1
|
Fattahi-Zaim S, Abedi AS, Heshmati A, Nezamoleslami L, Ghasemzadeh-Mohammadi V. Assessing the toxic potency of absorbed trihalomethanes in leafy vegetables: the effects of different Chlorine pretreatment. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2025; 23:11. [PMID: 40078504 PMCID: PMC11893937 DOI: 10.1007/s40201-025-00935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Trihalomethanes (THMs) are a class of compounds formed when organic substances in water interact with halogen disinfectants such as chlorine. The specific THMs include CHBr3, CHClBr2, CHCl2Br, and CHCl3. THMs are toxic disinfection by-products (DBPs) that pose potential risks to human health and can be present in ready-to-eat vegetables. Our study examined key variables such as contact time, chlorine concentration, and vegetable type on the formation and absorption of these contaminants. Laboratory simulations involved 22 samples characterized by differing chlorine concentrations, contact durations, and three vegetable types: celery, lettuce, and leek. The result showed that the maximum concentration of THMs (354.73 µg L- 1) in celery was observed when 300 mg L-1 of chlorine for 15 min was employed. The results demonstrated that contact time significantly affected the formation and absorption of THMs. Celery demonstrates a greater absorption of THMs than others. The evaluation of lifetime cancer risk (LTCR) and hazard index (HI) for THMs across 22 simulated test conditions indicated that CHClBr2 exhibited the highest LTCR at 7.34 × 10^-6. Also, the average influence of LTCR for CHBr2Cl constituted 64%, CHBr3 accounted for 21%, CHBrCl2 represented 10%, and CHCl3 was 5%. The results showed that CHBr3 had the most effect on the hazard index, while CHCl3 showed the lowest impact. These findings assist food industry professionals in reducing THM absorption by regulating chlorine concentration and contact time during vegetable disinfection. Graphical Abstract
Collapse
Affiliation(s)
- Samaneh Fattahi-Zaim
- Department of Nutrition and Food Hygiene, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdol-Samad Abedi
- Department of Food and Nutrition Policy and Planning, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Heshmati
- Department of Nutrition and Food Hygiene, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Nezamoleslami
- Department of Nutrition and Food Hygiene, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vahid Ghasemzadeh-Mohammadi
- Department of Nutrition and Food Hygiene, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Tuytschaever T, Chys M, Viaene K, Sampers I. Enhancing water efficiency in the processing of leafy greens: Efficacy of inline chlorine and pH control systems in reducing microbial contamination and limiting DBP formation. CHEMOSPHERE 2025; 374:144205. [PMID: 39951947 DOI: 10.1016/j.chemosphere.2025.144205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Optimizing water use in the food industry is crucial due to its increasing scarcity. Disinfectants extend the lifespan of wash water by inhibiting bacterial growth and reducing cross-contamination risks. Chlorine is commonly chosen for its affordability, ease of use, and availability. Maintaining a pH of 5.5-6 maximizes free chlorine effectiveness. However, maintaining stable pH and chlorine levels is challenging. Continuous inline monitoring systems for chlorine levels offer significant advantages over offline point measurements, addressing fluctuating chlorine and pH levels. The Automated SmartWash Analytical platform (ASAP) unit, an inline dosing and monitoring (i.e. control) system, was tested at full scale during the washing of iceberg and Lollo Rossa lettuce, using different lettuce-to-water ratios, simulating various processing conditions. Inline and offline free chlorine and pH measurements were compared with those of the ASAP unit. Additional physicochemical parameters, including chemical oxygen demand (COD), ultraviolet absorbance at 254 nm (UVA254), oxidation-reduction potential (ORP), and turbidity, were also monitored. Microbiological analysis (total plate count, coliforms, and Pseudomonas spp.) assessed cross-contamination risks, while trihalomethanes and chlorate levels in wash water and final products were evaluated to monitor DBP. Propylene glycol and orthophosphate, processing aids from SmartWash Original acidulant (i.e.T-128, a chlorine stabilizer), were also measured. Results demonstrated the control unit's ability to maintain stable chlorine and pH levels despite increasing organic loads, reducing cross-contamination risks and ensuring microbiological stability. DBP levels and processing aids remained within legal limits in the final product. Moreover, the sensory quality of fresh-cut lettuce was unaffected, regardless of chlorine use.
Collapse
Affiliation(s)
- Tessa Tuytschaever
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, Kortrijk, 8500, Belgium
| | - Michael Chys
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, Kortrijk, 8500, Belgium
| | - Kiara Viaene
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, Kortrijk, 8500, Belgium
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, Kortrijk, 8500, Belgium.
| |
Collapse
|
3
|
Armah AA, Ofori KF, Sutherland K, Otchere E, Lewis WA, Long W. Antimicrobial Effectiveness of Clove Oil in Decontamination of Ready-to-Eat Spinach ( Spinacia oleracea L.). Foods 2025; 14:249. [PMID: 39856915 PMCID: PMC11765317 DOI: 10.3390/foods14020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Due to an increased demand for natural food additives, clove oil was assessed as a natural alternative to chemical disinfectants in produce washing. This study assessed the antimicrobial activity of 5 and 10% (v/v) clove oil-amended wash liquid (CO) using a zone of inhibition (ZIB) test and determined the time required to completely inactivate pathogenic bacteria using bacterial death curve analysis. A washing experiment was used to evaluate CO's ability to inhibit bacterial growth on inoculated RTE spinach and in the wash water. The findings showed that Shigella flexneri, Salmonella Typhimurium, and Salmonella enterica recovery were completely inhibited within 5 min. Escherichia coli and Staphylococcus aureus recovery were completely inhibited at 10 and 30 min, respectively. The ZIB test showed that 5% CO had the highest inhibitory effect on both Salmonella strains and E. coli with approximately 10 mm ZIB diameter. Additionally, 5% CO completely inactivated all bacterial strains on spinach samples and in the wash water except for S. aureus. A total of 80 mg/L peracetic acid (PAA) resulted in >2log CFU/mL recovery on experimental washed samples. These findings suggest that 5% CO was highly effective in inhibiting microbial growth on RTE spinach, potentially contributing to sustainable food safety and shelf-life extension strategies.
Collapse
Affiliation(s)
- Abigail A. Armah
- College of Agriculture, Science and Technology, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA; (K.F.O.); (K.S.); (E.O.); (W.A.L.)
| | | | | | | | | | - Wilbert Long
- College of Agriculture, Science and Technology, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA; (K.F.O.); (K.S.); (E.O.); (W.A.L.)
| |
Collapse
|
4
|
Allende A, Alvarez‐Ordóñez A, Bortolaia V, Bover‐Cid S, De Cesare A, Dohmen W, Guillier L, Herman L, Jacxsens L, Mughini‐Gras L, Nauta M, Ottoson J, Peixe L, Perez‐Rodriguez F, Skandamis P, Suffredini E, Banach J, Zhou B, da Silva Felício MT, Martino L, Messens W, Botteon A. Microbiological hazards associated with the use of water in the post-harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (ffFVH). Part 4 (fresh-cut FVH process water management plan). EFSA J 2025; 23:e9171. [PMID: 39886074 PMCID: PMC11780610 DOI: 10.2903/j.efsa.2025.9171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Water used in post-harvest handling and processing operations is an important risk factor for microbiological cross-contamination of fruits, vegetables and herbs (FVH). Industrial data indicated that the fresh-cut FVH sector is characterised by process water at cooled temperature, operational cycles between 1 and 15 h, and product volumes between 700 and 3000 kg. Intervention strategies were based on water disinfection treatments mostly using chlorine-based disinfectants. Water replenishment was not observed within studied industries. The industrial data, which included 19 scenarios were used to develop a guidance for a water management plan (WMP) for the fresh-cut FVH sector. A WMP aims to maintain the fit-for-purpose microbiological quality of the process water and consists of: (a) identification of microbial hazards and hazardous events linked to process water; (b) establishment of the relationship between microbiological and physico-chemical parameters; (c) description of preventive measures; (d) description of intervention measures, including their validation, operational monitoring and verification; and (e) record keeping and trend analysis. A predictive model was used to simulate water management outcomes, highlighting the need for water disinfection treatments to maintain the microbiological quality of the process water and the added value of water replenishment. Relying solely on water replenishment (at realistic feasible rates) does not avoid microbial accumulation in the water. Operational monitoring of the physico-chemical parameters ensures that the disinfection systems are operating effectively. Verification includes microbiological analysis of the process water linked to the operational monitoring outcomes of physico-chemical parameters. Although Escherichia coli and Listeria spp. could be indicators for assessing water quality, food business operators should set up and validate a tailored WMP to identify physico-chemical parameters, as well as microbial indicators and their threshold levels, as performance standards for maintaining the fit-for-purpose microbiological quality of the process water during post-harvest handling and processing operations.
