1
|
Yang X, Liu B, Zhang L, Wang X, Xie J, Liang J. Spatial Distribution and Dietary Risk Assessment of Aflatoxins in Raw Milk and Dairy Feedstuff Samples from Different Climate Zones in China. Toxins (Basel) 2025; 17:41. [PMID: 39852994 PMCID: PMC11769556 DOI: 10.3390/toxins17010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
This study aimed to explore the contamination of aflatoxins by investigating the spatial distribution of aflatoxin B1 (AFB1) in cow feedstuff and aflatoxin M1 (AFM1) in raw milk, and the potential health risks of AFM1 in milk and dairy products. Feedstuff and raw milk were collected from 160 pastures in three climate zones of China from October to November 2020. The results indicated the level of AFB1 and AFM1 ranged from 51.1 to 74.1 ng/kg and 3.0 to 7.0 ng/kg, respectively. Spatial analysis indicated the contamination was mostly concentrated in the temperate monsoon climate zone. On average, the estimated dietary exposure to AFM1 from milk and dairy products for Chinese consumers ranged from 0.0138 to 0.0281 ng/kg bw/day, with the MOE values below 10,000, and liver cancer risk of 0.00004-0.00009 cases/100,000 persons/year. For different groups, the average exposure to AFM1 was highest in the temperate monsoon climate zone and for toddlers.
Collapse
Affiliation(s)
- Xueli Yang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.Y.); (L.Z.); (X.W.)
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan 1st Street, Tianshan District, Urumqi 830001, China
| | - Bolin Liu
- Anhui Provincial Center for Disease Control and Prevention, No. 12560, Fuhua Avenue, Economic and Technological Development Zone, Hefei 230601, China; (B.L.); (J.X.)
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.Y.); (L.Z.); (X.W.)
| | - Xiaodan Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.Y.); (L.Z.); (X.W.)
| | - Jian Xie
- Anhui Provincial Center for Disease Control and Prevention, No. 12560, Fuhua Avenue, Economic and Technological Development Zone, Hefei 230601, China; (B.L.); (J.X.)
| | - Jiang Liang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.Y.); (L.Z.); (X.W.)
| |
Collapse
|
2
|
Behtarin P, Movassaghghazani M. Aflatoxin M 1 level and risk assessment in milk, yogurt, and cheese in Tabriz, Iran. Toxicon 2024; 250:108119. [PMID: 39389209 DOI: 10.1016/j.toxicon.2024.108119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
AIM AND BACKGROUND The objective of this study was to investigate the presence of aflatoxin M1 (AFM1) in milk, yogurt, and cheese samples collected from Tabriz, Iran. Additionally, the study conducted a risk assessment related to the consumption of milk and dairy products within Tabriz city. STUDY METHOD For this study, 56 samples (raw milk, pasteurized milk, ultra-high temperature milk (UHT), traditional yogurt, pasteurized yogurt, traditional cheese, and pasteurized cheese) were collected randomly in Tabriz from December 2021 to March 2022. The analysis was carried out using liquid chromatography, which was equipped with a fluorescence detector. The estimated dietary intake (EDI) and the hazard index (HI) were calculated for the risk assessment. RESULTS AND DISCUSSION AFM1 was detected in all samples. The highest concentration of AFM1 was observed in traditional cheese (P < 0.05). The lowest concentration was observed in UHT milk and there were no significant differences between the various milk types and pasteurized yogurt (P > 0.05). Moreover, in all samples, the levels of AFM1 were below the maximum limit permitted by Iranian national standards. AFM1 levels in traditional yogurt exceeded the European Union's permissible limit in 25% of the samples. The HI in all samples was less than one for both adult and child consumers, except for milk samples for children, which were more than one and indicated a medium risk. In conclusion, the levels of contamination in milk and dairy products and risk assessment appear not to pose a public health risk to Tabriz consumers.
