1
|
Kasałka-Czarna N, Stachniuk A, Fornal E, Montowska M. Protein Aggregation during Storage of Roe Deer Meat: a Proteomic Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8001-8014. [PMID: 40114319 DOI: 10.1021/acs.jafc.4c12348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Understanding the biochemical changes associated with protein aggregation in meat during storage is critical to improving food safety, quality assurance, and consumer satisfaction in the global meat market. The study evaluated oxygen-induced protein aggregation in the meat of European roe deer (Capreolus capreolus) stored for up to 21 days under refrigeration. Three packaging methods were compared: modified atmosphere packaging with two different gas compositions (MAP(1): 80% O2/20% CO2 and MAP(2): 40% CO2/60% N2) and vacuum packaging (VAC). Additionally, meat dry aging (DA) was included in the study for comparison. Structural proteins most susceptible to aggregation included titin isoform X1 and myosin 1 isoform X1, and among sarcoplasmic proteins, sarcoplasmic/endoplasmic reticulum calcium ATPase 1 isoform X1. In addition, specific proteins involved in aggregate formation under high oxygen conditions were identified, mainly nebulin, isocitrate dehydrogenase, glyceraldehyde phosphate dehydrogenase, and creatine kinase. The extent of their aggregation varied with the type of muscle analyzed, with the most pronounced changes observed in MAP(1) after 21 days. Oxidation plays a crucial role in determining meat quality and shelf life; based on our findings, VAC is recommended for roe deer meat storage.
Collapse
Affiliation(s)
- Natalia Kasałka-Czarna
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| |
Collapse
|
2
|
Kasałka-Czarna N, Stachniuk A, Fornal E, Montowska M. Proteomic analysis of wild boar meat: Effect of storage method and time on muscle protein stability. Food Chem 2025; 464:141774. [PMID: 39486280 DOI: 10.1016/j.foodchem.2024.141774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Oxidation processes affect proteins from various molecular pathways and are crucial for wild boar meat quality, shelf life and human health. This study investigated the effects of different storage methods on the formation and composition of oxygen-induced protein aggregates in the muscles of European wild boar (Sus scrofa scrofa). Vacuum packaging (VAC), modified atmosphere packaging (MAP) and dry-ageing (DA) were compared over a 21-day storage period. The results showed significant differences in protein aggregation depending on the method and storage time. The most intense protein aggregation occurred in the MAP (80 % O2), while air DA (20.9 % O2) resulted in intermediate levels of protein aggregation. Crucial myofibrillar proteins involved in aggregate formation were titin, myosin isoforms (MYH1, MYH2 and MYH7) and nebulin, which were cross-linked with small sarcoplasmic enzymes, such as muscle creatine kinase, isocitrate dehydrogenase and ATPase 1. High‑oxygen storage conditions also promoted the oxidation of ATP synthase, beta-enolase 3, ADP/ATP translocase and myoglobin.
Collapse
Affiliation(s)
- Natalia Kasałka-Czarna
- Department of Meat Technology, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Magdalena Montowska
- Department of Meat Technology, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
| |
Collapse
|
3
|
Montowska M, Kasałka-Czarna N, Sumara A, Fornal E. Comparative analysis of the longissimus muscle proteome of European wild boar and domestic pig in response to thermal processing. Food Chem 2024; 456:139871. [PMID: 38870802 DOI: 10.1016/j.foodchem.2024.139871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/26/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
This study tries to fill the knowledge gap regarding differences in the expression of proteins in the meat of European wild boar (Sus scrofa scrofa) and domestic pig (Sus scrofa domestica), considering the impact of thermally induced degradation. We assessed relative protein changes between cooked longissimus thoracis et lumborum (LTL) muscle proteomes by using mass spectrometry, chemometric, label-free proteomic, and bioinformatic tools. Among 30 differentially abundant proteins identified MyHC-2a, ATPs-α, CK-S, ADP/ATPt1, IDH2, and MyBP-C1 were upregulated (x > 1) whereas NEB, γ-ENO and EPSF were downregulated (x < 1) in wild boar. ShinyGO and KEGG database pathway analyses revealed that these proteins are mainly involved in processes related to muscle contraction and various pathways of glucose metabolism and energy production. Protein expression changes could have been caused by the different muscle activity of wild animals in response to prolonged movement associated with foraging for food in the natural environment.