Collapse
|
5
|
Allende A, Alvarez‐Ordóñez A, Bortolaia V, Bover‐Cid S, De Cesare A, Dohmen W, Guillier L, Herman L, Jacxsens L, Mughini‐Gras L, Nauta M, Ottoson J, Peixe L, Perez‐Rodriguez F, Skandamis P, Suffredini E, Banach J, Zhou B, da Silva Felício MT, Martino L, Messens W, Botteon A. Microbiological hazards associated with the use of water in the post-harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (ffFVH). Part 5 (Frozen FVH process water management plan). EFSA J 2025; 23:e9172. [PMID: 39886078 PMCID: PMC11780613 DOI: 10.2903/j.efsa.2025.9172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Water used in post-harvest handling and processing operations is an important risk factor for microbiological cross-contamination of fruits, vegetables and herbs (FVH). Industrial data indicated that the frozen FVH sector is characterised by operational cycles between 8 and 120 h, variable product volumes and no control of the temperature of process water. Intervention strategies were limited to the use of water disinfection treatments such as peroxyacetic acid and hydrogen peroxide. Chlorine-based disinfectants were not used, and water replenishment was not observed within studied industries. The industrial data, which included 13 scenarios, were used to develop a guidance for a water management plan (WMP) for the frozen FVH sector. A WMP aims to maintain the fit-for-purpose microbiological quality of the process water and consists of: (a) identification of microbial hazards and hazardous events linked to process water; (b) establishment of the relationship between microbiological and physico-chemical parameters; (c) description of preventive measures; (d) description of intervention measures, including their validation, operational monitoring and verification; and (e) record keeping and trend analysis. A predictive model was used to simulate water management outcomes, highlighting the need for water disinfection treatments to maintain the microbiological quality of the process water and the added value of water replenishment. Relying solely on water replenishment (at realistic feasible rates) does not avoid microbial accumulation in the water. Operational monitoring of the physico-chemical parameters ensures that the disinfection systems are operating effectively. Verification includes microbiological analysis of the process water linked to the operational monitoring outcomes of physico-chemical parameters. Food business operators should set up and validate a tailored WMP to identify physico-chemical parameters, as well as microbial indicators and their threshold levels as performance standards for maintaining the fit-for-purpose microbiological quality of the process water during post-harvest handling and processing operations.
Collapse
|
6
|
Allende A, Alvarez‐Ordóñez A, Bortolaia V, Bover‐Cid S, De Cesare A, Dohmen W, Guillier L, Herman L, Jacxsens L, Mughini‐Gras L, Nauta M, Ottoson J, Peixe L, Perez‐Rodriguez F, Skandamis P, Suffredini E, Banach J, Zhou B, da Silva Felício MT, Martino L, Messens W, Botteon A. Microbiological hazards associated with the use of water in the post-harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (ffFVH). Part 3 (Fresh-whole FVH process water management plan). EFSA J 2025; 23:e9170. [PMID: 39886073 PMCID: PMC11780612 DOI: 10.2903/j.efsa.2025.9170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Water used in post-harvest handling and processing operations is an important risk factor for microbiological cross-contamination of fruits, vegetables and herbs (FVH). Industrial data indicated that the fresh-whole FVH sector is characterised by very variable operational cycle duration (between 8 and 900 h), large product volumes (e.g. more than 6000 tonnes) and process water at 2.8-25.0°C. Intervention strategies were based on water disinfection treatments, mostly using chlorine-based disinfectants. Water replenishment was not observed within studied industries. The industrial data, which included 29 scenarios were used to develop a guidance for a water management plan (WMP) for the fresh-whole FVH sector. A WMP aims to maintain the fit-for-purpose microbiological quality of the process water and consists of (a) identification of microbial hazards and hazardous events linked to process water; (b) establishment of the relationship between microbiological and physico-chemical parameters; (c) description of preventive measures; (d) description of intervention measures, including their validation, operational monitoring and verification; and (e) record keeping and trend analysis. A predictive model was used to simulate water management outcomes, highlighting the need for water disinfection treatments to maintain the microbiological quality of the process water and the added value of water replenishment. Relying solely on water replenishment (at realistic feasible rates) does not avoid microbial accumulation in the water. Operational monitoring of the physico-chemical parameters ensures that the disinfection systems are operating effectively. Verification includes microbiological analysis of the process water linked to the operational monitoring outcomes of physico-chemical parameters. Food business operators (FBOps) should set up and validate a tailored WMP to identify physico-chemical parameters, as well as microbial indicators and their threshold levels, as performance standards for maintaining the fit-for-purpose microbiological quality of the process water during post-harvest handling and processing operations.
Collapse
|
7
|
Qi Q, Ghaly TM, Rajabal V, Russell DH, Gillings MR, Tetu SG. Vegetable phylloplane microbiomes harbour class 1 integrons in novel bacterial hosts and drive the spread of chlorite resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176348. [PMID: 39304140 DOI: 10.1016/j.scitotenv.2024.176348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bacterial hosts in vegetable phylloplanes carry mobile genetic elements, such as plasmids and transposons that are associated with integrons. These mobile genetic elements and their cargo genes can enter human microbiomes via consumption of fresh agricultural produce, including uncooked vegetables. This presents a risk of acquiring antimicrobial resistance genes from uncooked vegetables. To better understand horizontal gene transfer of class 1 integrons in these compartments, we applied epicPCR, a single-cell fusion-PCR surveillance technique, to link the class 1 integron integrase (intI1) gene with phylogenetic markers of their bacterial hosts. Ready-to-eat salads carried class 1 integrons from the phyla Bacteroidota and Pseudomonadota, including four novel genera that were previously not known to be associated with intI1. We whole-genome sequenced Pseudomonas and Erwinia hosts of pre-clinical class 1 integrons that are embedded in Tn402-like transposons. The proximal gene cassette in these integrons was identified as a chlorite dismutase gene cassette, which we showed experimentally to confer chlorite resistance. Chlorine-derived compounds such as acidified sodium chlorite and chloride dioxide are used to disinfectant raw vegetables in food processing facilities, suggesting selection for chlorite resistance in phylloplane integrons. The spread of integrons conferring chlorite resistance has the potential to exacerbate integron-mediated antimicrobial resistance (AMR) via co-selection of chlorite resistance and AMR, thus highlighting the importance of monitoring chlorite residues in agricultural produce. These results demonstrate the strength of combining epicPCR and culture-based isolation approaches for identifying hosts and dissecting the molecular ecology of class 1 integrons.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, New South Wales, Australia; Manchester Institute of Biotechnology, The University of Manchester, Greater Manchester, United Kingdom.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia
| | - Dylan H Russell
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia.
| |
Collapse
|
8
|
Fan X, Gurtler JB. Depletion of Free Chlorine and Generation of Trichloromethane in the Presence of pH Control Agents in Chlorinated Water at pH 6.5. J Food Prot 2024; 87:100296. [PMID: 38734411 DOI: 10.1016/j.jfp.2024.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Chlorine is commonly used by the fresh produce industry to sanitize water and minimize pathogen cross-contamination during handling. The pH of chlorinated water is often reduced to values of pH 6-7, most commonly with citric acid to stabilize the active antimicrobial, hypochlorous acid (a form of free chlorine). Previous studies have demonstrated that citric acid reacts with chlorine to form trichloromethane, a major chlorine by-product in water and a potential human carcinogen. However, it is unclear if other pH control agents could be used in the place of citric acid to minimize the formation of trichloromethane. The objective of the present study was to determine the reactivity of organic and inorganic pH control agents, with chlorine, to generate trichloromethane. Free chlorine (∼100 mg/L) was mixed with 10 mM of each of twelve organic acids and two inorganic pH control agents (i.e., sodium acid sulfate and phosphoric acid) to effect a pH level of 6.5. Free chlorine and trichloromethane levels were measured over 3 h at 3 and 22°C. Results demonstrated that ascorbic acid, dehydroascorbic acid, citric acid, and malic acid rapidly depleted free chlorine concentrations at both 22°C and 3°C, while tartaric acid and lactic acid decreased chlorine concentrations more slowly. Other pH control agents did not significantly reduce free chlorine either at 22 or 3°C. Citric acid led to the generation of significantly higher concentrations of trichloromethane than did other acids. Chloroacetone was also found in chlorinated water in the presence of citric acid and ascorbic acid. Taking buffering capacity and pKa values into account, phosphoric acid and some organic acids may be used to replace citric acid as pH control agents in chlorinated water for washing fresh produce, to stabilize free chlorine level and reduce the generation of trichloromethane.
