1
|
Tomičić R, Čebela M, Tomičić Z, Čabarkapa I, Kocić-Tanackov S, Raspor P. ZnO nanoparticles enhance the efficiency of sodium hypochlorite disinfectant in reducing the adhesion of pathogenic bacteria to stainless steel surfaces. Food Microbiol 2025; 129:104760. [PMID: 40086982 DOI: 10.1016/j.fm.2025.104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/28/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
The use of commercial disinfectant in combination with other antimicrobial agent such as ZnO nanoparticles to improve disinfection efficacy could be a promising strategy in the control of pathogenic bacteria. In this context, the aim of study was to determine the minimum inhibitory concentration (MIC) of sodium hypochlorite disinfectant, ZnO nanoparticles as well as Mn-, Ce-, and Co-doped ZnO nanoparticles (doping concentrations 10%, 20%, 30%) against gram-negative bacteria Escherichia coli and Salmonella Typhimurium, and gram-positive bacteria Staphylococcus aureus and Listeria monocytogenes using the broth microdilution method CLSI M07-A10, while the checkerboard microdilution method was carried out to assess the type interaction of sodium hypochlorite in combination with pure ZnO nanoparticles. The results specified that ZnO nanoparticles were agents that required higher concentrations to inhibit bacterial growth than sodium hypochlorite, whereby a synergistic effect was achieved in their combination. It was also revealed that doping of Mn and Co in ZnO nanoparticles improved antibacterial activity against gram-positive bacteria. Generally, this study aimed to evaluate the effectiveness of individual treatments (sodium hypochlorite and ZnO nanoparticles) and their combination on initial bacterial adhesion to stainless steel surfaces (AISI 304) exposed to different temperatures (7 °C, 25 °C, 37 °C) and pH (4.5, 7.0, 8.5) using colony-forming units count method. It was evident that ZnO nanoparticles were more effective than sodium hypochlorite in reducing bacterial adherence, while the combined tretmant showed a better effect than any individual treatment alone, highlighting its advantages as a novel disinfectant to prevent bacterial biofilms. Furthermore, data that temperature and pH affected bacterial adhesion provide comprehensive insight how bacteria survive in the food processing environments, which could assist in assessment the risk of contamination.
Collapse
Affiliation(s)
- Ružica Tomičić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Maria Čebela
- Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, National Institute of the Republic of Serbia, Mike Petrovića Alasa 12-14, 11000, Belgrade, Serbia.
| | - Zorica Tomičić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Ivana Čabarkapa
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Sunčica Kocić-Tanackov
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Peter Raspor
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Etaka CA, Weller DL, Hamilton AM, Critzer F, Strawn LK. Sanitation Interventions for Reducing Listeria monocytogenes and Salmonella on Canvas and Cordura® Harvest Bags. J Food Prot 2025; 88:100472. [PMID: 40021058 DOI: 10.1016/j.jfp.2025.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Food contact surfaces, including harvest bags, are potential vectors for cross-contamination in produce operations, yet recommendations for their sanitation are limited. This study evaluated the efficacy of wet- and dry-based sanitizers in reducing Listeria monocytogenes and Salmonella on two harvest bag materials, canvas, and Cordura®. Coupons (25 cm2) were inoculated with 5-strain cocktails of L. monocytogenes or Salmonella (∼7 log CFU/coupon) before treatment. Treatments included chlorine (200 ppm; pH 7), peroxyacetic acid (PAA; 200 ppm), isopropyl alcohol with quaternary ammonium compounds (IPAQuats; ready-to-use), steam, and water. Sanitizers were applied according to the manufacturer's instructions for a 1-minute contact time. After treatment, pathogen concentrations were enumerated on selective (Modified Oxford, Xylose Lysine Deoxycholate) and non-selective (Tryptic Soy Agar) media. Duplicate experiments were conducted with five replicates per treatment (n = 10) and pathogen reductions were evaluated using log-linear mixed-effects models. IPAQuats observed the highest reductions with L. monocytogenes reductions of 5.16 ± 0.93 log CFU/coupon and 6.01 ± 0.49 log CFU/coupon, and Salmonella reductions of 4.61 ± 1.03 log CFU/coupon and 5.90 ± 0.57 log CFU/coupon on canvas and Cordura®, respectively. PAA resulted in L. monocytogenes reductions of 2.63 ± 0.56 and 3.92 ± 0.81 log CFU/coupon and Salmonella reductions of 3.68 ± 0.79 and 3.21 ± 1.14 log CFU/coupon on canvas and Cordura®, respectively. Chlorine and steam were less effective with reductions of <3 log CFU/coupon for both pathogens and materials. While no difference in L. monocytogenes reduction was observed between materials by treatment, Salmonella reductions on Cordura® were significantly higher than reductions on canvas after treatments with IPAQuats (1.62 log CFU/coupon; 95% CI = 1.19, 2.05) and steam (0.84 log CFU/coupon; 95% CI = 0.42, 1.28). Results provide recommendations for produce growers on effective sanitation of harvest bags.
Collapse
Affiliation(s)
- Cyril A Etaka
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Daniel L Weller
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Alexis M Hamilton
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Faith Critzer
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
3
|
Park KM, Lee SB, Chae H, Hwang I, Kim SR, Lee HD, Choi SY. Comparative evaluation of sanitation strategies against Listeria monocytogenes on food-contact surfaces in enoki mushroom ( Flammulina velutipes) processing facilities. Food Sci Biotechnol 2025; 34:1507-1516. [PMID: 40110399 PMCID: PMC11914709 DOI: 10.1007/s10068-024-01751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/12/2024] [Accepted: 11/13/2024] [Indexed: 03/22/2025] Open
Abstract
We investigated strategies to reduce Listeria monocytogenes contamination on food contact surfaces during enoki mushroom processing. Chemical disinfectants and thermal treatments were evaluated on conveyor belts, stainless steel, plastic surfaces, and Velcro strips. Without organic matter, chemical disinfectants effectively reduced L. monocytogenes, with stainless steel showing the highest susceptibility. Organic matter decreased disinfectant efficacy, but sodium hypochlorite remained most effective on stainless steel. Peracetic acid was more effective on conveyor belts and plastic surfaces than on stainless steel. Combining peracetic acid with dry heating synergistically reduced L. monocytogenes on Velcro strips. Moist heat at 70 °C alone was insufficient, but when combined with hot air drying, it effectively reduced L. monocytogenes on Velcro strips. Our findings emphasize the importance of surface-specific strategies combining chemical disinfection and thermal treatment for eliminating L. monocytogenes in mushroom processing environments.
Collapse
Affiliation(s)
- Kyung Min Park
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Su-Bin Lee
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Hyobeen Chae
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Injun Hwang
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Se-Ri Kim
- Rural Human Resource Development Center, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Hyun Dong Lee
- Post-Harvest Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Song-Yi Choi
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| |
Collapse
|
4
|
Han X, Chen S, Zeng Q, Li J, Liu H, Kuang R, Xia J, Cui M, Huang Y, Bai L, Zou L. Co-occurrence of qacEΔ1 disinfectant resistance gene and ARGs among Salmonella Indiana and its correlation with resistance to sodium hypochlorite. Int J Food Microbiol 2025; 432:111097. [PMID: 39951924 DOI: 10.1016/j.ijfoodmicro.2025.111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Sodium hypochlorite (SHC) is the most commonly utilized carcass and equipment disinfectant in the poultry industry. However, prolonged exposure to SHC can result in the development of bacterial tolerance and exert co-selection on antimicrobial resistance. This study investigated the co-resistance to SHC and multiple antimicrobial agents among Salmonella enterica serovar Indiana (S. Indiana), with a specific focus on the co-occurrence of disinfectant resistance gene qacEΔ1 and the antimicrobial resistance genes (ARGs) revealed by whole genome sequencing (WGS). Additionally, the study examined the transcriptional response of qacEΔ1 and its closely associated ARGs under SHC pressure. Moreover, the study determined the optimal SHC concentration for the decontamination of multidrug-resistant (MDR) S. Indiana on chicken. The results indicated that S. Indiana exhibited a resistance rate of 73.31 % to SHC, and varying levels of resistance to 13 antimicrobial agents. Furthermore, the analysis revealed a significant correlation between the qacEΔ1 gene and ARGs, including catB3, sul1, arr-3 and blaOXA-1. The genetic contexts surrounding the qacEΔ1 gene demonstrated a high degree of homology, allowing for the categorization into 11 distinct genetic context types, among which the gene cluster aacA4-blaOXA-1-catB3-arr-3-qacEΔ1-sul1 was the most prevalent. Further analysis of the MDR IndS97 strain using PacBio SMRT sequencing revealed that the qacEΔ1 gene was located on plasmid pLKQY01, with IS26 and ISRle7 positioned at the flanks of the composite transposon aacA4-blaOXA-1-catB3-arr-3-qacEΔ1-sul1. The transcription levels of qacEΔ1, arr-3 and sul1 genes in response to SHC stress initially increased, followed by a decline as SHC concentrations rose. At an SHC concentration of 0.5 MIC, the transcription levels of these genes were notably low, and the results indicated a decontamination efficacy of 86.51 % against Salmonella contamination while relatively preserving the freshness of the chicken. This study enhanced the understanding of disinfectant effects on the antimicrobial resistance of S. Indiana and provided evidence to support the regulated use of disinfectants.
Collapse
Affiliation(s)
- Xinfeng Han
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China; College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Qiuyan Zeng
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Jiarui Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haotian Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ruyi Kuang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China; College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Cui
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China; College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China; College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Bai
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
5
|
Dhaliwal HK, Sonkar S, V P, Puente L, Roopesh MS. Process Technologies for Disinfection of Food-Contact Surfaces in the Dry Food Industry: A Review. Microorganisms 2025; 13:648. [PMID: 40142540 PMCID: PMC11945173 DOI: 10.3390/microorganisms13030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The survival characteristics of bacterial pathogens, including Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli, in foods with a low water activity (aw) have been extensively examined and reported. Microbial attachment on the food-contact surfaces can result in cross-contamination and compromise the safety of low-aw foods. The bactericidal potential of various conventional and novel disinfection technologies has been explored in the dry food industry. However, the attachment behavior of bacterial pathogens to food-contact surfaces in low-aw conditions and their subsequent response to the cleaning and disinfection practices requires further elucidation. The review summarizes the elements that influence disinfection, such as the presence of organic residues, persistent strains, and the possibility of microbial biotransfer. This review explores in detail the selected dry disinfection technologies, including superheated steam, fumigation, alcohol-based disinfectants, UV radiation, and cold plasma, that can be used in the dry food industry. The review also highlights the use of several wet disinfection technologies employing chemical antimicrobial agents against surface-dried microorganisms on food-contact surfaces. In addition, the disinfection efficacy of conventional and novel technologies against surface-dried microorganisms on food-contact surfaces, as well as their advantages and disadvantages and underlying mechanisms, are discussed. Dry food processing facilities should implement stringent disinfection procedures to ensure food safety. Environmental monitoring procedures and management techniques are essential to prevent adhesion and allow the subsequent inactivation of microorganisms.