Collapse
Affiliation(s)
- Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznan, Poland.
| | - Natalia Kasałka-Czarna
- Department of Meat Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Agata Sumara
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
4
|
Aewsiri T, Ganesan P, Thongzai H. Whey Protein-Tannic Acid Conjugate Stabilized Emulsion-Type Pork Sausages: A Focus on Lipid Oxidation and Physicochemical Features. Foods 2023; 12:2766. [PMID: 37509856 PMCID: PMC10379616 DOI: 10.3390/foods12142766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The purpose of this study was to investigate the oxidative stability and physicochemical properties of pork emulsion sausages with whey protein-tannic acid conjugate and native whey protein. Over the course of 21 days, the thiobarbituric acid reactive substances (TBARS) of sausages containing a whey protein-tannic acid conjugate were lower than those of sausages with regular whey protein (p < 0.05). Kinetically, sausage containing the whey protein-tannic acid conjugate (k = 0.0242 day-1) appeared to last longer than sausage containing regular whey protein (k = 0.0667 day-1). The addition of the whey protein-tannic acid conjugate had no effect on product texture because there was no difference in hardness, springiness, cohesiveness, or water-holding capacity between the control and treated samples at Day 0 (p > 0.05). Scanning electron microscopy revealed that, at Day 21, the control sausage exhibited emulsion coalescence, as evidenced by an increase in the number of oil droplets and large voids, but not the whey protein-tannic acid conjugate-added sausage. There was no variation in the L*, a*, and b* values of the sausages when the whey protein-tannic acid conjugate was added (p > 0.05). However, there was a little increase in ΔE value in the treated sample. Thus, the whey-protein-tannic acid conjugate appeared to stabilize the lipid and physicochemical properties of the sausages by lowering the rate of TBARS production, retaining texture, water-holding capacity, and color, as well as by minimizing lipid coalescence during refrigerated storage.
Collapse
Affiliation(s)
- Tanong Aewsiri
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| | - Hataikan Thongzai
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
5
|
In situ crosslinking sodium alginate on oil-water interface to stabilize the O/W emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Agregán R, Pateiro M, Kumar M, Franco D, Capanoglu E, Dhama K, Lorenzo JM. The potential of proteomics in the study of processed meat products. J Proteomics 2023; 270:104744. [PMID: 36220542 DOI: 10.1016/j.jprot.2022.104744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Proteomics is a field that has grown rapidly since its emergence in the mid-1990s, reaching many disciplines such as food technology. The application of proteomic techniques in the study of complex biological samples such as foods, specifically meat products, allows scientists to decipher the underlying cellular mechanisms behind different quality traits. Lately, much emphasis has been placed on the discovery of biomarkers that facilitate the prediction of biochemical transformations of the product and provide key information on parameters associated with traceability and food safety. This review study focuses on the contribution of proteomics in the improvement of processed meat products. Different techniques and strategies have recently been successfully carried out in the study of the proteome of these products that can help the development of foods with a higher sensory quality, while ensuring consumer safety through early detection of microbiological contamination and fraud. SIGNIFICANCE: The food industry and the academic world work together with the aim of responding to market demands, always seeking excellence. In particular, the meat industry has to face a series of challenges such as, achieving sensory attributes in accordance with the standards required by the consumer and maintaining a high level of safety and transparency, avoiding deliver adulterated and/or contaminated products. This review work exposes how the aforementioned challenges are attempted to be solved through proteomic technology, discussing the latest and most outstanding research in this regard, which undoubtedly contribute to improving the quality, in all the extension of the word, of meat products, providing relevant knowledge in the field of proteomic research.
