1
|
Arafa SS, Badr El-Din S, Hewedy OA, Abdelsattar S, Hamam SS, Sharif AF, Elkholy RM, Shebl GZ, Al-Zahrani M, Salama RAA, Abdelkader A. Flubendiamide provokes oxidative stress, inflammation, miRNAs alteration, and cell cycle deregulation in human prostate epithelial cells: The attenuation impact of synthesized nano-selenium using Trichodermaaureoviride. CHEMOSPHERE 2024; 365:143305. [PMID: 39260595 DOI: 10.1016/j.chemosphere.2024.143305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Flubendiamide (FBD) is a novel diamide insecticide extensively used with potential human health hazards. This research aimed to examine the effects of FBD on PrEC prostate epithelial cells, including Oxidative stress, pro-inflammatory responses, modifications in the expression of oncogenic and suppressor miRNAs and their target proteins, disruption of the cell cycle, and apoptosis. Additionally, the research investigated the potential alleviative effect of T-SeNPs, which are selenium nanoparticles biosynthesized by Trichoderma aureoviride, against the toxicity induced by FBD. Selenium nanoparticles were herein synthesized by Trichoderma aureoviride. The major capping metabolites in synthesized T-SeNPs were Isochiapin B and Quercetin 7,3',4'-trimethyl ether. T-SeNPs showed a spherical shape and an average size between 57 and 96.6 nm. FBD exposure (12 μM) for 14 days induced oxidative stress and inflammatory responses via overexpression of NF-κB family members. It also distinctly caused upregulation of miR-221, miR-222, and E2F2, escorted by downregulation of miR-17, miR-20a, and P27kip1. FBD encouraged PrEC cells to halt at the G1/S checkpoint. Apoptotic cells were drastically increased in FBD-treated sets. Treatment of T-SeNPs simultaneously with FBD revealed its antioxidant, anti-inflammatory, and antitumor activities in counteracting FBD-induced toxicity. Our findings shed light on the potential FBD toxicity that may account for the neoplastic transformation of epithelial cells in the prostate and the mitigating activity of eco-friendly synthesized T-SeNPs.
Collapse
Affiliation(s)
- Samah S Arafa
- Department of Pesticides, Faculty of Agriculture, Menoufia University, Egypt.
| | - Sahar Badr El-Din
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Egypt
| | - Omar A Hewedy
- Department of Genetics, Faculty of Agriculture, Menoufia University, Egypt
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Egypt
| | - Sanaa S Hamam
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Egypt
| | - Asmaa F Sharif
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Egypt; Department of Clinical Medical Sciences, College of Medicine, Dar Al-Uloom University, Riyadh, Saudi Arabia
| | - Reem Mohsen Elkholy
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Egypt
| | - Ghada Zaghloul Shebl
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Menoufia University, Egypt
| | - Majid Al-Zahrani
- Department of Biological Sciences, College of Sciences and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Rasha Aziz Attia Salama
- Department of Community and Public Health, Kasr El Aini Faculty of Medicine, Cairo University, Egypt; Department of Community Medicine, Ras Al Khaimah Medical and Health Science University, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Egypt
| |
Collapse
|
2
|
Omran BA, Rabbee MF, Abdel-Salam M, Baek KH. Nanobiological synthesis of silver oxide-doped titanium oxide bionanocomposite targeting foodborne and phytopathogenic bacteria. FOOD BIOSCI 2024; 61:104790. [DOI: 10.1016/j.fbio.2024.104790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Herrera Pérez GM, Castellano LE, Ramírez Valdespino CA. Trichoderma and Mycosynthesis of Metal Nanoparticles: Role of Their Secondary Metabolites. J Fungi (Basel) 2024; 10:443. [PMID: 39057328 PMCID: PMC11278454 DOI: 10.3390/jof10070443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Nanocompounds are widely used in many fields such as environmental, medicine, or agriculture. Nowadays, these nanocompounds are mainly synthesized by chemical methods, causing environmental pollution and potential health problems. Thus, microorganisms have been investigated as potential nanoparticle green biosynthesizers. The main research is focused on the synthesis of nanoparticles (NPs) using algae, yeast, bacteria, and fungi. Among them, fungi have been the most used, due to their simple and effective mycosynthesis. Fungi as well as other organisms involved in green synthesis of NPs use their secondary metabolites (SMs) to mediate and catalyze the reactions to produce metal nanoparticles (MNPs) as well as being able to act as capping agents producing different physicochemical characteristics and biological activities in the MNPs. Among the various fungi used for mycosynthesis are Trichoderma species, which mediate the production of Ag, Cu, CuO, Zn, ZnO, and other MNPs. Here, we review the main SMs from Trichoderma that have been reported or suggested to contribute to synthesize or act as capping agents and their applications, as well as present the main challenges faced by this type of synthesis.
