the eastern coast of China has been reported previously. However, to date, the prevalence of V. parahaemolyticus in retail aquatic products in North China has not been determined. To investigate the prevalence of V. parahaemolyticus in aquatic products in North China, 260 aquatic product samples were obtained from retail markets in 6 provinces of North China from November to December in 2012 and July to August in 2013. Results V. parahaemolyticus was detected in 94 (36.2 %) of the samples by the most probable number method. The density of V. parahaemolyticus ranged from 1.50 to 1100 MPN/g. V. parahaemolyticus was detected at a rate of 50.0 % and 22.7 % in summer and in winter, respectively. The density of V. parahaemolyticus was significantly higher in summer than in winter, with mean levels of 16.5 MPN/g and 5.0 MPN/g, respectively. Among 145 V. parahaemolyticus isolates examined, none of the isolates possessed tdh and trh. In multiplex PCR-based O-antigen serotyping of these 145 isolates, all serotypes, other than O6, O7, and O9, were detected, and serotype O2 was found to be the most prevalent (detected in 54 isolates). The 145 isolates were grouped into 7 clusters by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) at a similarity coefficient of 0.66. The antimicrobial resistance patterns of these 145 isolates to 12 antimicrobial agents revealed that most of the isolates were resistant to streptomycin (86.2 %), while fewer were resistant to ampicillin (49.6 %), cefazolin (43.5 %), cephalothin (35.9 %), and kanamycin (22.1 %). All of the examined isolates were susceptible to azithromycin and chloramphenicol. Conclusions The findings of this study will help in defining appropriate monitoring programs, understanding of the dissemination of antibiotic resistant strains, and providing information for the assessment of exposure to this microorganism at the consumption level. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0650-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoke Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, No. 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Jianheng Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, No. 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, No. 100 Central Xianlie Road, Guangzhou, 510070, China.
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, No. 100 Central Xianlie Road, Guangzhou, 510070, China
| | - Tengfei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, No. 100 Central Xianlie Road, Guangzhou, 510070, China
| |
Collapse
|