Collapse
Affiliation(s)
- Harleen Kaur Dhaliwal
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| | - Shivani Sonkar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| | - Prithviraj V
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| | - Luis Puente
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago 8380494, Chile
| | - M. S. Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (H.K.D.); (P.V.)
| |
Collapse
|
6
|
Pérez-Lavalle L, Borges A, Gomes IB, Carrasco E, Valero A, Simões M. The ability of Salmonella enterica subsp. enterica strains to form biofilms on abiotic surfaces and their susceptibility to selected essential oil components. Lett Appl Microbiol 2025; 78:ovaf032. [PMID: 40053511 DOI: 10.1093/lambio/ovaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 03/09/2025]
Abstract
The ability of Salmonella enterica subsp. enterica to persist and form biofilms on different surfaces can constitute a source of food contamination, being an issue of global concern. The objective of this study was to understand the biofilm formation profile of 14 S. enterica strains among different serovars and sources and to evaluate the ability of essential oil (EO) components (carveol, citronellol, and citronellal) to disinfect the biofilms formed on stainless steel and polypropylene surfaces. All the strains were able to form biofilms with counts between 5.34 to 6.78 log CFU cm-2. Then, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EO components were evaluated on two selected strains. All compounds inhibited the growth of Salmonella Typhimurium (strain 1; MIC = 800-1000 µg ml-1) and Salmonella Enteritidis (strain 5; MIC = 400-1000 µg ml-1) and only carveol showed bactericidal activity against strains 1 and 5 (MBC = 1200 µg ml-1). Biofilms were exposed to the EO components at 10 × MIC for 30 min and polypropylene surfaces were more difficult to disinfect showing reductions between 0.9 and <1.2 log CFU cm-2. In general, the S. enterica biofilms demonstrated a significant tolerance to disinfection, demonstrating their high degree of recalcitrance on food processing surfaces.
Collapse
Affiliation(s)
- Liliana Pérez-Lavalle
- Faculty of Basic and Biomedical Sciences, Centro de Investigación e Innovación en Biodiversidad y Cambio Climático (Adaptia), Universidad Simón Bolívar, 080002 Barranquilla, Colombia
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Elena Carrasco
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, 14014 Córdoba, Spain
| | - Antonio Valero
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, 14014 Córdoba, Spain
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
7
|
Dawan J, Zhang S, Ahn J. Recent Advances in Biofilm Control Technologies for the Food Industry. Antibiotics (Basel) 2025; 14:254. [PMID: 40149064 PMCID: PMC11939704 DOI: 10.3390/antibiotics14030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Biofilms remain a major challenge in the food industry due to the increased resistance of foodborne pathogens to antimicrobial agents and food processing stresses, leading to food contamination and significant health risks. Their resistance to preservation techniques, antimicrobial treatments, and processing conditions increases concerns regarding food safety. This review discusses recent developments in physical, chemical, and surface modification strategies to control and remove biofilms in food processing environments. Physical methods, such as thermal treatments, electric fields, and ultrasonic systems, have demonstrated their efficacy in disrupting biofilm structure and improving disinfection processes. Chemical treatments, including the use of sanitizers, disinfectants, acidulants, and enzymes, provide targeted approaches to degrade biofilm matrices and inhibit bacterial adhesion. Furthermore, surface modifications of food contact materials provide innovative solutions for preventing biofilm formation and enhancing food safety. These cutting-edge strategies not only improve food safety but also reduce contamination risk in food processing facilities. The review highlights the mechanisms, efficacy, and applicability of these techniques, emphasizing their potential to mitigate biofilm-associated risks and ensure food quality and safety.
Collapse
Affiliation(s)
- Jirapat Dawan
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.D.); (S.Z.)
| | - Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.D.); (S.Z.)
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.D.); (S.Z.)
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| |
Collapse
|
8
|
Sil TB, Malyshev D, Aspholm M, Andersson M. Boosting hypochlorite's disinfection power through pH modulation. BMC Microbiol 2025; 25:101. [PMID: 40021972 PMCID: PMC11869716 DOI: 10.1186/s12866-025-03831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
PURPOSE Hypochlorite-based formulations are widely used for surface disinfection. However, the efficacy of hypochlorite against spore-forming bacteria varies significantly in the literature. Although neutral or low pH hypochlorite solutions are effective sporicides due to the formation of hypochlorous acid (HOCl), their optimal conditions and the specific role of pH in disinfection remain unclear. These conditions also increase the solution's corrosiveness and compromise its shelf life. Therefore, further research is needed to identify the pH conditions that balance solution stability and effective hypochlorite-based spore disinfection. RESULTS This study investigates the impact of neutral to alkaline pH on the sporicidal efficiency of hypochlorite against a pathogenic Bacillus cereus strain. We apply a 5,000 ppm hypochlorite formulation for 10-min across a pH range of 7.0-12.0, simulating common surface decontamination practices. Our results demonstrate that hypochlorite is largely ineffective at pH levels above 11.0, showing less than 1-log reduction in spore viability. However, there is a significant increase in sporicidal efficiency between pH 11.0 and 9.5, with a 4-log reduction in viability. This pH level corresponds to 2 - 55 ppm of the HOCl ionic form of hypochlorite. Further reduction in pH slightly improves the disinfection efficacy. However, the shelf life of hypochlorite solution decreases exponentially below pH 8.5. To explore the pH-dependent efficacy of hypochlorite, Raman spectroscopy and fluorescence imaging were used to investigate the biochemical mechanisms of spore decontamination. Results showed that lower pH enhances spore permeability and promotes calcium dipicolinic acid (CaDPA) release from the core. CONCLUSION Our results highlight the complex relationship between pH, sporicidal efficacy of hypochlorite, and its shelf life. While lower pH enhances the sporicidal efficiency, it compromises the solution's shelf life. A pH of 9.5 offers a balance, significantly improving shelf life compared to previously suggested pH ranges 7.0-8.0 while maintaining effective spore inactivation. Our findings challenge the common practice of diluting sodium hypochlorite with water to a 5,000 ppm solution, as this highly alkaline solution (pH of 11.9), is insufficient for eliminating B. cereus spores, even after a 10-min exposure. These findings are critical for improving disinfection practices, highlighting the importance of optimizing sodium hypochlorite effectiveness through pH adjustments before application.
Collapse
Affiliation(s)
| | | | - Marina Aspholm
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, 90187, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden.
| |
Collapse
|
9
|
Bermudez-Aguirre D, Tilman S, Uknalis J, Niemira BA, Counihan KL. Rapid Detection of Salmonella Typhimurium During Cell Attachment on Three Food-Contact Surfaces Using Long-Read Sequencing. Microorganisms 2025; 13:548. [PMID: 40142441 PMCID: PMC11945054 DOI: 10.3390/microorganisms13030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Salmonella spp. are pathogenic microorganisms linked to foodborne outbreaks associated with eggs and egg products. Salmonella can resist sanitation of egg processing equipment and form biofilms on food-contact surfaces. A major challenge for controlling Salmonella is the ability to detect the cells during the early stages of attachment to indicate that interventions are needed to sanitize the surface. This research investigated the use of long-read sequencing to identify Salmonella during the early stages (0-5 h) of cell attachment to three common food-contact surfaces-stainless steel, silicone, and nylon-and compared it with traditional microbiological methods. Results of the conventional plate counts showed that the detection of Salmonella began after three hours of incubation, with less than 1 log CFU/cm2 of growth. Silicone had the highest number of Salmonella attached (0.87 log CFU/cm2), followed by stainless steel (0.70 log CFU/cm2). Long-read whole genome sequencing identified attached Salmonella on stainless steel, silicone, and nylon after only one hour of incubation. The results of this study suggest that long-read sequencing could be a very useful method for detecting Salmonella at low concentrations in the processing environment during the early stages of cell attachment to food-contact surfaces, allowing for correct sanitation intervention.
Collapse
Affiliation(s)
- Daniela Bermudez-Aguirre
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (D.B.-A.); (S.T.); (B.A.N.)
| | - Shannon Tilman
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (D.B.-A.); (S.T.); (B.A.N.)
| | - Joseph Uknalis
- Microbial and Chemical Food Safety Research Unit, Eastern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA;
| | - Brendan A. Niemira
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (D.B.-A.); (S.T.); (B.A.N.)
| | - Katrina L. Counihan
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (D.B.-A.); (S.T.); (B.A.N.)
| |
Collapse
|
10
|
Malahlela HK, Belay ZA, Mphahlele RR, Caleb OJ. Efficacy of Air and Oxygen Micro-nano Bubble Waters Against Colletotrichum gloeosporioides and Impacts on Postharvest Quality of 'Fan Retief' Guava Fruit. J Food Prot 2025; 88:100437. [PMID: 39701449 DOI: 10.1016/j.jfp.2024.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
This study focused on the application of micro-nano bubbles (MNBs) water generated using air or oxygen (O2), as an alternative to chlorine-based wash for fruits. For the in vitro and in vivo investigation, 106 spore or conidia/mL Colletotrichum gloeosporioides suspension was used, and treated with solutions of air- or O2-MNB for 30- or 60-min, sodium hypochlorite (NaOCl), and untreated (as control). In the second experiment, freshly harvested guava fruits were washed with tap water (control), NaOCl (standard practice), air-, or O2-MNB (for 15- or 30-min). All samples were packaged, stored for 21 days at 13 °C, and monitored for changes in natural microbial population and quality attributes. Based on the confocal laser and transmission electron microscopy results, exposure of C. gloeosporioides to air-MNB for 60 min resulted in the lowest viable cell count (%) compared to control and other treatments (O2-MNB and NaOCl). Air- and O2-MNB treatments damaged cellular structures, disrupted cell membrane integrity, and deformed hyphal morphology. Washing 'Fan Retief' guava (Psidium guajava L.) in air- or O2-MNB (for 15 and/or 30 min), better-retained tissue strength, delayed changes in color, and total soluble solid (TSS) content. Notably, MNB treatments were as effective as NaOCl washing and significantly reduced microbial load on fruit surface by ≥2 Log (p < 0.05). Micro-nano bubble water treatment offers a new paradigm for decontamination and preservation of guava fruit quality.
Collapse
Affiliation(s)
- Harold K Malahlela
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Matieland, South Africa; AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Matieland, South Africa
| | - Zinash A Belay
- Agri-Food Systems and Omics Laboratory, Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Rebogile R Mphahlele
- Department of Land Reform and Rural Development, Private Bag X250, Pretoria, 0001, South Africa
| | - Oluwafemi James Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Matieland, South Africa; AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Matieland, South Africa.
| |
Collapse
|
11
|
Ivers C, Chalamalasetti S, Ruiz-Llacsahuanga B, Critzer F, Bhullar M, Nwadike L, Yucel U, Trinetta V. Evaluation of Commercially Available Sanitizers Efficacy to Control Salmonella (Sessile and Biofilm Forms) on Harvesting Bins and Picking Bags. J Food Prot 2024; 87:100394. [PMID: 39486481 DOI: 10.1016/j.jfp.2024.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
This study evaluated the efficacy of five commercially available sanitizers to reduce Salmonella (sessile and biofilm forms) count on experimentally inoculated materials representative of harvesting bins and picking bags in the fresh produce industry. Sessile Salmonella cells were grown onto tryptic soy agar to create a bacterial lawn, while multistrain Salmonella biofilms were grown in a Centers for Disease Control and Prevention (CDC) reactor at 22 ± 2 °C for 96 h. Samples were exposed to 500 ppm free chlorine, 500 ppm peroxyacetic acid (PAA), 75 psi steam, and 5% silver dihydrogen citrate (SDC) for 30 sec, 1, or 2 min or 100 ppm chlorine dioxide gas for 24 h. Sanitizer, surface type, and application time significantly affected the viability of Salmonella in both sessile and biofilm forms (P < 0.05). All treatments resulted in a significant reduction of Salmonella when compared to the control (P < 0.05). Chlorine dioxide gas was the most effective treatment in both sessile and biofilm forms regardless of the type of surface, and it achieved a 5-log reduction. PAA at 500 ppm applied for 2 min was the only liquid sanitizer that resulted in a greater than 3-log reduction in all surfaces. Scanning electronic microscopy demonstrated the porous surface nature of nylon and wood, compared to HDPE, impacted sanitizer antimicrobial activity. Understanding the efficacy of sanitizers to control Salmonella on harvesting bins and picking bags may improve the safety of fresh produce by increasing available sanitizing treatment.