Collapse
Affiliation(s)
- Xuetong Fan
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Joshua B Gurtler
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| |
Collapse
|
9
|
Rothwell JG, Hong J, Morrison SJ, Vyas HKN, Xia B, Mai-Prochnow A, McConchie R, Phan-Thien KY, Cullen PJ, Carter DA. An Effective Sanitizer for Fresh Produce Production: In Situ Plasma-Activated Water Treatment Inactivates Pathogenic Bacteria and Maintains the Quality of Cucurbit Fruit. Microbiol Spectr 2023; 11:e0003423. [PMID: 37428084 PMCID: PMC10434273 DOI: 10.1128/spectrum.00034-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023] Open
Abstract
The effect of plasma-activated water (PAW) generated with a dielectric barrier discharge diffusor (DBDD) system on microbial load and organoleptic quality of cucamelons was investigated and compared to the established sanitizer, sodium hypochlorite (NaOCl). Pathogenic serotypes of Escherichia coli, Salmonella enterica, and Listeria monocytogenes were inoculated onto the surface of cucamelons (6.5 log CFU g-1) and into the wash water (6 log CFU mL-1). PAW treatment involved 2 min in situ with water activated at 1,500 Hz and 120 V and air as the feed gas; NaOCl treatment was a wash with 100 ppm total chlorine; control treatment was a wash with tap water. PAW treatment produced a 3-log CFU g-1 reduction of pathogens on the cucamelon surface without negatively impacting quality or shelf life. NaOCl treatment reduced the pathogenic bacteria on the cucamelon surface by 3 to 4 log CFU g-1; however, this treatment also reduced fruit shelf life and quality. Both systems reduced 6-log CFU mL-1 pathogens in the wash water to below detectable limits. The critical role of superoxide anion radical (·O2-) in the antimicrobial power of DBDD-PAW was demonstrated through a Tiron scavenger assay, and chemistry modeling confirmed that ·O2- generation readily occurs in DBDD-PAW generated with the employed settings. Modeling of the physical forces produced during plasma treatment showed that bacteria likely experience strong local electric fields and polarization. We hypothesize that these physical effects synergize with reactive chemical species to produce the acute antimicrobial activity seen with the in situ PAW system. IMPORTANCE Plasma-activated water (PAW) is an emerging sanitizer in the fresh food industry, where food safety must be achieved without a thermal kill step. Here, we demonstrate PAW generated in situ to be a competitive sanitizer technology, providing a significant reduction of pathogenic and spoilage microorganisms while maintaining the quality and shelf life of the produce item. Our experimental results are supported by modeling of the plasma chemistry and applied physical forces, which show that the system can generate highly reactive ·O2- and strong electric fields that combine to produce potent antimicrobial power. In situ PAW has promise in industrial applications as it requires only low power (12 W), tap water, and air. Moreover, it does not produce toxic by-products or hazardous effluent waste, making it a sustainable solution for fresh food safety.
Collapse
Affiliation(s)
- Joanna G. Rothwell
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
| | - Jungmi Hong
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart J. Morrison
- Department of Agricultural and Resource Economics, University of California, Davis, California, USA
| | - Heema Kumari Nilesh Vyas
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute of Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - Binbin Xia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Anne Mai-Prochnow
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Robyn McConchie
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
| | - Kim-Yen Phan-Thien
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
| | - Patrick J. Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Dee A. Carter
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute of Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Roobab U, Madni GM, Ranjha MMAN, Khan AW, Selim S, Almuhayawi MS, Samy M, Zeng XA, Aadil RM. Applications of water activated by ozone, electrolysis, or gas plasma for microbial decontamination of raw and processed meat. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1007967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
A raw or processed meat product can be a breeding ground for spoilage bacteria (Enterobacteriaceae, Lactobacillus spp., Pseudomonas spp., etc.). Failure of decontamination results in food quality loss and foodborne illnesses caused by pathogens such as Salmonella, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes. Often, meat processors decontaminate the carcass using cheap chemicals or artificial antimicrobial agents not listed on the ingredient list, which is discouraged by health-conscious consumers. Foods with clean labels became more popular during the COVID-19 pandemic, which led consumers to choose healthier ingredients. Novel methods of controlling or improving meat safety are constantly being discovered. This review focuses on novel means of electrochemically activate water that is being investigated as a sanitizing agent for carcasses and processing area decontamination during production or at the end. Water can be activated by using non-thermal techniques such as ozonation, electrolysis, and cold plasma technologies. Recent studies showed that these activated liquids are powerful tools for reducing microbial activity in raw and processed meat. For instance, plasma-activated water can be used to enhance microbiological safety and avoid the negative effects of direct gaseous plasma on the organoleptic aspects of food products. In addition, electrolyzed water technology offers hurdle enhancement by combining with non-thermal strategies that have great potential. Ozonation is another way of activating water which provides a very convenient way to control microbiological safety and finds several recent applications as aqueous ozone for meat decontamination. These solutions are highly reactive and convenient for non-conventional applications in the meat industry related to food safety because of their antimicrobial or antiviral impact. The present review highlights the efficacy of activated-water decontamination of raw and processed meat via non-thermal solutions.
Collapse
|
11
|
Schryvers S, De Bock T, Uyttendaele M, Jacxsens L. Multi-criteria decision-making framework on process water treatment of minimally processed leafy greens. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Ma W, Yan B. Monosystem Discriminative Sensor toward Inorganic Anions via Incorporating Three Different Luminescent Channels in Metal-Organic Frameworks. Anal Chem 2022; 94:5866-5874. [PMID: 35384662 DOI: 10.1021/acs.analchem.2c00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Because there are great demands of distinguishing multiple chemically similar analytes, chemical sensors for multivariate analyses have been developed rapidly in the past few decades. However, designing luminescent discriminative sensors based on a monosystem has been a challenge until now. In this work, we first develop a triemitting luminescent discriminative platform named RGB@TLU-2 with three different emission centers: blue-emitting center (BDC-NH2), green-emitting (Tb@BDC-SO3-), and red-emitting center (rhodamine B, RhB). The different luminescent mechanisms (ligand emission, LMET emission, guest emission) in these emission centers endow RGB@TLU-2 with high cross-reactivity, which is essential for discriminating applications. To balance the three luminescent centers, all variables in the synthesis process are optimized carefully. Surprisingly, the RGB@TLU-2 shows a variety of luminescent response patterns when immersed into 12 inorganic anions. Two unsupervised multidimensional analysis methods, (principal component analysis and hierarchical cluster analysis), are used to explore the relationship between these anions. On the basis of the luminescent response of analytes, 5 response modes are obtained and 12 inorganic anions are classified into 6 groups. The sensing mechanisms are discussed in detail. Detection limits of typical anions Cr2O72-, PO43-, ClO-, and NO2- are calculated as 2.895 × 10-8, 6.353 × 10-6, 1.134 × 10-5, and 4.56 × 10-4 mol/L, respectively. Furthermore, the RGB@TLU-2 also shows the ability to distinguish 4 (Fe3+, Fe2+, Cu2+ and Cr3+) of 12 metal ions and 3 (Trp, Pro, and Arg) of 11 amino acids.
Collapse
Affiliation(s)
- Wanpeng Ma
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
13
|
Raffo A, Paoletti F. Fresh-Cut Vegetables Processing: Environmental Sustainability and Food Safety Issues in a Comprehensive Perspective. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2021.681459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The fresh-cut industry supplies the food market with healthy fresh fruit and vegetables and, in that way, may contribute to improve the nutritional status of the general population. On the other hand, over the last few years increasing concerns have been raised regarding the environmental impact of the fresh-cut industry, human health risks from exposure to disinfection by-products found in fresh-cut products and chlorine-based disinfection treatments during produce processing. This review provides a comprehensive view of the main interlinked aspects related to food safety and environmental impact of processing of fresh-cut vegetables. Advantages and downsides of the mainstream disinfection strategy, based on the use of chlorine-related disinfecting agents, along with some alternative treatments close to a wide commercial application, are discussed. Limitation in the application of these strategies to processing of organic fresh-cut produce are also highlighted, examining the specific environmental and food safety problems in the organic sector. Areas where lack of available information hinders at present a clear understanding of priorities of research and action are pointed out. Innovative conceptual tools are proposed to address these multiple and interlinking issues and to overcome limitations of currently available technologies. A comprehensive and multidisciplinary approach is suggested to move toward a more safe and environmentally sustainable production of fresh-cut products.
