1
|
Bertolo MRV, de Oliveira Filho JG, Lamonica GC, de Oliveira Nobre Bezerra CC, da Conceição Amaro Martins V, Ferreira MD, de Guzzi Plepis AM, Bogusz Junior S. Improvement of the physical-chemical, microbiological, volatiles and sensory quality of strawberries covered with chitosan/gelatin/pomegranate peel extract-based coatings. Food Chem 2025; 471:142755. [PMID: 39764943 DOI: 10.1016/j.foodchem.2025.142755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/15/2024] [Accepted: 01/01/2025] [Indexed: 02/12/2025]
Abstract
This study investigated the effects of chitosan/gelatin (CG) coatings containing pomegranate peel extract (PPE) on the physical-chemical, microbiological, volatile profile, and sensory characteristics of strawberries over 12 days of refrigerated storage. The coatings containing PPE minimized the weight loss of the fruits by 11 % and delayed their fungal contamination by 6-8 days. Uncoated fruits showed soluble solids content, pH, and titratable acidity values characteristics of highly deteriorated fruits. The coatings preserved the color, firmness, respiratory quotient, and bioactive compounds contents of the fruits. Uncoated strawberries showed a 39.4 % reduction in total volatile compounds, approximately 6 times greater than coated fruits. The severity of injuries caused by fungi was slowed down by the coatings. The sensory quality of the fruits was not affected, and the coatings cost was estimated at approximately $ 0.03/fruit, confirming that the materials developed can be used as natural coatings and a cheap alternative for strawberries preservation.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcos David Ferreira
- Brazilian Agricultural Research Corporation, Embrapa Instrumentação, São Carlos, SP, Brazil
| | | | - Stanislau Bogusz Junior
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Hashempour-baltork F, Mirza Alizadeh A, Taghizadeh M, Hosseini H. Cold plasma technology: A cutting-edge approach for enhancing shrimp preservation. Heliyon 2024; 10:e40460. [PMID: 39669143 PMCID: PMC11636109 DOI: 10.1016/j.heliyon.2024.e40460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Cold plasma (CP) is an emerging technology employed to safeguard highly perishable food items, particularly aquatic products such as shrimp. Due to its significant amount of moisture, superior protein composition that contains important amino acids, and unsaturated fatty acid content, shrimp are susceptible to microbial deterioration and overall alterations in their physical and chemical characteristics. Such spoilage not only diminishes the nutritional value of shrimp but also has the potential to generate harmful substances, rendering it unsuitable for consumption. Recent observations have indicated a growing market demand for shrimp that maintains its quality and has a prolonged shelf life. Furthermore, there is a significant emphasis on the production of food items that undergo minimal processing or nonthermal preservation methods. Extensive documentation exists regarding the efficacy of CP technology in eliminating microorganisms from shrimp without inducing resistance or activating enzymes that contribute to shrimp spoilage. Therefore, CP can be mentioned as a slight processing interference to preserve shrimp quality. This chapter primarily explores the principles and methods of CP technology, as well as its impact on melanosis, physicochemical changes, microbial and sensory properties, and the preservation of shrimp quality.
Collapse
Affiliation(s)
- Fataneh Hashempour-baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mansoureh Taghizadeh
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Tsokri S, Sarafidou M, Tsouko E, Athanasopoulou E, Vardaxi A, Pispas S, Tsironi T, Koutinas A. Efficient pectin recovery from sugar beet pulp as effective bio-based coating for Pacific white shrimp preservation. Int J Biol Macromol 2024; 282:136754. [PMID: 39437941 DOI: 10.1016/j.ijbiomac.2024.136754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
This study demonstrates the valorization of sugar beet pulp (SBP)-derived pectin to produce bio-based coatings for shrimp preservation. Pectin extraction was assessed at varying temperatures and extraction times to achieve tailored properties (high methoxyl-pectins, degree of esterification-DE >79.0 %) leading to 11.5 % extraction yield, 78.1 % galactouronic acid content and 80 % DE at optimal conditions (pH 1.5, 80 °C, 2 h). Pectin-based coatings supplemented with ascorbic acid (AA) (0.5-2.0 %) led to organoleptically acceptable shrimps with significantly lower total color differences during 28-days of storage, compared to uncoated and pectin-coated counterparts. AA-based coatings delayed shrimp melanosis, expressed as reduced polyphenoloxidase activity (48-86 %). Rich-in-holocellulose solids derived after pectin extraction were used for bacterial cellulose (BC) production, pinpointing the SBP potential as a multi-purpose feedstock. Fed-batch fermentation enhanced BC concentration (by 110 %) and productivity (1.6-fold higher) compared to batch-cultures. Pectin produced within a SBP-based biorefinery could be applied as bio-based coating with food packaging potential.
Collapse
Affiliation(s)
- Stamatia Tsokri
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece
| | - Mirva Sarafidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece
| | - Erminta Tsouko
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece.
| | - Evmorfia Athanasopoulou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece
| | - Antiopi Vardaxi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Theofania Tsironi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera odos 75, 11855 Athens, Greece
| |
Collapse
|
4
|
Yang X, Gao Y, Reyimu M, Zhang G, Wang C, Yang D, Han X. Structural analysis of Pleurotus ferulae polysaccharide and its effects on plant fungal disease and plant growth. Int J Biol Macromol 2024; 282:137396. [PMID: 39521216 DOI: 10.1016/j.ijbiomac.2024.137396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
A novel polysaccharide, named as PFP1-1 (23 kDa), was isolated from the fruiting body of Pleurotus ferulae. Structural analysis revealed that PFP1-1 is primarily composed of mannose, galactose, glucose and fucose, with a molar ratio of 41.50:41.92:4.65:1.93. Infrared spectroscopy analysis showed the presence of characteristic absorption peaks associated with polysaccharides. Further analysis using gas chromatography-mass spectrometry (GC-MS) and Nuclear Magnetic Resonance (NMR) indicated that the polysaccharide mainly composed of → 6) -α-D-Galp- (1 →, → 2,6) -α-D-Galp- (1 → and a small amount of → 4) -α-D-Glcp- (1 →. The branched chain is mainly composed of β-D-Manp- (1 → and α-D-Glcp- (1 → connected at the O-2 position of the sugar residue → 2,6) -α-D-Galp- (1 →. PFP1-1 exhibited significant antifungal activity against Rhizoctonia solani and promoted cucumber plant growth. The mycelial growth inhibition rate of PFP1-1 against R. solani reached 70 %. In pot experiments, cucumber seedlings treated with PFP1-1 demonstrated resistance to R. solani infection and the incidence rate was significantly reduced to 22.92 %. PFP1-1 increased the root length and fresh weight of cucumber seedlings and enhanced the stress and disease resistance of plants by increasing the activities of superoxide dismutase, peroxidase and polyphenol oxidase. In conclusion, the present study provides a theoretical and experimental basis for the application of P. ferulae polysaccharide in promoting plant growth and controlling plant diseases.
Collapse
Affiliation(s)
- Xiaoyue Yang
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yuchao Gao
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Muyesaier Reyimu
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Guoqiang Zhang
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Chunjuan Wang
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Desong Yang
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaoqiang Han
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| |
Collapse
|
5
|
Yadav S, Singh A, Palei NN, Pathak P, Verma A, Yadav JP. Chitosan-Based Nanoformulations: Preclinical Investigations, Theranostic Advancements, and Clinical Trial Prospects for Targeting Diverse Pathologies. AAPS PharmSciTech 2024; 25:263. [PMID: 39500815 DOI: 10.1208/s12249-024-02948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/15/2024] [Indexed: 12/12/2024] Open
Abstract
Chitosan, a biocompatible and biodegradable polymer, has attracted significant interest in the development of nanoformulations for targeted drug delivery and therapeutic applications. The versatility of chitosan lies in its modifiable functional groups, which can be tailored to diverse applications. Nanoparticles derived from chitosan and its derivatives typically exhibit a positive surface charge and mucoadhesive properties, enabling them to adhere to negatively charged biological membranes and gradually release therapeutic agents. This comprehensive review investigates the manifold roles of chitosan-based nanocarriers, ranging from preclinical research to theranostic applications and clinical trials, across a spectrum of diseases, including neurological disorders, cardiovascular diseases, cancer, wound healing, gastrointestinal disorders, and pulmonary diseases. The exploration starts with an overview of preclinical studies, emphasizing the potential of chitosan-based nanoformulations in optimizing drug delivery, improving therapeutic outcomes, and mitigating adverse effects in various disease categories. Advancements in theranostic applications of chitosan-based nanoformulations highlight their adaptability to diverse diseases. As these nanoformulations progress toward clinical translation, this review also addresses the regulatory challenges associated with their development and proposes potential solutions.
