1
|
Gao S, Wei Z, Zheng X, Zhu J, Wang T, Huang X, Shen T, Zhang D, Guo Z, Zou X. Advancements in magnetic nanomaterial-assisted sensitive detection of foodborne bacteria: Dual-recognition strategies, functionalities, and multiplexing applications. Food Chem 2025; 478:143626. [PMID: 40049130 DOI: 10.1016/j.foodchem.2025.143626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 04/06/2025]
Abstract
Foodborne bacterial diseases are a major cause of human death. Sensitively quantifying those bacteria in foodstuffs is crucial for effective prevention. Yet, the matrix effect from abundant food interferents challenges this goal. Magnetic nanomaterials have been extensively utilized as effective sample pretreatment agents to facilitate the sensitive detection of bacterial pathogens, benefiting from their contribution to mitigating interference in food matrices. The advancement of magnetic scaffold-based biosensors in monitoring foodborne bacteria is reviewed in this work. This review highlights the dual-recognition strategies, which contribute to superior affordability and applicability in bacteria monitoring. The functionalities of magnetic nanoscaffolds in constructing pathogen-targeted biosensors are cataloged into three sections: magnetic separation mediators, signal generation probes, and agents for inactivating bacterial pathogens. Additionally, magnetic nanocomposite-driven multiplexing determination is critically discussed, with different detection approaches are highlighted. Further perspectives regarding superior multifunctional magnetic probes, tunable selection of bioreceptor, portable detection devices, smart identification, and differentiation of bacteria mixtures are introduced.
Collapse
Affiliation(s)
- Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhangkun Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jun Zhu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Tianxing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tingting Shen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Guo W, Guo Y, Xu H, Li C, Zhang X, Zou X, Sun Z. Ultrasensitive "On-Off" Ratiometric Fluorescence Biosensor Based on RPA-CRISPR/Cas12a for Detection of Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2167-2173. [PMID: 39791925 DOI: 10.1021/acs.jafc.4c12202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Staphylococcus aureus (S. aureus) is a major pathogenic bacterium responsible for bacterial foodborne diseases, making its rapid, specific, and accurate detection crucial. In this study, we develop a ratiometric biosensor based on the recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats/CRISPR associated protein 12a (RPA-CRISPR/Cas12a) system and Eu-metal-organic framework (Eu-MOF) fluorescent nanomaterials for the high-sensitivity detection of S. aureus, combining with RPA for efficient isothermal amplification, this sensor enhances specificity and sensitivity by utilizing the target activation of CRISPR/Cas12a. The Eu-MOF serves a dual function, providing stable red fluorescence as a reference signal and adsorbing FAM-labeled probes for fluorescence quenching, forming a dual-signal system that significantly reduces background interference. This ratiometric design enables accurate and quantitative detection over a wide range (7.9 × 100 to 7.9 × 108 CFU/mL) with a low detection limit of 3 CFU/mL. Overall, with these merits of simplicity, rapid response, high sensitivity, and specificity, this dual-signal biosensor offers a promising method for accurately evaluating S. aureus contamination in food under complex substrate conditions.
Collapse
Affiliation(s)
- Wang Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yiqing Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hong Xu
- Zhenjiang Center for Disease Control and Prevention, Zhenjiang 212013, China
| | - Chen Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zongbao Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd, Shanghai 200436, China
| |
Collapse
|
3
|
Zhang W, Li W, Song Y, Xu Q, Xu H. Bacterial detection based on Förster resonance energy transfer. Biosens Bioelectron 2024; 255:116244. [PMID: 38547644 DOI: 10.1016/j.bios.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The huge economic loss and threat to human health caused by bacterial infection have attracted the public's concern, and there is an urgent need to relieve and improve the tough problem. Therefore, it is significant to establish a facile, rapid, and sensitive method for bacterial detection considering the shortcomings of existing methods. Förster resonance energy transfer (FRET)-based sensors have exhibited immense potential and applicability for bacterial detection given their high signal-to-noise ratio and high sensitivity. This review focuses on the development of FRET-based fluorescence assays for bacterial detection. We summarize the principle of FRET-based assays, discuss the commonly used recognition molecules and further introduce three frequent construction strategies. Based on the strategies and materials, relevant applications are presented. Moreover, some restrictions of FRET fluorescence sensors and development prospects are discussed. Suitable donor-acceptor pairs and stable recognition molecules are the essential conditions for sensors to play their roles, and there is still some room for development. Besides, applying FRET fluorescence sensors to point-of-care detection is still difficult. Future developments could focus on near-infrared fluorescent dyes and simultaneous detection of multiple analytes.
