1
|
LaPointe G, Wilson T, Tarrah A, Gagnon M, Roy D. BIOFILM DAIRY FOODS REVIEW: Microbial Community Tracking from Dairy Farm to Factory: Insights on Biofilm Management for Enhanced Food Safety and Quality. J Dairy Sci 2025:S0022-0302(24)01451-6. [PMID: 39788184 DOI: 10.3168/jds.2024-25397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
This review aimed to assess the scope of the literature on tracking the microbial community of biofilms, focusing on the dairy farm and processing environments. The majority of studies focused on either production, storage, transport or processing of milk, while 5 combined the investigation of both production and processing facilities. Factors influencing short-term changes in dairy microbiota such as the occurrence of mastitis and season were distinguished from factors revealed through long-term studies, such as feed and weather, rather than the milking equipment. Knowledge gaps were identified in relation to the study design, methods, data analysis and interpretation. The application of DNA sequencing technologies is particularly challenging with respect to samples with low microbial load (milk, swabs). There are few studies on the microbial composition of in situ biofilms, which might require new technologies for detection before sampling. Fundamental studies on the structure of biofilms are needed to identify the on-farm practices impacting the cycle of biofilm development in milking systems.
Collapse
Affiliation(s)
- Gisèle LaPointe
- Dairy at Guelph, University of Guelph, Guelph, Ontario, Canada, N1G 2W1.
| | - Tara Wilson
- Dairy at Guelph, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Armin Tarrah
- Dairy at Guelph, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Mérilie Gagnon
- Département des sciences des aliments, Université Laval, Québec, Québec, Canada, G1K 7P4
| | - Denis Roy
- Département des sciences des aliments, Université Laval, Québec, Québec, Canada, G1K 7P4
| |
Collapse
|
2
|
Diaz M, Aird H, Le Viet T, Gutiérrez AV, Larke-Mejia N, Omelchenko O, Moragues-Solanas L, Fritscher J, Som N, McLauchlin J, Hildebrand F, Jørgensen F, Gilmour M. Microbial composition and dynamics in environmental samples from a ready-to-eat food production facility with a long-term colonization of Listeria monocytogenes. Food Microbiol 2025; 125:104649. [PMID: 39448159 DOI: 10.1016/j.fm.2024.104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
Listeria monocytogenes is a foodborne pathogen of significant concern for the food industry due to its remarkable ability to persist through safety control efforts, posing a subsequent health threat to consumers. Understanding the microbial communities coexisting with L. monocytogenes in food processing environments provides insights into its persistence mechanisms. We investigated the microbial communities on non-food contact surfaces in a facility producing ready-to-eat foods, known to harbour a ST121 L. monocytogenes strain over multiple years. A 10-week sampling period was coordinated with the company and public health authorities. Metagenomic analysis revealed a stable microbial composition dominated by Pseudomonas fluorescens. While highly related populations were present in high-care production zones, distinctive taxa characteristic of specific areas were observed (e.g., Sphingomonas aerolata). Although Listeria spp. were not detected in metagenomes, they were detected in cultured samples, suggesting low relative abundance in factory settings. The findings suggest that a stable resident microbiota, with distinct adaptations to different areas within the factory, was selected for by their collective ability to survive control efforts in this environment. Listeria spp. was a member of this microbial community, albeit at low abundance, and may likewise benefit from the mutualism of the overall microbial community.
Collapse
Affiliation(s)
- Maria Diaz
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom
| | - Heather Aird
- UK Health Security Agency, Food Water and Environmental Microbiology Laboratory York, National Agri-Food Innovation Campus, Sand Hutton, York, YO41 1LZ, United Kingdom
| | - Thanh Le Viet
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom
| | - Ana Victoria Gutiérrez
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom
| | - Nasmille Larke-Mejia
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom
| | - Oleksii Omelchenko
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom; University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Lluis Moragues-Solanas
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom; University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Joachim Fritscher
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom; University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Nicolle Som
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom
| | - Jim McLauchlin
- Gastrointestinal Infections and Food Safety (One Health) Division, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, United Kingdom
| | - Falk Hildebrand
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom; Earlham Institute, Colney Ln, Norwich Research Park, Norwich, NR4 7UZ, United Kingdom
| | - Frieda Jørgensen
- Gastrointestinal Infections and Food Safety (One Health) Division, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, United Kingdom
| | - Matthew Gilmour
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, Norwich, United Kingdom; University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
3
|
Daly SE, Feng J, Daeschel D, Kovac J, Snyder AB. The choice of 16S rRNA gene sequence analysis impacted characterization of highly variable surface microbiota in dairy processing environments. mSystems 2024; 9:e0062024. [PMID: 39431865 PMCID: PMC11575208 DOI: 10.1128/msystems.00620-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Accurate knowledge of the microbiota collected from surfaces in food processing environments is important for food quality and safety. This study assessed discrepancies in taxonomic composition and alpha and beta diversity values generated from eight different bioinformatic workflows for the analysis of 16S rRNA gene sequences extracted from the microbiota collected from surfaces in dairy processing environments. We found that the microbiota collected from environmental surfaces varied widely in density (0-9.09 log10 CFU/cm2) and Shannon alpha diversity (0.01-3.40). Consequently, depending on the sequence analysis method used, characterization of low-abundance genera (i.e., below 1% relative abundance) and the number of genera identified (114-173 genera) varied considerably. Some low-abundance genera, including Listeria, varied between the amplicon sequence variant (ASV) and operational taxonomic unit (OTU) methods. Centered log-ratio transformation inflated alpha and beta diversity values compared to rarefaction. Furthermore, the ASV method also inflated alpha and beta diversity values compared to the OTU method (P < 0.05). Therefore, for sparse, uneven, low-density data sets, the OTU method and rarefaction are better for taxonomic and ecological characterization of surface microbiota.IMPORTANCECulture-dependent environmental monitoring programs are used by the food industry to identify foodborne pathogens and spoilage biota on surfaces in food processing environments. The use of culture-independent 16S rRNA amplicon sequencing to characterize this surface microbiota has been proposed as a tool to enhance environmental monitoring. However, there is no consensus on the most suitable bioinformatic analyses to accurately capture the diverse levels and types of bacteria on surfaces in food processing environments. Here, we quantify the impact of different bioinformatic analyses on the results and interpretation of 16S rRNA amplicon sequences collected from three cultured dairy facilities in New York State. This study provides guidance for the selection of appropriate 16S rRNA analysis procedures for studying environmental microbiota in dairy processing environments.