Collapse
Affiliation(s)
- Colton Ivers
- Department of Food, Nutrition, Health and Dietetics, Kansas State University, United States
| | | | | | - Faith Critzer
- Department of Food Science and Technology, University of Georgia, United States
| | - Manreet Bhullar
- Department of Horticulture and Natural Resources, Kansas State University, United States
| | - Londa Nwadike
- Department of Dairy and Food Science, South Dakota State University, United States
| | - Umut Yucel
- Department of Food, Nutrition, Health and Dietetics, Kansas State University, United States
| | - Valentina Trinetta
- Department of Food, Nutrition, Health and Dietetics, Kansas State University, United States.
| |
Collapse
|
12
|
Zhang L, Yin D, Li L, Gao Y. Effects of Cross-Resistance of Salmonella Enterica Serovar Enteritidis Induced by Sodium Hypochlorite to Environmental Stress. Indian J Microbiol 2024; 64:1558-1569. [PMID: 39678967 PMCID: PMC11645338 DOI: 10.1007/s12088-023-01170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2024] Open
Abstract
To investigate the effects of repeated sodium hypochlorite stress on the resistance of Salmonella enterica Serovar Enteritidis (S. Enteritidis) LWCC1051. LWCC1051 was exposed to Trypticase Soy Broth (TSB) containing sodium hypochlorite concentrations of 9 mmol/L, 10 mmol/L, and 11 mmol/L. After 13 repeated transfers and incubations, three sodium hypochlorite resisted LWCC1051 strains were obtained. The D-values and colony morphologies of these strains were assessed. Their survival rates at 60 °C, 65 °C, 70 °C, 75 °C, and - 20 °C were determined and lethality curves at these temperatures were fitted using the Weibull model. Additionally, the Minimal Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for these strains in various chemicals, including malic acid, citric acid, ascorbic acid, acetic acid, lactic acid, hydrochloric acid, sodium hydroxide, potassium hydroxide, calcium chloride, sodium chloride, and potassium chloride were ascertained. Sodium hypochlorite concentrations of 9 mmol/L, 10 mmol/L, and 11 mmol/L in TSB induced sodium hypochlorite resistance in S. Enteritidis. D-value increased with the frequency of stress exposure. Higher concentrations of sodium hypochlorite resulted in greater D-values and noticeable differences in colony morphologies. The Weibull model accurately represented the temperature resistance curves of LWCC1051 at the specified temperatures. With increasing sodium hypochlorite stress, both high and low-temperature resistances of LWCC1051 improved. Furthermore, under acetic acid stress, the MIC and MBC values of LWCC1051 strains, post exposure to 9 mmol/L, 10 mmol/L, and 11 mmol/L sodium hypochlorite, doubled. Sodium hypochlorite stress enhances the cross-resistance of LWCC1051 to high temperature, low temperature, and acetic acid treatments.
Collapse
Affiliation(s)
- Lijun Zhang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023 China
| | - Dacheng Yin
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023 China
| | - Linqiong Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023 China
| | - Yulong Gao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023 China
| |
Collapse
|
13
|
Hu H, Xu J, Chen J, Tang C, Zhou T, Wang J, Kang Z. Influence of Flagella on Salmonella Enteritidis Sedimentation, Biofilm Formation, Disinfectant Resistance, and Interspecies Interactions. Foodborne Pathog Dis 2024. [PMID: 39513945 DOI: 10.1089/fpd.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Flagella are essential for bacterial motility and biofilm formation by aiding bacterial attachment to surfaces. However, the impact of flagella on bacterial behavior, particularly biofilm formation, remains unclear. This study constructed two flagellar mutation strains of Salmonella Enteritidis (SE), namely, SE-ΔflhD and SE-ΔflgE, and confirmed the loss of flagellar structures and motility in these strains. The mutant strains exhibited growth comparable with the wild-type (WT) strain but had higher sedimentation rates. Biofilm biomass did not differ significantly between the WT and mutant strains, except for SE-ΔflgE at 3 d. SE-ΔflgE showed increased susceptibility to sodium hypochlorite compared to the WT. The co-sedimentation rate of flagella-deficient strains was lower than the WT, and the biomass of dual-species biofilm formed by Bacillus paramycoides B5 with SE-ΔflhD or SE-ΔflgE was significantly lower than with the WT. These findings emphasize the significance of SE flagella in biofilm formation and interspecies interactions, offering insights into targeted biofilm prevention and control measures.
Collapse
Affiliation(s)
- Huixue Hu
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
- Jingjiang College, Jiangsu University, Zhenjiang, China
| | - Jingguo Xu
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
| | - Jingyu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Tianhao Zhou
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
| | - Jun Wang
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
| | - Zhuangli Kang
- College of Tourism and Cuisine Science, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Carneiro DG, Vidigal PMP, Morgan T, Vanetti MCD. Genome sequencing and analysis of Salmonella enterica subsp. enterica serotype Enteritidis PT4 578: insights into pathogenicity and virulence. Access Microbiol 2024; 6:000828.v3. [PMID: 39686970 PMCID: PMC11649194 DOI: 10.1099/acmi.0.000828.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/16/2024] [Indexed: 12/18/2024] Open
Abstract
Salmonella enterica serotype Enteritidis is a generalist serotype that adapts to different hosts and transmission niches. It has significant epidemiological relevance and is among the most prevalent serotypes distributed in several countries. Salmonella Enteritidis causes self-limited gastroenteritis in humans, which can progress to systemic infection in immunocompromised individuals. The Salmonella pathogenicity mechanism is multifactorial and complex, including the presence of virulence factors that are encoded by virulence genes. Poultry products are considered significant reservoirs of many Salmonella serotypes, and Salmonella Enteritidis infections are often related to the consumption of chicken meat and eggs. This study reports the whole-genome sequence of Salmonella Enteritidis PT4 strain 578. A total of 165 genes (3.66%) of the 4506 coding sequences (CDS) predicted in its genome are virulence factors associated with cell invasion, intestinal colonization, and intracellular survival. The genome harbours twelve Salmonella pathogenicity islands (SPIs), with the SPI-1 and SPI-2 genes encoding type III secretion systems (T3SS) showing high conservation. Six prophage-related sequences were found, with regions of intact prophages corresponding to Salmon_118970_sal3 and Gifsy-2. The genome also contains two CRISPR systems. Comparative genome analysis with Salmonella Enteritidis ATCC 13076, Salmonella Typhimurium ATCC 13311, and Salmonella Typhimurium ATCC 14028 demonstrates that most unshared genes are related to metabolism, membrane, and hypothetical proteins. Finally, the phenotypic characterization evidenced differences among Salmonella Enteritidis PT4 578 and the other three serotypes regarding the expression of the red, dry, and rough (rdar) morphotype and biofilm formation. Overall, the genomic characterization and phenotypic properties expand knowledge of the mechanisms of pathogenicity in Salmonella Enteritidis PT4 578.
Collapse
Affiliation(s)
- Deisy G. Carneiro
- Departamento de Microbiologia, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Pedro Marcus P. Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa 36570-900, Minas Gerais, Brazil
| | - Túlio Morgan
- Departamento de Microbiologia, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Maria Cristina D. Vanetti
- Departamento de Microbiologia, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa, 36570-900, Minas Gerais, Brazil
| |
Collapse
|
15
|
Aljuwayd M, Malli IA, Ricke SC, Kwon YM. Reactive Oxygen Species Mediate the Bactericidal Activity of Chlorine Against Salmonella. Curr Microbiol 2024; 81:355. [PMID: 39278982 DOI: 10.1007/s00284-024-03880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Chlorine and its derivatives have been used as an antibacterial agent to reduce Salmonella contamination in poultry meat during processing. We evaluated the survival of 4 different Salmonella serotypes (Typhimurium, Enteritidis, Heidelberg, and Gaminara) in the presence of 50 ppm sodium hypochlorite (NaOCl) alone or with the addition of thiourea (radical scavenger) or Dip (iron chelator) to determine the contribution of reactive oxygen species (ROS) in the bactericidal activity of NaOCl. The result showed that for all four serotypes the addition of thiourea or Dip significantly increased the % survival as compared to the respective NaOCl treatment groups, while it was significantly higher with thiourea as compared to Dip (P < 0.05). We also evaluated the survival of 11 deletion mutants of S. Typhimurium, which were demonstrated to increase (∆atpC, ∆cyoA, ∆gnd, ∆nuoG, ∆pta, ∆sdhC, and ∆zwf) or decrease the production of ROS (∆edd, ∆fumB, ∆pykA, and ∆tktB) in Escherichia coli (E. coli), in the presence of 50 ppm. The results showed that only two (∆sdhC and ∆zwf) out of 7 ROS-increasing mutants showed reduced % survival as compared to the wild-type (P < 0.05), while all four deletion ROS-decreasing mutants showed significantly higher % survival as compared to the wild-type (P < 0.05). This work suggests that the production of ROS is a major component of the bactericidal activity of NaOCl against Salmonella serotypes and there might be a significant difference in the metabolic pathways involved in ROS production between Salmonella and E. coli.
Collapse
Affiliation(s)
- Mohammed Aljuwayd
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
- College of Medical Applied Sciences, The Northern Border University, 91431, Arar, Saudi Arabia
| | - Israa Abdullah Malli
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, 21423, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, 22384, Jeddah, Saudi Arabia
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science & Animal Biologics Discovery Program (MSABD), University of Wisconsin, Office 2124 MSABD, 1933 Observatory Drive, Madison, WI, 53706, USA.