Collapse
Affiliation(s)
- Peyman Behtarin
- Faculty of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | - Mohammadhossein Movassaghghazani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran.
| |
Collapse
|
3
|
Kortei NK, Gillette VS, Wiafe-Kwagyan M, Ansah LO, Kyei-Baffour V, Odamtten GT. Fungal profile, levels of aflatoxin M1, exposure, and the risk characterization of local cheese ' wagashi' consumed in the Ho Municipality, Volta Region, Ghana. Toxicol Rep 2024; 12:186-199. [PMID: 38313814 PMCID: PMC10837644 DOI: 10.1016/j.toxrep.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/06/2024] Open
Abstract
Wagashi is a West African type cottage cheese locally prepared from cow milk. Wagashi like other milk products, is prone to microbial contamination, particularly by fungi. Many of these fungal species produce mycotoxins which are of serious public health concern. This work aimed to update the mycoflora profile and determine the concentrations of aflatoxin M1 and its health risk characterization due to the consumption of wagashi. Culturing the wagashi on mycological media (Oxytetracycline Glucose Yeast Extract OGYE, Dichloran Rose Bengal Chloramphenicol DRBC) caused a de-novo growth of the quiescent spores at 28-30 °C for 5-7 days. The analysis of AFM1 levels in the samples was done using High-Performance Liquid Chromatography connected to a Fluorescence detector (HPLC-FLD). The exposure and risk assessment to the AFMI levels were determined using deterministic models prescribed by the European Food Safety Authority (EFSA). The fungal counts ranged between 2.36-4.30 log10 CFU/g. In total, thirteen (13) fungal species from eight (8) genera were isolated from all wagashi samples. They are; Fusarium oxysporum, Aspergillus flavus, Aspergillus niger, Fusarium verticillioides, Penicillium digitatum, Trichoderma harzianum, Aspergillus terreus, Rhodotorula mucilaginosa, Rhizopus stolonifer, Aspergillus fumigatus, Yeast sp., Mucor racemosus and Fusarium oligosporum belonging to the genera Fusarium, Aspergillus, Penicillium, Trichoderma, Rhodotorula, Rhizopus, Yeast, and Mucor. The AFM1 observed in the wagashi samples' analysis was low, ranging from 0.00 (Not Detected) ± 0.00 - 0.06 ± 0.002 µg/Kg. Risk assessments of AFM1 using deterministic models produced outcomes that ranged between 5.92 × 10-3- 0.14 ng/kg bw/day, 1.42 -44.35, 0-0.0323 ng aflatoxins/kg bw/day, and 1.51 × 10-3 - 9.69 × 10-4 cases/100,000 person/yr for estimated daily intake (EDI), margin of exposure (MOE), average potency, and cancer risks, respectively, for the age categories investigated. Fungal counts were interpreted as medium to high. It was also established that the consumption of wagashi may pose adverse health effects on all age categories in the selected zones of the study since all calculated MOE values were less than 100,000.
Collapse
Affiliation(s)
- Nii Korley Kortei
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
- Department of Sports Nutrition, School of Sports and Exercise Medicine, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Valentina Sylvia Gillette
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Michael Wiafe-Kwagyan
- Department of Plant and Environmental Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 55, Legon, Ghana
| | - Leslie Owusu Ansah
- Department of Food Laboratory, Food and Drugs Authority, P.O. Box CT 2783, Cantonments, Accra, Ghana
| | - Vincent Kyei-Baffour
- Food Chemistry and Nutrition Research Division, Council for Scientific and Industrial Research, Food Research Institute, P. O. Box M20, Accra, Ghana
| | - George Tawia Odamtten
- Department of Plant and Environmental Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 55, Legon, Ghana
| |
Collapse
|
4
|
Wang M, Liu Z, Liu C, He W, Qin D, You M. DNAzyme-based ultrasensitive immunoassay: Recent advances and emerging trends. Biosens Bioelectron 2024; 251:116122. [PMID: 38382271 DOI: 10.1016/j.bios.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.e., DNAzyme, provides a novel approach to improve the detection sensitivity of immunoassay. Simultaneously, its advantages of simple synthesis and high stability enable low cost, broad applicability and long shelf life for immunoassay. In this review, we summarized the recent advances in DNAzyme-based immunoassay. First, we summarized the existing different DNAzymes based on their catalytic activities. Next, the common signal amplification strategies used for DNAzyme-based immunoassays were reviewed to cater to diverse detection requirements. Following, the wide applications in disease diagnosis, environmental monitoring and food safety were discussed. Finally, the current challenges and perspectives on the future development of DNAzyme-based immunoassays were also provided.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhe Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wanghong He
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, PR China
| | - Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China.
