1
|
Zhou X, Wang Y, Shinali TS, Gao B, Yang R, Li P, Shang N. Purification, characterization, and mechanistic studies of Gassericin GA-3.1: A novel class IIc bacteriocin produced by Lactobacillus gasseri LG145. Int J Biol Macromol 2025; 299:139811. [PMID: 39805444 DOI: 10.1016/j.ijbiomac.2025.139811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Bacteriocins, naturally derived antimicrobial peptides, are considered promising alternatives to traditional preservatives and antibiotics, particularly in food and medical applications. Despite extensive research on various bacteriocins, cyclic varieties remain understudied. This study introduces Gassericin GA-3.1, a novel cyclic bacteriocin produced by Lactobacillus gasseri LG145. We employed a multi-step purification process, including salt precipitation, ion-exchange chromatography, gel filtration chromatography, and ultimately high-performance liquid chromatography (HPLC), achieving a specific activity of 4660.89 AU/mg for the purified Gassericin GA-3.1. Mass spectrometry revealed a molecular mass of 5613.842 Da. Genome analysis confirmed Gassericin GA-3.1 as a novel class IIc bacteriocin with a unique amino acid sequence. Secondary structure prediction suggested the presence of three α-helices, two β-pleated strands, and a random coil. Physicochemical characterization demonstrated GassericinGA-3.1's thermal stability, resistance to pH extremes, surfactants, and broad-spectrum antibacterial potency. Notably, Gassericin GA-3.1 effectively inhibit Listeria monocytogenes through mechanism involving surface perforation, membrane potential disruption, and downregulation of virulence, biofilm formation, and motility genes. Overall, our finding position Gassericin GA-3.1 as a potential candidate for antimicrobial applications in the food and health industries.
Collapse
Affiliation(s)
- Xing Zhou
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yu Wang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Tharushi S Shinali
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Boya Gao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ruoqiu Yang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Pinglan Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Tong D, Han P, Li M, Wang Z, Zhao Z, Jia Y, Ning Y. Sucrose laurate and nisin synergistically inhibit Bacillus subtilis by multiple antibacterial targets and play promising application potential in bread preservation. Food Chem 2025; 470:142696. [PMID: 39752746 DOI: 10.1016/j.foodchem.2024.142696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025]
Abstract
Sucrose laurate, a commonly used emulsifier, was investigated to explore its preservative effect combined with nisin using Bacillus subtilis as indicator. The results suggested that sucrose laurate and nisin exhibited synergistic antibacterial effect with the fractional inhibitory concentration index of 0.5. Moreover, antibacterial mechanism assays revealed that sucrose laurate and nisin compromised the cell wall integrity by retarding peptidoglycan synthesis, dissipated membrane potential, damaged membrane permeability by inactivating the Na+K+-ATPase via hydrogen bonding interaction to trigger K+ leakage, and destroyed cell membrane integrity concurrently with the leakage of protein and nucleic acid; SEM observation revealed their remarkable ability to disrupt cell ultrastructure and induce morphological shrinkage; Gel retardation results demonstrated the alternation in protein expression patterns. Furthermore, the promising effect of sucrose laurate and nisin was evidenced in bread exhibiting extended shelf life. Conclusively, this research could provide scientific basis for expanding the application of sucrose laurate in food industry.
Collapse
Affiliation(s)
- Danya Tong
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Panpan Han
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Mingrui Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhixin Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhen Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yingmin Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yawei Ning
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
3
|
Fei P, Yu Y, Liang C, Fang R, Jiang Y, Guo L. Echinacea purpurea (L.) Moench crude extract combined with citric acid inactivates Cronobacter sakazakii isolated from powdered infant formula. J Dairy Sci 2025; 108:1351-1366. [PMID: 39662802 DOI: 10.3168/jds.2024-25485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024]
Abstract
The objective of this study was to reveal the synergistic antibacterial activity and mechanism of Echinacea purpurea (L.) Moench crude extract (EE) and citric acid (CA) against Cronobacter sakazakii isolated from powdered infant formula (PIF). The minimum inhibitory concentration (MIC) of EE against C. sakazakii was determined, and then growth curve and time-kill analysis were used to screen the optimal antibacterial combination of 1 MIC of EE and CA. Changes in cell membrane potential, cell integrity, cell permeability, bacterial protein, DNA, and intracellular reactive oxygen species (ROS) levels, and cell morphology of C. sakazakii were used to reveal the synergistic inhibitory mechanism of EE and CA. The inactivation effect of EE in combination with CA against C. sakazakii on common contact surfaces was used to evaluate its efficacy as a natural disinfectant. The results showed that the MIC value of EE against C. sakazakii was 60 mg/mL, and the growth curve of C. sakazakii treated by 1 MIC of EE combined with CA (pH 3.0) was significantly inhibited compared with the control groups. The results of time-kill analysis showed that after combined treatment with 1 MIC of EE and CA (pH 3.0) for 30 min, approximately 8 log cfu/mL of C. sakazakii were inactivated. Cell membrane hyperpolarization, damaged cell membrane integrity, improved cell membrane permeability, decreased bacterial protein and DNA levels, increased and then decreased intracellular ROS contents, and deformed and ruptured cell morphology were found in C. sakazakii treated by EE combined with CA, and these phenomena were more pronounced than in C. sakazakii treated by EE or CA alone. When inoculated stainless steel, glass, ceramic, polystyrene, bamboo, and wood were sprayed with 1 MIC of EE combined with CA (pH 3.0) and after 15 min of treatment, approximately 5 log cfu/mL of C. sakazakii were inactivated. These findings suggest that EE combined with CA can effectively inactivate C. sakazakii isolated from PIF and can be used as a natural disinfectant to reduce the contamination of C. sakazakii in PIF production environments or households.
Collapse
Affiliation(s)
- Peng Fei
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Yaping Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chen Liang
- College of Medicine and Biological Information Engineering, Hunnan Campus, Northeastern University, Shenyang, 110167, China
| | - Ruxue Fang
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Food Laboratory of Zhongyuan, Nanyang Institute of Technology, Luohe, 462300, China.
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China; Food Laboratory of Zhongyuan, Nanyang Institute of Technology, Luohe, 462300, China.
| |
Collapse
|
4
|
Sheikhi S, Esfandiari Z, Rostamabadi H, Noori SMA, Sabahi S, Nasab MS. Microbial safety and chemical characteristics of sausage coated by chitosan and postbiotics obtained from Lactobacillus bulgaricus during cold storage. Sci Rep 2025; 15:358. [PMID: 39747907 PMCID: PMC11696564 DOI: 10.1038/s41598-024-82810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
This study investigated the antioxidant and antimicrobial properties, as well as the volatile compounds, of Lactobacillus bulgaricus (L. bulgaricus) postbiotics (at concentration of 150 and 300 mg/L) and their combination with chitosan coatings (0.5% and 1%) on sausage quality (with 100 ppm nitrite) during 40 days of cold storage. The results were compared to a control group, as well as to sausages containing commercial formulation (120 ppm) and reduced (100 ppm) levels of nitrite. To further assess the antimicrobial effects, it also inoculated E. coli and Staphylococcus aureus into the sausages in order to examine how the postbiotics and chitosan coatings impacted the growth of these foodborne pathogens during the 40-day cold storage period. The reults indicated that those containing 300 mg/L postbiotic and 1% chitosan generally met the desired condition for pH, moisture, fat, and total volatile base-nitrogen. These samples also showed the strongest inhibition of mesophilic and psychrophilic bacteria, mold and yeast. Notably, no E. coli or S. aureus were detected in any of the samples, indicating that the postbiotic and chitosan combination effectively inhibited the growth of these pathogens in sausages. The findings suggest that using chitosan coatings and L. bulgaricus postbiotic can enhance the quality of sausages, ultimately lowering the risk of contamination by harmful bacteria and improving overall food safety.