Collapse
Affiliation(s)
- Sarah E Daly
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Jingzhang Feng
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Devin Daeschel
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Jasna Kovac
- Department of Food Science, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Karadal F, Onmaz NE, Bagci C, Yildirim YU, Hizlisoy H, Gonulalan Z, Al S. Investigation of Staphylococcus Spp and Coliform Bacteria Contamination Sources after Cleaning-in-Place in Production Lines of Dairy Factories in Türkiye. Foodborne Pathog Dis 2024. [PMID: 39463273 DOI: 10.1089/fpd.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Microorganisms detected on dairy factory surfaces after disinfection can cause product contamination, leading to economic losses and health hazards for consumers. In this study, the presence of Staphylococcus spp. and Coliform in a total of 450 samples taken from food-contact and non-contact surfaces (stainless steel, plastic, cloth, and tiles surfaces), raw milk and final product (white cheese, kashar cheese, butter, yogurt, and cream) samples in five dairy factories was investigated by conventional techniques. The isolates obtained were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. In this study, a total of 54 Staphylococci (16.7% S. aureus and 81.5% coagulase-negative Staphylococci [CNS]) and 44 coliform isolates were identified at the species level. The most common CNS isolated by samples was S. epidermidis followed by S. saprophyticus, S. capitis, S. succinus S. carnosus. S. xylosus, S. sciuri, S. equorum, S. warneri, and S. hominis. Eighteen of the coliform isolates (41%) were identified as E. coli; 13 (29.5%) as E. cloacae; 3 (6.9%) as E. kobei, C. freundii, and K. oxytoca; 2 (4.5%) as K. pneumoniae; 1 (2.3%) as E. ludwigii and C. farmeri. The contamination rate of non-food contact surfaces (71.3%) was found to be higher than food contact surfaces (10.4%), and contaminated surfaces were found to be effective in product contamination. Study results show that some bacterial species obtained from raw milk, surfaces, and final products are factory specific and surface-associated bacteria are prominent in the product microbial profile.
Collapse
Affiliation(s)
- Fulden Karadal
- Department of Food Processing, Bor Vocational School, Nigde Omer Halisdemir University, Nigde, Türkiye
| | - Nurhan Ertas Onmaz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Cemalettin Bagci
- Department of Food Processing, Bor Vocational School, Nigde Omer Halisdemir University, Nigde, Türkiye
| | - Yeliz Ucar Yildirim
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Harun Hizlisoy
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Zafer Gonulalan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Serhat Al
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
5
|
Mendonça R, Furtado R, Coelho A, Correia CB, Suyarko E, Borges V, Gomes JP, Pista A, Batista R. Raw milk cheeses from Beira Baixa, Portugal-A contributive study for the microbiological hygiene and safety assessment. Braz J Microbiol 2024; 55:1759-1772. [PMID: 38622468 PMCID: PMC11153484 DOI: 10.1007/s42770-024-01332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Due to specific bacterial microbiota, raw milk cheeses have appreciated sensory properties. However, they may pose a threat to consumer safety due to potential pathogens presence. This study evaluated the microbiological contamination of 98 raw milk cheeses from Beira Baixa, Portugal. Presence and enumeration of Coagulase Positive Staphylococci (CPS), Listeria monocytogenes, Salmonella spp., pathogenic Escherichia coli, and indicator microorganisms (non-pathogenic E. coli and Listeria spp.) was attained. E. coli antimicrobial resistance (AMR) was also evaluated. PCR and/or Whole genome sequencing (WGS) was used to characterize E. coli, Salmonella spp. and L. monocytogenes isolates. Sixteen cheeses (16.3%) were classified as Satisfactory, 59 (60.2%) as Borderline and 23 (23.5%) as Unsatisfactory/Potential Injurious to Health. L. monocytogenes, CPS > 104 cfu g-1, Extraintestinal pathogenic E. coli (ExPEC) and Salmonella spp. were detected in 4.1%, 6.1%, 3.1% and 1.0% of the samples, respectively. Listeria innocua (4.1%) and E. coli > 104 cfu g-1 (16.3%) were also detected. AMR E. coli was detected in 23/98 (23.5%) of the cheese samples, of which two were multidrug resistant. WGS identified genotypes already associated to human disease and Listeria spp. cluster analysis indicated that cheese contamination might be related with noncompliance with Good Hygiene Practices during cheese production.