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
- Department of Poultry Science, Division of Agriculture, University of Arkansas System, Fayetteville, AR, 72701, USA
| |
Collapse
|
16
|
Li Y, Liang X, Chen N, Yuan X, Wang J, Wu Q, Ding Y. The promotion of biofilm dispersion: a new strategy for eliminating foodborne pathogens in the food industry. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 39054781 DOI: 10.1080/10408398.2024.2354524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food safety is a critical global concern due to its direct impact on human health and overall well-being. In the food processing environment, biofilm formation by foodborne pathogens poses a significant problem as it leads to persistent and high levels of food contamination, thereby compromising the quality and safety of food. Therefore, it is imperative to effectively remove biofilms from the food processing environment to ensure food safety. Unfortunately, conventional cleaning methods fall short of adequately removing biofilms, and they may even contribute to further contamination of both equipment and food. It is necessary to develop alternative approaches that can address this challenge in food industry. One promising strategy in tackling biofilm-related issues is biofilm dispersion, which represents the final step in biofilm development. Here, we discuss the biofilm dispersion mechanism of foodborne pathogens and elucidate how biofilm dispersion can be employed to control and mitigate biofilm-related problems. By shedding light on these aspects, we aim to provide valuable insights and solutions for effectively addressing biofilm contamination issues in food industry, thus enhancing food safety and ensuring the well-being of consumers.
Collapse
Affiliation(s)
- Yangfu Li
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinmin Liang
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nuo Chen
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Kim BH, Ashrafudoulla M, Shaila S, Park HJ, Sul JD, Park SH, Ha SD. Isolation, characterization, and application of bacteriophage on Vibrio parahaemolyticus biofilm to control seafood contamination. Int J Antimicrob Agents 2024; 64:107194. [PMID: 38723695 DOI: 10.1016/j.ijantimicag.2024.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/07/2024] [Accepted: 05/03/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVE This study intended to isolate a Vibrio-particular phage from the natural environment, analyse its characteristics and genome sequence, and investigate its reduction effect on V. parahaemolyticus biofilm as a biocontrol agent in squid and mackerel. METHODS Among 21 phages, phage CAU_VPP01, isolated from beach mud, was chosen for further experiments based on host range and EOP tests. When examining the reduction effect of phage CAU_VPP01 against Vibrio parahaemolyticus biofilms on surfaces (stainless steel [SS] and polyethylene terephthalate [PET]) and food surfaces (squid and mackerel). RESULTS The phage showed the most excellent reduction effect at a multiplicity-of-infection (MOI) 10. Three-dimensional images acquired with confocal laser scanning microscopy (CLSM) analysis were quantified using COMSTAT, which showed that biomass, average thickness, and roughness coefficient decreased when treated with the phage. Colour and texture analysis confirmed that the quality of squid and mackerel was maintained after the phage treatment. Finally, a comparison of gene expression levels determined by qRT-PCR analysis showed that the phage treatment induced a decrease in the gene expression of flaA, vp0962, andluxS, as examples. CONCLUSION This study indicated that Vibrio-specific phage CAU_VPP01 effectively controlled V. parahaemolyticus biofilms under various conditions and confirmed that the isolated phage could possibly be used as an effective biocontrol weapon in the seafood manufacturing industry.
Collapse
Affiliation(s)
- Byoung Hu Kim
- Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea; Food Quality Technology Center, Food Safety division, Pulmuone Co. Ltd., Cheongju, Republic of Korea
| | - Md Ashrafudoulla
- Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea; National Institute of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Shanjida Shaila
- Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Hyung Jin Park
- College of Sport Sciences, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Jeong Dug Sul
- College of Sport Sciences, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- Food Science and Technology, Chung-Ang University, Anseong-Si, Republic of Korea.
| |
Collapse
|
18
|
Omran BA, Tseng BS, Baek KH. Nanocomposites against Pseudomonas aeruginosa biofilms: Recent advances, challenges, and future prospects. Microbiol Res 2024; 282:127656. [PMID: 38432017 DOI: 10.1016/j.micres.2024.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
19
|
Su X, Lin Y, Hu X, Tan X, Mai Y, Jiang M, Zhang R, Huo F, Liu L, Tian W, Xie L. Sustained free chlorine-releasing polydimethylsiloxane/Ca(ClO) 2 materials with long-lasting disinfection efficacy. RSC Adv 2024; 14:12049-12057. [PMID: 38628489 PMCID: PMC11019411 DOI: 10.1039/d4ra00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
A novel sustained chlorine-releasing polydimethylsiloxane/Ca(ClO)2 (PDMS/Ca(ClO)2) material was fabricated by encapsulating Ca(ClO)2 in a PDMS matrix due to its high hydrophobicity and high chemical stability, which showed immediate-responsive and long-lasting antibacterial capabilities in aqueous conditions. Free chlorine could be released from the PDMS/Ca(ClO)2 after immersion in water for 2 min and could also be sustainedly released for 2 weeks, while the released concentration is negatively related to the duration time and positively with the initial Ca(ClO)2 contents. Additionally, Ca(ClO)2 powder as a filler significantly affects the crosslinking and pore size of PDMS. The PDMS/Ca(ClO)2 materials exhibited enduring antibacterial performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in both planktonic and multispecies-biofilm status. It is expected that this PDMS/Ca(ClO)2 material and its similar composite would be promising candidates for wide sustainable disinfection applications in biomedical and industrial fields.
Collapse
Affiliation(s)
- Xiaofan Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Yaqi Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Xingyu Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Yao Mai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Minyan Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Ruitao Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| |
Collapse
|
20
|
Chen H, Li D, Zheng Y, Wang K, Zhang H, Feng Z, Huang B, Wen H, Wu J, Xue W, Huang S. Construction of optical dual-mode sensing platform based on green emissive carbon quantum dots for effective detection of ClO - and cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123733. [PMID: 38157745 DOI: 10.1016/j.saa.2023.123733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Hypochlorite (ClO-) is an important redox regulator in reactive oxygen species, which play a considerable role in oxidative stress and related diseases. Hence, accurate and sensitive monitoring of ClO- concentration was urgently needed in the fields of life sciences, food and environment. Bright green fluorescent carbon quantum dots (G-CQDs) were synthesized utilizing one-step hydrothermal method with citric acid and acriflavine precursors. Through TEM, FTIR, XPS and zeta potential characterization procedures, G-CQDs illustrated uniformly dispersed and significant number of -NH2 and -OH on the surface. Meanwhile, the fluorescence and colorimetric analysis exhibited wide linear range and low detection limit response to ClO-. The fluorescence changes of G-CQDs were identified via smartphone to realize mobile sensing of ClO-. Subsequently, G-CQDs was applied for visualization and quantitative detection of ClO- in drinking water samples with satisfactory recovery rate. More importantly, G-CQDs demonstrated good water solubility, optical stability and excellent biocompatibility, which offered a promising analysis approach in cell imaging and exogenous ClO- detection in living cells. G-CQDs illustrated bright prospect and great potential in practical application of ClO- associated disease prevention and early clinical diagnosis.
Collapse
Affiliation(s)
- Huajie Chen
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Dai Li
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Yutao Zheng
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Kui Wang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - He Zhang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Zhipeng Feng
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Bolin Huang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Huiyun Wen
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan.
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, PR China.
| | - Saipeng Huang
- School of Chemical Engineering, Northwest University, Xi'an, PR China.
| |
Collapse
|
21
|
Byun KH, Han SH, Choi MW, Kim BH, Ha SD. Efficacy of disinfectant and bacteriophage mixture against planktonic and biofilm state of Listeria monocytogenes to control in the food industry. Int J Food Microbiol 2024; 413:110587. [PMID: 38301541 DOI: 10.1016/j.ijfoodmicro.2024.110587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Fresh produce and animal-based products contaminated with Listeria monocytogenes have been the main cause of listeriosis outbreaks for many years. The present investigation explored the potential of combination treatment of disinfectants with a bacteriophage cocktail to control L. monocytogenes contamination in the food industry. A mixture of 1 minimal inhibitory concentration (MIC) of disinfectants (sodium hypochlorite [NaOCl], hydrogen peroxide [H2O2], and lactic acid [LA]) and multiplicity of infection (MOI) 100 of phage cocktail was applied to both planktonic cells in vitro and already-formed biofilm cells on food contact materials (FCMs; polyethylene, polypropylene, and stainless steel) and foods (celery and chicken meat). All the combinations significantly lowered the population, biofilm-forming ability, and the expression of flaA, motB, hlyA, prfA, actA, and sigB genes of L. monocytogenes. Additionally, in the antibiofilm test, approximately 4 log CFU/cm2 was eradicated by 6 h treatment on FCMs, and 3 log CFU/g was eradicated within 3 days on celery. However, <2 log CFU/g was eradicated in chicken meat, and regrowth of L. monocytogenes was observed on foods after 5 days. The biofilm eradication efficacy of the combination treatment was proven through visualization using scanning electron microscopy (SEM) and confocal microscopy. In the SEM images, the unusual behavior of L. monocytogenes invading from the surface to the inside was observed after treating celery with NaOCl+P or H2O2 + P. These results suggested that combination of disinfectants (NaOCl, H2O2, and LA) with Listeria-specific phage cocktail can be employed in the food industry as a novel antimicrobial and antibiofilm approach, and further research of L. monocytogenes behavior after disinfection is needed.
Collapse
Affiliation(s)
- Kye-Hwan Byun
- Technology Innovation Research Division, Hygienic Safety and Materials Research Group, World Institute of Kimchi, Gwangju 61755, South Korea; Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Sang Ha Han
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Min Woo Choi
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Byoung-Hu Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Nae-ri, Daeduk-myun, Ansung, Kyunggido 17546, South Korea.
| |
Collapse
|
22
|
Guo M, Tian S, Wang W, Xie L, Xu H, Huang K. Biomimetic leaves with immobilized catalase for machine learning-enabled validating fresh produce sanitation processes. Food Res Int 2024; 179:114028. [PMID: 38342546 DOI: 10.1016/j.foodres.2024.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/13/2024]
Abstract
Washing and sanitation are vital steps during the postharvest processing of fresh produce to reduce the microbial load on the produce surface. Although current process control and validation tools effectively predict sanitizer concentrations in wash water, they have significant limitations in assessing sanitizer effectiveness for reducing microbial counts on produce surfaces. These challenges highlight the urgent need to improve the validation of sanitation processes, especially considering the presence of dynamic organic contaminants and complex surface topographies. This study aims to provide the fresh produce industry with a novel, reliable, and highly accurate method for validating the sanitation efficacy on the produce surface. Our results demonstrate the feasibility of using a food-grade, catalase (CAT)-immobilized biomimetic leaf in combination with vibrational spectroscopy and machine learning to predict microbial inactivation on microgreen surfaces. This was tested using two sanitizers: sodium hypochlorite (NaClO) and hydrogen peroxide (H2O2). The developed CAT-immobilized leaf-replicated PDMS (CAT@L-PDMS) effectively mimics the microscale topographies and bacterial distribution on the leaf surface. Alterations in the FTIR spectra of CAT@L-PDMS, following simulated sanitation processes, indicate chemical changes due to CAT oxidation induced by NaClO or H2O2 treatments, facilitating the subsequent machine learning modeling. Among the five algorithms tested, the competitive adaptive reweighted sampling partial least squares discriminant analysis (CARS-PLSDA) algorithm was the most effective for classifying the inactivation efficacy of E. coli on microgreen leaf surfaces. It predicted bacterial reduction on microgreen surfaces with 100% accuracy in both training and prediction sets for NaClO, and 95% in the training set and 86% in the prediction set for H2O2. This approach can improve the validation of fresh produce sanitation processes and pave the way for future research.