Collapse
Affiliation(s)
- Shahab Sheikhi
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Esfandiari
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Shiri Nasab
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Cui M, Wang M, Liu X, Sun H, Su Z, Zheng Y, Shen Y, Wang M. Mining and characterization of novel antimicrobial peptides from the large-scale microbiome of Shanxi aged vinegar based on metagenomics, molecular dynamics simulations and mechanism validation. Food Chem 2024; 460:140646. [PMID: 39089018 DOI: 10.1016/j.foodchem.2024.140646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The study aimed to mine and characterize novel antimicrobial peptides (AMPs) from the Shanxi aged vinegar microbiome. Utilizing machine learning techniques, AlphaFold2 structure prediction and molecular dynamics simulations, six novel AMPs were innovatively mined from 98,539 peptides based on metagenomic data, of which one peptide secreted by Lactobacillus (named La-AMP) was experimentally validated to have remarkable bactericidal effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with high stability and no hemolytic activity. Scanning electron microscopy revealed that La-AMP caused irreversible damage to cell membranes of S. aureus and E. coli, a finding further confirmed by calcein-AM/propidium iodide staining. Additionally, La-AMP induced nucleic acid leakage and reactive oxygen species accumulation in bacterial cells. It was found to bind to DNA gyrase through salt bridges, hydrogen bonds, and hydrophobic interactions, ultimately inducing apoptosis. Thus, La-AMP exhibited encouraging promise as a valuable bioactive component for the development of natural preservatives.
Collapse
Affiliation(s)
- Meili Cui
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengyue Wang
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xia Liu
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haoyan Sun
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenghua Su
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanbing Shen
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Qiao Z, Guo X, Wang T, Wei J, Liu Y, Ma Y, Lü X. Effects of Sub-Minimum Inhibitory Concentrations of Bacteriocin BM173 on Listeria Monocytogenes Biofilm Formation. Probiotics Antimicrob Proteins 2024; 16:2305-2315. [PMID: 37982962 DOI: 10.1007/s12602-023-10192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Listeria monocytogenes is a significant foodborne pathogen that can form biofilms on various food processing surfaces, thereby enhancing resistance to disinfectants and exacerbating harm to human health. Previous studies have indicated that bacteriocin BM173 exhibits antibacterial and antibiofilm activities. In the current study, our aim was to assess the inhibitory mode of action of sub-inhibitory concentrations (SICs, 1/32 × MIC and 1/16 × MIC) of BM173 on the biofilm formation L. monocytogenes. Crystal violet staining assay revealed that SICs of BM173 significantly inhibit L. monocytogenes biofilm formation. Furthermore, the results of swimming motility assay, plate count, ruthenium red staining, and scanning electron microscopy (SEM) revealed that SICs of BM173 could effectively reduce the movement, cell adhesion, and exopolysaccharide (EPS) production of L. monocytogenes, thereby inhibiting biofilm formation. Real-time quantitative PCR analyses further demonstrated that SICs of BM173 down-regulated the expression of biofilm-associated genes, including those encoding adhesion, virulence factors, and quorum sensing. Additionally, SICs of BM173 effectively reduced the biofilm formation of L. monocytogenes on the surfaces of three food-grade materials (glass, stainless steel, and silicone) at 4 and 25 °C. These outcomes suggest that BM173 holds great potential for development as a promising food preservative for application in the food industry.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province 463000, China.
| | - Xing Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiangmian Wei
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province 463000, China
| | - Yingying Liu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province 463000, China
| | - Yan Ma
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province 463000, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
7
|
Tan A, Wang H, Zhang H, Zhang L, Yao H, Chen Z. Reduction of Cr(VI) by Bacillus toyonensis LBA36 and its effect on radish seedlings under Cr(VI) stress. PeerJ 2024; 12:e18001. [PMID: 39346031 PMCID: PMC11430171 DOI: 10.7717/peerj.18001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 10/01/2024] Open
Abstract
Chromium, being among the most toxic heavy metals, continues to demand immediate attention in the remediation of Cr-contaminated environments. In this study, a strain of LBA36 (Bacillus toyonensis) was isolated from heavy metal contaminated soil in Luanchuan County, Luoyang City, China. The reduction and adsorption rates of LBA36 in 30 mg·L-1 Cr-containing medium were 97.95% and 8.8%, respectively. The reduction mechanism was confirmed by Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cr(VI) reduction by this strain predominantly occurred outside the cell, with hydroxyl, amide, carboxyl, C-N group, carbonyl, and sulfur carbonyl as the main reaction sites. XPS analysis revealed the presence of Cr2p1/2 and Cr2p3/2. Furthermore, the hydroponic experiment showed that the fresh weight and plant height of radish seedlings increased by 87.87% and 37.07%, respectively, after inoculation with LBA36 strain under 7 mg·L-1 Cr(VI) stress. The levels of chlorophyll, total protein, malondialdehyde, superoxide dismutase and catalase were also affected to different degrees. In conclusion, this study demonstrated the potential of microbial and phytoremediation in the treatment of heavy metal toxicity, and laid the foundation for the development of effective bioremediation methods for Cr(VI) pollution.
Collapse
Affiliation(s)
- Aobo Tan
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hui Wang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hehe Zhang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Longfei Zhang
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hanyue Yao
- Department of Environmental Engineering, College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhi Chen
- Department of Civil and Environmental Engineering, Concordia University, Montreal, Canada
| |
Collapse
|
8
|
Ye Z, Shentu H, Zhou Q, Wu D, Li P, Gu Q. A novel bacteriocin against methicillin-resistant Staphylococcus aureus, purified from Lactiplantibacillus plantarum ZFM9. Food Chem 2024; 451:139344. [PMID: 38663238 DOI: 10.1016/j.foodchem.2024.139344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024]
Abstract
A novel bacteriocin, plantaricin ZFM9, was purified from Lactiplantibacillus plantarum ZFM9 using a combination of ammonium sulfate precipitation, XAD-2 macroporous resin, Sephadex G-50, Sephadex LH-20, and reversed-phase high performance liquid chromatography. The molecular mass of plantaricin ZFM9 was 1151.606 Da, and the purity was 98.3%. Plantaricin ZFM9 has thermal stability (95.6% retention at 120 °C for 30 min), pH stability (pH ≤ 5), and sensitivity to the pepsin, trypsin, papain, and proteinase K. Plantaricin ZFM9 exhibited broad-spectrum antimicrobial activity and notably inhibit methicillin-resistant Staphylococcus aureus D48 (MRSA). According to the results of electron microscopy and fluorescence leakage assay, it was found that plantaricin ZFM9 caused damage to the cells membrane and leakage of the contents of S. aureus D48. In addition, Lipid II was not the anti-MRSA target of plantaricin ZFM9. This study underscores the potential of plantaricin ZFM9 for applications in the food field and biopharmaceuticals against MRSA infection.
Collapse
Affiliation(s)
- Zhongdu Ye
- Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huifei Shentu
- Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qingqing Zhou
- Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Danli Wu
- Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ping Li
- Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qing Gu
- Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
9
|
Prema P, Ali D, Nguyen VH, Pradeep BV, Veeramanikandan V, Daglia M, Arciola CR, Balaji P. A Response Surface Methodological Approach for Large-Scale Production of Antibacterials from Lactiplantibacillus plantarum with Potential Utility against Foodborne and Orthopedic Infections. Antibiotics (Basel) 2024; 13:437. [PMID: 38786166 PMCID: PMC11118495 DOI: 10.3390/antibiotics13050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
A variety of bacteria, including beneficial probiotic lactobacilli, produce antibacterials to kill competing bacteria. Lactobacilli secrete antimicrobial peptides (AMPs) called bacteriocins and organic acids. In the food industry, bacteriocins, but even whole cell-free supernatants, are becoming more and more important as bio-preservatives, while, in orthopedics, bacteriocins are introducing new perspectives in biomaterials technologies for anti-infective surfaces. Studies are focusing on Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum). L. plantarum exhibits great phenotypic versatility, which enhances the chances for its industrial exploitation. Importantly, more than other lactobacilli, it relies on AMPs for its antibacterial activity. In this study, Response Surface Methodology (RSM) through a Box-Behnken experimental design was used to estimate the optimal conditions for the production of antibacterials by L. plantarum. A temperature of 35 °C, pH 6.5, and an incubation time of 48 h provided the highest concentration of antibacterials. The initial pH was the main factor influencing the production of antibacterials, at 95% confidence level. Thanks to RSM, the titer of antibacterials increased more than 10-fold, this result being markedly higher than those obtained in the very few studies that have so far used similar statistical methodologies. The Box-Behnken design turned out to be a valid model to satisfactorily plan a large-scale production of antibacterials from L. plantarum.