Collapse
Affiliation(s)
- Rita Mendonça
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
- Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| | - Rosália Furtado
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Anabela Coelho
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Cristina Belo Correia
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Elena Suyarko
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- NOVA School of Science and Technology, 2829-516, Caparica, Portugal
| | - Vítor Borges
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - João Paulo Gomes
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Animal and Veterinary Research Center (CECAV), Faculty of Veterinary Medicine, Lusófona University-Lisbon University Centre, Lisbon, Portugal
| | - Angela Pista
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Rita Batista
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| |
Collapse
|
6
|
Zhou G, Liu Y, Dong P, Mao Y, Zhu L, Luo X, Zhang Y. Airborne signals of Pseudomonas fluorescens modulate swimming motility and biofilm formation of Listeria monocytogenes in a contactless coculture system. Food Microbiol 2024; 120:104494. [PMID: 38431335 DOI: 10.1016/j.fm.2024.104494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Bacterial volatile compounds (BVCs) facilitate interspecies communication in socio-microbiology across physical barriers, thereby influencing interactions between diverse species. The impact of BVCs emitted from Pseudomonas on the biofilm formation characteristics of Listeria monocytogenes within the same ecological niche has been scarcely investigated under practical conditions of food processing. The objective of this study was to explore the motility and biofilm formation characteristics of L. monocytogenes under the impact of Pseudomonas BVCs. It was revealed that BVCs of P. fluorescens, P. lundensis, and P. fragi significantly promoted swimming motility of L. monocytogenes (P < 0.05). As evidenced by crystal violet staining, the L. monocytogenes biofilms reached a maximum OD570 value of approximately 3.78 at 4 d, which was 0.65 units markedly higher than that of the control group (P < 0.05). Despite a decrease in adherent cells of L. monocytogenes biofilms among the BVCs groups, there was a remarkable increase in the abundance of extracellular polysaccharides and proteins with 3.58 and 4.90 μg/cm2, respectively (P < 0.05), contributing to more compact matrix architectures, which suggested that the BVCs of P. fluorescens enhanced L. monocytogenes biofilm formation through promoting the secretion of extracellular polymers. Moreover, the prominent up-regulated expression of virulence genes further revealed the positive regulation of L. monocytogenes under the influence of BVCs. Additionally, the presence of BVCs significantly elevated the pH and TVB-N levels in both the swimming medium and biofilm broth, thereby exhibiting a strong positive correlation with increased motility and biofilm formation of L. monocytogenes. It highlighted the crucial signaling regulatory role of BVCs in bacterial interactions, while also emphasizing the potential food safety risk associated with the hitchhiking behavior of L. monocytogenes, thereby shedding light on advancements in control strategies for food processing.
Collapse
Affiliation(s)
- Guanghui Zhou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Yunge Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Pengcheng Dong
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Yanwei Mao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Lixian Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Xin Luo
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Yimin Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China.
| |
Collapse
|
7
|
Rolon ML, Chandross-Cohen T, Kaylegian KE, Roberts RF, Kovac J. Context matters: environmental microbiota from ice cream processing facilities affected the inhibitory performance of two lactic acid bacteria strains against Listeria monocytogenes. Microbiol Spectr 2024; 12:e0116723. [PMID: 38038456 PMCID: PMC10783139 DOI: 10.1128/spectrum.01167-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Antilisterial LAB strains have been proposed as biological control agents for application in food processing environments. However, the effect of resident food processing environment microbiota on the performance on antilisterial LAB strains is poorly understood. Our study shows that the presence of microbiota collected from ice cream processing facilities' environmental surfaces can affect the attachment and inhibitory effect of LAB strains against L. monocytogenes. Further studies are therefore needed to assess whether individual microbial taxa affect antilisterial properties of LAB strains and to characterize the underlying mechanisms.
Collapse
Affiliation(s)
- M. Laura Rolon
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tyler Chandross-Cohen
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kerry E. Kaylegian
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Robert F. Roberts
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- One Health Microbiome Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
8
|
Primavilla S, Roila R, Rocchegiani E, Blasi G, Petruzzelli A, Gabucci C, Ottaviani D, Di Lullo S, Branciari R, Ranucci D, Valiani A. Assessment of the Microbiological Safety and Hygiene of Raw and Thermally Treated Milk Cheeses Marketed in Central Italy between 2013 and 2020. Life (Basel) 2023; 13:2324. [PMID: 38137925 PMCID: PMC10744727 DOI: 10.3390/life13122324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
A profile of the microbial safety and hygiene of cheese in central Italy was defined based on an analysis of 1373 cheeses sampled under the Italian National Control Plan for Food Safety spanning the years 2013 to 2020 and tested according to Commission Regulation (EC) No. 2073/2005 (as amended). A total of 97.4% of cheese samples were assessed as being satisfactory for food safety criteria and 80.5% for process hygiene criteria. Staphylococcal enterotoxin was found in 2/414 samples, while Salmonella spp. and Listeria monocytogenes were detected in 15 samples out of 373 and 437, respectively. Escherichia coli and coagulase-positive staphylococci counts were found unsatisfactory in 12/61 and 17/88 cheese samples, respectively. The impact of milking species, milk thermal treatment, and cheese hardness category was considered. A statistically significant association (p < 0.05) was found between milk thermal treatment and the prevalence of coagulase-positive staphylococci and Listeria monocytogenes and between hardness and unsatisfactory levels of Escherichia coli. The data depict a contained public health risk associated with these products and confirm, at the same time, the importance of strict compliance with good hygiene practices during milk and cheese production. These results can assist in bolstering risk analysis and providing insights for food safety decision making.