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
5
|
Occurrence of Aflatoxin M1 in Cow, Goat, Buffalo, Camel, and Yak Milk in China in 2016. Toxins (Basel) 2022; 14:toxins14120870. [PMID: 36548766 PMCID: PMC9784103 DOI: 10.3390/toxins14120870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
In this present study, 195 cow milk, 100 goat milk, 50 buffalo milk, 50 camel milk, and 50 yak milk samples were collected in China in May and October 2016. The presence of aflatoxin M1 (AFM1) was determined using enzyme-linked immunosorbent assay method. For all cow milk samples, 128 samples (65.7%) contained AFM1 in concentrations ranging from 0.005 to 0.191 µg/L, and 6 samples (3.1%) from Sichuan province in October were contaminated with AFM1 above 0.05 µg/L (EU limit). For all goat milk samples, 76.0% of samples contained AFM1 in concentrations ranging from 0.005 to 0.135 µg/L, and 9 samples (9.0%) from Shanxi province in October were contaminated with AFM1 above 0.05 µg/L. For all buffalo milk samples, 24 samples (48.0%) contained AFM1 in concentrations ranging from 0.005 to 0.089 µg/L, and 2 samples collected in October were contaminated with AFM1 above 0.05 µg/L. Furthermore, 28.0% of samples contained AFM1 in concentrations ranging from 0.005 to 0.007 µg/L in camel milk samples, and 18.0% of samples contained AFM1 in concentrations ranging from 0.005 to 0.007 µg/L in yak milk samples. Our survey study has expanded the current knowledge of the occurrence of AFM1 in milk from five dairy species in China, in particular the minor dairy species.
Collapse
|
6
|
Xiong J, Chen F, Zhang J, Ao W, Zhou X, Yang H, Wu Z, Wu L, Wang C, Qiu Y. Occurrence of Aflatoxin M1 in Three Types of Milk from Xinjiang, China, and the Risk of Exposure for Milk Consumers in Different Age-Sex Groups. Foods 2022; 11:3922. [PMID: 36496730 PMCID: PMC9738243 DOI: 10.3390/foods11233922] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin M1 (AFM1), a group 1 carcinogen, is a risk factor to be monitored in milk. This study aimed to investigate the occurrence of AFM1 in milk in Xinjiang, China, and to assess the risk of exposure for milk consumers in different age-sex groups. A total of 259 milk samples including pasteurized milk (93 samples), extended-shelf-life (ESL) milk (96), and raw donkey milk (70) were collected in Xinjiang from January to March in 2022. The AFM1 content of the milk samples was detected using a validated ELISA method. Of the 259 total samples analyzed for AFM1, 84 (32.4%) samples were contaminated at levels greater than the detection limit of 5 ng/L, with the maximum level of 16.5 ng/L. The positive rates of AFM1 in pasteurized milk and ESL milk were 43.0% (n = 40) and 45.8% (n = 44), respectively, and AFM1 was undetectable in donkey milk. The estimated daily intakes of AFM1 in each age group were lower than the hazard limits and were similar between male and female milk consumers. Therefore, the AFM1 contamination of milk in Xinjiang is low but still needs to be continuously monitored considering that children are susceptible to AFM1.
Collapse
Affiliation(s)
- Jianglin Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fangyuan Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Weiping Ao
- College of Animal Science and Technology, Tarim University, Alaer 843300, China
| | - Xiaoling Zhou
- College of Animal Science and Technology, Tarim University, Alaer 843300, China
| | - Hua Yang
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lingying Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chong Wang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
7
|
Incidence of Aflatoxin M1 in Milk and Milk Products from Punjab, Pakistan, and Estimation of Dietary Intake. DAIRY 2022. [DOI: 10.3390/dairy3030041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the present study, 124 samples of milk and milk products were analyzed for the presence of aflatoxin M1 (AFM1), which were purchased from the central cities of Punjab, Pakistan. The analysis was carried out using reverse-phase liquid chromatography, which was equipped with a fluorescence detector. The results showed that 66 samples (53.8%) of raw milk and milk products were found to be contaminated with detectable levels of AFM1 above ≤50 ng/L, and 24.2% of the samples had levels of AFM1 higher than the permissible limit of the European Union (EU; 50 ng/kg). In total, 53.6% of the raw milk, 57.8% of the UHT (ultra-heat-temperature) milk, 45% of the powdered milk, 57.1% of the yogurt, 55.5% of the cheese, and 50% of the buttermilk samples had levels higher than the LOD, i.e., 4 ng/L. The highest mean of 82.4 ± 7.8 ng/kg of AFM1 was present in the positive samples of raw milk. The highest dietary intake of AFM1 was found in infants’ milk (5.35 ng/kg/day), UHT milk (1.80 ng/kg/day), powdered milk (5.25 ng/kg/day), and yogurt (1.11 ng/kg/day). However, no dietary intake was detected in the cheese and butter milk samples used for infants. The results from the undertaken work are beneficial for establishing rigorous limits for AFB1 in animal feed, especially considering the high prevalence rate of hepatitis cases in the central cities of Punjab, Pakistan.