Collapse
Affiliation(s)
- Guillermo M. Herrera Pérez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico;
| | - Laura E. Castellano
- División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato, Loma del Bosque #103, Lomas del Campestre, León de los Aldama 37150, Gto., Mexico;
| | - Claudia A. Ramírez Valdespino
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico
| |
Collapse
|
4
|
Khan R, Anwar F, Ghazali FM. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024; 10:e28361. [PMID: 38628751 PMCID: PMC11019184 DOI: 10.1016/j.heliyon.2024.e28361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/19/2024] Open
Abstract
Mycotoxins, harmful compounds produced by fungal pathogens, pose a severe threat to food safety and consumer health. Some commonly produced mycotoxins such as aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and patulin have serious health implications in humans and animals. Mycotoxin contamination is particularly concerning in regions heavily reliant on staple foods like grains, cereals, and nuts. Preventing mycotoxin contamination is crucial for a sustainable food supply. Chromatographic methods like thin layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), and liquid chromatography coupled with a mass spectrometer (LC/MS), are commonly used to detect mycotoxins; however, there is a need for on-site, rapid, and cost-effective detection methods. Currently, enzyme-linked immunosorbent assays (ELISA), lateral flow assays (LFAs), and biosensors are becoming popular analytical tools for rapid detection. Meanwhile, preventing mycotoxin contamination is crucial for food safety and a sustainable food supply. Physical, chemical, and biological approaches have been used to inhibit fungal growth and mycotoxin production. However, new strains resistant to conventional methods have led to the exploration of novel strategies like cold atmospheric plasma (CAP) technology, polyphenols and flavonoids, magnetic materials and nanoparticles, and natural essential oils (NEOs). This paper reviews recent scientific research on mycotoxin toxicity, explores advancements in detecting mycotoxins in various foods, and evaluates the effectiveness of innovative mitigation strategies for controlling and detoxifying mycotoxins.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| |
Collapse
|
5
|
Kashisaz M, Enayatizamir N, Fu P, Eslahi M. Synthesis of nanoparticles using Trichoderma Harzianum, characterization, antifungal activity and impact on Plant Growth promoting Bacteria. World J Microbiol Biotechnol 2024; 40:107. [PMID: 38396217 DOI: 10.1007/s11274-024-03920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Globally cultivated cereals are frequently threatened by various plant pathogenic agents such as Fusarium fungi. To combat these pathogens, researchers have made nanoparticles as potential agricultural pesticides. In this study, selenium and titanium dioxide NPs were synthesized using Trichoderma harzianum metabolites. Characterization of the NPs indicated varying size and shapes of both NPs and functional groups existence to constitute both NPs. The evaluation of antifungal activity of NPs against plant pathogenic fungi, Fusarium culmorum, indicated both NPs maximum antifungal activity at concentration of 100 mg/L. The impacts of nanoparticles on some beneficial plant growth promoting bacteria (PGPB) were evaluated and showed their inhibition effect on optical density of PGPB at a concentration of 100 mg/L but they did not have any impact on nitrogen fixation by bacteria. Existence of TiO2NPs reduced the intensity of color change to pink compared to the control indicating auxin production. Both NPs demonstrated different impact on phosphate solubilization index. This study suggests that the synthesized nanoparticles have the potential to serve as antifungal compounds at special concentration against plant diseases without significantly reducing the potential of PGPB at low concentrations.
Collapse
Affiliation(s)
- Marayam Kashisaz
- Department of Soil Sciecne, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Naeimeh Enayatizamir
- Department of Soil Sciecne, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Mohammadreza Eslahi
- Department of Plant Protection, Khuzestan Agricultural and Natural Resource Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
6
|
Zhang Y, Fan Y, Dai Y, Jia Q, Guo Y, Wang P, Shen T, Wang Y, Liu F, Guo W, Wu A, Jiao Z, Wang C. Crude Lipopeptides Produced by Bacillus amyloliquefaciens Could Control the Growth of Alternaria alternata and Production of Alternaria Toxins in Processing Tomato. Toxins (Basel) 2024; 16:65. [PMID: 38393143 PMCID: PMC10892701 DOI: 10.3390/toxins16020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Alternaria spp. and its toxins are the main contaminants in processing tomato. Based on our earlier research, the current study looked into the anti-fungal capacity of crude lipopeptides from B. amyloliquefaciens XJ-BV2007 against A. alternata. We found that the crude lipopeptides significantly inhibited A. alternata growth and reduced tomato black spot disease incidence. SEM analysis found that the crude lipopeptides could change the morphology of mycelium and spores of A. alternata. Four main Alternaria toxins were detected using UPLC-MS/MS, and the findings demonstrated that the crude lipopeptides could lessen the accumulation of Alternaria toxins in vivo and in vitro. Meanwhile, under the stress of crude lipopeptides, the expression of critical biosynthetic genes responsible for TeA, AOH, and AME was substantially down-regulated. The inhibitory mechanism of the crude lipopeptides was demonstrated to be the disruption of the mycelial structure of A. alternata, as well as the integrity and permeability of the membrane of A. alternata sporocytes. Taken together, crude lipopeptides extracted from B. amyloliquefaciens XJ-BV2007 are an effective biological agent for controlling tomato black spot disease and Alternaria toxins contamination.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Biological Sciences and Technology, Yili Normal University, Yining 835000, China; (Y.Z.); (Y.G.)
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Yingying Fan
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Yingying Dai
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
- College of Life Science and Technology, Xinjiang University, Urumqi 830049, China
| | - Qinlan Jia
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Ying Guo
- College of Biological Sciences and Technology, Yili Normal University, Yining 835000, China; (Y.Z.); (Y.G.)
| | - Peicheng Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (P.W.); (T.S.)
| | - Tingting Shen
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (P.W.); (T.S.)
| | - Yan Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Fengjuan Liu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Wanhui Guo
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| | - Aibo Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Ziwei Jiao
- College of Biological Sciences and Technology, Yili Normal University, Yining 835000, China; (Y.Z.); (Y.G.)
| | - Cheng Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Functional Nutrition and Health of Characteristic Agricultural Products in Desert Oasis Ecological Region (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Laboratory of Quality and Safety Risk Assessment for Agro-Products (Urumqi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi 830091, China; (Y.F.); (Y.D.); (Q.J.); (Y.W.); (F.L.); (W.G.)
| |
Collapse
|
7
|
Mikhailova EO. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules 2023; 28:8125. [PMID: 38138613 PMCID: PMC10745377 DOI: 10.3390/molecules28248125] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are extremely popular objects in nanotechnology. "Green" synthesis has special advantages due to the growing necessity for environmentally friendly, non-toxic, and low-cost methods. This review considers the biosynthesis mechanism of bacteria, fungi, algae, and plants, including the role of various biological substances in the processes of reducing selenium compounds to SeNPs and their further packaging. Modern information and approaches to the possible biomedical use of selenium nanoparticles are presented: antimicrobial, antiviral, anticancer, antioxidant, anti-inflammatory, and other properties, as well as the mechanisms of these processes, that have important potential therapeutic value.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
8
|
Tomah AA, Zhang Z, Alamer ISA, Khattak AA, Ahmed T, Hu M, Wang D, Xu L, Li B, Wang Y. The Potential of Trichoderma-Mediated Nanotechnology Application in Sustainable Development Scopes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2475. [PMID: 37686983 PMCID: PMC10490099 DOI: 10.3390/nano13172475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The environmental impact of industrial development has been well-documented. The use of physical and chemical methods in industrial development has negative consequences for the environment, raising concerns about the sustainability of this approach. There is a growing need for advanced technologies that are compatible with preserving the environment. The use of fungi products for nanoparticle (NP) synthesis is a promising approach that has the potential to meet this need. The genus Trichoderma is a non-pathogenic filamentous fungus with a high degree of genetic diversity. Different strains of this genus have a variety of important environmental, agricultural, and industrial applications. Species of Trichoderma can be used to synthesize metallic NPs using a biological method that is environmentally friendly, low cost, energy saving, and non-toxic. In this review, we provide an overview of the role of Trichoderma metabolism in the synthesis of metallic NPs. We discuss the different metabolic pathways involved in NP synthesis, as well as the role of metabolic metabolites in stabilizing NPs and promoting their synergistic effects. In addition, the future perspective of NPs synthesized by extracts of Trichoderma is discussed, as well as their potential applications in biomedicine, agriculture, and environmental health.