Collapse
Affiliation(s)
- Minyue Guo
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Shijie Tian
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lijuan Xie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huirong Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Kang Huang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
23
|
Nunes NB, dos Reis JO, Castro VS, Machado MAM, da Cunha-Neto A, Figueiredo EEDS. Optimizing the Antimicrobial Activity of Sodium Hypochlorite (NaClO) over Exposure Time for the Control of Salmonella spp. In Vitro. Antibiotics (Basel) 2024; 13:68. [PMID: 38247627 PMCID: PMC10812646 DOI: 10.3390/antibiotics13010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Fish is a nutritionally rich product; however, it is easily contaminated by pathogenic microorganisms, such as Salmonella spp. Therefore, this study aimed to identify the best concentration of sodium hypochlorite (NaClO), exposure time, and water temperature that allow the most effective antimicrobial effect on the viable population of Salmonella spp. Thus, Salmonella Enteritidis ATCC 13076 and Salmonella Schwarzengrund were exposed to different time frames, ranging from 5 min to 38.5 min, temperatures between 5 and 38.5 °C, and NaClO concentrations ranging from 0.36 to 6.36 ppm, through a central composite rotational design experiment (CCRD). The results demonstrated that the ATCC strain exhibited a quadratic response to sodium hypochlorite when combined with exposure time, indicating that initial contact would already be sufficient for the compound's action to inhibit the growth of the mentioned bacteria. However, for S. Schwarzengrund (isolated directly from fish cultivated in aquaculture), both NaClO concentration and exposure time significantly influenced inactivation, following a linear pattern. This suggests that increasing the exposure time of NaClO could be an alternative to enhance Salmonella elimination rates in fish slaughterhouses. Thus, the analysis indicates that the Salmonella spp. strains used in in vitro experiments were sensitive to concentrations equal to or greater than the recommended ones, requiring a longer exposure time combined with the recommended NaClO concentration in the case of isolates from aquaculture.
Collapse
Affiliation(s)
- Nathaly Barros Nunes
- Faculty of Agronomy and Zootechnics, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (N.B.N.); (J.O.d.R.)
| | - Jaqueline Oliveira dos Reis
- Faculty of Agronomy and Zootechnics, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (N.B.N.); (J.O.d.R.)
| | - Vinicius Silva Castro
- Faculty of Agronomy and Zootechnics, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (N.B.N.); (J.O.d.R.)
- Faculty of Nutrition, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil;
| | | | - Adelino da Cunha-Neto
- Faculty of Nutrition, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil;
| | - Eduardo Eustáquio de Souza Figueiredo
- Faculty of Agronomy and Zootechnics, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (N.B.N.); (J.O.d.R.)
- Faculty of Nutrition, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil;
| |
Collapse
|
24
|
Xu L, Song S, Graham NJD, Yu W. Direct generation of DBPs from city dust during chlorine-based disinfection. WATER RESEARCH 2024; 248:120839. [PMID: 37980862 DOI: 10.1016/j.watres.2023.120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Chlorine-based disinfectants, such as sodium hypochlorite, are extensively used in our daily lives. In particular, during the recent Covid-19 pandemic and post-pandemic period, excessive amounts of chlorine-based disinfectants were used both indoors and outdoors to interrupt virus transmission. However, the interaction between disinfectants and city dust during the disinfection process has not been sufficiently evaluated. In this study, we conducted a comprehensive investigation into the intrinsic characteristics (e.g. morphology, size, elemental composition, and organic content, etc.) of dust collected from various indoor and outdoor areas. The results showed that the organic carbon content of indoor dust reached 6.14 %, with a corresponding measured dissolved organic carbon value of 4.17 ± 0.23 mg/g (normalized to the dust weight). Concentrations of regulated DBPs, resulting from the interaction between dust and NaClO, ranged from 57.78 ± 2.72 to 102.80 ± 22.63 µg/g for THMs and from 119.18 ± 6.50 to 285.14 ± 36.95 µg/g for HAAs (normalized to the dust weight). More significantly, using non-target analysis through gas chromatography quadrupole time-of-flight mass spectrometry (GC-qTOF-MS), we identified a total of 68, 89, and 87 types of halogenated DBPs from three typical indoor and outdoor sites (R-QH, C-JS, and W-BR, respectively). These unknown DBPs included compounds with higher toxicity compared to regulated DBPs. These findings highlight that city dust is a significant source of DBP generation during chlorine-based disinfection, posing potential harm to both the ecological environment and human health.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shian Song
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
25
|
Wu-Chen RA, Feng J, Elhadidy M, Nambiar RB, Liao X, Yue M, Ding T. Long-term exposure to food-grade disinfectants causes cross-resistance to antibiotics in Salmonella enterica serovar Typhimurium strains with different antibiograms and sequence types. Antimicrob Resist Infect Control 2023; 12:145. [PMID: 38093321 PMCID: PMC10717106 DOI: 10.1186/s13756-023-01333-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Disinfectants are important in the food industry to prevent the transmission of pathogens. Excessive use of disinfectants may increase the probability of bacteria experiencing long-term exposure and consequently resistance and cross-resistance to antibiotics. This study aims to investigate the cross-resistance of multidrug-resistant, drug-resistant, and drug-susceptible isolates of Salmonella enterica serovar Typhimurium (S. Typhimurium) with different sequence types (STs) to a group of antibiotics after exposure to different food-grade disinfectants. METHODS A panel of 27 S. Typhimurium strains with different antibiograms and STs were exposed to increasing concentrations of five food-grade disinfectants, including hydrogen peroxide (H2O2), benzalkonium chloride (BAC), chlorine dioxide (ClO2), sodium hypochlorite (NaClO), and ethanol. Recovered evolved strains were analyzed using genomic tools and phenotypic tests. Genetic mutations were screened using breseq pipeline and changes in resistance to antibiotics and to the same disinfectant were determined. The relative fitness of evolved strains was also determined. RESULTS Following exposure to disinfectants, 22 out of 135 evolved strains increased their resistance to antibiotics from a group of 14 clinically important antibiotics. The results also showed that 9 out of 135 evolved strains had decreased resistance to some antibiotics. Genetic mutations were found in evolved strains. A total of 77.78% of ST34, 58.33% of ST19, and 66.67% of the other STs strains exhibited changes in antibiotic resistance. BAC was the disinfectant that induced the highest number of strains to cross-resistance to antibiotics. Besides, H2O2 induced the highest number of strains with decreased resistance to antibiotics. CONCLUSIONS These findings provide a basis for understanding the effect of disinfectants on the antibiotic resistance of S. Typhimurium. This work highlights the link between long-term exposure to disinfectants and the evolution of resistance to antibiotics and provides evidence to promote the regulated use of disinfectants.
Collapse
Affiliation(s)
- Ricardo A Wu-Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Feng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed Elhadidy
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Reshma B Nambiar
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Liao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Min Yue
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Tian Ding
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
| |
Collapse
|
26
|
Jordá J, Lorenzo-Rebenaque L, Montoro-Dasi L, Marco-Fuertes A, Vega S, Marin C. Phage-Based Biosanitation Strategies for Minimizing Persistent Salmonella and Campylobacter Bacteria in Poultry. Animals (Basel) 2023; 13:3826. [PMID: 38136863 PMCID: PMC10740442 DOI: 10.3390/ani13243826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Control strategies to minimize pathogenic bacteria in food animal production are one of the key components in ensuring safer food for consumers. The most significant challenges confronting the food industry, particularly in the major poultry and swine sectors, are antibiotic resistance and resistance to cleaning and disinfection in zoonotic bacteria. In this context, bacteriophages have emerged as a promising tool for zoonotic bacteria control in the food industry, from animals and farm facilities to the final product. Phages are viruses that infect bacteria, with several advantages as a biocontrol agent such as high specificity, self-replication, self-limitation, continuous adaptation, low inherent toxicity and easy isolation. Their development as a biocontrol agent is of particular interest, as it would allow the application of a promising and even necessary "green" technology to combat pathogenic bacteria in the environment. However, bacteriophage applications have limitations, including selecting appropriate phages, legal restrictions, purification, dosage determination and bacterial resistance. Overcoming these limitations is crucial to enhance phage therapy's effectiveness against zoonotic bacteria in poultry. Thus, this review aims to provide a comprehensive view of the phage-biosanitation strategies for minimizing persistent Salmonella and Campylobacter bacteria in poultry.
Collapse
Affiliation(s)
- Jaume Jordá
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Laura Lorenzo-Rebenaque
- Institute of Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| |
Collapse
|
27
|
Ohman E, Kilgore S, Waite-Cusic J, Kovacevic J. Before and After: Evaluation of Microbial and Organic Loads in Produce Handling and Packing Operations with Diverse Cleaning and Sanitizing Procedures. J Food Prot 2023; 86:100185. [PMID: 37884090 DOI: 10.1016/j.jfp.2023.100185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/23/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Inadequate cleaning and/or sanitation (C/S) of food contact surfaces (FCSs) has been frequently reported during Produce Safety Rule inspections; however, limited data are available evaluating the effectiveness of C/S processes in produce operations. Different C/S practices were evaluated in four fresh produce operations for their efficacy in reducing microbial and organic loads on various FCSs. Microbial (aerobic plate counts; APC) and organic (ATP) loads were quantified during production, after cleaning, and after sanitizing, if applicable. Operations included: a berry packinghouse (BerryPK; wet cleaning), a blueberry harvest contractor (BerryHC; cleaning + sanitizing, C+S), and two mixed vegetable packinghouses (MixedV1; C+S, and MixedV2; rinsing + sanitizing, R+S). Following wet cleaning, significant reductions in APCs (p < 0.05) were seen on high-density polyethylene (HDPE) storage trays (n = 50) in BerryPK (3.1 ± 0.9 to 2.5 ± 0.7 log CFU/100 cm2). In BerryHC, a greater reduction in APCs was seen on HDPE harvest buckets (n = 25) following C+S (3.8 ± 0.5 to 1.1 ± 0.4 log CFU/100 cm2), compared to wet cleaning only in BerryPK. Stainless steel and conveyor belt FCSs (n = 16) in MixedV1 were sampled, and a significant reduction in APCs (p < 0.05) was observed when comparing in-use (4.8 ± 1.3 log CFU/100 cm2) to post-C+S (3.9 ± 0.7 log CFU/100 cm2). When similar FCSs (n = 17) were sampled in MixedV2, R+S also led to significant reduction in APCs (3.3 ± 0.6 to 1.9 ± 0.6 log CFU/100 cm2) (p < 0.05). ATP testing in fresh produce settings yielded inconsistent results, with no correlation between organic and bacterial loads detected during production (R2 = 0.00) across four operations, and weak correlations observed after cleaning (R2 = 0.18) and after sanitation (R2 = 0.33). The results from this study provide the foundational basis for future research on practical and effective C/S methods tailored to the produce industry.