Collapse
Affiliation(s)
- Sara Primavilla
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Rossana Roila
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.)
| | - Elena Rocchegiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Annalisa Petruzzelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Claudia Gabucci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Donatella Ottaviani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Stefania Di Lullo
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.)
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.)
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (S.P.); (E.R.); (G.B.); (A.P.); (C.G.); (D.O.); (S.D.L.); (A.V.)
| |
Collapse
|
9
|
Chowdhury B, Anand S. Environmental persistence of Listeria monocytogenes and its implications in dairy processing plants. Compr Rev Food Sci Food Saf 2023; 22:4573-4599. [PMID: 37680027 DOI: 10.1111/1541-4337.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Listeriosis, an invasive illness with a fatality rate between 20% and 30%, is caused by the ubiquitous bacterium Listeria monocytogenes. Human listeriosis has long been associated with foods. This is because the ubiquitous nature of the bacteria renders it a common food contaminant, posing a significant risk to the food processing sector. Although several sophisticated stress coping mechanisms have been identified as significant contributing factors toward the pathogen's persistence, a complete understanding of the mechanisms underlying persistence across various strains remains limited. Moreover, aside from genetic aspects that promote the ability to cope with stress, various environmental factors that exist in food manufacturing plants could also contribute to the persistence of the pathogen. The objective of this review is to provide insight into the challenges faced by the dairy industry because of the pathogens' environmental persistence. Additionally, it also aims to emphasize the diverse adaptation and response mechanisms utilized by L. monocytogenes in food manufacturing plants to evade environmental stressors. The persistence of L. monocytogenes in the food processing environment poses a serious threat to food safety and public health. The emergence of areas with high levels of L. monocytogenes contamination could facilitate Listeria transmission through aerosols, potentially leading to the recontamination of food, particularly from floors and drains, when sanitation is implemented alongside product manufacturing. Hence, to produce safe dairy products and reduce the frequency of outbreaks of listeriosis, it is crucial to understand the factors that contribute to the persistence of this pathogen and to implement efficient control strategies.
Collapse
Affiliation(s)
- Bhaswati Chowdhury
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
10
|
Korena K, Krzyzankova M, Florianova M, Karasova D, Babak V, Strakova N, Juricova H. Microbial Succession in the Cheese Ripening Process-Competition of the Starter Cultures and the Microbiota of the Cheese Plant Environment. Microorganisms 2023; 11:1735. [PMID: 37512907 PMCID: PMC10385115 DOI: 10.3390/microorganisms11071735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
A large variety of cheeses can be produced using different manufacturing processes and various starter or adjunct cultures. In this study, we have described the succession of the microbial population during the commercial production and subsequent ripening of smear-ripened cheese using 16S rRNA gene sequencing. The composition of the microbiota during the first 6 days of production was constant and consisted mainly of LAB (lactic acid bacteria) originating from the starter culture. From day 7, the proportion of LAB decreased as other bacteria from the production environment appeared. From the 14th day of production, the relative proportion of LAB decreased further, and at the end of ripening, bacteria from the environment wholly dominated. These adventitious microbiota included Psychrobacter, Pseudoalteromonas haloplanktis/hodoensis, Vibrio toranzoniae, and Vibrio litoralis (Proteobacteria phylum), as well as Vagococcus and Marinilactibacillus (Firmicutes phylum), Psychrilyobacter (Fusobacteria phylum), and Malaciobacter marinus (Campylobacterota phylum), all of which appeared to be characteristic taxa associated with the cheese rind. Subsequent analysis showed that the production and ripening of smear-ripened cheese could be divided into three stages, and that the microbiota compositions of samples from the first week of production, the second week of production, and supermarket shelf life all differed.
Collapse
Affiliation(s)
- Kristyna Korena
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | | | - Martina Florianova
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Daniela Karasova
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Vladimir Babak
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Nicol Strakova
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Helena Juricova
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| |
Collapse
|
11
|
Xu ZS, Ju T, Yang X, Gänzle M. A Meta-Analysis of Bacterial Communities in Food Processing Facilities: Driving Forces for Assembly of Core and Accessory Microbiomes across Different Food Commodities. Microorganisms 2023; 11:1575. [PMID: 37375077 DOI: 10.3390/microorganisms11061575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Microbial spoilage is a major cause of food waste. Microbial spoilage is dependent on the contamination of food from the raw materials or from microbial communities residing in food processing facilities, often as bacterial biofilms. However, limited research has been conducted on the persistence of non-pathogenic spoilage communities in food processing facilities, or whether the bacterial communities differ among food commodities and vary with nutrient availability. To address these gaps, this review re-analyzed data from 39 studies from various food facilities processing cheese (n = 8), fresh meat (n = 16), seafood (n = 7), fresh produce (n = 5) and ready-to-eat products (RTE; n = 3). A core surface-associated microbiome was identified across all food commodities, including Pseudomonas, Acinetobacter, Staphylococcus, Psychrobacter, Stenotrophomonas, Serratia and Microbacterium. Commodity-specific communities were additionally present in all food commodities except RTE foods. The nutrient level on food environment surfaces overall tended to impact the composition of the bacterial community, especially when comparing high-nutrient food contact surfaces to floors with an unknown nutrient level. In addition, the compositions of bacterial communities in biofilms residing in high-nutrient surfaces were significantly different from those of low-nutrient surfaces. Collectively, these findings contribute to a better understanding of the microbial ecology of food processing environments, the development of targeted antimicrobial interventions and ultimately the reduction of food waste and food insecurity and the promotion of food sustainability.