Collapse
Affiliation(s)
- Ali Athafah Tomah
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, College of Agriculture, University of Misan, Al-Amarah 62001, Iraq
| | - Zhen Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| | - Iman Sabah Abd Alamer
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, Agriculture Directorate, Al-Amarah 62001, Iraq
| | - Arif Ali Khattak
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Xianghu Laboratory, Hangzhou 311231, China
| | - Minjun Hu
- Agricultural Technology Extension Center of Fuyang District, Hangzhou 311400, China;
| | - Daoze Wang
- Hangzhou Rural Revitalization Service Center, Hangzhou 310020, China;
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Yanli Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| |
Collapse
|
9
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Ao B, Du Q, Liu D, Shi X, Tu J, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol 2023; 14:1229838. [PMID: 37520346 PMCID: PMC10373938 DOI: 10.3389/fmicb.2023.1229838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Effective control of foodborne pathogen contamination is a significant challenge to the food industry, but the development of new antibacterial nanotechnologies offers new opportunities. Notably, selenium nanoparticles have been extensively studied and successfully applied in various food fields. Selenium nanoparticles act as food antibacterial agents with a number of benefits, including selenium as an essential trace element in food, prevention of drug resistance induction in foodborne pathogens, and improvement of shelf life and food storage conditions. Compared to physical and chemical methods, biogenic selenium nanoparticles (Bio-SeNPs) are safer and more multifunctional due to the bioactive molecules in Bio-SeNPs. This review includes a summarization of (1) biosynthesized of Bio-SeNPs from different sources (plant extracts, fungi and bacteria) and their antibacterial activity against various foodborne bacteria; (2) the antibacterial mechanisms of Bio-SeNPs, including penetration of cell wall, damage to cell membrane and contents leakage, inhibition of biofilm formation, and induction of oxidative stress; (3) the potential antibacterial applications of Bio-SeNPs as food packaging materials, food additives and fertilizers/feeds for crops and animals in the food industry; and (4) the cytotoxicity and animal toxicity of Bio-SeNPs. The related knowledge contributes to enhancing our understanding of Bio-SeNP applications and makes a valuable contribution to ensuring food safety.
Collapse
|
11
|
Song J, Yu S, Yang R, Xiao J, Liu J. Opportunities for the use of selenium nanoparticles in agriculture. NANOIMPACT 2023; 31:100478. [PMID: 37499754 DOI: 10.1016/j.impact.2023.100478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Due to the growing number of the world's population, there is an urgent need for high-quality food to meet global food security. Traditional fertilizers and pesticides face the problems of low utilization efficiency and possible hazards to non-target organisms. Selenium (Se) is an essential trace element for animals and humans. As a result, Se nanoparticles (SeNPs) have aroused intense interest and found opportunities in agricultural use. Herein, we summarized representative studies on the potential application of SeNPs in agriculture, including mitigating biotic and abiotic stresses in plants, promoting seed germination and plant growth, and improving Se contents and nutritional values in crops, and the underlying mechanisms were also discussed. Finally, future directions are highlighted to get a deep insight into this field.
Collapse
Affiliation(s)
- Jiangyun Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rui Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junping Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| |
Collapse
|
12
|
Rodrigues MP, Pinto PN, Dias RRDS, Biscoto GL, Salvato LA, Millán RDS, Orlando RM, Keller KM. The Antimicrobial Applications of Nanoparticles in Veterinary Medicine: A Comprehensive Review. Antibiotics (Basel) 2023; 12:958. [PMID: 37370277 DOI: 10.3390/antibiotics12060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Nanoparticles (NPs) are nanoscaled particles sized from 1-100 nm, which can be composed of inorganic or organic compounds. NPs have distinctive morphology, size, structure, and surface features, which give them specific properties. These particular attributes make them interesting for biological and medical applications. Due to these characteristics, researchers are studying the possible aptness of numerous nanoparticles in veterinary medicine, such as the capacity to act as a drug delivery system. The use of these NPs as a possible bactericidal or bacteriostatic medication has been studied against different bacteria, especially multiresistant strains and the ones that cause mastitis disease. The antibiofilm property of these nanostructures has also already been proved. The antiviral activity has also been shown for some important viral animal diseases; the antifungal activity had been demonstrated against both pathogenic and mycotoxigenic species. Therefore, this review aimed to elucidate the main clinical and preventive veterinary applications of inorganic and organic nanoparticles.
Collapse
Affiliation(s)
- Mariana Paiva Rodrigues
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil
| | - Priscila Natália Pinto
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil
| | - Raul Roque de Souza Dias
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil
| | - Gabriela Lago Biscoto
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, Brazil
| | - Lauranne Alves Salvato
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, Brazil
| | - Ruben Dario Sinisterra Millán
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, Brazil
| | - Ricardo Mathias Orlando
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, Brazil
| | - Kelly Moura Keller
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, Brazil
| |
Collapse
|
13
|
Tortella G, Rubilar O, Pieretti JC, Fincheira P, de Melo Santana B, Fernández-Baldo MA, Benavides-Mendoza A, Seabra AB. Nanoparticles as a Promising Strategy to Mitigate Biotic Stress in Agriculture. Antibiotics (Basel) 2023; 12:338. [PMID: 36830248 PMCID: PMC9951924 DOI: 10.3390/antibiotics12020338] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles are recognized due to their particular physical and chemical properties, which are conferred due to their size, in the range of nanometers. Nanoparticles are recognized for their application in medicine, electronics, and the textile industry, among others, but also in agriculture. The application of nanoparticles as nanofertilizers and biostimulants can help improve growth and crop productivity, and it has therefore been mentioned as an essential tool to control the adverse effects of abiotic stress. However, nanoparticles have also been noted for their exceptional antimicrobial properties. Therefore, this work reviews the state of the art of different nanoparticles that have shown the capacity to control biotic stress in plants. In this regard, metal and metal oxide nanoparticles, polymeric nanoparticles, and others, such as silica nanoparticles, have been described. Moreover, uptake and translocation are covered. Finally, future remarks about the studies on nanoparticles and their beneficial role in biotic stress management are made.