Collapse
Affiliation(s)
- Wanqing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Yang Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Qian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
4
|
Mansouri S. Recent developments of (bio)-sensors for detection of main microbiological and non-biological pollutants in plastic bottled water samples: A critical review. Talanta 2024; 274:125962. [PMID: 38537355 DOI: 10.1016/j.talanta.2024.125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
The importance of water in all biological processes is undeniable. Ensuring access to clean and safe drinking water is crucial for maintaining sustainable water resources. To elaborate, the consumption of water of inadequate quality can have a repercussion on human health. Furthermore, according to the instability of tap water quality, the consumption rate of bottled water is increasing every day at the global level. Although most people believe bottled water is safe, it can also be contaminated by microbiological or chemical pollution, which can increase the risk of disease. Over the last decades, several conventional analytical tools applied to analyze the contamination of bottled water. On the other hand, some limitations restrict their application in this field. Therefore, biosensors, as emerging analytical method, attract tremendous attention for detection both microbial and chemical contamination of bottled water. Biosensors enjoy several facilities including selectivity, affordability, and sensitivity. In this review, the developed biosensors for analyzing contamination of bottled water were highlighted, as along with working strategies, pros and cons of studies. Challenges and prospects were also examined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| |
Collapse
|
5
|
Cheng J, Wei X, Wang L, Chen H. Construction of UCNPs-aptamer-AuNPs luminescence energy transfer probe for ratio detection of Staphylococcus aureus. LUMINESCENCE 2024; 39:e4829. [PMID: 39004775 DOI: 10.1002/bio.4829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
A ratio luminescence probe was developed for detecting Staphylococcus aureus (S. aureus) based on luminescence energy transfer (LET) using double-wavelength emission (550 nm and 812 nm) upconversion nanoparticles (UCNPs) as donor, gold nanoparticles (AuNPs) as acceptor and the aptamer for S. aureus as the specific recognition and link unit. The LET process could cause luminescence quenching because of the spectral overlap between the acceptor and the donor at 550 nm. In the presence of S. aureus, S. aureus selectively combined with the aptamer, and the AuNPs left the surface of UCNPs, which weakened the quenching effect and restored the luminescence of UCNPs. Based on this, the ratio detection was realized by monitoring the change of the luminescence signal of the probe at 550 nm and taking the luminescence signal at 812 nm as the reference signal. Crucially, the probe has a fast reaction speed, with a reaction time of 25 min, and the detection of S. aureus is realized in the concentration range of 5.0 × 103-3.0 × 105 CFU/ml, with the detection limit of 106 CFU/ml. Therefore, the ratio probe has great potential for detecting of S. aureus in food because of its high sensitivity, fast speed and good selectivity.