Collapse
Affiliation(s)
- Seema Yadav
- Amity Institute of Pharmacy, Amity University, Lucknow, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Abhishek Singh
- Amity Institute of Pharmacy, Amity University, Lucknow, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Narahari N Palei
- Amity Institute of Pharmacy, Amity University, Lucknow, Sector 125, Noida, Uttar Pradesh, 201313, India.
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to Be University), Hyderabad Campus, Visakhapatnam, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
6
|
Cheng H, Mei J, Xie J. Stability of large yellow croaker (Pseudosciaena crocea) as affected by temperature abuse during frozen storage: Quality attributes, myofibril characteristics, and microstructure. Cryobiology 2024; 117:105157. [PMID: 39477053 DOI: 10.1016/j.cryobiol.2024.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Temperature abuse occurs frequently during transportation and frozen storage, which affects the quality of frozen aquatic products. Recrystallization generated by temperature abuse leads to irreversible damage to the muscle tissue and microstructure, and exacerbates undesirable oxidation reactions, thus reducing the quality of frozen aquatic products. In this study, a modeling system of temperature abuse alternating between -24 °C and -7 °C was established to evaluate the effect of temperature abuse on the stability of frozen large yellow croaker. The results revealed that temperature abuse caused water migration with the extension of storage time, as well as poorer texture, color, and freshness. Furthermore, the structure of myofibrillar protein (MP) was severely damaged, with a gradual decrease in total sulfhydryl groups and Ca2+-ATPase activity, a loosening of the secondary structure, and a disruption of the protein conformation. The confocal laser scanning microscopy (CLSM) analysis also found that temperature abuse exacerbated protein aggregation. Therefore, temperature abuse during transportation and frozen storage could affect the stability of large yellow croaker negatively, and it mainly originated from the growth of ice crystals and the effect of recrystallization. The study was supposed to provide new insights into the improvement of frozen aquatic products quality.
Collapse
Affiliation(s)
- Hao Cheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| |
Collapse
|
7
|
Kamali M, Shabanpour B, Pourashouri P, Kordjazi M. Evaluating shelf life and anti-browning of shrimp by chitosan-coated nanoliposome loaded with licorice root extract. Food Chem X 2024; 23:101532. [PMID: 38952561 PMCID: PMC11215212 DOI: 10.1016/j.fochx.2024.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 07/03/2024] Open
Abstract
Chitosan coating containing nanoliposomes loaded with licorice root extract was prepared to investigate shrimp's shelf life and anti-browning function during 20 days of ice storage. 1% licorice root hydroethanolic extract (LHE) was encapsulated in nanoliposomes or coated with chitosan, and then the shrimp were immersed in coating solutions. LHE treatment had the lowest browning indices (5 and 1.02), TBA (0.32 mg MDA/kg), and FFA (0.01%). Chitosan-coated LHE treatment (Ch-LHE) showed the best performance for TVN, microbial counts, and discoloration. PV, WHC, and cook loss in the treatment with LHE nanoliposome coated with chitosan (Ch-N-LHE) were measured at acceptable levels of 0.53 meq/kg, 86.12%, and 15.06%, respectively. Experiments showed that pure or encapsulated LHE is an effective method for increasing the quality and preventing the browning of shrimp. Additionally, due to its cost-effectiveness and health benefits, it can be an effective natural substitute for sodium metabisulfite at the global export level.
Collapse
Affiliation(s)
- Masume Kamali
- Department of Seafood Processing, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Bahare Shabanpour
- Department of Seafood Processing, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Parastoo Pourashouri
- Department of Seafood Processing, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Moazameh Kordjazi
- Department of Seafood Processing, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
8
|
Tarek A, Tartor YH, Hassan MN, Pet I, Ahmadi M, Abdelkhalek A. Fighting Emerging Caspofungin-Resistant Candida Species: Mitigating Fks1-Mediated Resistance and Enhancing Caspofungin Efficacy by Chitosan. Antibiotics (Basel) 2024; 13:578. [PMID: 39061260 PMCID: PMC11274059 DOI: 10.3390/antibiotics13070578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive candidiasis poses a worldwide threat because of the rising prevalence of antifungal resistance, resulting in higher rates of morbidity and mortality. Additionally, Candida species, which are opportunistic infections, have significant medical and economic consequences for immunocompromised individuals. This study explores the antifungal potential of chitosan to mitigate caspofungin resistance in caspofungin-resistant Candida albicans, C. krusei, and C. tropicalis isolates originating from human and animal sources using agar well diffusion, broth microdilution tests, and transmission electron microscope (TEM) analysis of treated Candida cells. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was performed to assess the expression of SAGA complex genes (GCN5 and ADA2) and the caspofungin resistance gene (FKS) in Candida species isolates after chitosan treatment. The highest resistance rate was observed to ketoconazole (80%) followed by clotrimazole (62.7%), fluconazole (60%), terbinafine (58%), itraconazole (57%), miconazole (54.2%), amphotericin B (51.4%), voriconazole (34.28%), and caspofungin (25.7%). Nine unique FKS mutations were detected, including S645P (n = 3 isolates), S645F, L644F, S645Y, L688M, E663G, and F641S (one isolate in each). The caspofungin minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values before chitosan treatment ranged from 2 to 8 µg/mL and 4 to 16 µg/mL, respectively. However, the MIC and MFC values were decreased after chitosan treatment (0.0625-1 µg/mL) and (0.125-2 µg/mL), respectively. Caspofungin MIC was significantly decreased (p = 0.0007) threefold following chitosan treatment compared with the MIC values before treatment. TEM analysis revealed that 0.5% chitosan disrupted the integrity of the cell surface, causing irregular morphologies and obvious aberrant changes in cell wall thickness in caspofungin-resistant and sensitive Candida isolates. The cell wall thickness of untreated isolates was 0.145 μm in caspofungin-resistant isolate and 0.125 μm in sensitive isolate, while it was significantly lower in chitosan-treated isolates, ranging from 0.05 to 0.08 μm when compared with the cell wall thickness of sensitive isolate (0.03 to 0.06 μm). Moreover, RT-qPCR demonstrated a significant (p < 0.05) decrease in the expression levels of histone acetyltransferase genes (GCN5 and ADA2) and FKS gene of caspofungin-resistant Candida species isolates treated with 0.5% chitosan when compared with before treatment (fold change values ranged from 0.001 to 0.0473 for GCN5, 1.028 to 4.856 for ADA2, and 2.713 to 12.38 for FKS gene). A comparison of the expression levels of cell wall-related genes (ADA2 and GCN5) between caspofungin-resistant and -sensitive isolates demonstrated a significant decrease following chitosan treatment (p < 0.001). The antifungal potential of chitosan enhances the efficacy of caspofungin against various caspofungin-resistant Candida species isolates and prevents the development of further antifungal resistance. The results of this study contribute to the progress in repurposing caspofungin and inform a development strategy to enhance its efficacy, appropriate antifungal activity against Candida species, and mitigate resistance. Consequently, chitosan could be used in combination with caspofungin for the treatment of candidiasis.