Collapse
|
8
|
Chen J, Ye J, Li L, Wu Y, Liu H, Xuan Z, Chen M, Wang S. One-step automatic sample pretreatment for rapid, simple, sensitive, and efficient determination of aflatoxin M1 in milk by immunomagnetic beads coupled to liquid chromatography-tandem mass spectrometry. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Xiong J, Wen D, Zhou H, Chen R, Wang H, Wang C, Wu Z, Qiu Y, Wu L. Occurrence of aflatoxin M1 in yogurt and milk in central-eastern China and the risk of exposure in milk consumers. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Mohammadi S, Behmaram K, Keshavarzi M, Saboori S, Jafari A, Ghaffarian-Bahraman A. Aflatoxin M1 contamination in different Iranian cheese types: A systematic review and meta-analysis. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Mycotoxins in food, recent development in food analysis and future challenges; a review. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Tolosa J, Rodríguez-Carrasco Y, Ruiz MJ, Vila-Donat P. Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: A review. Food Chem Toxicol 2021; 158:112661. [PMID: 34762978 DOI: 10.1016/j.fct.2021.112661] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/08/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
The world requests for raw materials used in animal feed has been steadily rising in the last years driven by higher demands for livestock production. Mycotoxins are frequent toxic metabolites present in these raw materials. The exposure of farm animals to mycotoxins could result in undesirable residues in animal-derived food products. Thus, the potential ingestion of edible animal products (milk, meat and fish) contaminated with mycotoxins constitutes a public health concern, since they enter the food chain and may cause adverse effects upon human health. The present review summarizes the state-of-the-art on the occurrence of mycotoxins in feed, their metabolism and carry-over into animal source foodstuffs, focusing particularly on the last decade. Maximum levels (MLs) for various mycotoxins have been established for a number of raw feed materials and animal food products. Such values are sometimes exceeded, however. Aflatoxins (AFs), fumonisins (FBs), ochratoxin A (OTA), trichothecenes (TCs) and zearalenone (ZEN) are the most prevalent mycotoxins in animal feed, with aflatoxin M1 (AFM1) predominating in milk and dairy products, and OTA in meat by-products. The co-occurrence of mycotoxins in feed raw materials tends to be the rule rather than the exception, and the carry-over of mycotoxins from feed to animal source foods is more than proven.
Collapse
Affiliation(s)
- J Tolosa
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain
| | - Y Rodríguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain
| | - M J Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain
| | - P Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain.
| |
Collapse
|
13
|
Torović L, Popov N, Živkov-Baloš M, Jakšić S. Risk estimates of hepatocellular carcinoma in Vojvodina (Serbia) related to aflatoxin M1 contaminated cheese. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Xiong J, Zhang X, Zhou H, Lei M, Liu Y, Ye C, Wu W, Wang C, Wu L, Qiu Y. Aflatoxin M1 in pasteurized, ESL and UHT milk products from central China during summer and winter seasons: Prevalence and risk assessment of exposure in different age groups. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Xu N, Xiao Y, Xie Q, Li Y, Ye J, Ren D. Occurrence of aflatoxin B1 in total mixed rations and aflatoxin M1 in raw and commercial dairy milk in northern China during winter season. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Rapid, on-site, and sensitive detection of aflatoxin M1 in milk products by using time-resolved fluorescence microsphere test strip. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Muaz K, Riaz M, Oliveira CAFD, Akhtar S, Ali SW, Nadeem H, Park S, Balasubramanian B. Aflatoxin M1 in milk and dairy products: global occurrence and potential decontamination strategies. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1873387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Khurram Muaz
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Riaz
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | | |
Collapse
|
18
|
The challenges of global occurrence of aflatoxin M1 contamination and the reduction of aflatoxin M1 in milk over the past decade. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107352] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Pimpitak U, Rengpipat S, Phutong S, Buakeaw A, Komolpis K. Development and validation of a lateral flow immunoassay for the detection of aflatoxin M1 in raw and commercialised milks. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Umaporn Pimpitak
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Sirirat Rengpipat