Collapse
Affiliation(s)
- Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Joana C. Pieretti
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Martín A. Fernández-Baldo
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, Chacabuco 917, San Luis D5700BWS, Argentina
| | | | - Amedea B. Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| |
Collapse
|
14
|
Hamad GM, Mehany T, Simal-Gandara J, Abou-Alella S, Esua OJ, Abdel-Wahhab MA, Hafez EE. A review of recent innovative strategies for controlling mycotoxins in foods. Food Control 2023; 144:109350. [DOI: 10.1016/j.foodcont.2022.109350] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
16
|
Lazcano-Ramírez HG, Garza-García JJO, Hernández-Díaz JA, León-Morales JM, Macías-Sandoval AS, García-Morales S. Antifungal Activity of Selenium Nanoparticles Obtained by Plant-Mediated Synthesis. Antibiotics (Basel) 2023; 12:antibiotics12010115. [PMID: 36671316 PMCID: PMC9854750 DOI: 10.3390/antibiotics12010115] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
The continuous need to satisfy world food demand has led to the search for new alternatives to combat economic losses in agriculture caused by phytopathogenic fungi. These organisms cause plant diseases, reducing their productivity and decreasing fruit quality. Among the new tools being explored is nanotechnology. Nanoparticles with antimicrobial properties could be an excellent alternative to address this problem. In this work, selenium nanoparticles (SeNPs) were obtained using plant extracts of Amphipterygium glaucum leaves (SeNPs-AGL) and Calendula officinalis flowers (SeNPs-COF). Characterization of the SeNPs was performed and their ability as antifungal agents against two commercially relevant plant pathogenic fungi, Fusarium oxysporum and Colletotrichum gloeosporioides, was evaluated. Assays were performed with different concentrations of SeNPs (0, 0.25, 0.5, 1.0, and 1.7 mg/mL). It was observed that both SeNPs had antifungal activity against both plant pathogens at concentrations of 0.25 mg/mL and above. SeNPs-AGL demonstrated better antifungal activity and smaller size (around 8.0 nm) than SeNPs-COF (134.0 nm). FTIR analysis evidenced the existence of different functional groups that constitute both types of SeNPs. There are factors that have to be considered in the antimicrobial activity of SeNPs such as nanoparticle size and phytochemical composition of the plant extracts used, as these may affect their bioavailability.
Collapse
Affiliation(s)
- Hugo Gerardo Lazcano-Ramírez
- Department of Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, Zapopan 45019, Mexico
| | - Jorge J. O. Garza-García
- Department of Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, Zapopan 45019, Mexico
| | - José A. Hernández-Díaz
- Department of Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, Zapopan 45019, Mexico
| | - Janet M. León-Morales
- Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí. Carretera Salinas-Santo Domingo 200, Salinas de Hidalgo 78600, Mexico
| | - Alejandro S. Macías-Sandoval
- Department of Technological and Industrial Processes, Instituto Tecnológico y de Estudios Superiores de Occidente, Periférico Sur Manuel Gómez Morín 8585, San Pedro Tlaquepaque 45604, Mexico
| | - Soledad García-Morales
- Department of Plant Biotechnology, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, Zapopan 45019, Mexico
- Correspondence:
| |
Collapse
|
17
|
Rodrigues AO, May De Mio LL, Soccol CR. Trichoderma as a powerful fungal disease control agent for a more sustainable and healthy agriculture: recent studies and molecular insights. PLANTA 2023; 257:31. [PMID: 36602606 DOI: 10.1007/s00425-022-04053-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Molecular studies have elucidated Trichoderma's biocontrol mechanisms. Since fungicides have limited use, Trichoderma could control disease by new metabolic routes and epigenetic alterations. Due to environmental and health hazards, agrochemicals have been a concern since they were introduced in agriculture. Trichoderma, a well-known fungal genus with different mechanisms of action, is an alternative to pesticides and a great tool to help minimize disease incidence. Trichoderma-treated plants mainly benefit from disease control and growth promotion through priming, and these fungi can modulate plants' gene expression by boosting their immune system, accelerating their response to threats, and building stress tolerance. The latest studies suggest that epigenetics is required for plant priming and could be essential for growth promotion, expanding the possibilities for producing new resistant plant varieties. Trichoderma's propagules can be mass produced and formulated depending on the delivery method. Microsclerotia-based bioproducts could be a promising way of increasing the reliability and durability of marketed products in the field, as well as help guarantee longer shelf life. Developing novel formulations and selecting efficient Trichoderma strains can be tiresome, but patent search indicates an increase in the industrialization and commercialization of technologies and an expansion of companies' involvement in research and development in this field. Although Trichoderma is considered a well-known fungal genus, it still attracts the attention of large companies, universities, and research institutes around the world.
Collapse
Affiliation(s)
- Amanda O Rodrigues
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, 81531-908, Brazil
| | - Louise L May De Mio
- Department of Crop Science and Protection, Federal University of Paraná (UFPR), Curitiba, PR, 80035-050, Brazil
| | - Carlos R Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, 81531-908, Brazil.
| |
Collapse
|
18
|
Loshchinina EA, Vetchinkina EP, Kupryashina MA. Diversity of Biogenic Nanoparticles Obtained by the Fungi-Mediated Synthesis: A Review. Biomimetics (Basel) 2022; 8:biomimetics8010001. [PMID: 36648787 PMCID: PMC9844505 DOI: 10.3390/biomimetics8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Fungi are very promising biological objects for the green synthesis of nanoparticles. Biogenic synthesis of nanoparticles using different mycological cultures and substances obtained from them is a promising, easy and environmentally friendly method. By varying the synthesis conditions, the same culture can be used to produce nanoparticles with different sizes, shapes, stability in colloids and, therefore, different biological activity. Fungi are capable of producing a wide range of biologically active compounds and have a powerful enzymatic system that allows them to form nanoparticles of various chemical elements. This review attempts to summarize and provide a comparative analysis of the currently accumulated data, including, among others, our research group's works, on the variety of the characteristics of the nanoparticles produced by various fungal species, their mycelium, fruiting bodies, extracts and purified fungal metabolites.