Collapse
Affiliation(s)
- Paulpandian Prema
- Department of Zoology, VHN Senthikumar Nadar College, Virudhunagar 626001, TN, India;
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, TN, India;
| | - Bhathini Vaikuntavasan Pradeep
- Centre for Microbial Technology, Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore 641021, TN, India; (B.V.P.); (V.V.)
| | - Veeramani Veeramanikandan
- Centre for Microbial Technology, Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore 641021, TN, India; (B.V.P.); (V.V.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Paulraj Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur 635130, TN, India
| |
Collapse
|
10
|
Byun KH, Han SH, Choi MW, Kim BH, Ha SD. Efficacy of disinfectant and bacteriophage mixture against planktonic and biofilm state of Listeria monocytogenes to control in the food industry. Int J Food Microbiol 2024; 413:110587. [PMID: 38301541 DOI: 10.1016/j.ijfoodmicro.2024.110587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Fresh produce and animal-based products contaminated with Listeria monocytogenes have been the main cause of listeriosis outbreaks for many years. The present investigation explored the potential of combination treatment of disinfectants with a bacteriophage cocktail to control L. monocytogenes contamination in the food industry. A mixture of 1 minimal inhibitory concentration (MIC) of disinfectants (sodium hypochlorite [NaOCl], hydrogen peroxide [H2O2], and lactic acid [LA]) and multiplicity of infection (MOI) 100 of phage cocktail was applied to both planktonic cells in vitro and already-formed biofilm cells on food contact materials (FCMs; polyethylene, polypropylene, and stainless steel) and foods (celery and chicken meat). All the combinations significantly lowered the population, biofilm-forming ability, and the expression of flaA, motB, hlyA, prfA, actA, and sigB genes of L. monocytogenes. Additionally, in the antibiofilm test, approximately 4 log CFU/cm2 was eradicated by 6 h treatment on FCMs, and 3 log CFU/g was eradicated within 3 days on celery. However, <2 log CFU/g was eradicated in chicken meat, and regrowth of L. monocytogenes was observed on foods after 5 days. The biofilm eradication efficacy of the combination treatment was proven through visualization using scanning electron microscopy (SEM) and confocal microscopy. In the SEM images, the unusual behavior of L. monocytogenes invading from the surface to the inside was observed after treating celery with NaOCl+P or H2O2 + P. These results suggested that combination of disinfectants (NaOCl, H2O2, and LA) with Listeria-specific phage cocktail can be employed in the food industry as a novel antimicrobial and antibiofilm approach, and further research of L. monocytogenes behavior after disinfection is needed.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Technology Innovation Research Division, Hygienic Safety and Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea; Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Sang Ha Han
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Min Woo Choi
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Byoung-Hu Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea.
| |
Collapse
|
11
|
Luo SC, Wei SM, Luo XT, Yang QQ, Wong KH, Cheung PCK, Zhang BB. How probiotics, prebiotics, synbiotics, and postbiotics prevent dental caries: an oral microbiota perspective. NPJ Biofilms Microbiomes 2024; 10:14. [PMID: 38402294 PMCID: PMC10894247 DOI: 10.1038/s41522-024-00488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Dental caries, a highly prevalent oral disease, impacts a significant portion of the global population. Conventional approaches that indiscriminately eradicate microbes disrupt the natural equilibrium of the oral microbiota. In contrast, biointervention strategies aim to restore this balance by introducing beneficial microorganisms or inhibiting cariogenic ones. Over the past three decades, microbial preparations have garnered considerable attention in dental research for the prevention and treatment of dental caries. However, unlike related pathologies in the gastrointestinal, vaginal, and respiratory tracts, dental caries occurs on hard tissues such as tooth enamel and is closely associated with localized acid overproduction facilitated by cariogenic biofilms. Therefore, it is insufficient to rely solely on previous mechanisms to delineate the role of microbial preparations in the oral cavity. A more comprehensive perspective should involve considering the concepts of cariogenic biofilms. This review elucidates the latest research progress, mechanisms of action, challenges, and future research directions regarding probiotics, prebiotics, synbiotics, and postbiotics for the prevention and treatment of dental caries, taking into account the unique pathogenic mechanisms of dental caries. With an enhanced understanding of oral microbiota, personalized microbial therapy will emerge as a critical future research trend.
Collapse
Affiliation(s)
- Si-Chen Luo
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Si-Min Wei
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Xin-Tao Luo
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Qiong-Qiong Yang
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - Bo-Bo Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China.
| |
Collapse
|
12
|
Byun KH, Ha Han S, Woo Choi M, Kim BH, Ha SD. Control of Listeria monocytogenes in food industry by a combination treatment of natural aromatic compound with Listeria-specific bacteriophage cocktail. Food Res Int 2024; 177:113859. [PMID: 38225132 DOI: 10.1016/j.foodres.2023.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Most Listeria monocytogenes found in the food industry are listeriosis-causing pathogens and possess the ability to form biofilms on food and food contact materials (FCMs). This study aims to evaluate the efficacy of the combination treatment of natural aromatic compounds (thymol, eugenol, carvacrol, and citral) with a Listeria-specific phage cocktail in mitigating the threat posed by L. monocytogenes in the food industry. In vitro combination treatment of 1 minimal inhibitory concentration (MIC) of natural aromatic compound with phage cocktail at multiplicity of infection (MOI) 100 reduced more than 4 log CFU/mL of L. monocytogenes planktonic cells and inhibited biofilm formation. In addition, the expression of virulence-related genes (flaA, motB, hlyA, prfA, and actA) and the stress response (sigB) gene were significantly downregulated. The combination of natural aromatic compound with phage cocktail reduced the biofilm cell population on contaminated celery by more than 2 log CFU/g and by more than 2 log CFU/cm2 on already-formed biofilm on FCMs, but it was less effective on chicken meat, with an approximate reduction of only 1 log CFU/g. The antibiofilm activity toward preformed L. monocytogenes biofilms was also observed using field-emission scanning electron microscopy (FESEM) and confocal laser scanning microscopy (CLSM). COMSTAT analysis of the structural change of biofilms revealed that major biofilm structure parameters (biovolume, thickness, diffusion distance, and microcolonies at substratum) were reduced after treatment. Our findings suggest that the combination of natural aromatic compounds with a phage cocktail has enormous potential as an antimicrobial and antibiofilm agent for controlling L. monocytogenes in the food industry.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea; Technology Innovation Research Division, Hygienic Safety and Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea
| | - Sang Ha Han
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Min Woo Choi
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Byoung-Hu Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea.
| |
Collapse
|
13
|
Gao Y, Li D. Antibacterial mode of action of garviecin LG34 against Gram-negative bacterium Salmonella typhimurium. FEMS Microbiol Lett 2024; 371:fnae066. [PMID: 39138064 DOI: 10.1093/femsle/fnae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024] Open
Abstract
Garviecin LG34 produced by Lactococcus garvieae LG34 exhibits wide-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria. This work aimed at clarifying the antibacterial mode of action of garviecin LG34 against Gram-negative bacterium Salmonella typhimurium. To determine the concentration for the bacteriocin antimicrobial mode experiments, the minimum inhibitory concentration of garviecin LG34 against S. typhimurium CICC21484 was determined as 0.25 mg/ml. Garviecin LG34 decreased the viable count of S. typhimurium CICC21484 and its antibacterial activity was the dose and time dependant. Garviecin LG34 led to the dissipation of transmembrane potential, the rise in the extracellular conductivity, UV-absorbing material at 260 nm, and LDH level of S. typhimurium CICC21484. Scanning electron micrographs results shown that garviecin LG34 cause dramatic deformation and fragmentation including the flagellum shedding, pores formation in surface, and even completely breakage of S. typhimurium cell. Moreover, garviecin LG34 decreased the intracellular ATP level. The results of this study demonstrated that garviecin LG34 can destroy cell structure, increase membrane permeability of S. typhimurium, thereby might be used as biopreservative for treating food borne and salmonellosis resulting from Gram-negative bacterium S. typhimurium.