Collapse
|
14
|
Li M, Xiao M, Xiao Q, Chen Y, Guo Y, Sun J, Li R, Li C, Zhu Z, Qiu H, Liu X, Lu S. Perchlorate and chlorate in breast milk, infant formulas, baby supplementary food and the implications for infant exposure. ENVIRONMENT INTERNATIONAL 2022; 158:106939. [PMID: 34673317 DOI: 10.1016/j.envint.2021.106939] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Perchlorate and chlorate are ubiquitous pollutants in various types of foodstuffs, drinking water and environmental compartments. They have raised great concerns due to potential adverse effects on human thyroid functions. Dietary intake is considered as the predominant pathway for human exposure to perchlorate and chlorate. Nevertheless, data on human exposure to the chemicals above remain limited, particularly for the most vulnerable populations such as infants. In the present study, 62 breast milks, 53 infant formulas, 88 baby supplementary food and 50 tap water samples were collected in South China and the levels of perchlorate and chlorate were measured in these samples. Perchlorate and chlorate were frequently detected in more than 90% of measured samples. In these different types of samples, the median concentrations of perchlorate were 0.65 μg/L, 0.61 μg/kg, 0.56 μg/kg and 1.18 μg/L, respectively, while the median concentrations of chlorate were 1.73 μg/L, 2.48 μg/kg, 2.67 μg/kg and non-detected, respectively. Health risk assessment using hazard quotient suggested that perchlorate and chlorate exposure in the sampled baby food are not expected to increase the risk of an adverse health effect. To our knowledge, this is the first study simultaneously investigating perchlorate and chlorate exposure in Chinese infants via food intake.
Collapse
Affiliation(s)
- Minhui Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Minhua Xiao
- Department of Clinical Nutrition, Guangzhou Women and Children's Medical Centre, Guangzhou, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yichen Guo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jing Sun
- Department of Clinical Nutrition, Guangzhou Women and Children's Medical Centre, Guangzhou, China
| | - Rong Li
- Department of Clinical Nutrition, Guangzhou Women and Children's Medical Centre, Guangzhou, China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hongmei Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xihong Liu
- Department of Clinical Nutrition, Guangzhou Women and Children's Medical Centre, Guangzhou, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
15
|
A systematic review of clean-label alternatives to synthetic additives in raw and processed meat with a special emphasis on high-pressure processing (2018-2021). Food Res Int 2021; 150:110792. [PMID: 34865807 DOI: 10.1016/j.foodres.2021.110792] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/11/2021] [Accepted: 10/24/2021] [Indexed: 01/03/2023]
Abstract
The meat industry is continuously facing challenges with food safety, and quality losses caused by thermal processing. This systematic review reports recent clean label approaches in high-pressure production of meat. A literature search was performed using Scopus, Web of Science, PubMed, and Springer databases for studies published in 2018-2021. In this regard, 69 articles were assessed out of 386 explored research articles in the identified stage. The findings indicate that most of the earlier work on high-pressure processing (HPP) focused on physicochemical and sensorial meat quality rather than providing nutritional aspects and clean-label solutions. However, few advanced studies report effective and innovative solutions to develop low salt/fat, and reduced nitrite for raw and cured meat products. HPP could help on increasing the shell life by five times in meat products; however, it depends on the formulation and packaging, etc. HPP can also preserve nutrients by using this non-thermal technology and reduce food waste as once the shelf life of products is known, it easily reduces the shrinkage in the marketplace. This review explores the latest trend of experimental research in high-pressure processing alone, or multi-hurdle techniques employed to increase the effect of clean-label ingredients for enhanced meat safety/quality.
Collapse
|
16
|
Suh MJ, Mitch WA. Sunlight-Driven Chlorate Formation during Produce Irrigation with Chlorine- or Chloramine-Disinfected Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14876-14885. [PMID: 34652150 DOI: 10.1021/acs.est.1c04994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing use of chlorine- or chloramine-containing irrigation waters to minimize foodborne pathogens is raising concerns about the formation and uptake of disinfection byproducts into irrigated produce. Chlorate has received particular attention in the European Union. While previous research demonstrated the formation of chlorate from dark disproportionation reactions of free chlorine and uptake of chlorate into produce from roots, this study evaluated chlorate formation from solar irradiation of chlorine- and chloramine-containing irrigation droplets and uptake through produce surfaces. Sunlight photolysis of 50 μM (3.6 mg/L as Cl2) chlorine significantly enhanced the formation of chlorate, with a 7.2% molar yield relative to chlorine. Chlorate formation was much less significant in sunlit chloramine solutions. In chlorinated solutions containing 270 μg/L bromide, sunlight also induced the conversion of bromide to 280 μg/L bromate. Droplet evaporation and the resulting increase in chlorine concentrations approximately doubled sunlight-induced chlorate formation relative to that in the bulk solutions in which evaporation is negligible. When vegetables (broccoli, cabbage, chicory, lettuce, and spinach) were sprayed with chlorine-containing irrigation water in a sunlit field, sunlight promoted chlorate formation and uptake through vegetable surfaces to concentrations above maximum residue levels in the European Union. Spraying with chloramine-containing waters in the dark minimized chlorate formation and uptake into the vegetables.
Collapse
Affiliation(s)
- Min-Jeong Suh
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
17
|
Omac B, Moreira RG, Castell‐Perez E. Integration of electron beam technology into fresh produce wash water line: Effect of inoculum suspension medium and water quality parameters on the radioresistance of
Salmonella
Typhimurium
ATCC
13311. J Food Saf 2021. [DOI: 10.1111/jfs.12946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Basri Omac
- Department of Food Processing Munzur University Tunceli Turkey
| | - Rosana G. Moreira
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
| | - Elena Castell‐Perez
- Department of Biological and Agricultural Engineering Texas A&M University College Station Texas USA
| |
Collapse
|
18
|
Chao YT, Prabhu GRD, Yu KC, Syu JY, Urban PL. BioChemPen for a Rapid Analysis of Compounds Supported on Solid Surfaces. ACS Sens 2021; 6:3744-3752. [PMID: 34553592 DOI: 10.1021/acssensors.1c01540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We present BioChemPen, a portable wireless biosensor device for rapid analysis of substances adsorbed on solid surfaces. The device takes advantage of (bio)luminescent reactions taking place in a hydrogel matrix. In a typical embodiment, the active element of this device is a hydrogel disk (chemotransducer) containing enzyme(s), electrolyte solution, and all of the necessary substrates. When the hydrogel is exposed to a solid sample surface containing the target analyte, light is produced. A photoresistor (phototransducer), placed in close proximity to the hydrogel disk, detects the light. The operation of the BioChemPen is enabled by a MicroPython PyBoard microcontroller board and other low-cost electronic modules. The obtained results are immediately uploaded to the Internet cloud. In one application, we demonstrate an analysis of hypochlorite-containing cleaning agents present on the surfaces of daily use objects by an assay based on hydrogel embedded with luminol and hydrogen peroxide. In another application, we use hydrogel embedded with luciferin, luciferase, and pyruvate kinase to detect adenosine triphosphate (ATP), and adenosine diphosphate (ADP), and link the ATP content with meat freshness. Lastly, we demonstrate the detection of organophosphate pesticides present on vegetables with the hydrogel containing acetylcholinesterase, choline oxidase, and horseradish peroxidase. The limits of detection for sodium hypochlorite, ATP, ADP, and chlorpyrifos-methyl (a pesticide) were 7.95 × 10-11, 2.73 × 10-13, 2.35 × 10-12, and 2.59 × 10-10 mol mm-2, respectively.