Collapse
Affiliation(s)
- Aya Tarek
- Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Yasmine H. Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed N. Hassan
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Ioan Pet
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Mirela Ahmadi
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| |
Collapse
|
9
|
Abdelnaby T, Li Z, Xue C. The influence of γ-PGA on the quality of cooked frozen crayfish during temperature fluctuations. Food Chem 2024; 441:138258. [PMID: 38219359 DOI: 10.1016/j.foodchem.2023.138258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
The purpose of this study was to compare the influences of gamma-poly glutamic acid (γ-PGA) (1, 2, 3, and 4 %) to see which could outperform conventional cryoprotectant mixture (4 % sorbitol + 4 % sucrose) on cooked crayfish properties, such as physicochemical, textural qualities, oxidation reaction, water distributions, and microstructure integrity, during different freeze-thaw cycles. Crayfish quality characteristics improved significantly as γ-PGA concentration increased compared to control samples.Adding γ-PGA 4 % reduced the carbonyl content from 4.20 to 3.00 nmol/ mg protein during fluctuation-1 (F1), and from 4.15 to 2.80 nmol/ mg protein during fluctuation-2 (F2) compared to control samples. Furthermore, it increased the total sulfhydryl content from 4.15 and 4.76 to 6.19 and 6.47 mol/105 g protein during F1 and F2 and after five freeze-thaw cycles (FTC). This suggests that this concentration was more effective at controlling protein changes than other concentrations. γ-PGA generally enhanced the water-holding capacity by preventing protein denaturation and limiting ice crystal recrystallization. As a result, microstructure stability was evident, texture degradation was avoided, and the crayfish's color was preserved.
Collapse
Affiliation(s)
- Taher Abdelnaby
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, PR China; Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No.1299 Sansha Road, Qingdao 266404, PR China; Qingdao institute of marine bioresources for nutrition & health innovation, No. 106 Xiangyang Road 266111, PR China.
| |
Collapse
|
10
|
Lu M, Cai Y, Chen X, Wang Y, Yuan G. A novel anthocyanin indicator film with rosmarinic acid copigmentation having enhanced stability and pH indicator ability for monitoring pork freshness. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2641-2650. [PMID: 37985421 DOI: 10.1002/jsfa.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Anthocyanin-based pH-sensing films have been widely fabricated for potential application in monitoring food freshness. However, the color fading of anthocyanins limits their application for the food industry due to their low stability. In addition, the color sensitivity and pH indicator ability of anthocyanin-based films currently available are not satisfied and need to be improved. RESULTS Chitosan/xanthan gum (CX)-based colorimetric films with addition of purple cabbage anthocyanin (PAN) and different amounts of rosmarinic acid (RA) were fabricated. RA copigmentation in chitosan/xanthan gum-purple cabbage anthocyanin-rosmarinic acid (CX-P-RA) films significantly improved the stability and pH response sensitivity of PAN, and the combined copigmentation of RA and xanthan gum exhibited an additive effect. The addition of RA significantly improved the tensile strength and elongation at break, thermal stability, antioxidant and antibacterial activities of CX-P-RA films. Moreover, addition of RA enhanced the pH sensitivity and colorimetry of CX-P-RA films, which exhibited a good response to different pH values. CX-P-RA2 film was tested to monitor the freshness of pork. It showed visible color changes during the storage of pork. In addition, the ∆E of CX-P-RA2 film was highly correlated with changes in total volatile basic nitrogen in pork (R2 = 0.951). CONCLUSION These results indicated that CX-P-RA2 film can be used as a pH-sensing indicator with good stability and high sensitivity for real-time monitoring of pork freshness. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Lu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan, China
- Department of Food Science, College of Food and Medicine, Zhejiang Ocean University, Zhoushan, China
| | - Ying Cai
- Department of Food Science, College of Food and Medicine, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoe Chen
- Department of Food Science, College of Food and Medicine, Zhejiang Ocean University, Zhoushan, China
| | - Yangguang Wang
- Department of Food Science, College of Food and Medicine, Zhejiang Ocean University, Zhoushan, China
| | - Gaofeng Yuan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan, China
- Department of Food Science, College of Food and Medicine, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
11
|
Nasaj M, Farmany A, Shokoohizadeh L, Jalilian FA, Mahjoub R, Roshanaei G, Nourian A, Shayesteh OH, Arabestani M. Vancomycin and nisin-modified magnetic Fe 3O 4@SiO 2 nanostructures coated with chitosan to enhance antibacterial efficiency against methicillin resistant Staphylococcus aureus (MRSA) infection in a murine superficial wound model. BMC Chem 2024; 18:43. [PMID: 38395982 PMCID: PMC10893753 DOI: 10.1186/s13065-024-01129-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The objective of this research was to prepare some Fe3O4@SiO2@Chitosan (CS) magnetic nanocomposites coupled with nisin, and vancomycin to evaluate their antibacterial efficacy under both in vitro and in vivo against the methicillin-resistant Staphylococcus. aureus (MRSA). METHODS In this survey, the Fe3O4@SiO2 magnetic nanoparticles (MNPs) were constructed as a core and covered the surface of MNPs via crosslinking CS by glutaraldehyde as a shell, then functionalized with vancomycin and nisin to enhance the inhibitory effects of nanoparticles (NPs). X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS) techniques were then used to describe the nanostructures. RESULTS Based on the XRD, and FE-SEM findings, the average size of the modified magnetic nanomaterials were estimated to be around 22-35 nm, and 34-47 nm, respectively. The vancomycin was conjugated in three polymer-drug ratios; 1:1, 2:1 and 3:1, with the percentages of 45.52%, 35.68%, and 24.4%, respectively. The polymer/drug ratio of 1:1 exhibited the slowest release rate of vancomycin from the Fe3O4@SiO2@CS-VANCO nanocomposites during 24 h, which was selected to examine their antimicrobial effects under in vivo conditions. The nisin was grafted onto the nanocomposites at around 73.2-87.2%. All the compounds resulted in a marked reduction in the bacterial burden (P-value < 0.05). CONCLUSION The vancomycin-functionalized nanocomposites exhibited to be more efficient in eradicating the bacterial cells both in vitro and in vivo. These findings introduce a novel bacteriocin-metallic nanocomposite that can suppress the normal bacterial function on demand for the treatment of MRSA skin infections.
Collapse
Affiliation(s)
- Mona Nasaj
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Leili Shokoohizadeh
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Farid Aziz Jalilian
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Park Mardome, Hamadan, Islamic Republic of Iran
| | - Reza Mahjoub
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Ghodratollah Roshanaei
- Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Park Mardome, Hamadan, Islamic Republic of Iran
| | - Alireza Nourian
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Islamic Republic of Iran
| | - Omid Heydari Shayesteh
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Mohammadreza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran.
| |
Collapse
|
12
|
Fan Q, Yan X, Jia H, Li M, Yuan Y, Yue T. Antibacterial properties of hexanal-chitosan nanoemulsion against Vibrio parahaemolyticus and its application in shelled shrimp preservation at 4 °C. Int J Biol Macromol 2024; 257:128614. [PMID: 38061528 DOI: 10.1016/j.ijbiomac.2023.128614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
Vibrio parahaemolyticus has been considered as the leading pathogen associated with seafood-borne disease. Hexanal possesses antibacterial property but the hydrophobicity and volatility limit its application. The purpose of this study was to prepare hexanal-chitosan nanoemulsion (HCN), investigate its antibacterial ability against V. parahaemolyticus, and examine the combination of HCN with sodium alginate coating on the quality attributes of shrimp during cold storage. The mean droplet size of HCN fabricated by ultrasonic emulsification was 91.28 nm. HCN showed regular spherical shape and exhibited good centrifugation stability and storage stability at 4 °C. HCN exerted anti-V. parahaemolyticus effect with the minimum inhibitory concentration and minimal bactericidal concentration of both 5 mg/mL. Furthermore, HCN induced morphological changes and destroyed bacterial membrane, resulting in cell death. The results of preservation test showed that HCN alone and its combination with sodium alginate coating effectively retarded the quality deterioration and microbial spoilage of shelled shrimps during refrigerated storage. Comparatively, the combination treatment exhibited better preservation effect. The present study suggested that HCN prepared by ultrasonic emulsification is an effective alternative to control V. parahaemolyticus contamination in seafood and also shows great application potential in the quality maintaining of seafood during cold storage.