Collapse
Affiliation(s)
- Yurong Gao
- School of Biological and Environmental Engineering, Chaohu University, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
| | - Dapeng Li
- School of Biological and Environmental Engineering, Chaohu University, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Bantang Road No.1, Chaohu Economic Development Zone, Hefei 238024, China
| |
Collapse
|
14
|
Jha B, Singh S. Investigating antimicrobial peptide RI12 (K3W) as an effective bio-preservative against Listeria monocytogenes: a major foodborne pathogen. Arch Microbiol 2023; 205:367. [PMID: 37917273 DOI: 10.1007/s00203-023-03707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
Due to public apprehension regarding the use of chemical preservatives to prevent food spoilage and food-borne diseases, it is imperative to identify natural alternatives such as antimicrobial peptides as a potential solution. The study aimed at evaluating the effectiveness of the antimicrobial peptide RI12 (K3W) against Listeria monocytogenes. RI12 (K3W) exhibited potent antimicrobial properties, with a minimum inhibitory concentration and minimum bactericidal concentration of 16 µM and 32 µM, respectively. The time-kill assay revealed a consistent reduction in bacterial viability at 8, 16, and 24 h of study. Cytotoxicity testing on mammalian cells demonstrated no apparent change in morphology or cell count. Investigating how well it worked in a food matrix to replicate real-world conditions showed a significant decrease in the bacterial count. The study underscores the potential of RI12 (K3W) as a safe and effective antimicrobial against L. monocytogenes that might also serve as an alternative to chemical preservatives.
Collapse
Affiliation(s)
- Bhavna Jha
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Satparkash Singh
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India.
| |
Collapse
|
15
|
Öztürk H, Geniş B, Özden Tuncer B, Tuncer Y. Bacteriocin production and technological properties of Enterococcus mundtii and Enterococcus faecium strains isolated from sheep and goat colostrum. Vet Res Commun 2023; 47:1321-1345. [PMID: 36738399 DOI: 10.1007/s11259-023-10080-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Enterococci are lactic acid bacteria (LAB) that play a role in the aroma formation, maturation, and sensory development of fermented foods such as meat and dairy products. They also contribute to the improvement of the extended shelf life of fermented foods by producing bacteriocin. The aim of this study was to isolate bacteriocin-producing LAB from sheep and goat colostrum, to characterize the bacteriocin-producing strains, and determine the technological properties of the strains. A total of 13 bacteriocin-producing LAB was isolated and identified as 11 Enterococcus mundtii and two Enterococcus faecium. The strains were found to be genetically different from each other by phylogenetic analysis of 16S rRNA gene sequences and random amplified polymorphic-DNA (RAPD-PCR). It has been determined that bacteriocins show activity in a wide pH range and are resistant to heat, lose their activity with proteolytic enzymes and α-amylase, but are resistant to detergents. While the presence of the munKS gene was detected in all of the strains, it was determined that E. faecium HC121.4, HC161.1, E. mundtii HC147.1, HC166.5, and HC166.8 strains contained multiple enterocin genes. Trisin-SDS-PAGE analysis revealed two active protein bands of approximately 5.1 and 5.5 kDa in E. faecium HC121.4 and one active protein band with a weight of approximately 4.96 kDa in other strains. E. mundtii strains and E. faecium HC161.1 were identified as mundticin KS producers, and E. faecium HC121.4 was defined as an enterocin A and B producer. Except for E. mundtii HC166.8, acid production of strains was found to be slow at 6 h and moderate at 24 h. None of them showed extracellular proteolytic and lipolytic activities. It was found that the strains had esterase, esterase lipase, leucine arylamidase, acid phosphatase, and naphthol-AS-Bl-phosphohydrolase activities, while protease activities were low and peptidase activities were high. In conclusion, bacteriocin producer 13 Enterococcus strains isolated from sheep and goat colostrum were found to have the potential to be included in starter culture combinations.
Collapse
Affiliation(s)
- Hüseyin Öztürk
- Department of Food Technology, Manavgat Vocational School, Akdeniz University, 07600, Antalya, Turkey
| | - Burak Geniş
- Faculty of Engineering, Department of Food Engineering, Süleyman Demirel University, 32260, Isparta, Turkey
| | - Banu Özden Tuncer
- Faculty of Engineering, Department of Food Engineering, Süleyman Demirel University, 32260, Isparta, Turkey
| | - Yasin Tuncer
- Faculty of Engineering, Department of Food Engineering, Süleyman Demirel University, 32260, Isparta, Turkey.
| |
Collapse
|
16
|
Ashrafudoulla M, Mevo SIU, Song M, Chowdhury MAH, Shaila S, Kim DH, Nahar S, Toushik SH, Park SH, Ha SD. Antibiofilm mechanism of peppermint essential oil to avert biofilm developed by foodborne and food spoilage pathogens on food contact surfaces. J Food Sci 2023; 88:3935-3955. [PMID: 37477280 DOI: 10.1111/1750-3841.16712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/10/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Establishing efficient methods to combat bacterial biofilms is a major concern. Natural compounds, such as essential oils derived from plants, are among the favored and recommended strategies for combatting bacteria and their biofilm. Therefore, we evaluated the antibiofilm properties of peppermint oil as well as the activities by which it kills bacteria generally and particularly their biofilms. Peppermint oil antagonistic activities were investigated against Vibrio parahaemolyticus, Listeria monocytogenes, Pseudomonas aeruginosa, Escherichia coli O157:H7, and Salmonella Typhimurium on four food contact surfaces (stainless steel, rubber, high-density polyethylene, and polyethylene terephthalate). Biofilm formation on each studied surface, hydrophobicity, autoaggregation, metabolic activity, and adenosine triphosphate quantification were evaluated for each bacterium in the presence and absence (control) of peppermint oil. Real-time polymerase chain reaction, confocal laser scanning microscopy, and field-emission scanning electron microscopy were utilized to analyze the effects of peppermint oil treatment on the bacteria and their biofilm. Results showed that peppermint oil (1/2× minimum inhibitory concentration [MIC], MIC, and 2× MIC) substantially lessened biofilm formation, with high bactericidal properties. A minimum of 2.5-log to a maximum of around 5-log reduction was attained, with the highest sensitivity shown by V. parahaemolyticus. Morphological experiments revealed degradation of the biofilm structure, followed by some dead cells with broken membranes. Thus, this study established the possibility of using peppermint oil to combat key foodborne and food spoilage pathogens in the food processing environment.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Minsu Song
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Shanjida Shaila
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Duk Hyun Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Sazzad Hossen Toushik
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| |
Collapse
|
17
|
Wang Z, Zhu J, Chen L, Deng K, Huang H. Multifunctional Gold-Silver-Carbon Quantum Dots Nano-Hybrid Composite: Advancing Antibacterial Wound Healing and Cell Proliferation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40241-40254. [PMID: 37599603 DOI: 10.1021/acsami.3c07625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The urgent need for innovative materials that effectively eliminate bacteria while promoting cell growth to accelerate wound healing has led to the exploration of new options, as current antimicrobial nanoparticles often exhibit high cytotoxicity, which hinders wound closure. In this study, a nano-hybrid composite, named gold-silver-carbon quantum dots (AuAg-CDs), was prepared by embedding gold and silver nanoclusters into carbon dots. The AuAg-CDs nano-hybrid composite demonstrates remarkable biocompatibility, displays potent antibacterial activity, and possesses a unique capability to promote cell proliferation. By physically disrupting bacterial membranes and promoting mammalian cell proliferation, this composite emerges as a highly promising material for wound healing applications. The underlying mechanism of the multifunctional AuAg-CDs was investigated through comprehensive analyses encompassing cell morphology, bacterial membrane potential, levels of reactive oxygen species (ROS), and adenosine triphosphate (ATP) production in both bacterial and mammalian cells. Additionally, AuAg-CDs were incorporated into alginate to create a hydrogel wound dressing, which underwent evaluation using animal models. The results underscore the remarkable potential of the AuAg-CDs wound dressing in facilitating the proliferation of wound fibroblasts and combating bacterial infections. The significance of designing multifunctional nanomaterials to address the challenges associated with pathogenic bacterial infections and regenerative medicine is highlighted by this study, paving the way for future advancements in these fields.