Collapse
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Department of Chemical Engineering, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
7
|
Krzywdzińska-Bartkowiak M, Piątek M, Kowalski R. The influence of the rotational speed of the meat cutter knives and bowl on the microstructure of meat products. Sci Rep 2022; 12:15492. [PMID: 36109539 PMCID: PMC9477806 DOI: 10.1038/s41598-022-19566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of the study was to determine the structure of meat batter and processed meat products, depending on the chopping time and rotational speed of the cutter knives and bowl, by means of histochemical methods combined with the computer image analysis system. Finely comminuted meat batters and processed meat products were investigated. Four variants of the rotational speed of cutter knives and bowl were applied in the experiment: 1500/10 rpm, 1500/20 rpm , 3000/10 rpm and 3000/20 rpm. The chopping process lasted 10 min. After 5, 6, 8 and 10 min of chopping samples of meat batter and processed meat products were collected for histological analyses. The microstructure of structural elements (fat globules and collagen fibres) was measured using computer image analysis. The following parameters were included in a characteristic of the images: the area, circumference, length and width of fat fields; the number of fat fields analysed; the percentage of fat fields in the field under analysis; the area, circumference, length and width of collagen fibres. The computer image analysis showed that the optimal speed of the cutter knives and bowl was 3000/20 rpm. The chopping time was reduced from 10 to 8 min.
Collapse
|
8
|
Simultaneous Mass Spectrometric Detection of Proteins of Ten Oilseed Species in Meat Products. Foods 2022; 11:foods11142155. [PMID: 35885397 PMCID: PMC9323756 DOI: 10.3390/foods11142155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/06/2023] Open
Abstract
Food fraud is a common issue in the modern food industry. The undeclared use of foreign proteins in meat products is a major concern in this context. Oilseeds are ideal for this purpose due to their high protein content and since huge amounts of oil meal are obtained as a by-product of oil production. Therefore, a UHPLC-MS/MS method was developed for the simultaneous detection of chia, coconut, flaxseed, hemp, peanut, pumpkin, rapeseed, sesame, soy, and sunflower proteins in meat products. Potential tryptic peptide markers were identified by high-resolution mass spectrometry. The final twenty peptide markers selected, which are specific for one of the ten species targeted, were each measured by multiple reaction monitoring. To the best of our knowledge, twelve new heat-stable marker peptides for chia, coconut, flaxseed, pumpkin, rapeseed, sesame and sunflower have not been reported previously. Emulsion-type sausages with 0.01, 0.25, 0.50, 0.75 and 1.00% protein addition by each oilseed species were produced for matrix calibration. No false-positive results were recorded. In the quantification of the ten oilseed species, 466 of 480 measuring data points of the recovery rate in unknown sausages (0.15 and 0.85% protein addition by each oilseed species) were in the accepted range of 80–120%.
Collapse
|
9
|
Sangaré M, Karoui R. Evaluation and monitoring of the quality of sausages by different analytical techniques over the last five years. Crit Rev Food Sci Nutr 2022; 63:8136-8160. [PMID: 35333686 DOI: 10.1080/10408398.2022.2053059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sausages are among the most vulnerable and perishable products, although those products are an important source of essential nutrients for human organisms. The evaluation of the quality of sausages becomes more and more required by consumers, producers, and authorities to thwarter falsification. Numerous analytical techniques including chemical, sensory, chromatography, and so on, are employed for the determination of the quality and authenticity of sausages. These methods are expensive and time consuming, and are often sensitive to significant sources of variation. Therefore, rapid analytical techniques such as fluorescence spectroscopy, near infrared (NIR), mid infrared (MIR), nuclear magnetic resonance (NMR), among others were considered helpful tools in this domain. This review will identify current gaps related to different analytical techniques in assessing and monitoring the quality of sausages and discuss the drawbacks of existing analytical methods regarding the quality and authenticity of sausages from 2015 up to now.