Collapse
Affiliation(s)
- Qiuxia Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
13
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
14
|
Zheng Y, Wang X. Adequate pre-freezing handling slows the quality deterioration of frozen obscure pufferfish: Revealed by untargeted metabolomics. Food Res Int 2023; 173:113423. [PMID: 37803762 DOI: 10.1016/j.foodres.2023.113423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
To investigate the effect of different pre-freezing handling methods on the frozen quality of farmed obscure pufferfish, live pufferfish were treated with commercial slaughter (CS), spinal cord cutting (SCC), or spinal cord cutting and precooling (SCCP) before freezing. The metabolic status was evaluated by metabolomics before freezing, and quality attributes were analyzed through the water-holding capacity and texture properties of dorsal muscle during frozen storage. The results showed that quality loss followed the order of CS > SCC > SCCP, as revealed by thawing loss, cooking loss, and springiness. A total of 654 metabolites were identified from pufferfish samples; 33 and 25 differential metabolites were screened from the SCC/CS and SCCP/CS groups, respectively. Different pre-freezing handling methods significantly affected arginine and histidine metabolism, fatty acid biosynthesis, and purine metabolism, which may inhibit protein denaturation and ice crystal growth, thereby slowing the quality degradation of frozen pufferfish.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, PR China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; College of Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
15
|
Chen Y, Ning Q, Wu Z, Zhou H, Liao J, Sun X, Lin J, Pang J. Use of Tandem Mass Spectrometry Quantitative Proteomics to Identify Potential Biomarkers to Follow the Effects of Cold and Frozen Storage of Muscle Tissue of Litopenaeus vannamei. Foods 2023; 12:2920. [PMID: 37569188 PMCID: PMC10418843 DOI: 10.3390/foods12152920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
L. vannamei has become one of the most productive species. However, it is susceptible to microbial contamination during fishing, transportation, and storage, which can lead to spoilage and quality deterioration. This study investigates the relationship between changes in the proteome of Litopenaeus vannamei (L. vannamei) muscle and quality characteristics during low-temperature storage using the tandem mass spectrometry technology of quantitative proteomics strategy. The differential expression of proteins under cold storage (4 °C, CS), partial slight freezing (-3 °C, PFS), and frozen storage (-18 °C, FS) conditions was compared with the fresh group (CK), resulting in 1572 proteins identified as differentially expressed. The purpose of this research is to identify potential biochemical markers by analyzing quality changes and relative differential proteins through searches in the UniProt database, Gene Ontology database, and Genome Encyclopedia. Correlation analysis revealed that seven DEPs were significantly related to physical and chemical indicators. Bioinformatics analysis demonstrated that most DEPs are involved in binding proteins, metabolic enzymes, and protein turnover. Additionally, some DEPs were identified as potential biomarkers for muscle decline. These findings contribute to understanding the mechanism of freshness decline in L. vannamei under low-temperature storage and the changes in muscle proteome.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| | - Qian Ning
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350001, China;
| | - Zhenzhen Wu
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| | - Hanlin Zhou
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| | - Jun Liao
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| | - Xiangyun Sun
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| | - Jing Lin
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| | - Jie Pang
- College of Food Scientific, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Z.W.); (H.Z.); (J.L.); (X.S.); (J.L.)
| |
Collapse
|
16
|
Shen R, Yang D, Zhang L, Yu Q, Ma X, Ma G, Guo Z, Chen C. Preparation of Complementary Food for Infants and Young Children with Beef Liver: Process Optimization and Storage Quality. Foods 2023; 12:2689. [PMID: 37509781 PMCID: PMC10379101 DOI: 10.3390/foods12142689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, fuzzy mathematics and response surface modeling were applied to optimize the preparation process of beef liver paste and characterize the proximate composition, sensory and physicochemical qualities, and in vitro simulated digestive properties while refrigerated at 0-4 °C (0, 3, 7, 15, 30, 45, and 60 days). The results showed that the optimal preparation process was 4.8% potato starch, 99.4% water, 10.2% olive oil, and a 3:2 ratio of chicken breast and beef liver. The beef liver paste prepared contained essential amino acids for infants and children, with a protein content of 10.29 g/100 g. During storage, the pH of the beef liver paste decreased significantly (p < 0.05) on day 7, texture and rheological properties decreased significantly after 30 days, a* values increased, L* and b* values gradually decreased, and TVB-N and TBARS values increased significantly (p < 0.05) on day 7 but were below the limit values during the storage period (TVB-N value ≤ 15 mg/100 g, TBARS value ≤ 1 mg/Kg). In vitro simulated digestion tests showed better digestibility and digestive characteristics in the first 15 days. The results of this study provide a reference for the development of beef liver products for infant and child supplementation.
Collapse
Affiliation(s)
- Ruheng Shen
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China
| | - Dawei Yang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China
| | - Guoyuan Ma
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China
| | - Zhaobin Guo
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China
| |
Collapse
|
17
|
Ramasamy P, Dubal SV, Jeyachandran S, Pitchiah S, Kannan K, Elangovan D, Thangadurai T, Paramasivam S, Selvin J. Control and prevention of microbially influenced corrosion using cephalopod chitosan and its derivatives: A review. Int J Biol Macromol 2023; 242:124924. [PMID: 37217051 DOI: 10.1016/j.ijbiomac.2023.124924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Microbially influenced corrosion (MIC) of metals is an important industrial problem, causing 300-500 billion dollars of economic loss worldwide each year. It is very challenging to prevent or control the MIC in the marine environment. Eco-friendly coatings embedded with corrosion inhibitors developed from natural products may be a successful approach for MIC prevention or control. As a natural renewable resource, cephalopod chitosan has a number of unique biological properties, such as antibacterial, antifungal and non-toxicity effects, which attract scientific and industrial interests for potential applications. Chitosan is a positively charged molecule, and the negatively charged bacterial cell wall is the target of its antimicrobial action. Chitosan binds to the bacterial cell wall and disrupts the normal functions of the membrane by, for example, facilitating the leakage of intracellular components and impeding the transport of nutrients into the cells. Interestingly, chitosan is an excellent film-forming polymer. Chitosan may be applied as an antimicrobial coating substance for the prevention or control of MIC. Furthermore, the antimicrobial chitosan coating can serve as a basal matrix, in which other antimicrobial or anticorrosive substances like chitosan nanoparticles, chitosan silver nanoparticles, quorum sensing inhibitors (QSI) or the combination of these compounds, can be embedded to achieve synergistic anticorrosive effects. A combination of field and laboratory experiments will be conducted to test this hypothesis for preventing or controlling MIC in the marine environment. Thus, the proposed review will identify new eco-friendly MIC inhibitors and will assay their potential in future applications in the anti-corrosion industry.
Collapse
Affiliation(s)
- Pasiyappazham Ramasamy
- Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India.
| | - Sakshee Vijay Dubal
- PG & Research Department of Biotechnology and Microbiology, National College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Sivakamavalli Jeyachandran
- Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Sivaperumal Pitchiah
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Kamala Kannan
- Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Dilipan Elangovan
- Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Thinesh Thangadurai
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605 014, India
| | - Sivagurunathan Paramasivam
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605 014, India
| |
Collapse
|
18
|
Yu Z, Wei Y, Fu C, Sablani SS, Huang Z, Han C, Li D, Sun Z, Qin H. Antimicrobial activity of gamma-poly (glutamic acid), a preservative coating for cherries. Colloids Surf B Biointerfaces 2023; 225:113272. [PMID: 36996631 DOI: 10.1016/j.colsurfb.2023.113272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
We investigated the minimum inhibitory concentration (MIC), antibacterial activity, and preservation ability of four molar masses of γ-polyglutamic acid (PGA) against Escherichia coli, Bacillus subtilis, and yeast. The antibacterial mechanism was determined based on the cell structure, membrane permeability, and microscopic morphology of the microorganisms. We then measured the weight loss, decay rate, total acid, catalase activity, peroxidase activity, and malondialdehyde content toward the possible use of PGA as a preservative coating for cherries. When the molar mass was greater than 700 kDa, the MIC for Escherichia coli and Bacillus subtilis was less than 2.5 mg/mL. The mechanism of action of the four molar masses of PGA was different with respect to the three microbial species, but a higher molar mass of PGA corresponded to stronger inhibition against the microbes. PGA of 2000 kDa molar mass damaged the microbial cellular structure, resulting in excretion of alkaline phosphatase, but PGA of 1.5 kDa molar mass affected the membrane permeability and the amount of soluble sugar. Scanning electron microscopy indicated the inhibitory effect of PGA. The antibacterial mechanism of PGA was related to the molar mass of PGA and the microbial membrane structure. Compared with the control, a PGA coating effectively inhibit the spoilage rate, delay the ripening, and prolong the shelf life of cherries.