Collapse
Affiliation(s)
- Erik Ohman
- Food Innovation Center, Oregon State University, 1207 NW Naito Parkway, Portland, OR 97209, USA
| | - Samantha Kilgore
- Wiegand Hall, Oregon State University, 3051 SW Campus Way, Corvallis, OR 97331, USA
| | - Joy Waite-Cusic
- Wiegand Hall, Oregon State University, 3051 SW Campus Way, Corvallis, OR 97331, USA
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, 1207 NW Naito Parkway, Portland, OR 97209, USA.
| |
Collapse
|
28
|
Kim SH, Lee H, Park MK. Isolation, characterization, and application of a novel, lytic phage vB_SalA_KFSST3 with depolymerase for the control of Salmonella and its biofilm on cantaloupe under cold temperature. Food Res Int 2023; 172:113062. [PMID: 37689855 DOI: 10.1016/j.foodres.2023.113062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 09/11/2023]
Abstract
This study investigated the efficacy of a novel Salmonella phage with depolymerase activity to control S. Typhimurium (ST) and its biofilm on cantaloupes, for the first time, under simulated cold temperature. vB_SalA_KFSST3 forming a halo zone was isolated and purified from a slaughterhouse with a final concentration of 12.1 ± 0.1 log PFU/mL. Based on the morphological and bioinformatics analyses, vB_SalA_KFSST3 was identified as a novel phage belonging to the family Ackermannviridae. Before employing the phage on cantaloupe, its genetic characteristics, specificity, stability, and bactericidal effect were investigated. Genetic analyses confirmed its safety and identified endolysin and two depolymerase domains possessing antibiofilm potential. In addition, the phage exhibited a broad specificity with great efficiencies toward five Salmonella strains at 4 °C, 22 °C, and 37 °C, as well as stable lytic activity over a wide range of pHs (3 to 11) and temperatures (-20 °C to 60 °C). The optimal multiplicity of infection (MOI) and exposure time of phage were determined to be 100 and 2 h, respectively, based on the highest bacterial reduction of ∼2.7 log CFU/mL. Following the formation of ST biofilm on cantaloupe at 4 °C and 22 °C, the cantaloupe was treated with phage at an MOI of 100 for 2 h. The antibiofilm efficacy of phage was evaluated via the plate count method, confocal laser scanning microscopy, and scanning electron microscopy (SEM). The initial biofilm population at 22 °C was significantly greater and more condensed than that at 4 °C. After phage treatment, biofilm population and the percentage of viable ST in biofilm were reduced by ∼4.6 log CFU/cm2 and ∼90% within 2 h, respectively, which were significantly greater than those at 22 °C (∼2.0 log CFU/cm2 and ∼45%) (P < 0.05). SEM images also confirmed more drastic destruction of the cohesive biofilm architecture at 4 °C than at 22 °C. As a result of its cold temperature-robust lytic activity and the contribution of endolysin and two depolymerases, vB_SalA_KFSST3 demonstrated excellent antibiofilm efficacy at cold temperature, highlighting its potential as a promising practical biocontrol agent for the control of ST and its biofilm.
Collapse
Affiliation(s)
- Su-Hyeon Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Heejeong Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Food and Bio-Industry Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
29
|
Pang X, Hu X, Du X, Lv C, Yuk HG. Biofilm formation in food processing plants and novel control strategies to combat resistant biofilms: the case of Salmonella spp. Food Sci Biotechnol 2023; 32:1703-1718. [PMID: 37780596 PMCID: PMC10533767 DOI: 10.1007/s10068-023-01349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
Salmonella is one of the pathogens that cause many foodborne outbreaks throughout the world, representing an important global public health problem. Salmonella strains with biofilm-forming abilities have been frequently isolated from different food processing plants, especially in poultry industry. Biofilm formation of Salmonella on various surfaces can increase their viability, contributing to their persistence in food processing environments and cross-contamination of food products. In recent years, increasing concerns arise about the antimicrobial resistant and disinfectant tolerant Salmonella, while adaptation of Salmonella in biofilms to disinfectants exacerbate this problem. Facing difficulties to inhibit or remove Salmonella biofilms in food industry, eco-friendly and effective strategies based on chemical, biotechnological and physical methods are in urgent need. This review discusses biofilm formation of Salmonella in food industries, with emphasis on the current available knowledge related to antimicrobial resistance, together with an overview of promising antibiofilm strategies for controlling Salmonella in food production environments.
Collapse
Affiliation(s)
- Xinyi Pang
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Xin Hu
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Xueying Du
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Chenglong Lv
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, National University of Transportation, 61 Daehak-ro Jeungpyeong-gun, Chungbuk, 27909 Republic of Korea
| |
Collapse
|
30
|
Gensler C, Harper K, Stoufer S, Moore MD, Kinchla AJ, McLandsborough L. Exploring Washing Procedures for Produce Brush Washer. J Food Prot 2023; 86:100126. [PMID: 37414285 DOI: 10.1016/j.jfp.2023.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Previous environmental monitoring projects in food production facilities have revealed inconsistencies in how produce brush washer machines are cleaned after use; thus, the study of effective sanitation procedures for these machines is needed. Four chlorine solution treatments (ranging from 25 to 200 ppm), as well as a water-only treatment, were tested for efficacy in reducing bacterial loads for a selected small brush washer machine. Results indicate that rinsing with the machine's power and water alone, a frequent practice among some produce processors, yielded a reduction of 0.91-1.96 log CFU per brush roller in bacterial counts, which was not statistically significant (p > 0.05). However, the chlorine treatments were found to be effective in reducing bacterial loads significantly, with higher concentrations being the most effective. The 200 ppm and 100 ppm chlorine treatments yielded bacterial reductions of 4.08 and 3.95 log CFU per brush roller, respectively, leaving bacterial levels statistically similar to the levels at postprocess decontamination, meaning these are the most effective at killing bacteria of all the chlorine concentrations tested. These data suggest the use of at least 100 ppm chlorine sanitizer solution is a good method to sanitize hard-to-clean produce washing machines, yielding an approximate 4 log CFU reduction of the inoculated bacteria.
Collapse
Affiliation(s)
- Catherine Gensler
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Kelsi Harper
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Sloane Stoufer
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Amanda J Kinchla
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA.
| | - Lynne McLandsborough
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
31
|
Pan S, Lu D, Gan H, Zhu DZ, Yao Z, Kurup PU, Zhang G, Luo J. Long-range hydrophobic force enhanced interfacial photocatalysis for the submerged surface anti-biofouling. WATER RESEARCH 2023; 243:120383. [PMID: 37506635 DOI: 10.1016/j.watres.2023.120383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Developing anti-biofouling and anti-biofilm techniques is of great importance for protecting water-contact surfaces. In this study, we developed a novel double-layer system consisting of a bottom immobilized TiO2 nanoflower arrays (TNFs) unit and an upper superhydrophobic (SHB) coating along with the assistance of nanobubbles (NBs), which can significantly elevate the interfacial oxygen level by establishing the long-range hydrophobic force between NBs and SHB and effectively maximize the photocatalytic reaction brought by the bottom TNFs. The developed NBs-SHB/TNFs system demonstrated the highest bulk chemical oxygen demand (COD) reduction efficiency at approximately 80% and achieved significant E. coli and Chlorella sp. inhibition efficiencies of 5.38 and 1.99 logs. Meanwhile, the system showed a sevenfold higher resistance to biofilm formation when testing in a wastewater matrix using a wildly collected biofilm seeding solution. These findings provide insights for implementing nanobubble-integrated techniques for submerged surface protection.
Collapse
Affiliation(s)
- Shuo Pan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Dingnan Lu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA
| | - Huihui Gan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA.
| | - David Z Zhu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Pradeep U Kurup
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China.
| | - Jiayue Luo
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
32
|
Wang X, Wang X, Lu Q, Sun X, Han Q. Hypochlorous acid-activated near-infrared fluorescent probe for in vivo/exogenous detection and dairy toxicity evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122661. [PMID: 37037175 DOI: 10.1016/j.saa.2023.122661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/12/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Oxidative stress has been reported to be closely associated with many diseases, and an excessive overdose of hypochlorite (ClO-) can also induce stress-related diseases. In this study, we designed and synthesized a NIR probe, named W-1a based on computational analysis of DCM (4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran) derivatives for specific detection of ClO-. The probe exhibited dual fluorescence and colorimetric sensing with a response time of <1 min and a detection limit of 0.15 μM. Additionally, the probe was successfully applied for fluorescence imaging of ClO- at the cellular level and ebrafish endogenous/exogenous ClO- assay and dairy toxicity assessment. Thus, we present a potential method for developing an efficient and reliable detection of ClO- in early stage using near-infrared dyes.
Collapse
Affiliation(s)
- Xiao Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science &Technology, Xi'an 710021, PR China
| | - Xuechuan Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science &Technology, Xi'an 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Qiangqiang Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Qingxing Han
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|
33
|
Kim Y, Nahar S, Cho AJ, Mahamud AU, Park SH, Ha SD. Synergistic antibacterial effect of DNase I and eugenol against Salmonella Enteritidis biofilm on smoked duck and food contact surfaces. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
34
|
Saraswathy M, Komath M, Ragini DD, SomanPillai SarojiniAmma P, Lathikumari SS, Akhandanandan MN. Bactericidal Activity of Superabsorbent Polymer Granules for Their Applications in Respiratory Fluid Solidification Systems. ACS OMEGA 2023; 8:25114-25121. [PMID: 37483248 PMCID: PMC10357423 DOI: 10.1021/acsomega.3c01994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Disposal of respiratory secretions from patients having contagious diseases (e.g., COVID-19 and tuberculosis) poses a high risk of infection for healthcare workers. AcryloSorb canister liner bags are highly efficient for the safe handling of contagious respiratory secretions via solidification and disinfection processes. The canister liner bags are lined with disinfectant-impregnated superabsorbent polymer (DSAP) granules. The liner structure in the bag has a patented design that has upward progressive absorbent availability (Indian Patent application # 202041019872). AcryloSorb canister liner bags can decontaminate the fluid secretions absorbed in the bag and solidify within 10 min. The present study focused on the bactericidal effect of DSAP using Gram-negative bacteria, Klebsiella pneumoniae, and Gram-positive bacteria, methicillin-resistantStaphylococcus aureus (MRSA). Disinfectants such as peracetic acid (ethaneperoxic acid), sodium dichloroisocyanurate (sodium 3,5-dichloro-2,4,6-trioxo-1,3,5-triazinan-1-ide), rose bengal (disodium; 2,3,4,5-tetrachloro-6-(2,4,5,7-tetraiodo-3-oxido-6-oxoxanthen-9-yl) benzoate), and N,N-dimethyl-N-[3-(triethoxysilyl)propyl]octadecan-1-aminium chloride at different weight ratios were impregnated in superabsorbent polymer (SAP) granules. The bactericidal activities of DSAP were studied along with its solidification capacity. Disinfectants showed different bactericidal activities when impregnated with SAP granules. For example, peracetic acid-impregnated SAP granules (DSAP-P) showed 100% bactericidal activity for both Klebsiella pneumoniae and MRSA at 0.5 wt % peracetic acid. Sodium dichloroisocyanurate-impregnated SAP granules showed 100% bactericidal activity only at 5 wt % sodium dichloroisocyanurate (DSAP-S5). Even though peracetic acid was highly effective, SAP granules collapsed when impregnated with peracetic acid. The ease of handling, disinfection efficacy, and preserving the morphology of SAP granules make DSAP-S5, a suitable candidate for AcryloSorb canister liner bags.