Collapse
Affiliation(s)
- Moriken Sangaré
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
- Institut Supérieur des Sciences et Médecine Vétérinaire de Dalaba, Département de Technologie et Contrôle des Produits Alimentaires, DTCPA, ISSMV/Dalaba, Guinée
- Univ. Gamal Abdel Nasser de Conakry, Guinée, Uganc, Guinée
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
| |
Collapse
|
10
|
Subramani IG, Perumal V, Gopinath SCB, Mohamed NM, Ovinis M, Sze LL. 1,1'-Carbonyldiimidazole-copper nanoflower enhanced collapsible laser scribed graphene engraved microgap capacitive aptasensor for the detection of milk allergen. Sci Rep 2021; 11:20825. [PMID: 34675227 PMCID: PMC8531451 DOI: 10.1038/s41598-021-00057-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
The bovine milk allergenic protein, 'β-lactoglobulin' is one of the leading causes of milk allergic reaction. In this research, a novel label-free non-faradaic capacitive aptasensor was designed to detect β-lactoglobulin using a Laser Scribed Graphene (LSG) electrode. The graphene was directly engraved into a microgapped (~ 95 µm) capacitor-electrode pattern on a flexible polyimide (PI) film via a simple one-step CO2 laser irradiation. The novel hybrid nanoflower (NF) was synthesized using 1,1'-carbonyldiimidazole (CDI) as the organic molecule and copper (Cu) as the inorganic molecule via one-pot biomineralization by tuning the reaction time and concentration. NF was fixed on the pre-modified PI film at the triangular junction of the LSG microgap specifically for bio-capturing β-lactoglobulin. The fine-tuned CDI-Cu NF revealed the flower-like structures was viewed through field emission scanning electron microscopy. Fourier-transform infrared spectroscopy showed the interactions with PI film, CDI-Cu NF, oligoaptamer and β-lactoglobulin. The non-faradaic sensing of milk allergen β-lactoglobulin corresponds to a higher loading of oligoaptamer on 3D-structured CDI-Cu NF, with a linear range detection from 1 ag/ml to 100 fg/ml and attomolar (1 ag/ml) detection limit (S/N = 3:1). This novel CDI-Cu NF/LSG microgap aptasensor has a great potential for the detection of milk allergen with high-specificity and sensitivity.
Collapse
Affiliation(s)
- Indra Gandi Subramani
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia. .,Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering , Universiti Malaysia Perlis (UniMAP) , Kangar, 01000, Malaysia. .,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP) , Arau, 02600, Perlis, Malaysia.
| | - Norani Muti Mohamed
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mark Ovinis
- Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Lim Li Sze
- Medical Innovation Ventures Sdn. Bhd (Mediven), Gelugor, 11700, Penang, Malaysia
| |
Collapse
|
11
|
Valletta M, Ragucci S, Landi N, Di Maro A, Pedone PV, Russo R, Chambery A. Mass spectrometry-based protein and peptide profiling for food frauds, traceability and authenticity assessment. Food Chem 2021; 365:130456. [PMID: 34243122 DOI: 10.1016/j.foodchem.2021.130456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/03/2023]
Abstract
The ever-growing use of mass spectrometry (MS) methodologies in food authentication and traceability originates from their unrivalled specificity, accuracy and sensitivity. Such features are crucial for setting up analytical strategies for detecting food frauds and adulterations by monitoring selected components within food matrices. Among MS approaches, protein and peptide profiling has become increasingly consolidated. This review explores the current knowledge on recent MS techniques using protein and peptide biomarkers for assessing food traceability and authenticity, with a specific focus on their use for unmasking potential frauds and adulterations. We provide a survey of the current state-of-the-art instrumentation including the most reliable and sensitive acquisition modes highlighting advantages and limitations. Finally, we summarize the recent applications of MS to protein/peptide analyses in food matrices and examine their potential in ensuring the quality of agro-food products.