Collapse
|
19
|
Hao Z, Liu G, Ren L, Liu J, Liu C, Yang T, Wu X, Zhang X, Yang L, Xia J, Li W. A Self-Healing Multifunctional Hydrogel System Accelerates Diabetic Wound Healing through Orchestrating Immunoinflammatory Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19847-19862. [PMID: 37042619 DOI: 10.1021/acsami.2c23323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Developing an effective treatment strategy of drug delivery to improve diabetic wound healing remains a major challenge in clinical practice nowadays, due to multidrug-resistant bacterial infections, angiopathy, and oxidative damage in the wound microenvironment. Herein, an effective and convenient strategy was designed through a self-healing multiple-dynamic-bond cross-linked hydrogel with interpenetrating networks, which was formed by multiple-dynamic-bond cross-linking of reversible catechol-Fe3+ coordinate bonds, hydrogen bonding, and Schiff base bonds. The excellent autonomous healing of the hydrogel was initiated and accelerated by Schiff bonds with reversible breakage between 3,4-dihydroxybenzaldehyde containing catechol and aldehyde groups and chitosan chains, and further consolidated by the co-optation of other noncovalent interactions contributed of hydrogen bonding and Fe3+ coordinate bonds. Intriguingly, cathelicidin LL-37 was introduced and uniformly dispersed in the dynamic interpenetrating networks of the hydrogel as a bioactive molecular to orchestrate the diabetic wound healing microenvironment. This multifunctional wound dressing can significantly promote diabetic wound healing by antibacterial activity, immunomodulation, anti-inflammation, neovascularization, and antioxidant activity. Therefore, this study provided an effective and safe strategy for guiding the diabetic wound treatment in clinical applications.
Collapse
Affiliation(s)
- Zhichao Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Gen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Lin Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Jiangchen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Chuanzi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Tao Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Xiangnan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Xinchun Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Ling Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| |
Collapse
|
20
|
Isfran D, Chacon WDC, Alves MJDS, Monteiro AR, Ayala Valencia G. Active Films and Coatings Based on Propolis Extract and Chitosan: Physicochemical Characterization and Potential Application in Refrigerated Shrimps (
Litopenaeus vannamei
). STARCH-STARKE 2023. [DOI: 10.1002/star.202200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Douglas Isfran
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| | - Wilson Daniel Caicedo Chacon
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| | | | - Alcilene Rodrigues Monteiro
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| |
Collapse
|
21
|
Hu F, Gao Q, Liu J, Chen W, Zheng C, Bai Q, Sun N, Zhang W, Zhang Y, Lu T. Smart microneedle patches for wound healing and management. J Mater Chem B 2023; 11:2830-2851. [PMID: 36916631 DOI: 10.1039/d2tb02596e] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The number of patients with non-healing wounds is generally increasing globally, placing a huge social and economic burden on every country. The complexity of the wound-healing process remains a major health challenge despite the numerous studies that have been reported on conventional wound dressings. Therefore, a therapeutic system that combines diagnostic and therapeutic modalities is essential to monitor wound-related biomarkers and facilitate wound healing in real time. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. Their advantages are mainly reflected in painless transdermal drug delivery, good biocompatibility, and ease of self-administration. In this work, we review recent advances in the use of microneedle patches for wound healing and monitoring. The paper first provides a brief overview of the skin structure and the wound healing process, and then discusses the current state of research and prospects for the development of wound-related biomarkers and their real-time monitoring based on microneedle sensors. It summarizes the current state of research based on the unique design of microneedle patches, including biomimetic, conductive, and environmentally responsive, to achieve wound healing. It further summarizes the prospects for the application of different microneedle-based drug delivery modalities and drug delivery substances for wound healing, due to their superior transdermal drug delivery advantages. It concludes with challenges and expectations for the use of smart microneedle patches for wound healing and management.
Collapse
Affiliation(s)
- Fangfang Hu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Qian Gao
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Jinxi Liu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenting Chen
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Caiyun Zheng
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Que Bai
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Na Sun
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenhui Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Yanni Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Tingli Lu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| |
Collapse
|
22
|
Pomegranate Peel Powder: In Vitro Efficacy and Application to Contaminated Liquid Foods. Foods 2023; 12:foods12061173. [PMID: 36981100 PMCID: PMC10048077 DOI: 10.3390/foods12061173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
In this study the recycling of pomegranate peel powder (PPP) was proposed. In particular, the use of powder loaded in a silk fibroin polymeric matrix to create an active pad was tested. For the sake of comparison, the powder alone was also analysed. Both powder and active pad efficacy was assessed in two different food systems, soymilk (rich in proteins), preliminarily contaminated with Pseudomonas spp. and yeasts, and apple juice (rich in carbohydrates), preliminarily contaminated with Alyciclobacillus acidoterrestris. Three different concentrations of powder alone and powder in the pad were tested (5%, 7.5% and 10% w/v) in both types of beverages. To assess a possible dependence of the efficacy on the powder granulometry, different powder sizes were preliminarily analysed on Pseudomonas spp. and yeasts using an in vitro test. PPP was effective on both Pseudomonas spp. and yeasts. No significant differences appeared among the tested granulometries and therefore in the subsequent tests powder with an average diameter of 250 µm was used. Results recorded with soymilk and apple juice were different. When applied to the soymilk, the activity of PPP in the pad was less effective than that recorded when the powder was directly added to the beverage. With the two highest powder concentrations directly added to food, more than four log cycle reductions in Pseudomonas spp. and yeast cells were recorded, compared to soymilk without any powder. Compared to the control sample, all the soymilk samples either with PPP or with the active pad showed a delayed microbial and fungal growth. When applied to apple juice, both powder and pad were effective at completely inhibiting the proliferation of A. acidoterrestris (<102 CFU/g).
Collapse
|
23
|
Kamali M, Shabanpour B, Pourashouri P, Kordjazi M. Effect of chitosan-coated Ulva intestinalis sulfated polysaccharide nanoliposome on melanosis and quality of Pacific white shrimp during ice storage. Int J Biol Macromol 2023; 230:123275. [PMID: 36646348 DOI: 10.1016/j.ijbiomac.2023.123275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
This study investigates chitosan coating containing nanoliposome of Ulva intestinalis sulfated polysaccharide, its effect on melanosis, as well as the quality of Pacific white shrimp during 20 days of storage in ice. The sulfated polysaccharide was extracted from Ulva intestinalis (USP), and its impact on the shrimp's polyphenol oxidase (PPO) enzyme inhibition in different concentrations was measured. The optimum concentration of USP with the highest inhibition percentage was selected and used. USPs were loaded in nanoliposome or coated in chitosan then shrimps were immersed in these coatings. 1.5 % USP showed the highest inhibitory effect of PPO enzyme after 1 and 3 min with values of 63.03 % and 48.74 %. The melanosis of shrimps with different types of USP coating was significantly lower than the control. The lowest color change (ΔE), total viable counts (TVC) bacterial, TVN content, and weight loss were achieved in the Ch-USP treatment. The highest sensory score was found in the Ch-N-USP treatment. This coverage delayed the increase of psychrophilic bacteria (PBC) and chemical tests (TBA, FFA, and PV). Therefore, Ch-USP and Ch-N-USP treatments can be used as a natural substitute for sodium metabisulfite to increase the shelf life and shrimp quality during ice storage.