Collapse
Affiliation(s)
- Yu-Ting Chao
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Gurpur Rakesh D. Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Kai-Chiang Yu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Jia-You Syu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Pawel L. Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
19
|
Nahim-Granados S, Martínez-Piernas AB, Rivas-Ibáñez G, Plaza-Bolaños P, Oller I, Malato S, Pérez JAS, Agüera A, Polo-López MI. Solar processes and ozonation for fresh-cut wastewater reclamation and reuse: Assessment of chemical, microbiological and chlorosis risks of raw-eaten crops. WATER RESEARCH 2021; 203:117532. [PMID: 34419922 DOI: 10.1016/j.watres.2021.117532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
In this study, a full cycle of agricultural reuse of agro-food wastewater (synthetic fresh-cut wastewater, SFCWW) at pilot plant scale has been investigated. Treated SFCWW by ozonation and two solar processes (H2O2/solar, Fe3+-EDDHA/H2O2/solar) was used to irrigate two raw-eaten crops (lettuce and radish) grown in peat. Two foodborne pathogens (E. coli O157:H7 and Salmonella enteritidis) and five organic microcontaminants (OMCs: atrazine, azoxystrobin, buprofezin, procymidone and terbutryn) were monitored along the whole process. The three studied processes showed a high treatment capability (reaching microbial loads < 7 CFU/100 mL and 21-90 % of OMC reduction), robustness (based on 7 or 10 analysed batches for each treatment process) and high suitability for subsequent treated SFCWW safe reuse: non-phytotoxic towards Lactuca sativa and no bacterial regrowth during its storage for a week. The analysis of the harvested crop samples irrigated with treated SFCWW in all the studied processes showed an absence of microbial contamination (< limit of detection, LOD; i.e., < 1 CFU/99 g of lettuce and < 1 CFU/8 g of radish), a significant reduction of OMC uptake (in the range 40-60 % and > 90 % for solar treated and ozonated SFCWW, respectively) and bioaccumulation in both crops in comparison with the results obtained with untreated SFCWW. Moreover, the chlorophyll content in the harvested lettuces irrigated with SFCWW treated by Fe3+-EDDHA/H2O2/solar was twice than that irrigated with SFCWW treated by H2O2/solar and ozone, indicating the additional advantage of using Fe3+-EDDHA as an iron source to reduce the risk of iron chlorosis in crops. Finally, the chemical (dietary risk assessment for the combined exposure of the 5 OMCs) and quantitative microbiological risk assessment (QMRA) of the harvested crops showed the capability of the studied processes to reduce the risk associated with untreated SFCWW reuse by more than 50 % and more than 4 orders of magnitude, respectively.
Collapse
Affiliation(s)
- Samira Nahim-Granados
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - Ana Belén Martínez-Piernas
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Department of Chemistry and Physics, Analytical Chemistry Area. University of Almería, 04120 Almería, Spain
| | - Gracia Rivas-Ibáñez
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - Patricia Plaza-Bolaños
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Department of Chemistry and Physics, Analytical Chemistry Area. University of Almería, 04120 Almería, Spain
| | - Isabel Oller
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | - Sixto Malato
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain
| | | | - Ana Agüera
- CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain; Department of Chemistry and Physics, Analytical Chemistry Area. University of Almería, 04120 Almería, Spain
| | - María Inmaculada Polo-López
- Plataforma Solar de Almería - CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain.
| |
Collapse
|
20
|
Petri E, Virto R, Mottura M, Parra J. Comparison of Peracetic Acid and Chlorine Effectiveness during Fresh-Cut Vegetable Processing at Industrial Scale. J Food Prot 2021; 84:1592-1602. [PMID: 34015109 DOI: 10.4315/jfp-20-448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/16/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study was conducted to compare the efficacy of two sanitizing agents, chlorine and peracetic acid (PAA), in reducing spoilage and pathogenic microorganisms and disinfection by-products in the washing stage of three types of minimally processed vegetables: iceberg lettuce, carrots, and baby leaves. These fresh-cut products are consumed uncooked; thus, proper sanitation is essential in preventing foodborne illness outbreaks. The comparison was done at industrial scale with equipment already used in the fresh-cut industry and with washers designed and manufactured for this purpose. Results showed that for washing water hygiene and final product microbial quality, the use of PAA or chlorine had similar efficacy. Different scenarios combining PAA, chlorine, and water were tested, simulating the current industrial processes for each of the tested vegetables. Overall, results confirmed that the use of a sanitizer, PAA or chlorine, in the washing water is effective for the prevention of cross-contamination during the washing process and hence for produce food safety. For final product microbiological quality and shelf life, the use of chlorine or PAA showed no significant differences in lettuce or baby leaves. Chlorinated disinfection by-products in processing water were not formed in significant amounts when washing water was treated with PAA in all scenarios and for all tested vegetables, whereas washing with chlorine (80 mg/L) generated important amounts of trihalomethanes, chlorates, and chlorites. Although chlorates and chlorites were always below the recommended levels or legal limits established for drinking water, trihalomethanes exceeded the legal limits. For perchlorates, values were below the quantification limit in all scenarios. Our results show that PAA is a reliable alternative to chlorine disinfection strategies in the fresh-cut industry. HIGHLIGHTS
Collapse
Affiliation(s)
- E Petri
- R&D&I Area, Centro Nacional de Tecnología y Seguridad Alimentaria (CNTA), Carretera NA-134, Km. 53, 31570 Navarra, Spain
| | - R Virto
- R&D&I Area, Centro Nacional de Tecnología y Seguridad Alimentaria (CNTA), Carretera NA-134, Km. 53, 31570 Navarra, Spain
| | - M Mottura
- Productos Citrosol S.A., Partida Alameda, Parcela C, 46721 Potries, Valencia, Spain
| | - J Parra
- Productos Citrosol S.A., Partida Alameda, Parcela C, 46721 Potries, Valencia, Spain
| |
Collapse
|
21
|
Zhu MJ, Shen X, Sheng L, Mendoza M, Hanrahan I. Validation of Enterococcus faecium NRRL B-2354 as a surrogate for Listeria monocytogenes on fresh apples during pilot spray-bar peroxyacetic acid intervention. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Marín A, Tudela JA, Garrido Y, Albolafio S, Hernández N, Andújar S, Allende A, Gil MI. Chlorinated wash water and pH regulators affect chlorine gas emission and disinfection by-products. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Sheng L, Shen X, Su Y, Korany A, Knueven CJ, Zhu MJ. The efficacy of sodium acid sulfate on controlling Listeria monocytogenes on apples in a water system with organic matter. Food Microbiol 2020; 92:103595. [PMID: 32950137 DOI: 10.1016/j.fm.2020.103595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 11/29/2022]
Abstract
During fresh apple packing, wash water in the dump tank and flume systems is reused during daily production, resulting in high levels of organic matter in the wash water. This study evaluated the antimicrobial efficacy of sodium acid sulfate (SAS), a Generally Recognized as Safe compound, against Listeria monocytogenes on fresh apples in a water system with high organic load. SAS at 1.0% reduced L. monocytogenes population in water with 1000 ppm chemical oxygen demand (COD) by more than 5.0 Log10 CFU/ml in 5 min, 2.0-3.0% SAS reduced L. monocytogenes to undetectable levels (10 CFU/ml) within 2 min regardless of organic levels. When applied on apples, a 2-min wash with SAS at 1.0, 1.5, 2.0, and 3.0% reduced L. monocytogenes by ~1.3, 1.9, 2.3, and 3.0 Log10 CFU/apple in clean water, respectively. High organic load in wash water up to 4000 ppm COD had no impact on the bactericidal effect of SAS against L. monocytogenes on fresh apples regardless of SAS concentrations. Shortening the contact time from 2 min to 30 s significantly reduced the antimicrobial efficacy of 25 ppm chlorine and 1.0-2.0% SAS but not that of 3.0% SAS. In addition, SAS at 1.0% demonstrated a better efficacy than 25 ppm chlorine in reducing fruit-to-water cross-contamination regardless of organic matter. SAS also showed a comparable efficacy as 25 ppm chlorine in reducing fruit-to-fruit cross-contamination in water with organic matter. The collective data indicate that SAS, as an enviroment-friendly compound, has the potential to be used as an alternative antimicrobial washing aid in dump tank process water intervention in apple packing facilities.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Yuan Su
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Ahmed Korany
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | | | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
24
|