Collapse
Affiliation(s)
- Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
12
|
Kotecka-Majchrzak K, Kasałka-Czarna N, Sumara A, Fornal E, Montowska M. Multispecies Identification of Oilseed- and Meat-Specific Proteins and Heat-Stable Peptide Markers in Food Products. Molecules 2021; 26:molecules26061577. [PMID: 33809348 PMCID: PMC7998630 DOI: 10.3390/molecules26061577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/31/2023] Open
Abstract
Consumer demand for both plant products and meat products enriched with plant raw materials is constantly increasing. Therefore, new versatile and reliable methods are needed to find and combat fraudulent practices in processed foods. The objective of this study was to identify oilseed species-specific peptide markers and meat-specific markers that were resistant to processing, for multispecies authentication of different meat and vegan food products using the proteomic LC-MS/MS method. To assess the limit of detection (LOD) for hemp proteins, cooked meatballs consisting of three meat species and hemp cake at a final concentration of up to 7.4% were examined. Hemp addition at a low concentration of below 1% was detected. The LOD for edestin subunits and albumin was 0.9% (w/w), whereas for 7S vicilin-like protein it was 4.2% (w/w). Specific heat-stable peptides unique to hemp seeds, flaxseed, nigella, pumpkin, sesame, and sunflower seeds, as well as guinea fowl, rabbit, pork, and chicken meat, were detected in different meat and vegan foods. Most of the oilseed-specific peptides were identified as processing-resistant markers belonging to 11S globulin subunits, namely conlinin, edestin, helianthinin, pumpkin vicilin-like or late embryogenesis proteins, and sesame legumin-like as well as 2S albumins and oleosin isoforms or selected enzymic proteins.
Collapse
Affiliation(s)
- Klaudia Kotecka-Majchrzak
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (K.K.-M.); (N.K.-C.)
| | - Natalia Kasałka-Czarna
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (K.K.-M.); (N.K.-C.)
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.S.); (E.F.)
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.S.); (E.F.)
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (K.K.-M.); (N.K.-C.)
- Correspondence: ; Tel.: +48-61-848-7257
| |
Collapse
|
13
|
Kotecka-Majchrzak K, Sumara A, Fornal E, Montowska M. Proteomic analysis of oilseed cake: a comparative study of species-specific proteins and peptides extracted from ten seed species. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:297-306. [PMID: 32629549 DOI: 10.1002/jsfa.10643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/06/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In recent years there has been a visible trend among consumers to move away from consuming meat in favor of plant products. Meat producers have therefore been trying to meet the expectations of consumers by introducing new products to the food market with a greater proportion of plant ingredients. Meat products are enriched not only by the addition of vegetable oils but also by ground or whole oilseeds or their preparation. In this study, we present in-solution tryptic digestion and an ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS)-based proteomics approach to investigate specific proteins and peptides of ten oilseed cakes, by-products of cold pressing oil from coconut, evening primrose, hemp, flax, milk thistle, nigella, pumpkin, rapeseed, sesame, and sunflower seeds, for authentication purposes. RESULTS We identified a total of 229 unique oilseed proteins. The number of specific proteins varied depending on the sample, from 4 to 48 in evening primrose and sesame. Moreover, we identified approximately 440 oilseed unique peptides in the cakes of all the analyzed oilseeds; the largest amounts were found in sesame (107 peptides), sunflower (100), pumpkin, hemp (42), rapeseed (36), and flax cake (35 peptides). CONCLUSIONS We provide novel information on unique / species-specific peptide markers that will extend the scope of testing the authenticity of a wide range of foods. The results of this peptide discovery experiment may further contribute to the development of targeted methods for the detection and quantification of oilseed proteins in processed foods, and thus to the improvement of food quality. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
14
|
Kotecka-Majchrzak K, Sumara A, Fornal E, Montowska M. Identification of species-specific peptide markers in cold-pressed oils. Sci Rep 2020; 10:19971. [PMID: 33203972 PMCID: PMC7672054 DOI: 10.1038/s41598-020-76944-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023] Open
Abstract
In recent years, cold-pressed vegetable oils have become very popular on the global market. Therefore, new versatile methods with high sensitivity and specificity are needed to find and combat fraudulent practices. The objective of this study was to identify oilseed species-specific peptide markers, using proteomic techniques, for authentication of 10 cold-pressed oils. In total, over 380 proteins and 1050 peptides were detected in the samples. Among those peptides, 92 were found to be species-specific and unique to coconut, evening primrose, flax, hemp, milk thistle, nigella, pumpkin, rapeseed, sesame, and sunflower oilseed species. Most of the specific peptides were released from major seed storage proteins (11 globulins, 2S albumins), and oleosins. Additionally, the presence of allergenic proteins in the cold-pressed oils, including pumpkin Cuc ma 5, sunflower Hel a 3, and six sesame allergens (Ses i 1, Ses i 2, Ses i 3, Ses i 4, Ses i 6, and Ses i 7) was confirmed in this study. This study provides novel information on specific peptides that will help to monitor and verify the declared composition of cold-pressed oil as well as the presence of food allergens. This study can be useful in the era of widely used unlawful practices.