Collapse
Affiliation(s)
| | - Elena P. Vetchinkina
- Correspondence: ; Tel.: +7-8452-970-444 or +7-8452-970-383; Fax: +7-8452-970-383
| | | |
Collapse
|
19
|
Periakaruppan R, Palanimuthu V, Abed SA, Danaraj J. New perception about the use of nanofungicides in sustainable agriculture practices. Arch Microbiol 2022; 205:4. [PMID: 36441298 DOI: 10.1007/s00203-022-03324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
Abstract
Protecting plants from pathogens using synthetic nanofungicides is not very effective, because it is harmful to the environment. However, it is synthetic fungicides that farmers are familiar with and commonly use. In this modern era, nanotechnology offers a smart solution to environmental issues at the nanoscale level. It is an emergent field and nanoparticles can be synthesized through various methods. Nanofungicides are efficient due to their solubility and permeability, low dose-dependent toxicity, low dose, enhanced bioavailability, targeted delivery, enhanced bioavailability, and controlled release. There are many metallic compounds, such as Cu, Zn, Ag, and TiO2 available which are used as nanofungicides. There is a contrary relationship between the size of the nanoparticles and their efficacy and antifungal potential. This review article offers a wide knowledge about formulation of nanomaterials as nanofungicides and their role in disease management in plants.
Collapse
Affiliation(s)
- Rajiv Periakaruppan
- Department of Biotechnology, Karpagam Academy of Higher Education, Eachanari, Coimbatore, 641021, India.
| | - Vanathi Palanimuthu
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, Tamilnadu, India
| | - Salwan Ali Abed
- College of Science, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Jeyapragash Danaraj
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science and Technology Cell (Marine Biotechnological Studies), Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| |
Collapse
|
20
|
Saravanakumar K, Sathiyaseelan A, Zhang X, Park S, Wang MH. Purinoceptor Targeted Cytotoxicity of Adenosine Triphosphate-Conjugated Biogenic Selenium Nanoparticles in Human Colon Cancer Cells. Pharmaceuticals (Basel) 2022; 15:582. [PMID: 35631408 PMCID: PMC9143145 DOI: 10.3390/ph15050582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
The adenosine triphosphate (ATP)-conjugated biogenic selenium nanoparticles (SeNPs) for P2 (purinoceptors) receptor-targeted anti-colon cancer activity were developed in this study. First, the SeNPs were synthesized using Trichoderma extracts (TE) and then conjugated with ATP to enhance their anticancer activity. The developed SeNPs had an oval crystalline structure with an average diameter size of 26.45 ± 1.71 d. nm, while the ATP-SeNPs were 78.6 ± 2.91 d. nm. The SeNPs contain Se, and less persistence of P while the ATP-SeNPs have high level of P, and Se in the energy-dispersive spectroscopy (EDS). Further, both nanoparticles exhibited larger sizes in the dynamic light scattering (DLS) analysis than in the transmission electron microscopy (TEM) analysis. The DLS and Fourier transform infrared spectroscopy (FTIR) results provide evidence that the amine group (-NH2) of ATP might bind with the negatively charged SeNPs through covalent bonding. The IC50 concentration was 17.25 ± 1.16 µg/mL for ATP-SeNPs and 61.24 ± 2.08 µg/mL against the caco-2 cell line. The IC50 results evidenced the higher cytotoxicity of ATP-SeNPs in the caco-2 cell line than in HEK293 cells. ATP-SeNPs trigger the anticancer activity in the caco-2 cell line through the induction of mitochondrial membrane potential (MMP) loss and nucleus damage. The biocompatibility test of hemolysis and the egg CAM assay confirmed the non-toxicity of these nanoparticles. Overall, the results proved that the newly developed ATP-SeNPs exhibited higher cytotoxicity in the caco-2 cell line than SeNPs. However, further molecular and in vivo experiments are required to develop the ATP-SeNPs as a candidate drug for cancer-targeted therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (X.Z.); (S.P.)
| |
Collapse
|
21
|
Garza-García JJO, Hernández-Díaz JA, Zamudio-Ojeda A, León-Morales JM, Guerrero-Guzmán A, Sánchez-Chiprés DR, López-Velázquez JC, García-Morales S. The Role of Selenium Nanoparticles in Agriculture and Food Technology. Biol Trace Elem Res 2022; 200:2528-2548. [PMID: 34328614 DOI: 10.1007/s12011-021-02847-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
Selenium (Se) is an essential micronutrient for diverse organisms such as mammals, bacteria, some insects and nematodes, archaea, and algae, as it is involved in a large number of physiological and metabolic processes and is part of approximately 25 selenoproteins in mammals. In plants, Se has no essential metabolic role, high concentrations of inorganic Se can lead to the formation of Se-amino acids, and its incorporation into selenoproteins can generate toxicity. Conversely, low doses of Se can trigger a variety of beneficial effects as an antioxidant, antimicrobial, or stress-modulating agent without being an essential element. Therefore, Se can generate toxicity depending on the dose and the chemical form in which it is supplied. Selenium nanoparticles (SeNPs) have emerged as an approach to reduce this negative effect and improve its biological properties. In turn, SeNPs have a wide range of potential advantages, making them an alternative for areas such as agriculture and food technology. This review focuses on the use of SeNPs and their different applications as antimicrobial agents, growth promoters, crop biofortification, and nutraceuticals in agriculture. In addition, the utilization of SeNPs in the generation of packaging with antioxidant and antimicrobial traits and Se enrichment of animal source foods for human consumption as part of food technology is addressed. Additionally, possible action mechanisms and potential adverse effects are discussed. The concentration, size, and synthesis method of SeNPs are determining factors of their biological properties.