Collapse
Affiliation(s)
- Ziqi Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jiayi Zhu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Linlin Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
18
|
Xia T, Teng K, Liu Y, Guo Y, Huang F, Tahir M, Wang T, Zhong J. A Novel Two-Component Bacteriocin, Acidicin P, and Its Key Residues for Inhibiting Listeria monocytogenes by Targeting the Cell Membrane. Microbiol Spectr 2023; 11:e0521022. [PMID: 37289056 PMCID: PMC10434283 DOI: 10.1128/spectrum.05210-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Listeria monocytogenes is an important pathogen which easily contaminates food and causes fatal systemic infections in human. Bacteriocins have received much attention regarding their natural methods of controlling health-related pathogens. Here, we investigated and characterized a novel two-component bacteriocin named acidicin P from Pediococcus acidilactici LAC5-17. Acidicin P showed obvious antimicrobial activity to L. monocytogenes. Through a sequence similarity network analysis for two-component bacteriocin precursors mined in the RefSeq database, acidicin P was observed to belong to an unusual group of two-component bacteriocins. Acidicin P contains two peptides designated Adpα and Adpβ which are assessed to interact with each other and form a helical dimer structure which can be inserted into the lipid bilayer of target cell membrane. We demonstrate that A5, N7, and G9 in the A5xxxG9 motif of Adpα and S16, R19, and G20 in the S16xxxG20 motif of Adpβ played crucial roles in stabilizing the helix-helix interaction of Adpα and Adpβ and were essential for the antilisterial activity of acidicin P by site-directed mutagenesis. A positive residue, R14, in Adpα and a negative residue, D12, in Adpβ are also important for acidicin P to fight against L. monocytogenes. These key residues are supposed to form hydrogen bonding, which is crucial for the interaction of Adpα and Adpβ. Furthermore, acidicin P induces severe permeabilization and depolarization of the cytoplasmic membrane and causes dramatic changes in L. monocytogenes cell morphology and ultrastructure. Acidicin P has the potential to be applied to inhibit L. monocytogenes efficiently both in the food industry and medical treatments. IMPORTANCE L. monocytogenes can cause widespread food contamination and severe human listeriosis, which amount to a large proportion of the public health and economic burdens. Today, L. monocytogenes is usually treated with chemical compounds in the food industry or antibiotics for human listeriosis. Natural and safe antilisterial agents are urgently required. Bacteriocins are natural antimicrobial peptides that have comparable narrow antimicrobial spectra and are attractive potentials for precision therapy for pathogen infection. In this work, we discover a novel two-component bacteriocin designated acidicin P, which shows obvious antilisterial activity. We also identify the key residues in both peptides of acidicin P and demonstrate that acidicin P is inserted into the target cell membrane and disrupts the cell envelop to inhibit the growth of L. monocytogenes. We believe that acidicin P is a promising lead for further development as an antilisterial drug.
Collapse
Affiliation(s)
- Tianqi Xia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoqi Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Tahir
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Cai T, Li Z, Guo P, Guo J, Wang R, Guo D, Yu J, Lü X, Xia X, Shi C. Antimicrobial and Antibiofilm Efficacy and Mechanism of Oregano Essential Oil Against Shigella flexneri. Foodborne Pathog Dis 2023; 20:209-221. [PMID: 37335913 DOI: 10.1089/fpd.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
The aim of this study was to assess the antimicrobial activity of oregano essential oil (OEO) against Shigella flexneri and eradication efficacy of OEO on biofilm. The results showed that the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of OEO against S. flexneri were 0.02% (v/v) and 0.04% (v/v), respectively. OEO effectively killed S. flexneri in Luria-Bertani (LB) broth and contaminated minced pork (the initial population of S. flexneri was about 7.0 log CFU/mL or 7.2 log CFU/g), and after treatment with OEO at 2 MIC in LB broth or at 15 MIC in minced pork, the population of S. flexneri decreased to an undetectable level after 2 or 9 h, respectively. OEO increased intracellular reactive oxygen species concentration, destroyed cell membrane, changed cell morphology, decreased intracellular ATP concentration, caused cell membrane depolarization, and destroyed proteins or inhibited proteins synthesis of S. flexneri. In addition, OEO effectively eradicated the biofilm of S. flexneri by effectively inactivating S. flexneri in mature biofilm, destroying the three-dimensional structure, and reducing exopolysaccharide biomass of S. flexneri. In conclusion, OEO exerts its antimicrobial action effectively and also has a valid scavenging effect on the biofilm of S. flexneri. These findings suggest that OEO has the potential to be used as a natural antibacterial and antibiofilm material in the control of S. flexneri in meat product supply chain, thereby preventing meat-associated infections.
Collapse
Affiliation(s)
- Ting Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jialu Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruixia Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Ji Y, He R. Bacterial Inhibition Mechanism of Rhamnolipid-Modified β-Carotene/Rutinoside Complex Liposomes. Indian J Microbiol 2023; 63:222-229. [PMID: 37325019 PMCID: PMC10267087 DOI: 10.1007/s12088-023-01077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 06/17/2023] Open
Abstract
In this study, a new cholesterol-free delivery system named RL-βC-Rts was developed using rhamnolipid (RL) as the surfactant and encapsulating both β-carotene (βC) and rutinoside (Rts). The purpose was to examine its antibacterial properties against four food-borne pathogenic microorganisms including Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. m), and Salmonella typhimurium (S. typhimurium) and to investigate the mechanism behind the inhibition. Results from bacterial viability tests and minimum inhibitory concentration (MIC) showed RL-βC-Rts possessed antibacterial activity. Upon further examination of the cell membrane potential, it was observed that E. coli, S. aureus, L. m, and S. typhimurium exhibited a reduction in mean fluorescence intensity by 50.17%, 34.07%, 34.12%, and 47.05%, respectively. These decreases suggested damage to the structure of the cell membrane, which subsequently resulted in the discharge of proteins from the bacteria and the consequential impairment of crucial functions. This was supported by alterations in protein concentration. The results of the RT-qPCR showcased that the expression of genes associated with energy metabolism, tricarboxylic acid cycle, DNA metabolism, virulence factor formation and cell membrane formation could be suppressed by RL-βC-Rts. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01077-6.
Collapse
Affiliation(s)
- Ying Ji
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023 China
| |
Collapse
|
21
|
Bodie AR, O'Bryan CA, Olson EG, Ricke SC. Natural Antimicrobials for Listeria monocytogenes in Ready-to-Eat Meats: Current Challenges and Future Prospects. Microorganisms 2023; 11:1301. [PMID: 37317275 DOI: 10.3390/microorganisms11051301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Listeria monocytogenes, an intra-cellular, Gram-positive, pathogenic bacterium, is one of the leading agents of foodborne illnesses. The morbidity of human listeriosis is low, but it has a high mortality rate of approximately 20% to 30%. L. monocytogenes is a psychotropic organism, making it a significant threat to ready-to-eat (RTE) meat product food safety. Listeria contamination is associated with the food processing environment or post-cooking cross-contamination events. The potential use of antimicrobials in packaging can reduce foodborne disease risk and spoilage. Novel antimicrobials can be advantageous for limiting Listeria and improving the shelf life of RTE meat. This review will discuss the Listeria occurrence in RTE meat products and potential natural antimicrobial additives for controlling Listeria.
Collapse
Affiliation(s)
- Aaron R Bodie
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Corliss A O'Bryan
- Food Science Department, University of Aransas-Fayetteville, Fayetteville, AR 72701, USA
| | - Elena G Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
22
|
Gao X, Yu J, Chang L, Wang Y, Sun X, Mu G, Qian F. In vitro antibacterial activity of Bacillus coagulans T242 on Caco-2 cells infected with Salmonella Typhimurium. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
23
|
Kamal I, Ashfaq UA, Hayat S, Aslam B, Sarfraz MH, Yaseen H, Rajoka MSR, Shah AA, Khurshid M. Prospects of antimicrobial peptides as an alternative to chemical preservatives for food safety. Biotechnol Lett 2023; 45:137-162. [PMID: 36504266 DOI: 10.1007/s10529-022-03328-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) are a potential alternative to antimicrobial agents that have got considerable research interest owing to their significant role in the inhibition of bacterial pathogens. These AMPs can essentially inhibit the growth and multiplication of microbes through multiple mechanisms including disruption of cellular membranes, inhibition of cell wall biosynthesis, or affecting intracellular components and cell division. Moreover, AMPs are biocompatible and biodegradable therefore, they can be a good alternative to antimicrobial agents and chemical preservatives. A few of their features for example thermostability and high selectivity are quite appealing for their potential use in the food industry for food preservation to prevent the spoilage caused by microorganisms and foodborne pathogens. Despite these advantages, very few AMPs are being used at an industrial scale for food preservation as these peptides are quite vulnerable to external environmental factors which deter their practical applications and commercialization. The review aims to provide an outline of the mechanism of action of AMPs and their prospects as an alternative to chemical preservatives in the food industry. Further studies related to the structure-activity relationship of AMPs will help to expand the understanding of their mechanism of action and to determine specific conditions to increase their stability and applicability in food preservation.