Rhouma M, Romero-Barrios P, Gaucher ML, Bhachoo S. Antimicrobial resistance associated with the use of antimicrobial processing aids during poultry processing operations: cause for concern? Crit Rev Food Sci Nutr 2020; 61:3279-3296. [PMID: 32744054 DOI: 10.1080/10408398.2020.1798345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antimicrobial resistance has become a global issue and a threat to human and animal health. Contamination of poultry carcasses with meat-borne pathogens represents both an economic and a public health concern. The use of antimicrobial processing aids (APA) during poultry processing has contributed to an improvement in the microbiological quality of poultry carcasses. However, the extensive use of these decontaminants has raised concerns about their possible role in the co-selection of antibiotic-resistant bacteria. This topic is presented in the current review to provide an update on the information related to bacterial adaptation to APA used in poultry processing establishments, and to discuss the relationship between APA bacterial adaptation and the acquisition of a new resistance phenotype to therapeutic antimicrobials by bacteria. Common mechanisms such as active efflux and changes in membrane fluidity are the most documented mechanisms responsible for bacterial cross-resistance to APA and antimicrobials. Although most studies reported a bacterial resistance to antibiotics not reaching a clinical level, the under-exposure of bacteria to APA remains a concern in the poultry industry. Further research is needed to determine if APA used during poultry processing and therapeutic antimicrobials share common sites of action in bacteria and encounter similar mechanisms of resistance.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Canadian Food Inspection Agency, St-Hyacinthe, Quebec, Canada
| | | | - Marie-Lou Gaucher
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Quebec, Canada
| | | |
Collapse
|
25
|
Chlorate accumulation in commercial lettuce cultivated in open field and irrigated with reclaimed water. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Stress response and survival of Salmonella Enteritidis in single and dual species biofilms with Pseudomonas fluorescens following repeated exposure to quaternary ammonium compounds. Int J Food Microbiol 2020; 325:108643. [DOI: 10.1016/j.ijfoodmicro.2020.108643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/03/2020] [Accepted: 04/15/2020] [Indexed: 11/18/2022]
|
27
|
Panseri S, Nobile M, Arioli F, Biolatti C, Pavlovic R, Chiesa LM. Occurrence of perchlorate, chlorate and polar herbicides in different baby food commodities. Food Chem 2020; 330:127205. [PMID: 32521397 DOI: 10.1016/j.foodchem.2020.127205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 12/25/2022]
Abstract
The incidence of endocrine disruptors, both possible (glyphosate and glufosinate), and demonstrated (perchlorate and chlorate), was estimated in baby food commodities (meat, fish, cheese, vegetable and fruit). Ion-chromatography coupled to high resolution mass spectrometry analysis of the 105 samples did not show traces of glyphosate, glufosinate or their metabolites, while in 10.5% of the samples a quantifiable amount of perchlorate was found. Some samples based on fruit and vegetables revealed a substantial amount of chlorate, especially the preparations that contained carrots and potatoes: five samples were in a concentration range of 40-120 μg kg-1, while one homogenized pear sample reached 372.2 μg kg-1. The pure meat samples revealed occasional chlorate appearance, with less than 10 μg kg-1. This is the first report of chlorate evaluated in various types of baby food and may serve as symptomatic data regarding its occurrence in infant/toddler diets. Therefore, effective monitoring programs and subsequent strict regulations are strongly required.
Collapse
Affiliation(s)
- Sara Panseri
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Maria Nobile
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Francesco Arioli
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Cristina Biolatti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Turin, Italy
| | - Radmila Pavlovic
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133 Milan, Italy.
| | - Luca Maria Chiesa
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133 Milan, Italy
| |
Collapse
|
28
|
López-Gálvez F, Truchado P, Tudela JA, Gil MI, Allende A. Critical points affecting the microbiological safety of bell peppers washed with peroxyacetic acid in a commercial packinghouse. Food Microbiol 2020; 88:103409. [DOI: 10.1016/j.fm.2019.103409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 11/28/2022]
|
29
|
López-Gálvez F, Tudela JA, Gil MI, Allende A. Use of Chlorine Dioxide to Treat Recirculated Process Water in a Commercial Tomato Packinghouse: Microbiological and Chemical Risks. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Response surface methodology centred optimization of mono-frequency ultrasound reduction of bacteria in fresh-cut Chinese cabbage and its effect on quality. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Sheng L, Shen X, Ulloa O, Suslow TV, Hanrahan I, Zhu MJ. Evaluation of JC9450 and Neutral Electrolyzed Water in Controlling Listeria monocytogenes on Fresh Apples and Preventing Cross-Contamination. Front Microbiol 2020; 10:3128. [PMID: 32010118 PMCID: PMC6971194 DOI: 10.3389/fmicb.2019.03128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/24/2019] [Indexed: 11/13/2022] Open
Abstract
Recent multistate outbreaks and recalls of fresh apples due to Listeria monocytogenes contamination have increased consumer concerns regarding fresh and processed apple safety. This study aimed to evaluate the antimicrobial efficacy of two sanitizers, mineral oxychloride (JC9450) and neutral electrolyzed water (NEW), for inactivation of L. monocytogenes on fresh apples. A 2-min treatment of 0.125% (v/v) JC9450 with 100 ppm free available chlorine (FAC) or NEW with 110 ppm FAC caused 0.9-1.2 log10 CFU/apple reduction of L. monocytogenes on both Granny Smith and Fuji apples 24 h post-inoculation. Increasing JC9450 concentration to 0.25 and 0.50% significantly improved its bactericidal effect and reduced L. monocytogenes on Granny Smith apples by ~2.0 and 3.8 log10 CFU/apple, respectively, after a contact time of 2 min. At a shorter contact time of 30 sec, the inactivation efficacy of chlorine and 0.25-0.50% JC9450 against L. monocytogenes on apples was significantly reduced compared with the respective 2-min wash. Furthermore, no L. monocytogenes was recovered in deionized water prepared antimicrobial wash solution or on non-inoculated apples post-NEW with 110 ppm FAC or 0.125-0.5% JC9450 washes, indicating their ability to prevent cross-contamination. In addition, a 2-min exposure to NEW with 110 ppm FAC and 0.50% JC9450 reduced apple native microbiota including total plate count by 0.14 and 0.65 log10 CFU/apple, respectively, and yeast and mold counts by 0.55 and 1.63 log10 CFU/apple, respectively. In summary, L. monocytogenes attached on apples was difficult to eliminate. JC9450 and NEW demonstrated a dose-dependent reduction in L. monocytogenes on apples and successfully prevented cross-contamination, indicating their application potential in post-harvest washes of apples.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Oscar Ulloa
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Trevor V. Suslow
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, Wenatchee, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States
| |
Collapse
|
32
|
Tudela JA, López-Gálvez F, Allende A, Gil MI. Chlorination management in commercial fresh produce processing lines. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106760] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Alenyorege EA, Ma H, Ayim I, Lu F, Zhou C. Efficacy of sweep ultrasound on natural microbiota reduction and quality preservation of Chinese cabbage during storage. ULTRASONICS SONOCHEMISTRY 2019; 59:104712. [PMID: 31421620 DOI: 10.1016/j.ultsonch.2019.104712] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, the effect of sweep frequency ultrasound (SFUS), sodium hypochlorite (NaOCl) and their combinations (SFUS + NaOCl) in reducing and inhibiting natural microbiota as well as preserving quality of fresh-cut Chinese cabbage during storage (4 °C and 25 °C) for up to 7 days was investigated. In effect, 40 kHz sweep frequency ultrasound in combination with 100 mg/L sodium hypochlorite resulted in maximum reduction and inhibition of mesophilic counts, yeast and molds and minimum chlorophyll depletion, weight loss and electrolyte leakage. However, colour and textural characteristics deteriorated. The combined treatment suppressed the activities of polyphenol oxidase and peroxidase and manifested its preservative effect after Fourier Transform near-infrared spectroscopy analysis. Synergistic reductions were recorded in most of the combined treatments though largely <1.0 log CFU/g. Specifically, the combined treatment significantly (P < 0.05) reduced mesophilic counts by an added 2.7 log CFU/g, yeasts and molds by an added 2.0 log CFU/g when compared to the individual treatments. During storage at 4 and 25 °C, washing with SFUS + NaOCl produced Chinese cabbage with lower microbial counts, in comparison with the individual treatments. However, post-treatment storage could not entirely inhibit microbial survival as populations increased during storage even at refrigeration temperature of 4 °C. The results demonstrate that ultrasound and sodium hypochlorite are promising hurdle alternatives for the reduction and inhibition of microorganisms, as well as prolonging the shelf life and retaining the quality characteristics of Chinese cabbage.