Collapse
Affiliation(s)
- Juanjuan Cheng
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Xinru Wei
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Lun Wang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Hongqi Chen
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
6
|
Selva Sharma A, Marimuthu M, Varghese AW, Wu J, Xu J, Xiaofeng L, Devaraj S, Lan Y, Li H, Chen Q. A review of biomolecules conjugated lanthanide up-conversion nanoparticles-based fluorescence probes in food safety and quality monitoring applications. Crit Rev Food Sci Nutr 2024; 64:6129-6159. [PMID: 36688820 DOI: 10.1080/10408398.2022.2163975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Upconversion nanoparticles (UCNPs) are known to possess unique characteristics, which allow them to overcome a number of issues that plague traditional fluorescence probes. UCNPs have been employed in a variety of applications, but it is arguably in the realm of optical sensors where they have shown the most promise. Biomolecule conjugated UCNPs-based fluorescence probes have been developed to detect and quantify a wide range of analytes, from metal ions to biomolecules, with great specificity and sensitivity. In this review, we have given much emphasis on the recent trends and progress in the preparation strategies of bioconjugated UCNPs and their potential application as fluorescence sensors in the trace level detection of food industry-based toxicants and adulterants. The paper discusses the preparation and functionalisation strategies of commonly used biomolecules over the surface of UCNPs. The use of different sensing strategies namely heterogenous and homogenous assays, underlying fluorescence mechanisms in the detection process of food adulterants are summarized in detail. This review might set a precedent for future multidisciplinary research including the development of novel biomolecules conjugated UCNPs for potential applications in food science and technology.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Murugavelu Marimuthu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Department of Science & Humanities, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Amal Wilson Varghese
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Jizong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jing Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Luo Xiaofeng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Sabarinathan Devaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yang Lan
- Jiangxi Wuyuan Tea Vocational College, Jiangxi, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
7
|
Jannatin M, Yang TL, Su YY, Mai RT, Chen YC. Europium Ion-Based Magnetic-Trapping and Fluorescence-Sensing Method for Detection of Pathogenic Bacteria. Anal Chem 2024; 96:5669-5676. [PMID: 38527906 PMCID: PMC11007678 DOI: 10.1021/acs.analchem.4c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Europium ions (Eu3+) have been utilized as a fluorescence-sensing probe for a variety of analytes, including tetracycline (TC). When Eu3+ is chelated with TC, its fluorescence can be greatly enhanced. Moreover, Eu3+ possesses 6 unpaired electrons in its f orbital, which makes it paramagnetic. Being a hard acid, Eu3+ can chelate with hard bases, such as oxygen-containing functional groups (e.g., phosphates and carboxylates), present on the cell surface of pathogenic bacteria. Due to these properties, in this study, Eu3+ was explored as a magnetic-trapping and sensing probe against pathogenic bacteria present in complex samples. Eu3+ was used as a magnetic probe to trap bacteria such as Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Acinetobacter baumannii, Bacillus cereus, and Pseudomonas aeruginosa. The addition of TC facilitated the easy detection of magnetic Eu3+-bacterium conjugates through fluorescence spectroscopy, with a detection limit of approximately ∼104 CFU mL-1. Additionally, matrix-assisted laser desorption/ionization mass spectrometry was employed to differentiate bacteria tapped by our magnetic probes.
Collapse
Affiliation(s)
- Miftakhul Jannatin
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| | - Tzu-Ling Yang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Yuan Su
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ru-Tsun Mai
- Department
of Biological Science and Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
- International
College of Semiconductor Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
8
|
Kayani KF, Mohammad NN, Kader DA, Mohammed SJ, Shukur DA, Alshatteri AH, Al‐Jaf SH, Abdalkarim KA, Hassan HQ. Ratiometric Lanthanide Metal‐Organic Frameworks (MOFs) for Smartphone‐Assisted Visual Detection of Food Contaminants and Water: A Review. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202303472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2025]
Abstract
AbstractDeveloping a reliable portable biosensor is crucial for ensuring food safety and human health. This involves accurately detecting contaminants in food and water at their source. Smartphone cameras have recently become useful for capturing color or fluorescence changes that occur when a probe interacts with specific molecules on paper or in a chemical solution. Ratiometric designs, which self‐calibrate and minimize the impact of environmental changes, are gaining popularity. These designs rely on color changes or fluorescence shifts, which are easily assessable with smartphones. This overview highlights advances in ratiometric optical sensing using Metal‐organic frameworks (MOFs) with lanthanide components coupled with smartphones. These advancements allow contaminants in food and water to be visually identified. The article explains the principles, properties, and applications of color changes for visual detection in food safety. Using lanthanide metal‐organic frameworks with smartphones offers a potent method to detect contaminants, enhancing food safety and safeguarding human health.