Collapse
Affiliation(s)
- Iqra Kamal
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sumreen Hayat
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Hamna Yaseen
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Asad Ali Shah
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
24
|
A novel milk-derived peptide effectively inhibits Staphylococcus aureus: Interferes with cell wall synthesis, peptidoglycan biosynthesis disruption reaction mechanism, and its application in real milk system. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Bacteriocin-Nanoconjugates (Bac10307-AgNPs) Biosynthesized from Lactobacillus acidophilus-Derived Bacteriocins Exhibit Enhanced and Promising Biological Activities. Pharmaceutics 2023; 15:pharmaceutics15020403. [PMID: 36839725 PMCID: PMC9967518 DOI: 10.3390/pharmaceutics15020403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The proteinaceous compounds produced by lactic acid bacteria are called bacteriocins and have a wide variety of bioactive properties. However, bacteriocin's commercial availability is limited due to short stability periods and low yields. Therefore, the objective of this study was to synthesize bacteriocin-derived silver nanoparticles (Bac10307-AgNPs) extracted from Lactobacillus acidophilus (L. acidophilus), which may have the potential to increase the bioactivity of bacteriocins and overcome the hurdles. It was found that extracted and purified Bac10307 had a broad range of stability for both temperature (20-100 °C) and pH (3-12). Further, based on Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, its molecular weight was estimated to be 4.2 kDa. The synthesized Bac10307-AgNPs showed a peak of surface plasmon resonance at 430 nm λmax. Fourier transform infrared (FTIR) confirmed the presence of biological moieties, and transmission electron microscopy (TEM) coupled with Energy dispersive X-Ray (EDX) confirmed that AgNPs were spherical and irregularly shaped, with a size range of 9-20 nm. As a result, the Bac10307-AgNPs displayed very strong antibacterial activity with MIC values as low as 8 μg/mL for Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), when compared to Bac10307 alone. In addition, Bac10307-AgNPs demonstrated promising in vitro antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 116.04 μg/mL) and in vitro cytotoxicity against human liver cancer cells (HepG2) (IC50 = 135.63 μg/mL), more than Bac10307 alone (IC50 = 139.82 μg/mL against DPPH and 158.20 μg/mL against HepG2). Furthermore, a protein-protein molecular docking simulation study of bacteriocins with target proteins of different biological functions was also carried out in order to ascertain the interactions between bacteriocins and target proteins.
Collapse
|
26
|
Li Q, Chen Q, Wu Y, Chen Z, Liu Y, Fang Z, Deng Q. Purification, characterization and structural identification of a novel bacteriocin produced by marine original Enterococcus durans YQ-6, and its inhibition of Listeria monocytogenes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Guo X, Xu D, Li F, Bai J, Su R. Current approaches on the roles of lactic acid bacteria in crop silage. Microb Biotechnol 2022; 16:67-87. [PMID: 36468295 PMCID: PMC9803335 DOI: 10.1111/1751-7915.14184] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Lactic acid bacteria (LAB) play pivotal roles in the preservation and fermentation of forage crops in spontaneous or inoculated silages. Highlights of silage LAB over the past decades include the discovery of the roles of LAB in silage bacterial communities and metabolism and the exploration of functional properties. The present article reviews published literature on the effects of LAB on the succession, structure, and functions of silage microbial communities involved in fermentation. Furthermore, the utility of functional LAB in silage preparation including feruloyl esterase-producing LAB, antimicrobial LAB, lactic acid bacteria with high antioxidant potential, pesticide-degrading LAB, lactic acid bacteria producing 1,2-propanediol, and low-temperature-tolerant LAB have been described. Compared with conventional LAB, functional LAB produce different effects; specifically, they positively affect animal performance, health, and product quality, among others. In addition, the metabolic profiles of ensiled forages show that plentiful probiotic metabolites with but not limited to antimicrobial, antioxidant, aromatic, and anti-inflammatory properties are observed in silage. Collectively, the current knowledge on the roles of LAB in crop silage indicates there are great opportunities to develop silage not only as a fermented feed but also as a vehicle of delivery of probiotic substances for animal health and welfare in the future.
Collapse
Affiliation(s)
- Xusheng Guo
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| | - Dongmei Xu
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| | - Fuhou Li
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| | - Jie Bai
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| | - Rina Su
- School of Life SciencesLanzhou UniversityLanzhouChina,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouChina
| |
Collapse
|
28
|
Qiao Z, Zhang L, Wang X, Liu B, Shan Y, Yi Y, Zhou Y, Lü X. Antibiofilm Effects of Bacteriocin BMP32r on Listeria monocytogenes. Probiotics Antimicrob Proteins 2022; 14:1067-1076. [PMID: 34709598 DOI: 10.1007/s12602-021-09863-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/25/2022]
Abstract
Listeria monocytogenes is a well-known foodborne pathogen that usually lives as biofilm to cope with unfavorable surroundings. Bacteriocins have been reported as antimicrobial compounds, and their bactericidal actions have been extensively studied, but their antibiofilm actions have rarely been studied. Previous study indicated that bacteriocin BMP32r has a broad-spectrum antibacterial activity. In this study, the efficacy of BMP32r against the planktonic bacteria, inhibition of forming biofilm, destruction of mature biofilm, and kill persisters of L. monocytogenes ATCC 15,313 was determined. BMP32r exhibited the bactericidal effect on L. monocytogenes planktonic bacteria. Crystal violet staining showed that sub-minimum inhibitory concentrations (SICs) of BMP32r (1/32 × MIC and 1/16 × MIC) significantly (p < 0.001) inhibit the biofilm formation. In addition, the results of CCK-8, plate count, ruthenium red staining, scanning electron microscopy, and real-time quantitative PCR assay showed that SICs of BMP32r reduced cell adhesion, exopolysaccharide production, quorum sensing, and virulence genes expression in biofilm formation. Moreover, higher concentrations of BMP32r (2 × MIC and 4 × MIC) disrupt the mature biofilm by killing the bacteria in the biofilm and kill L. monocytogenes persisters bacteria effectively. Therefore, BMP32r has promising potential as an antibiofilm agent to combat L. monocytogenes.
Collapse
Affiliation(s)
- Zhu Qiao
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.,School of Biological and Food Processing Engineering, Huanghuai University, Henan Province 463000, Zhumadian, China
| | - Leshan Zhang
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agricultural and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
29
|
Wang M, Zhan X, Ma X, Wang R, Guo D, Zhang Y, Yu J, Chang Y, Lü X, Shi C. Antibacterial Activity of Thymoquinone Against Shigella flexneri and Its Effect on Biofilm Formation. Foodborne Pathog Dis 2022; 19:767-778. [PMID: 36367548 DOI: 10.1089/fpd.2022.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thymoquinone (TQ) has been demonstrated to have anti-cancer, anti-inflammatory, antioxidant, and anti-diabetic activities. Shigella flexneri is the main pathogen causing shigellosis in developing countries. In this study, the antibacterial activity of TQ against S. flexneri and its possible antibacterial mechanism were studied. In addition, the inhibitory effect of TQ on the formation of S. flexneri biofilm was also investigated. The results showed that both the minimum inhibitory concentration and the minimum bactericidal concentration of TQ against S. flexneri ATCC 12022 were 0.2 mg/mL. After treatment with TQ at 0.4 mg/mL in Luria-Bertani broth for 3 h, or treatment with 0.2 mg/mL TQ in phosphate-buffered saline for 60 min, the number of S. flexneri (initial number is 6.5 log colony-forming units/mL) dropped below the detection limit. TQ also displayed good antibacterial activity in contaminated lettuce juice. TQ caused an increase in intracellular reactive oxygen species level, a decrease in intracellular adenosine triphosphate (ATP) concentration, a change in the intracellular protein, damage to cell membrane integrity and changes in cell morphology. In addition, TQ showed the ability to inhibit the formation of S. flexneri biofilm; treatment resulted in a decrease in the amount of biofilm and extracellular polysaccharides, and the destruction of biofilm structure. These findings indicated that TQ had strong antimicrobial and antibiofilm activities and a potential to be applied in the fruit and vegetable processing industry or other food industries to control S. flexneri.