Collapse
Affiliation(s)
- Evans Adingba Alenyorege
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China; Faculty of Agriculture, University for Development Studies, Tamale, Ghana.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China.
| | - Ishmael Ayim
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China; Faculty of Applied Science, Kumasi Technical University, Kumasi, Ghana
| | - Feng Lu
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
34
|
Cho Y, Kim H, Beuchat LR, Ryu JH. Synergistic activities of gaseous oregano and thyme thymol essential oils against Listeria monocytogenes on surfaces of a laboratory medium and radish sprouts. Food Microbiol 2019; 86:103357. [PMID: 31703857 DOI: 10.1016/j.fm.2019.103357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
Abstract
We investigated combinations of gaseous essential oils (EO gases) for their synergistic inhibitory activities against Listeria monocytogenes on a laboratory medium and radish sprouts. The minimum inhibitory concentrations and minimum lethal concentrations of oregano, thyme thymol, and cinnamon bark EO gases against L. monocytogenes were 0.0781 μL/mL on nutrient agar supplemented with glucose and bromocresol purple (NGBA). A checkerboard assay showed that combinations of oregano and thyme thymol EO gases and of oregano and cinnamon bark EO gases exert the strongest synergistic antilisterial activity (fractional inhibitory concentration index [FICI] = 0.3750). A combination of thyme thymol and cinnamon bark EO gases also had a synergistic effect (FICI = 0.5000) on L. monocytogenes on NGBA. Combinations of oregano and thyme thymol EO gases were tested for synergistic antimicrobial activity against L. monocytogenes on radish sprouts. A combination of these gases, each at 0.313 μL/mL, caused a significant (P ≤ 0.05) reduction in the number of L. monocytogenes on radish sprouts compared with reductions caused by treatment with oregano or thyme thymol EO gas alone at the same concentration. Our findings provide information that will be useful when developing antimicrobial applications using EO gases to control L. monocytogenes in the food industry.
Collapse
Affiliation(s)
- Yurim Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hoikyung Kim
- Department of Food and Nutrition, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Larry R Beuchat
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223-1797, USA
| | - Jee-Hoon Ryu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
35
|
Tudela JA, López-Gálvez F, Allende A, Hernández N, Andújar S, Marín A, Garrido Y, Gil MI. Operational limits of sodium hypochlorite for different fresh produce wash water based on microbial inactivation and disinfection by-products (DBPs). Food Control 2019. [DOI: 10.1016/j.foodcont.2019.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Gadelha JR, Allende A, López-Gálvez F, Fernández P, Gil MI, Egea JA. Chemical risks associated with ready-to-eat vegetables: quantitative analysis to estimate formation and/or accumulation of disinfection byproducts during washing. EFSA J 2019; 17:e170913. [PMID: 32626471 PMCID: PMC7015476 DOI: 10.2903/j.efsa.2019.e170913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fresh produce can become contaminated with disease‐causing microorganisms and chemical contaminants at every step of the production and processing chain and in a variety of ways, including through contact with contaminated process water. Water quality is critical to prevent microbial and chemical risks in any of the postharvest and processing operations related to fresh and fresh‐cut fruits and vegetables. The wash process requires high volumes of water, which are usually reduced by water reuse. To maintain the microbiological quality of the process water, intervention strategies are needed. Chemical disinfection is the most common method to maintain the microbial quality of process water. However, the use of chemicals leads to the formation/accumulation of disinfection byproducts (DBPs), which can be absorbed by the washed vegetables. This is the case of trihalomethanes (THMs) and chlorates. The presence of high concentrations of DBPs in vegetables has led to an intensive debate on current disinfection practices and how DBPs may enter the food supply chain, becoming a potential health risk for consumers. To assess the risk associated with the formation/accumulation of DBPs in process water, a quantitative analysis was done. Available data have been used to develop mathematical models to predict the formation/accumulation of DBPs (chlorates and THMs) in process water due to the use of chlorine‐derived compounds. Preliminary models have been developed, but adjustments are still needed to refine them. The present study contributes more information related to the development of a mathematical model for the accumulation of chlorates and THMs in process water.
Collapse
|
37
|
Shen X, Sheng L, Gao H, Hanrahan I, Suslow TV, Zhu MJ. Enhanced Efficacy of Peroxyacetic Acid Against Listeria monocytogenes on Fresh Apples at Elevated Temperature. Front Microbiol 2019; 10:1196. [PMID: 31275249 PMCID: PMC6591317 DOI: 10.3389/fmicb.2019.01196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Peroxyacetic acid (PAA) is the most commonly used antimicrobial in spray bar antimicrobial treatment during fresh apple packing and processing. However, there are limited data regarding its practical efficacy against Listeria monocytogenes on fresh apples. This study evaluated the antimicrobial activity of PAA against L. monocytogenes on fresh apples applicable to current industry practice, and further examined practical parameters impacting its efficacy to maximize the biocidal effects. Apples were inoculated with a three-strain L. monocytogenes cocktail at ~6.0 Log10 CFU/apple and then subjected to comparative antimicrobial treatments after 48 h post-inoculation. An 80 ppm PAA treatment, at 30-s and 2-min exposure, reduced L. monocytogenes on fresh apples by ~1.3 or 1.7 Log10 CFU/apple, respectively. The anti-Listeria efficacy of PAA was not affected by the water hardness and pH of PAA solution, while it improved dramatically when applied at elevated temperature. A 2-min exposure of 80 ppm PAA at 43 and 46°C resulted in a 2.3 and 2.6 Log10 CFU/apple reduction, respectively. A 30-s contact time of 80 ppm PAA at 43-46°C reduced L. monocytogenes on apples by 2.2-2.4 Log10 CFU/apple. Similarly, PAA intervention at elevated temperatures significantly strengthened its effectiveness against naturally occurring apple microbiota. PAA treatment at 43-46°C can provide a vital method to improve antimicrobial efficacy against both L. monocytogenes and indigenous microbiota on fresh apples. Our data provide valuable information and reference points for the apple industry to further validate or verify process controls.
Collapse
Affiliation(s)
- Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Lina Sheng
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Hui Gao
- School of Food Science, Washington State University, Pullman, WA, United States.,Department of Food Science, Zhengzhou University of Light Industry, Henan, China
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, Wenatchee, WA, United States
| | - Trevor V Suslow
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States
| |
Collapse
|
38
|
Gil MI, López-Gálvez F, Andújar S, Moreno M, Allende A. Disinfection by-products generated by sodium hypochlorite and electrochemical disinfection in different process wash water and fresh-cut products and their reduction by activated carbon. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Tombini Decol L, López-Gálvez F, Truchado P, Tondo EC, Gil MI, Allende A. Suitability of chlorine dioxide as a tertiary treatment for municipal wastewater and use of reclaimed water for overhead irrigation of baby lettuce. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Ali B, Laffir F, Kailas L, Armstrong G, Kailas L, O'Connell R, McCormac T. Electrochemical Characterisation of NiII
-Crown-Type Polyoxometalate-Doped Polypyrrole Films for the Catalytic Reduction of Bromate in Water. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bushra Ali
- Electrochemistry Research Group; Applied Sciences; Dundalk Institute of Technology; Dublin Road Dundalk Ireland
| | - Fathima Laffir
- Bernal Institute; Applied Sciences; University of Limerick; Limerick Ireland
| | - Lekshmi Kailas
- Bernal Institute; Applied Sciences; University of Limerick; Limerick Ireland
| | - Gordon Armstrong
- Bernal Institute; Applied Sciences; University of Limerick; Limerick Ireland
| | - Lekshmi Kailas
- Bernal Institute; Applied Sciences; University of Limerick; Limerick Ireland
| | - Robbie O'Connell
- Bernal Institute; Applied Sciences; University of Limerick; Limerick Ireland
| | - Timothy McCormac
- Electrochemistry Research Group; Applied Sciences; Dundalk Institute of Technology; Dublin Road Dundalk Ireland
| |
Collapse
|
41
|
|
42
|
López-Gálvez F, Tudela JA, Allende A, Gil MI. Microbial and chemical characterization of commercial washing lines of fresh produce highlights the need for process water control. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Alenyorege EA, Ma H, Ayim I, Zhou C, Wu P, Hong C, Osae R. Effect of multi‐frequency ultrasound surface washing treatments on
Escherichia coli
inactivation and some quality characteristics of non‐heading Chinese cabbage. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Evans Adingba Alenyorege
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Faculty of Agriculture University for Development Studies Tamale Ghana