Collapse
Affiliation(s)
- Manju Saraswathy
- Department
of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences
and Technology, Trivandrum 695012, India
| | - Manoj Komath
- Divisin
of Bioceramics, Department of Biomaterial Science and Technology,
Biomedical Technology Wing, Sree Chitra
Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, India
| | - Deepu Damodharan Ragini
- Department
of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences
and Technology, Trivandrum 695012, India
| | - Pradeepkumar SomanPillai SarojiniAmma
- Division
of Microbial Technology, Department of Applied Biology, Biomedical
Technology Wing, Sree Chitra Tirunal Institute
for Medical Sciences and Technology, Trivandrum 695012, India
| | - Sreejith Sasidharan Lathikumari
- Department
of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences
and Technology, Trivandrum 695012, India
| | - Maya Nandkumar Akhandanandan
- Division
of Microbial Technology, Department of Applied Biology, Biomedical
Technology Wing, Sree Chitra Tirunal Institute
for Medical Sciences and Technology, Trivandrum 695012, India
| |
Collapse
|
35
|
Liu YQ, Wang ZW, Hu CY. Progress in research on the safety of silicone rubber products in food processing. Compr Rev Food Sci Food Saf 2023; 22:2887-2909. [PMID: 37183940 DOI: 10.1111/1541-4337.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/24/2023] [Accepted: 04/15/2023] [Indexed: 05/16/2023]
Abstract
Silicone rubber (SR) is widely used in the food processing industry due to its excellent physical and chemical properties. However, due to the differences in SR product production formulas and processes, the quality of commercially available SR products varies greatly, with chemical and biological hazard potentials. Residual chemicals in SR, such as siloxane oligomers and 2,4-dichlorobenzoic acid, are non-intentionally added substances, which may migrate into food during processing so the safe use of SR must be guaranteed. Simultaneously, SR in contact with food is susceptible to pathogenic bacteria growing and biofilm formation, like Cronobacter sakazakii, Staphylococcus aureus, Salmonella enteritidis, and Listeria monocytogenes, posing a food safety risk. Under severe usage scenarios such as high-temperature, high-pressure, microwave, and freezing environments with long-term use, SR products are more prone to aging, and their degradation products may pose potential food safety hazards. Based on the goal of ensuring food quality and safety to the greatest extent possible, this review suggests that enterprises need to prepare high-quality food-contact SR products by optimizing the manufacturing formula and production process, and developing products with antibacterial and antiaging properties. The government departments should establish quality standards for food-contact SR products and conduct effective supervision. Besides, the reusable SR products should be cleaned by consumers immediately after use, and the deteriorated products should be replaced as soon as possible.
Collapse
Affiliation(s)
- Yi-Qi Liu
- Department of Food Science & Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Zhi-Wei Wang
- Packaging Engineering Institute, Jinan University, Zhuhai, Guangdong, China
| | - Chang-Ying Hu
- Department of Food Science & Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Zarei M, Paknejad M, Eskandari MH. Sublethal chlorine stress promotes the biofilm-forming ability of Salmonella enterica serovars enteritidis and expression of the related genes. Food Microbiol 2023; 112:104232. [PMID: 36906303 DOI: 10.1016/j.fm.2023.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Chlorine treatment is the most common disinfection method in food-related environments. In addition to being simple and inexpensive, this method is very effective if used properly. However, insufficient chlorine concentrations only cause a sublethal oxidative stress in the bacterial population and may alter the growth behavior of stressed cells. In the present study, the effect of sublethal chlorine stress on the biofilm formation characteristics of Salmonella Enteritidis was evaluated. Our results demonstrated that, sublethal chlorine stress (350 ppm total chlorine) activates the biofilm (csgD, agfA, adrA and bapA) and quorum-sensing (sdiA and luxS) related genes in planktonic cells of S. Enteritidis. The higher expression of these genes illustrated that the chlorine stress induced the initiation of the biofilm formation process in S. Enteritidis. Results of the initial attachment assay confirmed this finding. In addition, the number of chlorine-stressed biofilm cells was significantly higher than non-stressed biofilm cells after 48 h incubation at 37 °C. In S. Enteritidis ATCC 13076 and S. Enteritidis KL19, the number of chlorine-stressed biofilm cells were 6.93 ± 0.48 and 7.49 ± 0.57 log CFU/cm2, while the number of non-stressed biofilm cells were 5.12 ± 0.39 and 5.63 ± 0.51 log CFU/cm2, respectively. These findings were confirmed by measurements of the major components of biofilm, i.e., eDNA, protein and carbohydrate. The amount of these components in 48-h biofilms was higher when the cells were initially subjected to sublethal chlorine stress. However, the up-regulation of the biofilm and quorum sensing genes was not observed in 48-h biofilm cells, indicating that the effect of chlorine stress had vanished in the subsequent generations of Salmonella. In total, these results revealed that sublethal chlorine concentrations can promote the biofilm-forming ability of S Enteritidis.
Collapse
Affiliation(s)
- Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohsen Paknejad
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
37
|
Roy PK, Ha AJW, Nahar S, Hossain MI, Ashrafudoulla M, Toushik SH, Mizan MFR, Kang I, Ha SD. Inhibitory effects of vorinostat (SAHA) against food-borne pathogen Salmonella enterica serotype Kentucky mixed culture biofilm with virulence and quorum-sensing relative expression. BIOFOULING 2023; 39:617-628. [PMID: 37580896 DOI: 10.1080/08927014.2023.2242263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
Salmonella is a food-borne microorganism that is also a zoonotic bacterial hazard in the food sector. This study determined how well a mixed culture of Salmonella Kentucky formed biofilms on plastic (PLA), silicon rubber (SR), rubber gloves (RG), chicken skin and eggshell surfaces. In vitro interactions between the histone deacetylase inhibitor-vorinostat (SAHA)-and S. enterica serotype Kentucky were examined utilizing biofilms. The minimum inhibitory concentration (MIC) of SAHA was 120 µg mL-1. The addition of sub-MIC (60 µg mL-1) of SAHA decreased biofilm formation for 24 h on PLA, SR, RG, Chicken skin, and eggshell by 3.98, 3.84, 4.11, 2.86 and 3.01 log (p < 0.05), respectively. In addition, the initial rate of bacterial biofilm formation was higher on chicken skin than on other surfaces, but the inhibitory effect was reduced. Consistent with this conclusion, virulence genes expression (avrA, rpoS and hilA) and quorum-sensing (QS) gene (luxS) was considerably downregulated at sub-MIC of SAHA. SAHA has potential as an anti-biofilm agent against S. enterica serotype Kentucky biofilm, mostly by inhibiting virulence and quorum-sensing gene expression, proving the histone deacetylase inhibitor could be used to control food-borne biofilms in the food industry.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Angela Ji-Won Ha
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Md Iqbal Hossain
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Sazzad Hossen Toushik
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Iksoon Kang
- Department of Animal Science, College of Agriculture, Food and Environmental Science, CA Polytechnic State University, San Luis Obispo, California, USA
| | - Sang-Do Ha
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
38
|
Liu Y, Yan Y, Yang K, Yang X, Dong P, Wu H, Luo X, Zhang Y, Zhu L. Inhibitory mechanism of Salmonella Derby biofilm formation by sub-inhibitory concentrations of clove and oregano essential oil: A global transcriptomic study. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
39
|
Wu RA, Feng J, Yue M, Liu D, Ding T. Overuse of food-grade disinfectants threatens a global spread of antimicrobial-resistant bacteria. Crit Rev Food Sci Nutr 2023; 64:6870-6879. [PMID: 36756870 DOI: 10.1080/10408398.2023.2176814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Food-grade disinfectants are extensively used for microbial decontamination of food processing equipment. In recent years, food-grade disinfectants have been increasingly used. However, the overuse of disinfectants causes another major issue, which is the emergence and spread of antimicrobial-resistant bacteria on a global scale. As the ongoing pandemic takes global attention, bacterial infections with antibiotic resistance are another ongoing pandemic that often goes unnoticed and will be the next real threat to humankind. Here, the effects of food-grade disinfectant overuse on the global emergence and spread of antimicrobial-resistant bacteria were reviewed. It was found that longtime exposure to the most common food-grade disinfectants promoted resistance to clinically important antibiotics in pathogenic bacteria, namely cross-resistance. Currently, the use of disinfectants is largely unregulated. The mechanisms of cross-resistance are regulated by intrinsic molecular mechanisms including efflux pumps, DNA repair system, modification of the molecular target, and metabolic adaptation. Cross-resistance can also be acquired by mobile genetic elements. Long-term exposure to disinfectants has an impact on the dissemination of antimicrobial resistance in soil, plants, animals, water, and human gut environments.
Collapse
Affiliation(s)
- Ricardo A Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Min Yue
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
40
|
Gao X, Liu X, He J, Huang H, Qi X, Hao J. Bactericidal Effect and Associated Properties of Non-Electrolytic Hypochlorite Water on Foodborne Pathogenic Bacteria. Foods 2022; 11:foods11244071. [PMID: 36553813 PMCID: PMC9778273 DOI: 10.3390/foods11244071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
This study investigated the broad-spectrum bactericidal activity of non-electrolytic hypochlorite water (NEHW) and detected its hydroxyl radical content compared with that of slightly acidic electrolytic water (SAEW). Based on the results of UV scanning and storage stability, higher hypochlorite content and stronger oxidation were found to be responsible for the stronger bactericidal effect of NEHW. NEHW can achieve 99% bacterial disinfection effect by treating with 10 mg/L available chlorine concentration for more than 5 minutes. At the same time, the storage stability of NEHW was higher than that of SAEW. After 20 days of storage under sealed and dark conditions, the pH value only increased by 7.9%, and the effective chlorine concentration remained nearly 80%. The results showed that NEHW had higher germicidal efficacy and storage stability than SAEW.
Collapse
|
41
|
Choi ES, Han S, Son JW, Song GB, Ha SD. Inactivation methods for human coronavirus 229E on various food-contact surfaces and foods. Food Control 2022; 142:109271. [PMID: 35875338 PMCID: PMC9296350 DOI: 10.1016/j.foodcont.2022.109271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of the COVID-19 outbreaks, is transmitted by respiratory droplets and has become a life-threatening viral pandemic worldwide. The aim of this study was to evaluate the effects of different chemical (chlorine dioxide [ClO2] and peroxyacetic acid [PAA]) and physical (ultraviolet [UV]-C irradiation) inactivation methods on various food-contact surfaces (stainless steel [SS] and polypropylene [PP]) and foods (lettuce, chicken breast, and salmon) contaminated with human coronavirus 229E (HCoV-229E). Treatments with the maximum concentration of ClO2 (500 ppm) and PAA (200 ppm) for 5 min achieved >99.9% inactivation on SS and PP. At 200 ppm ClO2 for 1 min on lettuce, chicken breast, and salmon, the HCoV-229E titers were 1.19, 3.54, and 3.97 log10 TCID50/mL, respectively. Exposure (5 min) to 80 ppm PAA achieved 1.68 log10 reduction on lettuce, and 2.03 and 1.43 log10 reductions on chicken breast and salmon, respectively, treated with 1500 ppm PAA. In the carrier tests, HCoV-229E titers on food-contact surfaces were significantly decreased (p < 0.05) with increased doses of UV-C (0-60 mJ/cm2) and not detected at the maximum UV-C dose (Detection limit: 1.0 log10 TCID50/coupon). The UV-C dose of 900 mJ/cm2 proved more effective on chicken breast (>2 log10 reduction) than on lettuce and salmon (>1 log10 reduction). However, there were no quality changes (p > 0.05) in food samples after inactivation treatments except the maximum PAA concentration (5 min) and the UV-C dose (1800 mJ/cm2).