Collapse
Affiliation(s)
- Masume Kamali
- Department of Fishery Products Processing, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran.
| | - Bahareh Shabanpour
- Department of Fishery Products Processing, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Parastoo Pourashouri
- Department of Fishery Products Processing, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Moazameh Kordjazi
- Department of Fishery Products Processing, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
24
|
Chitosan Edible Films and Coatings with Added Bioactive Compounds: Antibacterial and Antioxidant Properties and Their Application to Food Products: A Review. Polymers (Basel) 2023; 15:polym15020396. [PMID: 36679276 PMCID: PMC9864592 DOI: 10.3390/polym15020396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Chitosan is the deacetylated form of chitin regarded as one of the most abundant polymers and due to its properties, both chitosan alone or in combination with bioactive substances for the production of biodegradable films and coatings is gaining attention in terms of applications in the food industry. To enhance the antimicrobial and antioxidant properties of chitosan, a vast variety of plant extracts have been incorporated to meet consumer demands for more environmentally friendly and synthetic preservative-free foods. This review provides knowledge about the antioxidant and antibacterial properties of chitosan films and coatings enriched with natural extracts as well as their applications in various food products and the effects they had on them. In a nutshell, it has been demonstrated that chitosan can act as a coating or packaging material with excellent antimicrobial and antioxidant properties in addition to its biodegradability, biocompatibility, and non-toxicity. However, further research should be carried out to widen the applications of bioactive chitosan coatings to more foods and industries as well was their industrial scale-up, thus helping to minimize the use of plastic materials.
Collapse
|
25
|
Hung YHR, Lin HJ, Lee EC, Lu WJ, Lin YT, Huang BB, Lin TC, Lin HTV. Effect of lemon essential oil on the microbial control, physicochemical properties, and aroma profiles of peeled shrimp. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Zhu Y, Wang W, Li M, Zhang J, Ji L, Zhao Z, Zhang R, Cai D, Chen L. Microbial diversity of meat products under spoilage and its controlling approaches. Front Nutr 2022; 9:1078201. [PMID: 36532544 PMCID: PMC9752900 DOI: 10.3389/fnut.2022.1078201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 09/29/2023] Open
Abstract
Meat spoilage (MS) is a complex microbial ecological process involving multiple specific microbial interactions. MS is detrimental to people's health and leads to the waste of meat products which caused huge losses during production, storage, transportation, and marketing. A thorough understanding of microorganisms related to MS and their controlling approaches is a necessary prerequisite for delaying the occurrence of MS and developing new methods and strategies for meat product preservation. This mini-review summarizes the diversity of spoilage microorganisms in livestock, poultry, and fish meat, and the approaches to inhibit MS. This would facilitate the targeted development of technologies against MS, to extend meat's shelf life, and effectively diminish food waste and economic losses.
Collapse
Affiliation(s)
- Yanli Zhu
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Wei Wang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Ming Li
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Lili Ji
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Zhiping Zhao
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Rui Zhang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lin Chen
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|
27
|
Lin D, Sun LC, Chen YL, Liu GM, Miao S, Cao MJ. Shrimp spoilage mechanisms and functional films/coatings used to maintain and monitor its quality during storage. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Peng S, Wei H, Zhan S, Yang W, Lou Q, Deng S, Yu X, Huang T. Spoilage mechanism and preservation technologies on the quality of shrimp: An overview. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
29
|
Sun Q, Zhang H, Yang X, Hou Q, Zhang Y, Su J, Liu X, Wei Q, Dong X, Ji H, Liu S. Insight into muscle quality of white shrimp (Litopenaeus vannamei) frozen with static magnetic-assisted freezing at different intensities. Food Chem X 2022; 17:100518. [DOI: 10.1016/j.fochx.2022.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
|
30
|
Lu M, Zhou Q, Yu H, Chen X, Yuan G. Colorimetric indicator based on chitosan/gelatin with nano-ZnO and black peanut seed coat anthocyanins for application in intelligent packaging. Food Res Int 2022; 160:111664. [DOI: 10.1016/j.foodres.2022.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022]
|
31
|
Yan F, Zhong J, Chen J, Liu W, Chen X. Application of alginate oligosaccharide produced by enzymatic hydrolysis in the preservation of prawns. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Shao L, Xi Y, Weng Y. Recent Advances in PLA-Based Antibacterial Food Packaging and Its Applications. Molecules 2022; 27:molecules27185953. [PMID: 36144687 PMCID: PMC9502505 DOI: 10.3390/molecules27185953] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
In order to reduce environmental pollution and resource waste, food packaging materials should not only have good biodegradable ability but also effective antibacterial properties. Poly(lactic acid) (PLA) is the most commonly used biopolymer for food packaging applications. PLA has good physical properties, mechanical properties, biodegradability, and cell compatibility but does not have inherent antibacterial properties. Therefore, antibacterial packaging materials based on PLA need to add antibacterial agents to the polymer matrix. Natural antibacterial agents are widely used in food packaging materials due to their low toxicity. The high volatility of natural antibacterial agents restricts their application in food packaging materials. Therefore, appropriate processing methods are particularly important. This review introduces PLA-based natural antibacterial food packaging, and the composition and application of natural antibacterial agents are discussed. The properties of natural antibacterial agents, the technology of binding with the matrix, and the effect of inhibiting various bacteria are summarized.
Collapse
Affiliation(s)
- Linying Shao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuewei Xi
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| |
Collapse
|
33
|
Physical, Chemical, and Antioxidant Characterization of Nano-Pomegranate Peel and Its Impact on Lipid Oxidation of Refrigerated Meat Ball. J FOOD QUALITY 2022. [DOI: 10.1155/2022/4625528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pomegranate peel (CPP), enriched with bioactive constituents, had potent antioxidant features. Therefore, it is worth finding out functional and antioxidant features of the nanoscale pomegranate peel. The nanoscale of pomegranate peel was prepared by ultrafine grinding in a ball mill for 45 min (NPP45) and 90 min (NPP90). The physical (SEM, TEM, FTIR, and XRD) and chemical characteristics (phenolics, flavonoids, DPPH scavenging activity, FRAP, and reducing power) of nanoparticles were studied. The quality aspects of cold stored (5 ± 2°C) meatballs formulated with 0.5% (W/W) of nano-peel powder were evaluated. Similarly, FTIR spectra and XRD patterns were recorded for nano and crude pomegranate peel samples. Generally, grinding the crude peel for 45 and 90 min enhanced its scavenging activity, reducing power, FRAP, total phenolic, and flavonoid by a range of 12.58 to 20.37 and 20.57% to 35.18%, respectively. The addition of crude/nanosized peel to the meat ball diminish (
) formation of thiobarbituric acid (TBARS), peroxide (PV), and volatile nitrogen and kept the sensory attributes up to 9 days of cold storage. No significant differences were noticed in PV and TBARS of meatballs formulated with 0.5% NPP90 and 0.1% BHT, which suggests the potential use of nanoscale pomegranate peel as natural substitutes to BHT in meat products.