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Technology Integration Base for Vegetable Dehydration Processing, Ministry of Agriculture PR China Jiangsu University Zhenjiang China
| | - Ishmael Ayim
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Faculty of Applied Science Kumasi Technical University Kumasi Ghana
| | - Cunshan Zhou
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Ping Wu
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Chen Hong
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Richard Osae
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
44
|
McCarthy WP, O'Callaghan TF, Danahar M, Gleeson D, O'Connor C, Fenelon MA, Tobin JT. Chlorate and Other Oxychlorine Contaminants Within the Dairy Supply Chain. Compr Rev Food Sci Food Saf 2018; 17:1561-1575. [DOI: 10.1111/1541-4337.12393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/27/2022]
Affiliation(s)
- William P. McCarthy
- Food Chemistry & Technology Dept.; Teagasc Food Research Centre, Moorepark; Fermoy, Co. Cork Cork Ireland
- Dublin Inst. of Technology; Cathal Brugha Street, Dublin 1 Dublin Ireland
| | - Tom F. O'Callaghan
- Food Chemistry & Technology Dept.; Teagasc Food Research Centre, Moorepark; Fermoy, Co. Cork Cork Ireland
| | - Martin Danahar
- Food Safety Dept.; Ashtown Food Research Centre; Teagasc, Ashtown, Dublin 15 Dublin Ireland
| | - David Gleeson
- Teagasc; Animal & Grassland Research and Innovation Centre, Moorepark; Fermoy Co. Cork, Cork Ireland
| | - Christine O'Connor
- Dublin Inst. of Technology; Cathal Brugha Street, Dublin 1 Dublin Ireland
| | - Mark A. Fenelon
- Food Chemistry & Technology Dept.; Teagasc Food Research Centre, Moorepark; Fermoy, Co. Cork Cork Ireland
| | - John T. Tobin
- Food Chemistry & Technology Dept.; Teagasc Food Research Centre, Moorepark; Fermoy, Co. Cork Cork Ireland
| |
Collapse
|
45
|
Ali B, Imar S, Laffir F, Kailas L, Maccato C, McCormac T. Electrochemical, surface and electrocatalytic properties of layer-by-layer multilayer assemblies composed of silver nanoparticles and a Ni(II)-crown type polyoxometalate. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Effective solar processes in fresh-cut wastewater disinfection: Inactivation of pathogenic E. coli O157:H7 and Salmonella enteritidis. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.10.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
López-Gálvez F, Gil MI, Meireles A, Truchado P, Allende A. Demonstration tests of irrigation water disinfection with chlorine dioxide in open field cultivation of baby spinach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2973-2980. [PMID: 29171860 DOI: 10.1002/jsfa.8794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Treatments for the disinfection of irrigation water have to be evaluated by demonstration tests carried out under commercial settings taking into account not only their antimicrobial activity but also the potential phytotoxic effects on the crop. The consequences of the treatment of irrigation water with chlorine dioxide (ClO2 ) used for sprinkler irrigation of baby spinach in two commercial agricultural fields was assessed. RESULTS Residual ClO2 levels at the sprinklers in the treated field were always below 1 mg L-1 . ClO2 treatment provoked limited but statistically significant reductions in culturable Escherichia coli counts (0.2-0.3 log reductions), but not in the viable E. coli counts in water, suggesting the presence of viable but non-culturable cells (VBNC). Although disinfected irrigation water did not have an impact on the microbial loads of Enterobacteriaceae nor on the quality characteristics of baby spinach, it caused the accumulation of chlorates (up to 0.99 mg kg-1 in plants) and the reduction of the photosynthetic efficiency of baby spinach. CONCLUSION Low concentrations of ClO2 are effective in reducing the culturable E. coli present in irrigation water but it might induce the VBNC state. Presence of disinfection by-products and their accumulation in the crop must be considered to adjust doses in order to avoid crop damage and chemical safety risks. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco López-Gálvez
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Maria I Gil
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Ana Meireles
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
48
|
López-Gálvez F, Andújar S, Marín A, Tudela JA, Allende A, Gil MI. Disinfection by-products in baby lettuce irrigated with electrolysed water. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2981-2988. [PMID: 29171869 DOI: 10.1002/jsfa.8796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Irrigation water disinfection reduces the microbial load but it might lead to the formation and accumulation of disinfection by-products (DBPs) in the crop. If DBPs are present in the irrigation water, they can accumulate in the crop, particularly after the regrowth, and be affected by the postharvest handling such as washing and storage. To evaluate the potential accumulation of DBPs, baby lettuce was grown using irrigation water treated with electrolysed water (EW) in a commercial greenhouse over three consecutive harvests and regrowths. The impact of postharvest practices such as washing and storage on DBP content was also assessed. RESULTS Use of EW caused the accumulation of chlorates in irrigation water (0.02-0.14 mg L-1 ), and in the fresh produce (0.05-0.10 mg kg-1 ). On the other hand, the disinfection treatment had minor impact regarding the presence of trihalomethanes (THMs) in water (0.3-8.7 μg L-1 max), and in baby lettuce (0.3-2.9 μg kg-1 max). CONCLUSIONS Disinfection of irrigation water with EW caused the accumulation of chlorates in the crop reaching levels higher than the current maximum residual limit established in the EU legislation for leafy greens. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco López-Gálvez
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Silvia Andújar
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Alicia Marín
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Juan A Tudela
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - María I Gil
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
49
|
Wang H, Qi J, Duan D, Dong Y, Xu X, Zhou G. Combination of a novel designed spray cabinet and electrolyzed water to reduce microorganisms on chicken carcasses. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.11.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Banach JL, van Overbeek LS, Nierop Groot MN, van der Zouwen PS, van der Fels-Klerx HJ. Efficacy of chlorine dioxide on Escherichia coli inactivation during pilot-scale fresh-cut lettuce processing. Int J Food Microbiol 2018; 269:128-136. [PMID: 29425860 DOI: 10.1016/j.ijfoodmicro.2018.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/23/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Abstract
Controlling water quality is critical in preventing cross-contamination during fresh produce washing. Process wash water (PWW) quality can be controlled by implementing chemical disinfection strategies. The aim of this study was to evaluate the pilot-scale efficacy of chlorine dioxide (ClO2) during processing on the reduction of Escherichia coli in the PWW and on processed fresh-cut 'Lollo Rossa' lettuce. The objective was to have a residual target concentration of either 5 or 3 mg/L ClO2 in the washing tank (3.5 m3) before and during 800 kg of lettuce processing (90 min). After 90 min., a nonpathogenic, non-Extended Spectrum Beta-Lactamase (ESBL) E. coli inoculum from an overnight culture broth (37 °C) was added to the tank resulting in an approximate final level of 106 CFU/mL. PWW and lettuce samples for microbiological and chemical analyses were taken before and after the input and supply halted. ClO2 concentrations quickly decreased after ClO2 input halted, yet a residual concentration of ≥2.5 mg/L and ≥2.1 mg/L ClO2, respectively for 5 and 3 mg/L pilots, was present 12 min after the supply halted. No detectable levels of E. coli (limit of detection 5 log) were determined in the water within 1 min after E. coli was added to the ClO2 containing wash water. Results demonstrated that ClO2 use at the semi-commercial pilot scale was able to reduce the E. coli peak contamination in the PWW. After storage (5 days, 4 °C), background microbial communities (i.e., fluorescent Pseudomonads and total heterotrophic bacteria) grew out on lettuce. Overall, ClO2 decreased the potential for cross-contamination between batches compared to when no sanitizer was used. Chlorate levels of the lettuce sampled before entering the wash water ranged from 7.3-11.6 μg/kg. The chlorate levels of the lettuce sampled after being washed in the ClO2 containing wash water, as well as after rinsing and centrifugation, ranged from 22.8-60.4 μg/kg; chlorite levels ranged from 1.3-1.6 mg/kg, while perchlorate levels were below the limit of quantification (LOQ, <5 ng/g). In this study, we report the semi-commercial pilot-scale evaluation of ClO2, for its ability to maintain the PWW quality and to prevent cross-contamination in the washing tank during fresh-cut lettuce processing. Furthermore, we provide quantitative values of ClO2 disinfection by-products chlorate and chlorite as well as of perchlorate from PWW and/or lettuce samples.
Collapse
Affiliation(s)
- J L Banach
- RIKILT Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands.
| | - L S van Overbeek
- Wageningen Plant Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - M N Nierop Groot
- Wageningen Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - P S van der Zouwen
- Wageningen Plant Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - H J van der Fels-Klerx
- RIKILT Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|