Collapse
Affiliation(s)
- Klaudia Kotecka-Majchrzak
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland.
| |
Collapse
|
15
|
Pilolli R, Van Poucke C, De Angelis E, Nitride C, de Loose M, Gillard N, Huet AC, Tranquet O, Larré C, Adel-Patient K, Bernard H, Mills ENC, Monaci L. Discovery based high resolution MS/MS analysis for selection of allergen markers in chocolate and broth powder matrices. Food Chem 2020; 343:128533. [PMID: 33183874 DOI: 10.1016/j.foodchem.2020.128533] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Peptide marker identification is an important step in development of a mass spectrometry method for multiple allergen detection, since specificity, robustness and sensitivity of the overall analytical method will depend on the reliability of the proteotypic peptides. As part of the development of a multi-analyte reference method, discovery analysis of two incurred food matrices has been undertaken to select the most reliable peptide markers. Six allergenic ingredients (milk, egg, peanut, soybean, hazelnut, and almond) were incurred into either chocolate or broth powder matrix. Different conditions of protein extraction and purification were tested and the tryptic peptide pools were analysed by untargeted high resolution tandem mass spectrometry and the resulting fragmentation spectra were processed via a commercial software for sequence identification. The analysis performed on incurred foods provides both a prototype effective and straightforward sample preparation protocol and delivers reliable peptides to be included in a standardized selected reaction monitoring method.
Collapse
Affiliation(s)
- Rosa Pilolli
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy
| | - Christof Van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | | | - Chiara Nitride
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Marc de Loose
- Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | | | | | | | | | - Karine Adel-Patient
- INRA-CEA, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Immuno-Allergie Alimentaire, Gif-sur-Yvette, France
| | - Hervé Bernard
- INRA-CEA, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Immuno-Allergie Alimentaire, Gif-sur-Yvette, France
| | - E N Clare Mills
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Linda Monaci
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy.
| |
Collapse
|
16
|
Li Y, Zhang Y, Kang C, Zhao W, Li S, Wang S. Assessment of carbonic anhydrase 3 as a marker for meat authenticity and performance of LC-MS/MS for pork content. Food Chem 2020; 342:128240. [PMID: 33164820 DOI: 10.1016/j.foodchem.2020.128240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 12/22/2022]
Abstract
In recent years, food fraud is a global issue that has raised wide public concern. Mass spectrometry techniques have a significant advantage of qualitatively and quantitatively analyzing food authenticity, especially for highly processed meat products. In this work, a simple and specific, rapid resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of pork content in processed meat products according to internal standard (ISTD) method. To improve the efficiency of sample preparation, simplified bead-beating and enzymolysis process were investigated. In contrast with different heat-stable and specific porcine-peptides, EPITVSSDQMAK, GGPLTAAYR, HDPSLLPWTASYDPGSAK from Carbonic anhydrase 3 proved to have an excellent quantitative ability, thus obtaining good linear relationship and satisfactory recovery. This method was successfully applied to different types of meat products, thus demonstrating that complex mixtures of pork content can be accurately quantified.
Collapse
Affiliation(s)
- Yingying Li
- China Meat Research Center, 100068 Beijing, China
| | | | - Chaodi Kang
- China Meat Research Center, 100068 Beijing, China
| | - Wentao Zhao
- China Meat Research Center, 100068 Beijing, China
| | - Shilei Li
- China Meat Research Center, 100068 Beijing, China
| | - Shouwei Wang
- China Meat Research Center, 100068 Beijing, China.
| |
Collapse
|