Collapse
Affiliation(s)
- Jorge J O Garza-García
- Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, 45019, Zapopan, Jalisco, México
| | - José A Hernández-Díaz
- Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, 45019, Zapopan, Jalisco, México
| | - Adalberto Zamudio-Ojeda
- Physics, Universidad de Guadalajara, Boulevard Gral. Marcelino García Barragán 1421, 44430, Jalisco, Guadalajara, México
| | - Janet M León-Morales
- Plant Biotechnology, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, Zapopan, Jalisco, 45019, México
| | - Andrea Guerrero-Guzmán
- Veterinary Sciences Division, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco, 4520, México
| | - David R Sánchez-Chiprés
- Veterinary Sciences Division, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco, 4520, México
| | - Julio C López-Velázquez
- Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, 45019, Zapopan, Jalisco, México
| | - Soledad García-Morales
- Plant Biotechnology, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, Zapopan, Jalisco, 45019, México.
| |
Collapse
|
22
|
Alghuthaymi MA, Abd-Elsalam KA, AboDalam HM, Ahmed FK, Ravichandran M, Kalia A, Rai M. Trichoderma: An Eco-Friendly Source of Nanomaterials for Sustainable Agroecosystems. J Fungi (Basel) 2022; 8:367. [PMID: 35448598 PMCID: PMC9027617 DOI: 10.3390/jof8040367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Traditional nanoparticle (NP) synthesis methods are expensive and generate hazardous products. It is essential to limit the risk of toxicity in the environment from the chemicals as high temperature and pressure is employed in chemical and physical procedures. One of the green strategies used for sustainable manufacturing is microbial nanoparticle synthesis, which connects microbiology with nanotechnology. Employing biocontrol agents Trichoderma and Hypocrea (Teleomorphs), an ecofriendly and rapid technique of nanoparticle biosynthesis has been reported in several studies which may potentially overcome the constraints of the chemical and physical methods of nanoparticle biosynthesis. The emphasis of this review is on the mycosynthesis of several metal nanoparticles from Trichoderma species for use in agri-food applications. The fungal-cell or cell-extract-derived NPs (mycogenic NPs) can be applied as nanofertilizers, nanofungicides, plant growth stimulators, nano-coatings, and so on. Further, Trichoderma-mediated NPs have also been utilized in environmental remediation approaches such as pollutant removal and the detection of pollutants, including heavy metals contaminants. The plausible benefits and pitfalls associated with the development of useful products and approaches to trichogenic NPs are also discussed.
Collapse
Affiliation(s)
- Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11726, Saudi Arabia
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), 9-Gamaa St., Giza 12619, Egypt;
| | - Hussien M. AboDalam
- Plant Pathology Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Farah K. Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Mythili Ravichandran
- Department of Microbiology, Vivekanandha Arts and Science College for Women, Sankari 637303, Tamil Nadu, India;
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University, Lwowska 1, 87100 Torun, Poland;
| |
Collapse
|
23
|
Nath D, Kaur L, Sohal HS, Malhi DS, Garg S, Thakur D. Application of Selenium Nanoparticles in Localized Drug Targeting for Cancer Therapy. Anticancer Agents Med Chem 2022; 22:2715-2725. [PMID: 35168523 DOI: 10.2174/1871520622666220215122756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Selenium nanoparticles (SeNPs) have gardened their place in the biomedical field and serve as a chemotherapeutic agent for targeted drug delivery due to their capacity to exert distinct mechanisms of action on cancer and normal cells. The principle behind these mechanisms is the generation of Reactive Oxygen Species (ROS) eventually leads to apoptosis via the dysfunction of various pathways. SeNPs, when used in higher concentrations, lead to toxicity; therefore, conjugation and surface functionalization not only improve their toxic nature but also enhance their anticancer activity. OBJECTIVES The primary goal of this analysis is to provide a thorough and systematic investigation into the use of various SeNPs in localized drug targeting for cancer therapy. This has been achieved by citing examples of numerous SeNPs and their use as a drug targeting agent for cancer therapy. METHODS All relevant data and information about the various SeNPs for drug targeting in cancer therapy were gathered from various databases, including Science Direct, PubMed, Taylor and Francis imprints, American Chemical Society, Springer, Royal Society of Chemistry, and Google scholar. RESULTS SeNPs are explored due to their better biopharmaceutical properties and their cytostatic behavior. Se, as an essential component of the enzyme glutathione peroxidase (GPx) and other seleno-chemical substances, might boost chemotherapeutic efficacy, and protect tissues from cellular damage caused by ROS. SeNPs have the potential to set the stage for developing new strategies to treat malignancy. CONCLUSION This review extensively analyzed the anticancer efficacy and functionalization strategies of SeNPs in drug delivery to cancer cells. In addition, this review highlights the mechanism of action of drug-loaded SeNPs to suppress the proliferation of cancer cells in different cell lines.
Collapse
Affiliation(s)
- Dipak Nath
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Dharambeer Singh Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Sonali Garg
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Deepa Thakur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| |
Collapse
|
24
|
Ye M, Li J, Yu R, Cong X, Huang D, Li Y, Chen S, Zhu S. Selenium Speciation in Selenium-Enriched Plant Foods. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Biosynthesis of Metal-Based Nanoparticles by Trichoderma and Its Potential Applications. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Nikam PB, Salunkhe JD, Minkina T, Rajput VD, Kim BS, Patil SV. A review on green synthesis and recent applications of red nano Selenium. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Ramírez-Valdespino CA, Orrantia-Borunda E. Trichoderma and Nanotechnology in Sustainable Agriculture: A Review. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:764675. [PMID: 37744133 PMCID: PMC10512408 DOI: 10.3389/ffunb.2021.764675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/28/2021] [Indexed: 09/26/2023]
Abstract
Due to their unique properties and functionalities, nanomaterials can be found in different activities as pharmaceutics, cosmetics, medicine, and agriculture, among others. Nowadays, formulations with nano compounds exist to reduce the application of conventional pesticides and fertilizers. Among the most used are nanoparticles (NPs) of copper, zinc, or silver, which are known because of their cytotoxicity, and their accumulation can change the dynamic of microbes present in the soil. In agriculture, Trichoderma is widely utilized as a safe biocontrol strategy and to promote plant yield, making it susceptible to be in contact with nanomaterials that can interfere with its viability as well as its biocontrol and plant growth promotion effects. It is well-known that strains of Trichoderma can tolerate and uptake heavy metals in their bulk form, but it is poorly understood whether the same occurs with nanomaterials. Interestingly, Trichoderma can synthesize NPs that exhibit antimicrobial activities against various organisms of interest, including plant pathogens. In this study, we summarize the main findings regarding Trichoderma and nanotechnology, including its use to synthesize NPs and the consequence that these compounds might have in this fungus and its associations. Moreover, based on these findings we discuss whether it is feasible to develop agrochemicals that combine NPs and Trichoderma strains to generate more sustainable products or not.