Collapse
Affiliation(s)
- Eun Seo Choi
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sangha Han
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Jeong Won Son
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Gyeong Bae Song
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| |
Collapse
|
42
|
Truzsi A, Kovács B, Bodnár I, Fábián I. Controlling the formation of halogenated byproducts in the chlorination of source waters by oxidative pre-treatment with the Fe(II)/Fe(III)-S(IV)-air system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114036. [PMID: 36049334 DOI: 10.1016/j.ecoenv.2022.114036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Breakpoint chlorination is a generally accepted method for removing ammonium ion from source waters in drinking water treatment technologies. This process is often accompanied by the formation of halogenated organic byproducts. The presence of these compounds in potable water is of primary concern. In this paper, we demonstrate that the concentration of the precursors of the halogenated species can sufficiently be decreased by oxidizing the organic pollutants with the Fe(II)/Fe(III) - S(IV) - air system. Pre-oxidative treatment of the source waters results in a substantial reduction of chemical oxygen demand, while the ammonium ion concentration remains unaffected. The breakpoint chlorination produces substantially less trihalomethanes (THMs) and adsorbable halogenated organic compounds (AOXs) in oxidatively pre-treated source waters than in raw waters. These results offer a possibility to improve drinking water treatment technologies for better controlling the formation of antagonistic byproducts. It is demonstrated that reaching the regulated concentration levels of THMs is feasible with this method even in source waters containing organic pollutants at relatively high concentration levels. The main advantage of the procedure is that the reagents used for the oxidative pre-treatment are converted into non-toxic products (Fe(III) and SO42-) by the end of the process.
Collapse
Affiliation(s)
- Alexandra Truzsi
- Department of Environmental Engineering, University of Debrecen, Ótemető u. 2-4., Debrecen H-4028, Hungary; Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1., Debrecen H-4032, Hungary
| | - Boglárka Kovács
- Debrecen Waterworks Ltd., Benczúr Gyula u. 7., Debrecen H-4032, Hungary
| | - Ildikó Bodnár
- Department of Environmental Engineering, University of Debrecen, Ótemető u. 2-4., Debrecen H-4028, Hungary
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen H-4032, Hungary; ELKH-DE Mechanisms of Complex Homogeneous and Heterogeneous Chemical Reactions Research Group, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary.
| |
Collapse
|
43
|
Li D, He S, Dong R, Cui Y, Shi X. Stress Response Mechanisms of Salmonella Enteritidis to Sodium Hypochlorite at the Proteomic Level. Foods 2022; 11:foods11182912. [PMID: 36141039 PMCID: PMC9498478 DOI: 10.3390/foods11182912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Salmonella Enteritidis (S. Enteritidis) can adapt to sublethal sodium hypochlorite conditions, which subsequently triggers stress resistance mechanisms in this pathogen. Hence, the current work aimed to reveal the underlying stress adaptation mechanisms in S. Enteritidis by phenotypic, proteomic, and physiological analyses. It was found that 130 ppm sodium hypochlorite resulted in a moderate inhibitory effect on bacterial growth and an increased accumulation of intracellular reactive oxygen species. In response to this sublethal treatment, a total of 492 proteins in S. Enteritidis showed significant differential abundance (p < 0.05; fold change >2.0 or <0.5), including 225 more abundant proteins and 267 less abundant proteins, as revealed by the tandem-mass-tags-based quantitative proteomics technology. Functional characterization further revealed that proteins related to flagellar assembly, two-component system, and phosphotransferase system were in less abundance, while those associated with ABC transporters were generally in more abundance. Specifically, the repression of flagellar-assembly-related proteins led to diminished swimming motility, which served as a potential energy conservation strategy. Moreover, altered abundance of lipid-metabolism-related proteins resulted in reduced cell membrane fluidity, which provided a survival advantage to S. Enteritidis. Taken together, these results indicate that S. Enteritidis employs multiple adaptation pathways to cope with sodium hypochlorite stress.
Collapse
|
44
|
Marçal S, Campos DA, Pintado M. Washing with sodium hypochlorite or peracetic acid: Its impact on microbiological quality, phytochemical composition and antioxidant activity of mango peels. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Zhang L, Zhang M, Mujumdar AS, Liu K. Antibacterial mechanism of ultrasound combined with sodium hypochlorite and their application in pakchoi (Brassica campestris L. ssp. chinensis). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4685-4696. [PMID: 35191049 DOI: 10.1002/jsfa.11829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In order to prolong the storage and inhibit microorganisms of pakchoi, the antibacterial activity and mechanism of ultrasound combined with sodium hypochlorite (NaClO-US), the efficiency of NaClO-US in reducing Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa as well as preserving quality of pakchoi were investigated. RESULTS Ultrasound treatment could significantly reduce the usage of NaClO solution from 800 ppm to 500 ppm. NaClO-US decreased the counts of E. coli, S. aureus and P. aeruginosa, which disrupted the bacterial cell membrane with cytoplasmic leakage. In addition, NaClO-US significantly increased cell membrane permeability, while cell membrane integrity decreased, the secondary structure of bacterial proteins showed several obvious changes, such as the increase of random coil content, as well as the decrease of α-helix content. The bacterial counts, E. coli, S. aureus and P. aeruginosa population in pakchoi treated with NaClO-US reduced by 1.89, 1.40, 1.60, 1.72 log CFU g-1 , respectively compared to control sample after storage for 15 days. NaClO-US resulted in minimum chlorophyll depletion, flavor and sensory deterioration. CONCLUSION NaClO-US solution treatment inhibited microorganisms and prolonged storage of pakchoi. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, Canada
| | - Kun Liu
- Sichuan Tianwei Food Group Co., Ltd, Chengdu, China
| |
Collapse
|
46
|
Shen Y, Nie C, Zhu C, Zheng Z, Wu Y. Aggregation-Induced Emission Fluorophore-Incorporated Curcumin-Based Ratiometric Nanoprobe for Hypochlorite Detection in Food Matrices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9577-9583. [PMID: 35876793 DOI: 10.1021/acs.jafc.2c03826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of efficient, economic, reliable, and accurate monitoring of hypochlorite (ClO-) in food matrices is in great demand for food safety assessment, particularly during its massive use against the COVID-19 epidemic. Here, we prepared an aggregation-induced emission (AIE) fluorophore tetraphenylethylene (TPE)-incorporated curcumin-based hybrid ratiometric fluorescence nanoprobe (Curcumin/TPE@HyNPs) through amphiphilic phospholipid polymer-powered nanoprecipitation, which exhibited a fast, highly sensitive, and selective response to the residual ClO- in real food matrices. Because of the inner filter effect (IFE) from curcumin toward TPE inside the nanoprobe, the bright fluorescence of TPE aggregation at ∼437 nm was effectively quenched, along with an enhanced fluorescence of curcumin at ∼478 nm. Once there was a ClO- residue in food matrices, ClO- triggered the oxidation of o-methoxyphenol inside curcumin and led to the almost complete absorption collapse, thereby terminating curcumin fluorescence at ∼478 nm and the IFE process. Accordingly, the fluorescence of TPE at ∼437 nm was recovered. In this case, a ratiometric fluorescent response of Curcumin/TPE@HyNPs toward the residual ClO- in food matrices (e.g., milk) was proposed with a low detection limit of 0.353 μM and a rapid response time of 140.0 s. Notably, the phospholipid polymer as the protection layer effectively reduced/evaded the nonspecific binding of signal reporters inside the nanoprobe, facilitating it to directly monitor the residual ClO- in real food matrices. This work provided a novel approach to utilize the unconventional AIE luminophors for constructing the efficient and reliable early warning mechanisms toward various food contaminants.
Collapse
Affiliation(s)
- Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Chao Nie
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Chunlei Zhu
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| |
Collapse
|
47
|
Wang D, Dong T, Heng Y, Xie Z, Jiang H, Tian M, Jiang H, Zhang Z, Ren Z, Zhu Y. Preparation of Acidic Electrolyzed Water by a RuO 2@TiO 2 Electrode with High Selectivity for Chlorine Evolution and Its Sterilization Effect. ACS OMEGA 2022; 7:23170-23178. [PMID: 35847312 PMCID: PMC9280926 DOI: 10.1021/acsomega.2c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The food hygiene problems caused by bacterial biofilms in food processing equipment are directly related to human life safety and health. Therefore, it is of great strategic significance to study new food sterilization technology. An acidic electrolyzed water (AEW) disinfectant is an electrochemical sterilization technology which has the characteristics of wide adaptability, high efficiency, and environmental friendliness. However, since the sterilization efficiency of AEW for biofilms is not ideal, it is necessary to increase the available chlorine content (ACC) in AEW. A feasible method to increase the ACC is by increasing the chlorine evolution reaction (CER) selectivity of the electrode for AEW preparation. In this paper, the RuO2@TiO2 electrode was prepared by thermal decomposition combined with high-vacuum magnetron sputtering. Compared with the oxygen evolution reaction (OER) activity of an ordinary RuO2 electrode, the OER activity of the RuO2@TiO2 electrode is significantly reduced. However, the CER activity of the RuO2@TiO2 electrode is close to the OER activity of RuO2. The CER mechanism of the RuO2@TiO2 electrode is the second electron transfer, and the OER mechanism is the formation and transformation of OHads. The potential difference between the CER and OER of the RuO2@TiO2 electrode is 174 mV, which is 65 mV higher than that of the RuO2 electrode, so the selectivity of the CER of the RuO2@TiO2 electrode is remarkably improved. During the preparation of AEW, the ACC obtained with the RuO2@TiO2 electrode is 1.7 times that obtained with the RuO2 electrode. In the sterilization experiments on Escherichia coli and Bacillus subtilis biofilms, the logarithmic killing values of AEW prepared the by RuO2@TiO2 electrode are higher than those of AEW prepared by the RuO2 electrode.
Collapse
|
48
|
Biofilm eradication ability of phage cocktail against Listeria monocytogenes biofilms formed on food contact materials and effect on virulence-related genes and biofilm structure. Food Res Int 2022; 157:111367. [DOI: 10.1016/j.foodres.2022.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
|
49
|
Kim YK, Roy PK, Ashrafudoulla M, Nahar S, Toushik SH, Hossain MI, Mizan MFR, Park SH, Ha SD. Antibiofilm effects of quercetin against Salmonella enterica biofilm formation and virulence, stress response, and quorum-sensing gene expression. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Li Y, Wang H, Zheng X, Li Z, Wang M, Luo K, Zhang C, Xia X, Wang Y, Shi C. Didecyldimethylammonium bromide: Application to control biofilms of Staphylococcus aureus and Pseudomonas aeruginosa alone and in combination with slightly acidic electrolyzed water. Food Res Int 2022; 157:111236. [DOI: 10.1016/j.foodres.2022.111236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/15/2022]
|