Collapse
Affiliation(s)
- Zhaohui S Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Xianqin Yang
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
12
|
Rolon ML, Tan X, Chung T, Gonzalez-Escalona N, Chen Y, Macarisin D, LaBorde LF, Kovac J. The composition of environmental microbiota in three tree fruit packing facilities changed over seasons and contained taxa indicative of L. monocytogenes contamination. MICROBIOME 2023; 11:128. [PMID: 37271802 DOI: 10.1186/s40168-023-01544-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/06/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Listeria monocytogenes can survive in cold and wet environments, such as tree fruit packing facilities and it has been implicated in outbreaks and recalls of tree fruit products. However, little is known about microbiota that co-occurs with L. monocytogenes and its stability over seasons in tree fruit packing environments. In this 2-year longitudinal study, we aimed to characterize spatial and seasonal changes in microbiota composition and identify taxa indicative of L. monocytogenes contamination in wet processing areas of three tree fruit packing facilities (F1, F2, F3). METHODS A total of 189 samples were collected during two apple packing seasons from floors under the washing, drying, and waxing areas. The presence of L. monocytogenes was determined using a standard culturing method, and environmental microbiota was characterized using amplicon sequencing. PERMANOVA was used to compare microbiota composition among facilities over two seasons, and abundance-occupancy analysis was used to identify shared and temporal core microbiota. Differential abundance analysis and random forest were applied to detect taxa indicative of L. monocytogenes contamination. Lastly, three L. monocytogenes-positive samples were sequenced using shotgun metagenomics with Nanopore MinION, as a proof-of-concept for direct detection of L. monocytogenes' DNA in environmental samples. RESULTS The occurrence of L. monocytogenes significantly increased from 28% in year 1 to 46% in year 2 in F1, and from 41% in year 1 to 92% in year 2 in F3, while all samples collected from F2 were L. monocytogenes-positive in both years. Samples collected from three facilities had a significantly different microbiota composition in both years, but the composition of each facility changed over years. A subset of bacterial taxa including Pseudomonas, Stenotrophomonas, and Microbacterium, and fungal taxa, including Yarrowia, Kurtzmaniella, Cystobasidium, Paraphoma, and Cutaneotrichosporon, were identified as potential indicators of L. monocytogenes within the monitored environments. Lastly, the DNA of L. monocytogenes was detected through direct Nanopore sequencing of metagenomic DNA extracted from environmental samples. CONCLUSIONS This study demonstrated that a cross-sectional sampling strategy may not accurately reflect the representative microbiota of food processing facilities. Our findings also suggest that specific microorganisms are indicative of L. monocytogenes, warranting further investigation of their role in the survival and persistence of L. monocytogenes. Video Abstract.
Collapse
Affiliation(s)
- M Laura Rolon
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiaoqing Tan
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Taejung Chung
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, 20740, USA
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, 20740, USA
| | - Dumitru Macarisin
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, 20740, USA
| | - Luke F LaBorde
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
- Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
13
|
Du B, Meng L, Wu H, Yang H, Liu H, Zheng N, Zhang Y, Zhao S, Wang J. Source Tracker Modeling Based on 16S rDNA Sequencing and Analysis of Microbial Contamination Sources for Pasteurized Milk. Front Nutr 2022; 9:845150. [PMID: 35578614 PMCID: PMC9106800 DOI: 10.3389/fnut.2022.845150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Milk is rich in fat, protein, minerals, vitamins, peptides, immunologically active substances, and other nutrients, and it plays an important role in satisfying human nutrition and health. However, dairy product safety incidents caused by microbial contamination have occurred. We found that the total bacterial numbers in the pasteurized product were low and far below the limit requirements of the food safety standards of the European Union, the United States, and China. At the genus level, the primary microbial groups found in milk samples were Acinetobacter, Macrococcus, Pseudomonas, and Lactococcus, while in the equipment rinse water and air samples there was contamination by Stenotrophomonas and Acinetobacter. The Source Tracker model analysis indicated that the microorganisms in the final milk products were significantly related to the contamination in product tanks and raw milk. Therefore, it is the hope that this work can provide guidance to pinpoint contamination problems using the proper quality control sampling at specific stages in the pasteurization process.