Collapse
Affiliation(s)
- Claudia A. Ramírez-Valdespino
- Laboratorio de Nanotoxicología, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Mexico
| | | |
Collapse
|
28
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Crit Rev Food Sci Nutr 2021; 63:790-812. [PMID: 34520302 DOI: 10.1080/10408398.2021.1954598] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol, also known as vomitotoxin, is produced by Fusarium, belonging to the group B of the trichothecene family. DON is widely polluted, mainly polluting cereal crops such as wheat, barley, oats, corn and related cereal products, which are closely related to lives of people and animals. At present, there have been articles summarizing DON induced toxicity, biological detoxification and the protective effect of natural products, but there is no systematic summary of this information. In addition to ribosome and endoplasmic reticulum, recent investigations support that mitochondrion is also organelles that DON can damage. DON can't directly act on mitochondria, but can indirectly cause mitochondrial damage and changes through other means. DON can indirectly inhibit mitochondrial biogenesis and mitochondrial electron transport chain activity, ATP production, and mitochondrial transcription and translation. This review will provide the latest progress on mitochondria as the research object, and systematically summarizes all the toxic mechanisms of DON. Here, we discuss DON induced mitochondrial-mediated apoptosis and various mitochondrial toxicity. For the toxicity of DON, many methods have been derived to prevent or reduce the toxicity. Biological detoxification and the antioxidant effect of natural products are potentially effective treatments for DON toxicity.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Xu L, Zhu Z, Sun DW. Bioinspired Nanomodification Strategies: Moving from Chemical-Based Agrosystems to Sustainable Agriculture. ACS NANO 2021; 15:12655-12686. [PMID: 34346204 PMCID: PMC8397433 DOI: 10.1021/acsnano.1c03948] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/29/2021] [Indexed: 05/24/2023]
Abstract
Agrochemicals have supported the development of the agricultural economy and national population over the past century. However, excessive applications of agrochemicals pose threats to the environment and human health. In the last decades, nanoparticles (NPs) have been a hot topic in many fields, especially in agriculture, because of their physicochemical properties. Nevertheless, the prevalent methods for fabricating NPs are uneconomical and involve toxic reagents, hindering their extensive applications in the agricultural sector. In contrast, inspired by biological exemplifications from microbes and plants, their extract and biomass can act as a reducing and capping agent to form NPs without any toxic reagents. NPs synthesized through these bioinspired routes are cost-effective, ecofriendly, and high performing. With the development of nanotechnology, biosynthetic NPs (bioNPs) have been proven to be a substitute strategy for agrochemicals and traditional NPs in heavy-metal remediation of soil, promotion of plant growth, and management of plant disease with less toxicity and higher performance. Therefore, bioinspired synthesis of NPs will be an inevitable trend for sustainable development in agricultural fields. This critical review will demonstrate the bioinspired synthesis of NPs and discuss the influence of bioNPs on agricultural soil, crop growth, and crop diseases compared to chemical NPs or agrochemicals.
Collapse
Affiliation(s)
- Liang Xu
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
| | - Zhiwei Zhu
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
| | - Da-Wen Sun
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Center, Guangzhou 510006, China
- Food
Refrigeration and Computerized Food Technology (FRCFT), Agriculture
and Food Science Centre, University College
Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
30
|
Bhavya G, Belorkar SA, Mythili R, Geetha N, Shetty HS, Udikeri SS, Jogaiah S. Remediation of emerging environmental pollutants: A review based on advances in the uses of eco-friendly biofabricated nanomaterials. CHEMOSPHERE 2021; 275:129975. [PMID: 33631403 DOI: 10.1016/j.chemosphere.2021.129975] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/24/2021] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
The increased environmental pollutants due to anthropogenic activities are posing an adverse effects and threat on various biotic forms on the planet. Heavy metals and certain organic pollutants by their toxic persistence in the environment are regarded as significant pollutants worldwide. In recent years, pollutants exist in various forms in the environment are difficult to eliminate by traditional technologies due to various drawbacks. This has lead to shifting of research for the development of cost-effective and efficient technologies for the remediation of environmental pollutants. The adaption of adsorption phenomenon from the traditional technologies with the modification of adsorbents at nanoscale is the trended research for mitigating the environmental pollutants with petite environmental concerns. Over the past decade, the hidden potentials of biological sources for the biofabrication of nanomaterials as bequeathed rapid research for remediating the environmental pollution in a sustainable manner. The biofabricated nanomaterials possess an inimitable phenomenon such as photo and enzymatic catalysis, electrostatic interaction, surface active site interactions, etc., contributing for the detoxification of various pollutants. With this background, the current review highlights the emerging biofabricated nano-based adsorbent materials and their underlying mechanisms addressing the environmental remediation of persistent organic pollutants, heavy metal (loid)s, phytopathogens, special attention to the reduction of pathogen-derived toxins and air pollutants. Each category is illustrated with suitable examples, fundamental mechanism, and graphical representations, along with societal applications. Finally, the future and sustainable development of eco-friendly biofabricated nanomaterial-based adsorbents is discussed.