Collapse
Affiliation(s)
- Kawan F. Kayani
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
| | - Nian N. Mohammad
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
- Department of Medical Laboratory Science College of Science Komar University of Science and Technology Sulaimani 46001 Iraq
| | - Dana A. Kader
- Department of Chemistry College of Education University of Sulaimani Old Campus 46001 Kurdistan Region Iraq E-mail: address
| | - Sewara J. Mohammed
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
- Anesthesia Department College of Health Sciences Cihan University Sulaimaniya Sulaimani 46001 Kurdistan Region Iraq
| | - Dana A. Shukur
- Department of Nanoscience and Applied Chemistry College of Science Charmo University Peshawa Street Chamchamal Sulaymaniyah 46023 Iraq
| | - Azad H. Alshatteri
- Department of Chemistry University of Garmian Darbandikhan Road 46021 Kalar City-Sulaimaniyah Province, Kurdistan of Iraq
| | - Sabah H. Al‐Jaf
- Department of Chemistry University of Garmian Darbandikhan Road 46021 Kalar City-Sulaimaniyah Province, Kurdistan of Iraq
| | - Karzan A. Abdalkarim
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
| | - Hanar Q. Hassan
- Department of Chemistry College of Science University of Sulaimani Qliasan St 46002 Sulaimani City, Kurdistan Region Iraq
| |
Collapse
|
9
|
Zhang Y, Gao L, Han J, Miao X. Dual-signal and one-step monitoring of Staphylococcus aureus in milk using hybridization chain reaction based fluorescent sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123191. [PMID: 37517267 DOI: 10.1016/j.saa.2023.123191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Food-borne pathogens in dairy products that was contaminated from raw ingredients or improper food handling can cause a major threaten to human health. Here, to construct the pathogens detection, a dual-signal readout fluorescent switching sensor was designed for one-step determination of Staphylococcus aureus (S. aureus), which was a marker of food contamination. Graphene oxide (GO) was used as a fluorescence quencher, while fluorophore-labeled hairpin DNA was used as a donor, resulting in fluorescence resonance energy transfer (FRET) from the fluorophore to GO (signal off). Enzyme-free hybridization chain reaction could generate remarkable signal amplification, which avoided the nonspecific desorption caused by any enzymatic proteins in GO surface. With the strong binding ability of aptamer to S. aureus, a long bifluorescent molecules-labeled double-stranded DNA product was formed, bringing in dual-signal readout responses (signal on). Consequently, a reliable, sensitive and selective sensor was obtained for one-step quantification of S. aureus concentration from 10 to 108 CFU/mL with a detection limit of 1 CFU/mL. Furthermore, satisfactory stability, reproducibility, specificity and good recovery efficiency in milk samples revealed that the proposed sensor could be served as a prospective tool for food safety analysis.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012, China.
| | - Liang Gao
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012, China
| | - Jing Han
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012, China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
10
|
Zheng L, Jin W, Xiong K, Zhen H, Li M, Hu Y. Nanomaterial-based biosensors for the detection of foodborne bacteria: a review. Analyst 2023; 148:5790-5804. [PMID: 37855707 DOI: 10.1039/d3an01554h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Ensuring food safety is a critical concern for the development and well-being of humanity, as foodborne illnesses caused by foodborne bacteria have increasingly become a major public health concern worldwide. Traditional food safety monitoring systems are expensive and time-consuming, relying heavily on specialized equipment and operations. Therefore, there is an urgent need to develop low-cost, user-friendly and highly sensitive biosensors for detecting foodborne bacteria. In recent years, the combination of nanomaterials with optical biosensors has provided a prospective future platform for the detection of foodborne bacteria. By harnessing the unique properties of nanomaterials, such as their high surface area-to-volume ratio and exceptional sensitivity, in tandem with the precision of optical biosensing techniques, a new prospect has opened up for the rapid and accurate identification of potential bacterial contaminants in food. This review focuses on recent advances and new trends of nanomaterial-based biosensors for the detection of foodborne pathogens, which mainly include noble metal nanoparticles (NMPs), metal organic frameworks (MOFs), graphene nanomaterials, quantum dot (QD) nanomaterials, upconversion fluorescent nanomaterials (UCNPs) and carbon dots (CDs). Additionally, we summarized the research progress of color indicators, nanozymes, natural enzyme vectors and fluorescent dye biosensors, focusing on the advantages and disadvantages of nanomaterial-based biosensors and their development prospects. This review provides an outlook on future technological directions and potential applications to help identify the most promising areas of development in this field.