Collapse
Affiliation(s)
- Muxue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiao Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruixia Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Xin WG, Wu G, Ying JP, Xiang YZ, Jiang YH, Deng XY, Lin LB, Zhang QL. Antibacterial activity and mechanism of bacteriocin LFX01 against Staphylococcus aureus and Escherichia coli and its application on pork model. Meat Sci 2022; 196:109045. [DOI: 10.1016/j.meatsci.2022.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 11/20/2022]
|
31
|
Unraveling the antibacterial mechanism of Lactiplantibacillus plantarum MY2 cell-free supernatants against Aeromonas hydrophila ST3 and potential application in raw tuna. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Inhibitory effect of protocatechualdehyde on Yersinia enterocolitica and its critical virulence factors. Microb Pathog 2022; 173:105877. [DOI: 10.1016/j.micpath.2022.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
|
33
|
Eghbal N, Viton C, Gharsallaoui A. Nano and microencapsulation of bacteriocins for food applications: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Wu M, Dong Q, Ma Y, Yang S, Zohaib Aslam M, Liu Y, Li Z. Potential antimicrobial activities of probiotics and their derivatives against Listeria monocytogenes in food field: A review. Food Res Int 2022; 160:111733. [DOI: 10.1016/j.foodres.2022.111733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
|
35
|
Yi L, Chen S, Li G, Ren J, Zhou R, Zeng K. Prevalence of antibiotic resistance pathogens in online fresh-cut fruit from Chongqing, China and controlling Enterococcus faecalis by bacteriocin GF-15. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Zhao J, Zhou Z, Bai X, Zhang D, Zhang L, Wang J, Wu B, Zhu J, Yang Z. A novel of new class II bacteriocin from Bacillus velezensis HN-Q-8 and its antibacterial activity on Streptomyces scabies. Front Microbiol 2022; 13:943232. [PMID: 35966655 PMCID: PMC9372549 DOI: 10.3389/fmicb.2022.943232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Potato common scab is a main soil-borne disease of potato that can significantly reduce its quality. At present, it is still a challenge to control potato common scab in the field. To address this problem, the 972 family lactococcin (Lcn972) was screened from Bacillus velezensis HN-Q-8 in this study, and an Escherichia coli overexpression system was used to obtain Lcn972, which showed a significant inhibitory effect on Streptomyces scabies, with a minimum inhibitory concentration of 10.58 μg/mL. The stability test showed that Lcn972 is stable against UV radiation and high temperature. In addition, long-term storage at room temperature and 4°C had limited effects on its activity level. The antibacterial activity of Lcn972 was enhanced by Cu2+ and Ca2+, but decreased by protease K. The protein was completely inactivated by Fe2+. Cell membrane staining showed that Lcn972 damaged the cell membrane integrity of S. scabies. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations revealed that the hyphae of S. scabies treated with Lcn972 were deformed and adhered, the cell membrane was incomplete, the cytoplasm distribution was uneven, and the cell appeared hollow inside, which led to the death of S. scabies. In conclusion, we used bacteriocin for controlling potato common scab for the first time in this study, and it provides theoretical support for the further application of bacteriocin in the control of plant diseases.
Collapse
Affiliation(s)
- Jing Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Zhijun Zhou
- Experimental Training Center of Hebei Agricultural University, Baoding, China
| | - Xuefei Bai
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Likui Zhang
- College of Environmental Science, Yangzhou University, Yangzhou, China
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Beibei Wu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
- *Correspondence: Jiehua Zhu,
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
- Zhihui Yang,
| |
Collapse
|
37
|
Biofilm eradication ability of phage cocktail against Listeria monocytogenes biofilms formed on food contact materials and effect on virulence-related genes and biofilm structure. Food Res Int 2022; 157:111367. [DOI: 10.1016/j.foodres.2022.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
|
38
|
Wang Q, Pan L, Han Y, Zhou Z. Antimicrobial Mechanisms of Enterocin CHQS Against Candida albicans. Curr Microbiol 2022; 79:191. [PMID: 35552837 DOI: 10.1007/s00284-022-02878-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
Candida albicans is the most common fungal pathogen in hospital-acquired infections, which is extremely harmful to health. The increasing fungal infections is requiring the rapid development of novel antifungal agents. In this study, the antimicrobial activity of CHQS, an enterocin isolated from Enterococcus faecalis TG2 against C. albicans was confirmed by the minimum inhibitory concentration, minimum fungicidal concentration, and time-kill curve. Aniline blue and calcofluor white staining methods showed that CHQS remarkably affected β-1,3-glucan and chitin cell wall components and made cell wall more vulnerable. The C. albicans cell wall rupture and intracellular vacuolation were observed by TEM and SEM. Moreover, CHQS induced the accumulation of intracellular reactive oxygen species and decreased mitochondrial membrane potential. These results suggested that CHQS might have a complex multi-target antimicrobial mechanism against C. albicans. In addition, the use of CHQS combined with amphotericin B showed synergistic antimicrobial effects against C. albicans. In conclusion, enterocin CHQS, a natural product with antimicrobial effect, might has a bright future for the development of new antifungal drugs.
Collapse
Affiliation(s)
- Qi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
39
|
Zhang YM, Jiang YH, Li HW, Li XZ, Zhang QL. Purification and characterization of Lactobacillus plantarum-derived bacteriocin with activity against Staphylococcus argenteus planktonic cells and biofilm. J Food Sci 2022; 87:2718-2731. [PMID: 35470896 DOI: 10.1111/1750-3841.16148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023]
Abstract
Bacteriocins inhibit various foodborne bacteria in planktonic and biofilm forms. However, bacteriocins with antibacterial and antibiofilm activity against Staphylococcus argenteus, a pathogen that can cause food poisoning, are still poorly known. Here, the novel bacteriocin LSB1 derived from Lactobacillus plantarum CGMCC 1.12934 was purified and characterized extensively. LSB1 had a molecular weight of 1425.78 Da and an amino acid sequence of YIFVTGGVVSSLGK. Moreover, LSB1 exhibited excellent stability under heat and acid-base stress and presented sensitivity to pepsin and proteinase K. LSB1 exhibited an extensive antimicrobial spectrum against both Gram-positive and Gram-negative bacteria. Minimum inhibitory concentration of LSB1 against S. argenteus_70917 was 10.36 µg/ml, which was lower than that of most of the previously found bacteriocins against Staphylococcus strains. Furthermore, LSB1 significantly inhibited S. argenteus_70917 planktonic cells (p < 0.01) and decreased their viability. Scanning electron microscopy analysis revealed that cell membrane permeability of S. argenteus_70917 upon exposure to LSB1 showed leakage of cytoplasmic contents and rupture, leading to cell death. In addition, biofilm formation ability of S. argenteus_70917 was significantly (p < 0.01) impaired by LSB1, with the percent inhibition of 35% at 10 µg/ml and 80% at 20 µg/ml. Overall, this study indicates that LSB1 can be considered a potential antibacterial agent in the control of S. argenteus in both planktonic and biofilm states. PRACTICAL APPLICATION: Foodborne pathogenic bacteria, such as Staphylococcus argenteus, and their biofilms represent potential risks for food safety. In recent years, customers' demand for "natural" products has increased food control. This study describes the novel bacteriocin LSB1 produced by the lactic acid bacterium species Lactobacillus plantarum. LSB1 showed strong antibacterial and antibiofilm activity against S. argenteus as well as thermal and acid-alkaline stability. Furthermore, the mechanisms of action of LSB1 on S. argenteus were preliminarily explored. These results indicate that LSB1 might be potentially used as an effective and natural food preservative.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
40
|
Ning Y, Ma M, Zhang Y, Zhang D, Hou L, Yang K, Fu Y, Wang Z, Jia Y. Antibacterial mechanism of sucrose laurate against Bacillus cereus by attacking multiple targets and its application in milk beverage. Food Res Int 2022; 154:111018. [DOI: 10.1016/j.foodres.2022.111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/04/2022]
|
41
|
Zhang J, Gu S, Zhang T, Wu Y, Ma J, Zhao L, Li X, Zhang J. Characterization and antibacterial modes of action of bacteriocins from Bacillus coagulans CGMCC 9951 against Listeria monocytogenes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Ning Y, Hou L, Ma M, Li M, Zhao Z, Zhang D, Wang Z, Jia Y. Synergistic antibacterial mechanism of sucrose laurate combined with nisin against Staphylococcus aureus and its application in milk beverage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Pang X, Song X, Chen M, Tian S, Lu Z, Sun J, Li X, Lu Y, Yuk HG. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Compr Rev Food Sci Food Saf 2022; 21:1657-1676. [PMID: 35181977 DOI: 10.1111/1541-4337.12922] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Most foodborne pathogens have biofilm-forming capacity and prefer to grow in the form of biofilms. Presence of biofilms on food contact surfaces can lead to persistence of pathogens and the recurrent cross-contamination of food products, resulting in serious problems associated with food safety and economic losses. Resistance of biofilm cells to conventional sanitizers urges the development of natural alternatives to effectively inhibit biofilm formation and eradicate preformed biofilms. Lactic acid bacteria (LAB) produce bacteriocins which are ribosomally synthesized antimicrobial peptides, providing a great source of nature antimicrobials with the advantages of green and safe properties. Studies on biofilm control by newly identified bacteriocins are increasing, targeting primarily onListeria monocytogenes, Staphylococcus aureus, Salmonella, and Escherichia coli. This review systematically complies and assesses the antibiofilm property of LAB bacteriocins in controlling foodborne bacterial-biofilms on food contact surfaces. The bacteriocin-producing LAB genera/species, test method (inhibition and eradication), activity spectrum and surfaces are discussed, and the antibiofilm mechanisms are also argued. The findings indicate that bacteriocins can effectively inhibit biofilm formation in a dose-dependent manner, but are difficult to disrupt preformed biofilms. Synergistic combination with other antimicrobials, incorporation in nanoconjugates and implementation of bioengineering can help to strengthen their antibiofilm activity. This review provides an overview of the potential and application of LAB bacteriocins in combating bacterial biofilms in food processing environments, assisting in the development and widespread use of bacteriocin as a promising antibiofilm-agent in food industries.