Collapse
|
34
|
Mechanism of antimicrobials immobilized on packaging film inhabiting foodborne pathogens. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Liu Y, Zhu Y, Yang Y, Hu S, Jiang W. Quality improvement of shrimp ( Litopenaeus vannamei) during refrigerated storage by application of Maillard peptides/water-soluble chitosan coating. Food Sci Nutr 2022; 10:2980-2988. [PMID: 36171773 PMCID: PMC9469853 DOI: 10.1002/fsn3.2894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
We investigated the effect of squid Maillard peptides (SMPs) on the shelf life and quality of shrimp for 20 days. Water-soluble chitosan coatings incorporated with SMPs (SMPs + chitosan) were applied to shrimp under chilled conditions. Untreated samples were used as control, along with samples treated with water-soluble chitosan and SMPs alone. The pH increase was observed in all samples, as well as increased total plate count, total volatile basic nitrogen, peroxide value, and thiobarbituric acid index. However, these indexes in the SMPs + chitosan group were lower than the other three groups, which suggested SMPs + chitosan might play a role in retarding quality loss of shrimp, and there might be a combined effect between water-soluble chitosan and SMPs. Based on hardness, springiness, and sensory evaluation, shrimp coated with SMPs + chitosan was the best preserved, with a shelf life of 16 days but only 8-12 days for other samples. The present work demonstrates the effectiveness of SMPs + chitosan, offering a promising alternative to inhibit microbial growth and lipid oxidation on shrimps during refrigerated storage.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health HazardsNational Engineering Research Center for Marine AquacultureZhejiang Ocean UniversityZhoushanChina
| | - Yanling Zhu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health HazardsNational Engineering Research Center for Marine AquacultureZhejiang Ocean UniversityZhoushanChina
| | - Yang Yang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health HazardsNational Engineering Research Center for Marine AquacultureZhejiang Ocean UniversityZhoushanChina
| | - Shiwei Hu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health HazardsNational Engineering Research Center for Marine AquacultureZhejiang Ocean UniversityZhoushanChina
| | - Wei Jiang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health HazardsNational Engineering Research Center for Marine AquacultureZhejiang Ocean UniversityZhoushanChina
| |
Collapse
|
36
|
César LT, Soares LS, Farias MDP, Teixeira Sá DMA, Ayala Valencia G, Monteiro AR. Chitosan and acerola (
Malpighia emarginata
) fruit based active coating can control the melanosis of refrigerated shrimps (
Litopenaeus vannamei
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leiliane Teles César
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC Brazil
- Federal Institute of Education Science and Technology of Ceará, IFCE Campus Sobral Ceará Brazil
| | - Lenilton Santos Soares
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC Brazil
| | | | | | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC Brazil
| | | |
Collapse
|
37
|
Kumar N, Daniloski D, Pratibha, Neeraj, D'Cunha NM, Naumovski N, Petkoska AT. Pomegranate peel extract – A natural bioactive addition to novel active edible packaging. Food Res Int 2022; 156:111378. [DOI: 10.1016/j.foodres.2022.111378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 01/24/2023]
|
38
|
Chitosan Film Functionalized with Grape Seed Oil—Preliminary Evaluation of Antimicrobial Activity. SUSTAINABILITY 2022. [DOI: 10.3390/su14095410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the fishing and wine industries undoubtedly contribute significantly to the economy, they also generate large waste streams with considerable repercussions on both economic and environmental levels. Scientific literature has shown products can be extracted from these streams which have properties of interest to the cosmetics, pharmaceutical and food industries. Antimicrobial activity is undoubtedly among the most interesting of these properties, and particularly useful in the production of food packaging to increase the shelf life of food products. In this study, film for food packaging was produced for the first time using chitosan extracted from the exoskeletons of red shrimp (Aristomorpha foliacea) and oil obtained from red grape seeds (Vitis vinifera). The antimicrobial activity of two films was analyzed: chitosan-only film and chitosan film with the addition of red grape seed oil at two different concentrations (0.5 mL and 1 mL). Our results showed noteworthy antimicrobial activity resulting from functionalized chitosan films; no activity was observed against pathogen and spoilage Gram-positive and Gram-negative bacteria, although the antimicrobial effects observed were species-dependent. The preliminary results of this study could contribute to developing the circular economy, helping to promote the reuse of waste to produce innovative films for food packaging.
Collapse
|
39
|
Lee YC, Tsai YH, Hwang CC, Lin CY, Huang YR. Evaluating the effect of an emerging microwave-assisted induction heating (MAIH) on the quality and shelf life of prepackaged Pacific white shrimp Litopenaeus vannamei stored at 4°C in Taiwan. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Application of Chitosan and Its Derivative Polymers in Clinical Medicine and Agriculture. Polymers (Basel) 2022; 14:polym14050958. [PMID: 35267781 PMCID: PMC8912330 DOI: 10.3390/polym14050958] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Chitosan is a biodegradable natural polymer derived from the exoskeleton of crustaceans. Because of its biocompatibility and non-biotoxicity, chitosan is widely used in the fields of medicine and agriculture. With the latest technology and technological progress, different active functional groups can be connected by modification, surface modification, or other configurations with various physical, chemical, and biological properties. These changes can significantly expand the application range and efficacy of chitosan polymers. This paper reviews the different uses of chitosan, such as catheter bridging to repair nerve broken ends, making wound auxiliaries, as tissue engineering repair materials for bone or cartilage, or as carriers for a variety of drugs to expand the volume or slow-release and even show potential in the fight against COVID-19. In addition, it is also discussed that chitosan in agriculture can improve the growth of crops and can be used as an antioxidant coating because its natural antibacterial properties are used alone or in conjunction with a variety of endophytic bacteria and metal ions. Generally speaking, chitosan is a kind of polymer material with excellent development prospects in medicine and agriculture.
Collapse
|
41
|
Effects of Ultrasound-Assisted Vacuum Impregnation Antifreeze Protein on the Water-Holding Capacity and Texture Properties of the Yesso Scallop Adductor Muscle during Freeze-Thaw Cycles. Foods 2022; 11:foods11030320. [PMID: 35159472 PMCID: PMC8834382 DOI: 10.3390/foods11030320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
The effect of antifreeze protein (AFP) on the water-holding capacity (WHC) and texture properties of the Patinopecten yessoensis adductor muscles during freeze–thaw cycles (FTCs) were evaluated based on three impregnation methods: general impregnation (GI), vacuum impregnation (VI), and ultrasound-assisted VI (US-VI). The WHC, texture properties, and tissue microstructure were all evaluated. Results showed that the WHC and texture properties of adductor muscle were significantly improved in the VI and US-VI groups during FTCs (p < 0.05). The WHC of the adductor muscle in the US-VI group was maximally enhanced in terms of yield (6.63%), centrifugal loss, cooking loss, and T22. The US-VI group of the adductor muscle had the optimal chewiness and springiness compared to others, and the shear force and hardness were most effectively enhanced by VI. The growth and recrystallization of ice crystals in the frozen adductor muscle were significantly inhibited by VI and US-VI. The average cross-sectional area and roundness of ice crystals in the US-VI group were decreased by 61.89% and increased by 22.22% compared with those of the control, respectively. The partial least squares regression (PLSR) model further confirmed that the WHC and texture properties of the adductor muscle were correlated appreciably with the degree of modification of ice crystal morphology through the AFP.
Collapse
|
42
|
Xia W, Chakka VP, Chen K, Wang F, Xie YY, Hider RC, Zhou T. A Novel Stilbene Analogue: Antioxidant Activity and Application in Controlling the Quality and Bacterial Growth of Shrimp Refrigerated at 4ºC. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2021.2024636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wei Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Vara Prasad Chakka
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Kai Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Yuan-Yuan Xie
- Department of Food Engineering, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P R China
| | - Robert C. Hider
- Division of Pharmaceutical Science, King’s College London, London, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
43
|
Kumar S, Gogoi AS, Shukla S, Trivedi M, Gulati S. Conclusion and Future Prospects of Chitosan-Based Nanocomposites. CHITOSAN-BASED NANOCOMPOSITE MATERIALS 2022:305-341. [DOI: 10.1007/978-981-19-5338-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
The quality properties of frozen large yellow croaker fillets during temperature fluctuation cycles: improvement by cellobiose and carboxylated cellulose nanofibers. Int J Biol Macromol 2022; 194:499-509. [PMID: 34822836 DOI: 10.1016/j.ijbiomac.2021.11.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 12/26/2022]
Abstract
Frozen aquatic products undergo unavoidable quality changes owing to temperature fluctuations during frozen storage and distribution. This study investigated the effects of 1% cellobiose (CB), and 0.5 and 1% carboxylated cellulose nanofibers (CNF) on ice crystal growth and recrystallization of frozen large yellow croaker fillets exposed to temperature fluctuations. Denser and more uniformly distributed ice crystals were observed in the CB- and CNF-treated samples than in the water-treated samples. Furthermore, the addition of CB and CNF suppressed the conversion of bound water to frozen water in the samples during temperature fluctuation cycles, played a positive role in fixing the ionic and hydrogen bonds that stabilize the protein structure, limited the conformational transition from α-helix to β-sheet, and improved protein thermal stability. Based on turbidity, zeta potential, and confocal laser scanning microscopy (CLSM) analyses, the presence of CB and CNF restricted the protein aggregation. Compared with CB, CNF molecules with abundant carboxyl functional groups and longer morphology exhibited better cryoprotective effects. Moreover, the fillets were more improved protected from mechanical damage induced by large ice crystals at a higher CNF concentration. This study reveals the potential of CB and CNF as novel cryoprotectants.