Collapse
Affiliation(s)
- Gurulingaiah Bhavya
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570 006, Karnataka, India
| | - Seema Anil Belorkar
- Microbiology and Bioinformatics Department, Bilaspur University, Bilaspur, (C.G), 495 001, India
| | - Raja Mythili
- PG & Research Department of Biotechnology, Mahendra Arts & Science College, Kalippatti, 637501, Tamil Nadu, India
| | - Nagaraja Geetha
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570 006, Karnataka, India
| | - Huntrike Shekar Shetty
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570 006, Karnataka, India
| | - Shashikant S Udikeri
- Department of Agricultural Entomolgy, University of Agricultural Sciences, Dharwad, 580005, Karnataka, India
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnataka University, Dharwad, 580 003, Karnataka, India.
| |
Collapse
|
31
|
Paimard G, Mohammadi R, Bahrami R, Khosravi‐Darani K, Sarlak Z, Rouhi M. Detoxification of patulin from juice simulator and apple juice via cross-linked Se-chitosan/L-cysteine nanoparticles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Biogenic Nanoparticles: Synthesis, Characterisation and Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062598] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanotechnology plays a big part in our modern daily lives, ranging from the biomedical sector to the energy sector. There are different physicochemical and biological methods to synthesise nanoparticles towards multiple applications. Biogenic production of nanoparticles through the utilisation of microorganisms provides great advantages over other techniques and is increasingly being explored. This review examines the process of the biogenic synthesis of nanoparticles mediated by microorganisms such as bacteria, fungi and algae, and their applications. Microorganisms offer a disparate environment for nanoparticle synthesis. Optimum production and minimum time to obtain the desired size and shape, to improve the stability of nanoparticles and to optimise specific microorganisms for specific applications are the challenges to address, however. Numerous applications of biogenic nanoparticles in medicine, environment, drug delivery and biochemical sensors are discussed.
Collapse
|
33
|
Patel A, Enman J, Gulkova A, Guntoro PI, Dutkiewicz A, Ghorbani Y, Rova U, Christakopoulos P, Matsakas L. Integrating biometallurgical recovery of metals with biogenic synthesis of nanoparticles. CHEMOSPHERE 2021; 263:128306. [PMID: 33297243 DOI: 10.1016/j.chemosphere.2020.128306] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Industrial activities, such as mining, electroplating, cement production, and metallurgical operations, as well as manufacturing of plastics, fertilizers, pesticides, batteries, dyes or anticorrosive agents, can cause metal contamination in the surrounding environment. This is an acute problem due to the non-biodegradable nature of metal pollutants, their transformation into toxic and carcinogenic compounds, and bioaccumulation through the food chain. At the same time, platinum group metals and rare earth elements are of strong economic interest and their recovery is incentivized. Microbial interaction with metals or metals-bearing minerals can facilitate metals recovery in the form of nanoparticles. Metal nanoparticles are gaining increasing attention due to their unique characteristics and application as antimicrobial and antibiofilm agents, biocatalysts, in targeted drug delivery, for wastewater treatment, and in water electrolysis. Ideally, metal nanoparticles should be homogenous in shape and size, and not toxic to humans or the environment. Microbial synthesis of nanoparticles represents a safe, and environmentally friendly alternative to chemical and physical methods. In this review article, we mainly focus on metal and metal salts nanoparticles synthesized by various microorganisms, such as bacteria, fungi, microalgae, and yeasts, as well as their advantages in biomedical, health, and environmental applications.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Josefine Enman
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | | | - Pratama Istiadi Guntoro
- Mineral Processing, Division of Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Agata Dutkiewicz
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Yousef Ghorbani
- Mineral Processing, Division of Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden.
| |
Collapse
|
34
|
Adebo OA, Molelekoa T, Makhuvele R, Adebiyi JA, Oyedeji AB, Gbashi S, Adefisoye MA, Ogundele OM, Njobeh PB. A review on novel non‐thermal food processing techniques for mycotoxin reduction. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14734] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Tumisi Molelekoa
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Rhulani Makhuvele
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Janet Adeyinka Adebiyi
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Ajibola Bamikole Oyedeji
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Sefater Gbashi
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Martins Ajibade Adefisoye
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Opeoluwa Mayowa Ogundele
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| | - Patrick Berka Njobeh
- Faculty of Science Department of Biotechnology and Food Technology University of Johannesburg P.O. Box 17011 Doornfontein Campus Gauteng South Africa
| |
Collapse
|
35
|
Salem SS, Fouda MMG, Fouda A, Awad MA, Al-Olayan EM, Allam AA, Shaheen TI. Antibacterial, Cytotoxicity and Larvicidal Activity of Green Synthesized Selenium Nanoparticles Using Penicillium corylophilum. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01794-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Haque MA, Wang Y, Shen Z, Li X, Saleemi MK, He C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb Pathog 2020; 142:104095. [PMID: 32097745 DOI: 10.1016/j.micpath.2020.104095] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
Mycotoxins are secondary metabolites produced mainly by fungi belonging to the genera Aspergillus, Fusarium, Penicillium, Claviceps, and Alternaria that contaminate basic food products throughout the world, where developing countries are becoming predominantly affected. Currently, more than 500 mycotoxins are reported in which the most important concern to public health and agriculture include AFB1, OTA, TCTs (especially DON, T-2, HT-2), FB1, ZEN, PAT, CT, and EAs. The presence of mycotoxin in significant quantities poses health risks varying from allergic reactions to death on both humans and animals. This review brings attention to the present status of mycotoxin contamination of food products and recommended control strategies for mycotoxin mitigation. Humans are exposed to mycotoxins directly through the consumption of contaminated foods while, indirectly through carryover of toxins and their metabolites into animal tissues, milk, meat and eggs after ingestion of contaminated feeds. Pre-harvest (field) control of mycotoxin production and post-harvest (storage) mitigation of contamination represent the most effective approach to limit mycotoxins in food and feed. Compared with chemical and physical approaches, biological detoxification methods regarding biotransformation of mycotoxins into less toxic metabolites, are generally more unique, productive and eco-friendly. Along with the biological detoxification method, genetic improvement and application of nanotechnology show tremendous potential in reducing mycotoxin production thereby improving food safety and food quality for extended shelf life. This review will primarily describe the latest developments in the formation and detoxification of the most important mycotoxins by biological degradation and other alternative approaches, thereby reducing the potential adverse effects of mycotoxins.
Collapse
Affiliation(s)
- Md Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Department of Microbiology, Faculty of Veterinary & Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Shen
- Binzhou Animal Science and Veterinary Medicine Academy of Shandong Province, Binzhou, 256600, China
| | - Xiaohui Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Muhammad Kashif Saleemi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
37
|
Green Biological Synthesis of Nanoparticles and Their Biomedical Applications. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020. [DOI: 10.1007/978-3-030-44176-0_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|