Collapse
Affiliation(s)
- Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaoye Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Minjie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| |
Collapse
|
44
|
Martín I, Rodríguez A, Delgado J, Córdoba JJ. Strategies for Biocontrol of Listeria monocytogenes Using Lactic Acid Bacteria and Their Metabolites in Ready-to-Eat Meat- and Dairy-Ripened Products. Foods 2022; 11:foods11040542. [PMID: 35206018 PMCID: PMC8871320 DOI: 10.3390/foods11040542] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens. This microorganism is a serious concern in the ready-to-eat (RTE) meat and dairy-ripened products industries. The use of lactic acid bacteria (LAB)-producing anti-L. monocytogenes peptides (bacteriocins) and/or lactic acid and/or other antimicrobial system could be a promising tool to control this pathogen in RTE meat and dairy products. This review provides an up to date about the strategies of use of LAB and their metabolites in RTE meat products and dairy foods by selecting the most appropriate strains, by analysing the mechanism by which they inhibit L. monocytogenes and methods of effective application of LAB, and their metabolites in these kinds of products to control this pathogen throughout the processing and storage. The selection of LAB with anti-L. monocytogenes activity allows to dispose of effective strains in meat and dairy-ripened products, achieving reductions form 2–5 logarithmic cycles of this pathogen throughout the ripening process. The combination of selected LAB strains with antimicrobial compounds, such as acid/sodium lactate and other strategies, as the active packaging could be the next future innovation for eliminating risk of L. monocytogenes in meat and dairy-ripened products.
Collapse
|
45
|
Isolation, purification, identification, and discovery of the antibacterial mechanism of ld-phenyllactic acid produced by Lactiplantibacillus plantarum CXG9 isolated from a traditional Chinese fermented vegetable. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
A rapid one-step process for the isolation of antibacterial peptides by silica-decorated Fe3O4nanoparticles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Jiang YH, Xin WG, Zhang QL, Lin LB, Deng XY. A Novel Bacteriocin Against Shigella flexneri From Lactiplantibacillus plantarum Isolated From Tilapia Intestine: Purification, Antibacterial Properties and Antibiofilm Activity. Front Microbiol 2022; 12:779315. [PMID: 35069481 PMCID: PMC8769287 DOI: 10.3389/fmicb.2021.779315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Few bacteriocins with antibacterial activity against Shigella flexneri have been reported. Here, a novel bacteriocin (LFX01) produced by Lactiplantibacillus plantarum strain LF-8 from the intestine of tilapia was purified and extensively characterized. LFX01 possesses a molecular weight of 1049.56 Da and an amino acid sequence of I-T-G-G-P-A-V-V-H-Q-A. LFX01 significantly inhibited S. flexneri strain 14 (S. flexneri_14) growth. Moreover, it exhibited excellent stability under heat and acid-base stress, and presented sensitivity to a variety of proteases, such as proteinase K, pepsin, and trypsin. The minimum inhibitory concentration (MIC) of LFX01 against S. flexneri_14 was 12.65 μg/mL, which was smaller than that of most of the previously found bacteriocins. Furthermore, LFX01 significantly inhibited (p < 0.05) S. flexneri_14 cells and decreased their cell viability. In addition, LFX01 could significantly (p < 0.05) inhibit biofilm formation of S. flexneri_14. Scanning electron microscopy analysis presented that the cell membrane permeability of S. flexneri_14 was demolished by LFX01, leading to cytoplasmic contents leakage and cell rupture death. In summary, a novel bacteriocin of lactic acid bacteria (LAB) was found, which could effectively control S. flexneri in both planktonic and biofilm states.
Collapse
Affiliation(s)
- Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
48
|
Byun KH, Ha Han S, Woo Choi M, Hong Park S, Ha SD. Effect of sublethal concentrations of bactericidal antibiotics on mutation frequency and stress response of Listeria monocytogenes. Food Res Int 2022; 151:110903. [PMID: 34980420 DOI: 10.1016/j.foodres.2021.110903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 11/04/2022]
Abstract
The purpose of this study was to investigate sublethal concentrations (SLC) of bactericidal antibiotics (ampicillin, gentamicin, kanamycin, and vancomycin) on the mutation frequency and stress response of antibiotic-induced-mutated (AIM) Listeria monocytogenes. Three L. monocytogenes strains (reference, clinical, and food isolate strains) were used in this study. SLC of bactericidal antibiotics significantly increased the mutation frequency in L. monocytogenes. It was found that AIM L. monocytogenes had a superior biofilm-forming ability than nontreated L. monocytogenes. This result correlated with the amounts of EPS produced (polysaccharide and protein) in the early stage of biofilm formation. AIM L. monocytogenes showed strong viability under food-associated stress (thermal, osmotic, and acidic) compared to nontreated L. monocytogenes. In addition, expression levels of motility (flaA) and virulence genes (hlyA, actA, and prfA) of AIM L. monocytogenes were significantly downregulated in the reference strain but significantly upregulated or similar to the expression levels in the clinical and food isolate strains compared to nontreated L. monocytogenes. Based on our results, SLC of bactericidal antibiotics increased the mutation frequency in L. monocytogenes, facilitated the adaptation of the bacterium to food-associated stress, and led to an increase in its pathogenicity.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, Republic of Korea
| | - Sang Ha Han
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, Republic of Korea
| | - Min Woo Choi
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, Republic of Korea.
| |
Collapse
|
49
|
Du R, Ping W, Ge J. Purification, characterization and mechanism of action of enterocin HDX-2, a novel class IIa bacteriocin produced by Enterococcus faecium HDX-2. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Pandey M, Bhati A, Priya K, Sharma KK, Singhal B. Precision Postbiotics and Mental Health: the Management of Post-COVID-19 Complications. Probiotics Antimicrob Proteins 2021; 14:426-448. [PMID: 34806151 PMCID: PMC8606251 DOI: 10.1007/s12602-021-09875-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 01/14/2023]
Abstract
The health catastrophe originated by COVID-19 pandemic construed profound impact on a global scale. However, a plethora of research studies corroborated convincing evidence conferring severity of infection of SARS-CoV-2 with the aberrant gut microbiome that strongly speculated its importance for development of novel therapeutic modalities. The intense exploration of probiotics has been envisaged to promote the healthy growth of the host, and restore intestinal microecological balance through various metabolic and physiological processes. The demystifying effect of probiotics cannot be defied, but there exists a strong skepticism related to their safety and efficacy. Therefore, molecular signature of probiotics termed as "postbiotics" are of paramount importance and there is continuous surge of utilizing postbiotics for enhancing health benefits, but little is explicit about their antiviral effects. Therefore, it is worth considering their prospective role in post-COVID regime that pave the way for exploring the pastoral vistas of postbiotics. Based on previous research investigations, the present article advocates prospective role of postbiotics in alleviating the health burden of viral infections, especially SARS-CoV-2. The article also posits current challenges and proposes a futuristic model describing the concept of "precision postbiotics" for effective therapeutic and preventive interventions that can be used for management of this deadly disease.
Collapse
Affiliation(s)
- Muskan Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Archana Bhati
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Kumari Priya
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - K K Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Barkha Singhal
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India.
| |
Collapse
|