Collapse
Affiliation(s)
- Lingyan Zheng
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Wen Jin
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Ke Xiong
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Hongmin Zhen
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Mengmeng Li
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Yumeng Hu
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
11
|
Wu W, Ahmad W, Hassan MM, Wu J, Ouyang Q, Chen Q. An upconversion biosensor based on inner filter effect for dual-role recognition of sulfadimethoxine in aquatic samples. Food Chem 2023; 437:137832. [PMID: 39491291 DOI: 10.1016/j.foodchem.2023.137832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/01/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Sulfadimethoxine (SDM) as an extensively employed veterinary drug causes potential threats to human health. Herein, a dual recognition mode novel upconversion fluorescence biosensor was designed based on inner filter effect (IFE) to sensitively and rapidly detect SDM in aquatic samples. Aldehyde-functionalized magnetic nanoparticles (MNPs) were applied to recognize and capture SDM, followed by specifically bond with biotin-labeled aptamers. The upconversion nanoparticles and the colored products resulting from the enzyme-catalyzed oxidation of 3,3,5,5-tetramethylbenzidine exhibited an IFE quenching process. Under the optimal condition, the results displayed the fluorescence intensity was correlated with the concentration of SDM within the range of 0.5-1000 ng⋅mL-1 achieving a low limit of detection of 0.13 ng⋅mL-1. The SDM detection system was further employed in the spiked aquatic samples with good recoveries (88.41-96.78 %). Consequently, the constructed fluorescence biosensor provided broad prospects for accuracy and rapid detection of SDM.
Collapse
Affiliation(s)
- Wenwen Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
12
|
Li H, Sheng W, Haruna SA, Hassan MM, Chen Q. Recent advances in rare earth ion-doped upconversion nanomaterials: From design to their applications in food safety analysis. Compr Rev Food Sci Food Saf 2023; 22:3732-3764. [PMID: 37548602 DOI: 10.1111/1541-4337.13218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
The misuse of chemicals in agricultural systems and food production leads to an increase in contaminants in food, which ultimately has adverse effects on human health. This situation has prompted a demand for sophisticated detection technologies with rapid and sensitive features, as concerns over food safety and quality have grown around the globe. The rare earth ion-doped upconversion nanoparticle (UCNP)-based sensor has emerged as an innovative and promising approach for detecting and analyzing food contaminants due to its superior photophysical properties, including low autofluorescence background, deep penetration of light, low toxicity, and minimal photodamage to the biological samples. The aim of this review was to discuss an outline of the applications of UCNPs to detect contaminants in food matrices, with particular attention on the determination of heavy metals, pesticides, pathogenic bacteria, mycotoxins, and antibiotics. The review briefly discusses the mechanism of upconversion (UC) luminescence, the synthesis, modification, functionality of UCNPs, as well as the detection principles for the design of UC biosensors. Furthermore, because current UCNP research on food safety detection is still at an early stage, this review identifies several bottlenecks that must be overcome in UCNPs and discusses the future prospects for its application in the field of food analysis.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
13
|
Tabaraki R, Nazari F. Vancomycin-modified nitrogen and chloride doped carbon dots and their application as a Staphylococcus aureus probe. Anal Chim Acta 2023; 1268:341311. [PMID: 37268336 DOI: 10.1016/j.aca.2023.341311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 06/04/2023]
Abstract
In this research, N, Cl-doped carbon dots (N, Cl-CDs) were prepared in choline chloride-glycerol deep eutectic solvent (DES) by microwave method. N, Cl-CDs surface was modified with vancomycin for detection of Staphylococcus aureus (S. aureus) bacteria in the range of 102-107 colony-forming unit per milliliter (CFU/mL). The detection limit was 101 CFU/mL. Morphology and structure of N, Cl-CDs were characterized by transmission electron microscopy (TEM), X-ray photon spectroscopy (XPS), photoluminescence spectroscopy, FT-IR spectroscopy, energy dispersive X-ray spectroscopy (EDXS) and zeta potential. The prepared N, Cl-CDs had excellent dispersion in water, particle size range of 2-3 nm, and quantum yield of 38.75%. Speed, wide linear range and more convenient were advantages of new probe with respect to other methods.