Collapse
Affiliation(s)
- Bingyao Du
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Meng
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haoming Wu
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaigu Yang
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Huimin Liu
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengguo Zhao
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jiaqi Wang
| |
Collapse
|
14
|
Lacorte GA, Cruvinel LA, de Paula Ávila M, Dias MF, de Abreu Pereira A, Nascimento AMA, de Melo Franco BDG. Investigating the influence of Food Safety Management Systems (FSMS) on microbial diversity of Canastra cheeses and their processing environments. Food Microbiol 2022; 105:104023. [DOI: 10.1016/j.fm.2022.104023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
|
15
|
Dimov SG, Gyurova A, Zagorchev L, Dimitrov T, Georgieva-Miteva D, Peykov S. NGS-Based Metagenomic Study of Four Traditional Bulgarian Green Cheeses from Tcherni Vit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Gérard A, El-Hajjaji S, Burteau S, Fall PA, Pirard B, Taminiau B, Daube G, Sindic M. Study of the microbial diversity of a panel of Belgian artisanal cheeses associated with challenge studies for Listeria monocytogenes. Food Microbiol 2021; 100:103861. [PMID: 34416961 DOI: 10.1016/j.fm.2021.103861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/05/2021] [Accepted: 06/13/2021] [Indexed: 12/29/2022]
Abstract
High throughput sequencing could become a powerful tool in food safety. This study was the first to investigate artisanal cheeses from Belgium (31 batches) using metagenetics, in relation to Listeria monocytogenes growth data acquired during a previous project. Five cheese types were considered, namely unripened acid-curd cheeses, smear- and mold-ripened soft cheeses, and Gouda-type and Saint-Paulin-type cheeses. Each batch was analyzed in triplicate the first and the last days of storage at 8 °C. Globally, 2697 OTUs belonging to 277 genera and to 15 phyla were identified. Lactococcus was dominant in all types, but Streptococcus was co-dominant in smear-ripened soft cheeses and Saint-Paulin-type cheeses. The dominant population was not always associated with added starter cultures. Bacterial richness and diversity were significantly higher in both types of soft cheeses than in other categories, including particular genera like Prevotella, Faecalibacterium and Hafnia-Obesumbacterium in mold-ripened cheeses and Brevibacterium, Brachybacterium, Microbacterium, Bacteroides, Corynebacterium, Marinilactibacillus, Fusobacterium, Halomonas and Psychrobacter in smear-ripened soft cheeses. A strong correlation was observed between no growth of L. monocytogenes in a smear-ripened cheese and the presence of an unknown Fusobacterium (relative abundance around 10%). This in silico correlation should be confirmed by further experiments in vitro and in situ.
Collapse
Affiliation(s)
- Amaury Gérard
- Laboratory of Quality and Safety of Agro-Food Products, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030, Gembloux, Belgium.
| | - Soundous El-Hajjaji
- Laboratory of Quality and Safety of Agro-Food Products, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030, Gembloux, Belgium
| | - Sophie Burteau
- Genalyse Partner sa, rue Hayeneux, 62, 4040, Herstal, Belgium
| | | | - Barbara Pirard
- Faculty of Veterinary Medicine, Food Science Department, FARAH, University of Liège, Sart-Tilman, B43b, 4000, Liège, Belgium
| | - Bernard Taminiau
- Faculty of Veterinary Medicine, Food Science Department, FARAH, University of Liège, Sart-Tilman, B43b, 4000, Liège, Belgium
| | - Georges Daube
- Faculty of Veterinary Medicine, Food Science Department, FARAH, University of Liège, Sart-Tilman, B43b, 4000, Liège, Belgium
| | - Marianne Sindic
- Laboratory of Quality and Safety of Agro-Food Products, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030, Gembloux, Belgium
| |
Collapse
|
17
|
Li X, He Y, Yang W, Mu D, Zhang M, Dai Y, Zheng Z, Jiang S, Wu X. Comparative analysis of the microbial community and nutritional quality of sufu. Food Sci Nutr 2021; 9:4117-4126. [PMID: 34401063 PMCID: PMC8358361 DOI: 10.1002/fsn3.2372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Sufu is a type of fermented food with abundant nutrients and delicious taste. It is made from the fermentation of tofu by various microorganisms. In this study, three types of sufu were prepared through natural fermentation: (NF), single-strain fermentation (SF), and mixed-strain fermentation (MF). Microbial species, amino acids, and fatty acids were identified to investigate dynamic changes in nutritional quality and microbial flora in sufu. The results showed that the number of microbial species in NF sufu was the highest (n = 284), whereas that in SF sufu was the lowest (n = 194). Overall, 153 microbial species were found in all three types of sufu. Relative abundance analysis also revealed that Tetragonococcus, Bacillus, Acinetobacter, and Staphylococcus were the main bacteria in sufu. However, there was a large number of harmful bacteria such as Enterococcaceae in NF sufu. The levels of various nutrients were low in SF sufu, whereas the contents of protein and soy isoflavones were higher in NF and MF sufu. Seventeen kinds of amino acids were detected, comprising seven essential amino acids and ten other amino acids. The contents of essential amino acids and essential fatty acids were higher in MF sufu than the other two types, resulting in its high nutritional value. The sufu produced through the three fermentation methods differed significantly (p < .05) in terms of microbial flora and nutritional quality.