Collapse
|
45
|
Haddad NA, Watts E, Lively JA. Evaluation of Post-Harvest Procedures for Quality Enhancement in the Louisiana Commercial Shrimp Industry. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.2011811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nicholas A. Haddad
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Evelyn Watts
- School of Nutrition and Food Science, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Julie A. Lively
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
46
|
Giannelli M, Lacivita V, Posati T, Aluigi A, Conte A, Zamboni R, Del Nobile MA. Silk Fibroin and Pomegranate By-Products to Develop Sustainable Active Pad for Food Packaging Applications. Foods 2021; 10:foods10122921. [PMID: 34945471 PMCID: PMC8700627 DOI: 10.3390/foods10122921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a bio-based polymeric system loaded with fruit by-products was developed. It was based on silk fibroin produced by the silkworm Bombyx mori and pomegranate peel powder, selected as active agent. The weight ratio between fibroin and pomegranate powder was 30:70. Pads also contained 20% w/w of glycerol vs. fibroin to induce water insolubility. Control systems, consisting of only fibroin and glycerol, were produced as reference. Both control and active systems were characterized for structural and morphological characterization (Fourier-transform infrared spectroscopy and optical microscope), antioxidant properties and antimicrobial activity against two foodborne spoilage microorganisms. Results demonstrate that under investigated conditions, an active system was obtained. The pad showed a good water stability, with weight loss of about 28% due to the release of the active agent and not to the fibroin loss. In addition, this edible system has interesting antioxidant and antimicrobial properties. In particular, the pad based on fibroin with pomegranate peel recorded an antioxidant activity of the same order of magnitude of that of vitamin C, which is one of the most well-known antioxidant compounds. As regards the antimicrobial properties, results underlined that pomegranate peel in the pad allowed maintaining microbial concentration around the same initial level (104 CFU/mL) for more than 70 h of monitoring, compared to the control system where viable cell concentration increased very rapidly up to 108 CFU/mL.
Collapse
Affiliation(s)
- Marta Giannelli
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy; (M.G.); (T.P.); (A.A.); (R.Z.)
| | - Valentina Lacivita
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli 25, 71121 Foggia, Italy; (V.L.); (M.A.D.N.)
| | - Tamara Posati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy; (M.G.); (T.P.); (A.A.); (R.Z.)
| | - Annalisa Aluigi
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy; (M.G.); (T.P.); (A.A.); (R.Z.)
| | - Amalia Conte
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli 25, 71121 Foggia, Italy; (V.L.); (M.A.D.N.)
- Correspondence:
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy; (M.G.); (T.P.); (A.A.); (R.Z.)
| | - Matteo Alessandro Del Nobile
- Department of Agricultural Sciences, Food and Environment, University of Foggia, Via Napoli 25, 71121 Foggia, Italy; (V.L.); (M.A.D.N.)
| |
Collapse
|
47
|
Yu D, Zhao W, Dong J, Zang J, Regenstein JM, Jiang Q, Xia W. Multifunctional bioactive coatings based on water-soluble chitosan with pomegranate peel extract for fish flesh preservation. Food Chem 2021; 374:131619. [PMID: 34810018 DOI: 10.1016/j.foodchem.2021.131619] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 01/11/2023]
Abstract
This study aimed to reveal the effects of vacuum-impregnated carboxymethyl chitosan (CMCS) coating with pomegranate peel extract (PPE) on quality retention of fish flesh during refrigeration. Herein, CMCS-PPE coating was effective in attenuating quality loss of grass carp fillets. Compared to Control, the levels of drip loss, total volatile base nitrogen, and K value in coated samples were sharply decreased (p < 0.05) by 24.5%, 35.3% and 25.2% on day 9, respectively. Meanwhile, the coating also helped inhibit oxidation, bioamine accumulation, and texture softening in fillets. Moreover, the microbial enumeration was reduced by >1.4 lg cfu/g as compared to Control on day 6 afterward, and high throughput sequencing analysis further showed the active coating contributed to the notable growth suppression of spoilage bacteria like Shewanella. Additionally, the positive effect of the coating scheme was also verified in longsnout catfish and snakehead, further confirming its good applicability for fish flesh preservation.
Collapse
Affiliation(s)
- Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenyu Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junli Dong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinhong Zang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Joe M Regenstein
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Food Science, Cornell University, Ithaca NY14850, USA
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
48
|
Applications of Nisin and EDTA in Food Packaging for Improving Fabricated Chitosan-Polylactate Plastic Film Performance and Fish Fillet Preservation. MEMBRANES 2021; 11:membranes11110852. [PMID: 34832081 PMCID: PMC8618303 DOI: 10.3390/membranes11110852] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to increase the antibacterial activity of chitosan-polylactic acid (PLA) composite film by adding nisin and ethylenediaminetetraacetic acid (EDTA). We evaluated the mechanical, physicochemical, and antibacterial properties of various PLA composite films, as well as the enhancement effect of PLA composite films with EDTA + nisin on the preservation of grouper fillets. Films of PLA alone, PLA plus chitosan (C5), PLA plus nisin + EDTA (EN2), and PLA plus chitosan plus nisin + EDTA (C5EN1 and C5EN2) were prepared. The addition of EDTA + nisin to the chitosan-PLA matrix significantly improved the antibacterial activity of the PLA composite film, with C5EN1 and C5EN2 films showing the highest antibacterial activity among the five films. Compared with the fish samples covered by C5, the counts of several microbial categories (i.e., mesophilic bacteria, psychrotrophic bacteria, coliforms, Aeromonas, Pseudomonas, and Vibrio) and total volatile basic nitrogen content in fish were significantly reduced in the samples covered by C5EN1. In addition, the counts of samples covered by C5EN1 or C5 were significantly lower compared to the uncovered and PLA film-covered samples.
Collapse
|
49
|
Hussain MA, Sumon TA, Mazumder SK, Ali MM, Jang WJ, Abualreesh MH, Sharifuzzaman S, Brown CL, Lee HT, Lee EW, Hasan MT. Essential oils and chitosan as alternatives to chemical preservatives for fish and fisheries products: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Baek JH, Lee SY, Oh SW. Enhancing safety and quality of shrimp by nanoparticles of sodium alginate-based edible coating containing grapefruit seed extract. Int J Biol Macromol 2021; 189:84-90. [PMID: 34419539 DOI: 10.1016/j.ijbiomac.2021.08.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/27/2021] [Accepted: 08/15/2021] [Indexed: 11/20/2022]
Abstract
Edible coatings are safe and effective in extending the shelf life of foods. In this study, a nanoparticle-based edible coating solution was prepared, containing alginate as a coating agent and grapefruit seed extract as an antibacterial agent to improve the safety and quality of shrimp during storage. Shrimp coated with this formulation were maintained at 4°C for 8 days, and periodically analyzed for changes in sensory, chemical [total volatile basic nitrogen (TVB-N) and pH] and microbial parameters. The uncoated shrimp exceeded the microbiological limits at 7.87 log CFU/g on Day 4 of storage, whereas the nanoparticle-based coated shrimp did not exceed the limit by Day 8 of storage. In addition, uncoated shrimp tended to maintain their quality, while uncoated shrimp deteriorated due to increased TVB-N values, pH values, and off-flavors. Nanoparticles are easily dispersed in food to minimize flavor impact and enhance diffusion and bioactivity. We concluded that the nanoparticles coating extended the shelf life of shrimp by more than 5 days. Therefore, the use of nanoparticle-based coatings could be a new and effective way to maintain shrimp quality.
Collapse
Affiliation(s)
- Ji Hye Baek
- Department of Food and Nutrition, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - So-Young Lee
- Department of Food and Nutrition, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea.
| |
Collapse
|