- Department of Microbiology Faculty of Science Chulalongkorn University Bangkok10330Thailand
| | - Songchan Phutong
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Anumart Buakeaw
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Kittinan Komolpis
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
- Food Risk Hub Research Unit of Chulalongkorn University Bangkok10330Thailand
| |
Collapse
|
20
|
Determination of Aflatoxin M1 in Raw Milk from Different Provinces of Ecuador. Toxins (Basel) 2020; 12:toxins12080498. [PMID: 32756414 PMCID: PMC7472276 DOI: 10.3390/toxins12080498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 01/02/2023] Open
Abstract
Aflatoxin M1 (AFM1) is a mycotoxin from Aspergillus flavus and A. parasiticus, classified as carcinogenic and hepatotoxic. The objective of the present investigation was to determine its presence in raw milk from north-central Ecuador, constituted by the provinces of Pichincha, Manabí, and Santo Domingo de los Tsáchilas. These areas represent approximately 30% of Ecuadorian milk production. By the end of the investigation, a total of 209 raw milk samples were collected, obtained both during the dry (June and August) and rainy seasons (April and November) of 2019. AFM1 concentrations were measured with lateral flow immunochromatographic assays, and 100% of the samples were positive for this mycotoxin, presenting a mean value of 0.0774 μg/kg with a range of 0.023 to 0.751 μg/kg. These AFM1 levels exceeded the European Union regulatory limit of 0.05 μg/kg in 59.3% (124/209) of samples, while only 1.9% (4/209) exceeded the Ecuadorian legal limit of 0.5 μg/kg. By using non-parametric tests, significant differences were determined (p ≤ 0.05) between the provinces for months of study, climatic season (being higher in the dry season), and climatic region (greater in the coast region). On the other hand, there were no significant differences (p ≥ 0.05) between the types of producers or between production systems. Therefore, AFM1 contamination in raw milk does not present a serious public health problem in Ecuador, but a monitoring and surveillance program for this mycotoxin in milk should be developed to prevent consumer health problems.
Collapse
|
21
|
Hooshfar S, Khosrokhavar R, Yazdanpanah H, Eslamizad S, Kobarfard F, Nazari F, Kokaraki V, Kokkinakis M, Goumenou M, Tsitsimpikou C, Tsatsakis A. Health risk assessment of aflatoxin M1 in infant formula milk in IR Iran. Food Chem Toxicol 2020; 142:111455. [PMID: 32474022 DOI: 10.1016/j.fct.2020.111455] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 01/05/2023]
Abstract
In this study, two accurate, precise, selective and sensitive methods were developed for determining aflatoxin M1 (AFM1) in infant formula milk using immunoaffinity column clean-up followed by high performance liquid chromatography (HPLC) with fluorescence detection. The validated methods were used for determination of AFM1 in 29 samples of 6 different infant formula milk brands and the risk of AFM1 in infants aged zero to 6 months old was assessed using cancer risk, Margin of Exposure (MOE) and Hazard Index (HI). Only one sample (3.4%) was contaminated with AFM1. Although the results showed that MOE values for the mean and median exposure to AFM1 was <10,000 in infants, the additional cancer risk due to mean and median exposure to AFM1 in infant <6 months were 0.00010 and 0.00012 additional cases per year per 105 individuals, respectively, which indicates no health concern. In addition, HI values for the mean and median exposure to AFM1 for infants were quite below one which indicates no health concern. To the best of our knowledge, this is the first report on risk assessment of AFM1 in infant formula milk consumed by Iranian infants <6 months old, presenting a low risk for the evaluated groups.
Collapse
Affiliation(s)
- Shirin Hooshfar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Roya Khosrokhavar
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, IR, Iran
| | - Hassan Yazdanpanah
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR, Iran.
| | - Samira Eslamizad
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR, Iran.
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR, Iran
| | - Firouzeh Nazari
- Food and Drug Administration, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Venetia Kokaraki
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Manolis Kokkinakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Marina Goumenou
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | | | - Aristides Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
22
|
Xiong J, Peng L, Zhou H, Lin B, Yan P, Wu W, Liu Y, Wu L, Qiu Y. Prevalence of aflatoxin M1 in raw milk and three types of liquid milk products in central-south China. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106840] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|