Collapse
Affiliation(s)
- Xingjiang Li
- Key Laboratory for Agricultural Products Processing of Anhui ProvinceSchool of Food and Biological EngineeringHefei University of TechnologyHefei, Anhui ProvinceChina
| | - Ying He
- Key Laboratory for Agricultural Products Processing of Anhui ProvinceSchool of Food and Biological EngineeringHefei University of TechnologyHefei, Anhui ProvinceChina
| | - Wei Yang
- Tianjin Agricultural UniversityTianjinChina
| | - Dongdong Mu
- Key Laboratory for Agricultural Products Processing of Anhui ProvinceSchool of Food and Biological EngineeringHefei University of TechnologyHefei, Anhui ProvinceChina
| | - Min Zhang
- Key Laboratory for Agricultural Products Processing of Anhui ProvinceSchool of Food and Biological EngineeringHefei University of TechnologyHefei, Anhui ProvinceChina
| | - Yilong Dai
- Anhui Bagongshan Bean Foods Product Co.ShouxianChina
| | - Zhi Zheng
- Key Laboratory for Agricultural Products Processing of Anhui ProvinceSchool of Food and Biological EngineeringHefei University of TechnologyHefei, Anhui ProvinceChina
| | - Shaotong Jiang
- Key Laboratory for Agricultural Products Processing of Anhui ProvinceSchool of Food and Biological EngineeringHefei University of TechnologyHefei, Anhui ProvinceChina
| | - Xuefeng Wu
- Key Laboratory for Agricultural Products Processing of Anhui ProvinceSchool of Food and Biological EngineeringHefei University of TechnologyHefei, Anhui ProvinceChina
| |
Collapse
|
18
|
De Filippis F, Valentino V, Alvarez-Ordóñez A, Cotter PD, Ercolini D. Environmental microbiome mapping as a strategy to improve quality and safety in the food industry. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Agarbati A, Marini E, Galli E, Canonico L, Ciani M, Comitini F. Characterization of wild yeasts isolated from artisan dairies in the Marche region, Italy, for selection of promising functional starters. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Possas A, Bonilla-Luque OM, Valero A. From Cheese-Making to Consumption: Exploring the Microbial Safety of Cheeses through Predictive Microbiology Models. Foods 2021; 10:foods10020355. [PMID: 33562291 PMCID: PMC7915996 DOI: 10.3390/foods10020355] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cheeses are traditional products widely consumed throughout the world that have been frequently implicated in foodborne outbreaks. Predictive microbiology models are relevant tools to estimate microbial behavior in these products. The objective of this study was to conduct a review on the available modeling approaches developed in cheeses, and to identify the main microbial targets of concern and the factors affecting microbial behavior in these products. Listeria monocytogenes has been identified as the main hazard evaluated in modelling studies. The pH, aw, lactic acid concentration and temperature have been the main factors contemplated as independent variables in models. Other aspects such as the use of raw or pasteurized milk, starter cultures, and factors inherent to the contaminating pathogen have also been evaluated. In general, depending on the production process, storage conditions, and physicochemical characteristics, microorganisms can grow or die-off in cheeses. The classical two-step modeling has been the most common approach performed to develop predictive models. Other modeling approaches, including microbial interaction, growth boundary, response surface methodology, and neural networks, have also been performed. Validated models have been integrated into user-friendly software tools to be used to obtain estimates of microbial behavior in a quick and easy manner. Future studies should investigate the fate of other target bacterial pathogens, such as spore-forming bacteria, and the dynamic character of the production process of cheeses, among other aspects. The information compiled in this study helps to deepen the knowledge on the predictive microbiology field in the context of cheese production and storage.
Collapse
|
21
|
Zara G, Budroni M, Mannazzu I, Fancello F, Zara S. Yeast biofilm in food realms: occurrence and control. World J Microbiol Biotechnol 2020; 36:134. [PMID: 32776210 PMCID: PMC7415760 DOI: 10.1007/s11274-020-02911-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
In natural environments, microorganisms form microbial aggregates called biofilms able to adhere to a multitude of different surfaces. Yeasts make no exception to this rule, being able to form biofilms in a plethora of environmental niches. In food realms, yeast biofilms may cause major problems due to their alterative activities. In addition, yeast biofilms are tenacious structures difficult to eradicate or treat with the current arsenal of antifungal agents. Thus, much effort is being made to develop novel approaches to prevent and disrupt yeast biofilms, for example through the use of natural antimicrobials or small molecules with both inhibiting and dispersing properties. The aim of this review is to provide a synopsis of the most recent literature on yeast biofilms regarding: (i) biofilm formation mechanisms; (ii) occurrence in food and in food-related environments; and (iii) inhibition and dispersal using natural compounds, in particular.
Collapse
Affiliation(s)
- Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
22
|
Lianou A, Nychas GJE, Koutsoumanis KP. Strain variability in biofilm formation: A food safety and quality perspective. Food Res Int 2020; 137:109424. [PMID: 33233106 DOI: 10.1016/j.foodres.2020.109424] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
The inherent differences in microbial behavior among identically treated strains of the same microbial species, referred to as "strain variability", are regarded as an important source of variability in microbiological studies. Biofilms are defined as the structured multicellular communities with complex architecture that enable microorganisms to grow adhered to abiotic or living surfaces and constitute a fundamental aspect of microbial ecology. The research studies assessing the strain variability in biofilm formation are relatively few compared to the ones evaluating other aspects of microbial behavior such as virulence, growth and stress resistance. Among the available research data on intra-species variability in biofilm formation, compiled and discussed in the present review, most of them refer to foodborne pathogens as compared to spoilage microorganisms. Molecular and physiological aspects of biofilm formation potentially related to strain-specific responses, as well as information on the characterization and quantitative description of this type of biological variability are presented and discussed. Despite the considerable amount of available information on the strain variability in biofilm formation, there are certain data gaps and still-existing challenges that future research should cover and address. Current and future advances in systems biology and omics technologies are expected to aid significantly in the explanation of phenotypic strain variability, including biofilm formation variability, allowing for its integration in microbiological risk assessment.
Collapse
Affiliation(s)
- Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
23
|
Maïworé J, Tatsadjieu Ngoune L, Piro-Metayer I, Montet D. Identification of yeasts present in artisanal yoghurt and traditionally fermented milks consumed in the northern part of Cameroon. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
24
|
Microbial Ecology Evaluation of an Iberian Pig Processing Plant through Implementing SCH Sensors and the Influence of the Resident Microbiota on Listeria monocytogenes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is a whole community of microorganisms capable of surviving the cleaning and disinfection processes in the food industry. These persistent microorganisms can enhance or inhibit biofilm formation and the proliferation of foodborne pathogens. Cleaning and disinfection protocols will never reduce the contamination load to 0; however, it is crucial to know which resident species are present and the risk they represent to pathogens, such as Listeria monocytogenes, as they can be further used as a complementary control strategy. The aim of this study was to evaluate the resident surface microbiota in an Iberian pig processing plant after carrying out the cleaning and disinfection processes. To do so, surface sensors were implemented, sampled, and evaluated by culture plate count. Further, isolated microorganisms were identified through biochemical tests. The results show that the surfaces are dominated by Bacillus spp., Pseudomonas spp., different enterobacteria, Mannheimia haemolytica, Rhizobium radiobacter, Staphylococcus spp., Aeromonas spp., lactic acid bacteria, and yeasts and molds. Moreover, their probable relationship with the presence of L. monocytogenes in three areas of the plant is also explained. Further studies of the resident microbiota and their interaction with pathogens such as L. monocytogenes are required. New control strategies that promote the most advantageous profile of microorganisms in the resident microbiota could be a possible alternative for pathogen control in the food industry. To this end, the understanding of the resident microbiota on the surfaces of the food industry and its relation with pathogen presence is crucial.
Collapse
|
25
|
Lara-Aguilar S, Alcaine SD. Short communication: Screening inhibition of dairy-relevant pathogens and spoilage microorganisms by lactose oxidase. J Dairy Sci 2019; 102:7807-7812. [DOI: 10.3168/jds.2019-16757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/24/2019] [Indexed: 01/26/2023]
|
26
|
Milk and Dairy Products. Food Microbiol 2019. [DOI: 10.1128/9781555819972.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Masotti F, Vallone L, Ranzini S, Silvetti T, Morandi S, Brasca M. Effectiveness of air disinfection by ozonation or hydrogen peroxide aerosolization in dairy environments. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Microbial load of white cheese process lines after CIP and COP: A case study in Turkey. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Møretrø T, Langsrud S. Residential Bacteria on Surfaces in the Food Industry and Their Implications for Food Safety and Quality. Compr Rev Food Sci Food Saf 2017; 16:1022-1041. [DOI: 10.1111/1541-4337.12283] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Trond Møretrø
- Nofima, The Norwegian Inst. of Food; Fishery and Aquaculture Research; N-1430 Ås Norway
| | - Solveig Langsrud
- Nofima, The Norwegian Inst. of Food; Fishery and Aquaculture Research; N-1430 Ås Norway
| |
Collapse
|
30
|
Garnier L, Valence F, Mounier J. Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms 2017; 5:E42. [PMID: 28788096 PMCID: PMC5620633 DOI: 10.3390/microorganisms5030042] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023] Open
Abstract
Fungi are common contaminants of dairy products, which provide a favorable niche for their growth. They are responsible for visible or non-visible defects, such as off-odor and -flavor, and lead to significant food waste and losses as well as important economic losses. Control of fungal spoilage is a major concern for industrials and scientists that are looking for efficient solutions to prevent and/or limit fungal spoilage in dairy products. Several traditional methods also called traditional hurdle technologies are implemented and combined to prevent and control such contaminations. Prevention methods include good manufacturing and hygiene practices, air filtration, and decontamination systems, while control methods include inactivation treatments, temperature control, and modified atmosphere packaging. However, despite technology advances in existing preservation methods, fungal spoilage is still an issue for dairy manufacturers and in recent years, new (bio) preservation technologies are being developed such as the use of bioprotective cultures. This review summarizes our current knowledge on the diversity of spoilage fungi in dairy products and the traditional and (potentially) new hurdle technologies to control their occurrence in dairy foods.
Collapse
Affiliation(s)
- Lucille Garnier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
- Science et Technologie du Lait et de l'Œuf (STLO), AgroCampus Ouest, INRA, 35000 Rennes, France.
| | - Florence Valence
- Science et Technologie du Lait et de l'Œuf (STLO), AgroCampus Ouest, INRA, 35000 Rennes, France.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|