Collapse
Affiliation(s)
- Reza Tabaraki
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran.
| | - Fereshteh Nazari
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| |
Collapse
|
14
|
Lin X, Zhao M, Peng T, Zhang P, Shen R, Jia Y. Detection and discrimination of pathogenic bacteria with nanomaterials-based optical biosensors: A review. Food Chem 2023; 426:136578. [PMID: 37336102 DOI: 10.1016/j.foodchem.2023.136578] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/16/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Pathogenic bacteria can pose a great threat to food safety and human health. It is therefore imperative to develop a rapid, portable, and sensitive determination and discrimination method for pathogenic bacteria. Over the past few years, various nanomaterials (NMs) have been employed as desirable nanoprobes because they possess extraordinary properties that can be used for optical signal enabled detection and identification of bacteria. By means of modification, NMs can, depending on different mechanisms, sense targets directly or indirectly, which then provides an essential support for the detection and differentiation of pathogenic bacteria. In this review, recent application of NMs-based optical biosensors for food safety bacterial detection and discrimination is performed, mainly in but not limited to noble metal NMs, fluorescent NMs, and point-of-care testing (POCT). This review also focuses on future trends in bacterial detection and discrimination, and machine learning in performing intelligent rapid detection and multiple accurate identification of bacteria.
Collapse
Affiliation(s)
- Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China.
| | - Minyang Zhao
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Tao Peng
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Pan Zhang
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
| | - Ren Shen
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
| | - Yanwei Jia
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China; State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
| |
Collapse
|
15
|
Ahmad W, Wang L, Zareef M, Chen Q. Ultrasensitive detection of Staphylococcus aureus using a non-fluorescent cDNA-grafted dark BBQ®-650 chromophore integrated hydrophilic upconversion nanoparticles/aptamer system. Mikrochim Acta 2023; 190:250. [PMID: 37278765 DOI: 10.1007/s00604-023-05823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
A highly structured fluorometric bioassay has been proposed for screening Staphylococcus aureus (S. aureus). The study exploits (i) the spectral attributes of the hexagonal NaYF4:Yb,Er upconversion nanoparticle (UCNP)-coated 3-aminopropyl)triethoxysilane; (ii) the intrinsic non-fluorescent quenching features of the highly stable dark blackberry (BBQ®-650) receptor; (iii) the aptamer (Apt-) biorecognition and binding affinity, and (iv) the complementary DNA hybridizer-linkage efficacy. The principle relied on the excited state energy transfer between the donor Apt-labeled NH2-UCNPs at the 3' end, and cDNA-grafted BBQ®-650 at the 5' end, as the effective receptors. The donor moieties in proximity (< 10.0 nm) trigger hybridization with the cDNA-grafted dark BBQ®-650, as the receptors of energy from the 2F5/2 level of Yb3+ ions to initiate the Förster resonance energy transfer pathway. This was confirmed by the decline in the excited-state lifetimes from 223.52 μs (τ1) to 179.26 μs (τ2). The existence of the target S. aureus in the bioassay attracts the Apt- resulting in the detachment of the acceptor, and disintegration of the complex configuration via conformation reversal. The re-activated fluorescence monitored at λex/em = 980/652 nm, as a function of the logarithmic concentration of S. aureus (42 to 4.2 × 108 CFU mL-1), yielded an ultra-low detection response of 2.0 CFU mL-1. The bioassay screening of S. aureus in real samples revealed satisfactory recoveries (92.44-107.82%) and validation results (p > 0.05). Hence, the comprehensive Apt-labeled NH2-UCNPs-cDNA-grafted dark BBQ®-650 bioassay offered fast and precise S. aureus screening in food and environmental settings.
Collapse
Affiliation(s)
- Waqas Ahmad
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Li Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Quansheng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, People's Republic of China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
16
|
Zhou M, Li X, Wen H, Huang B, Ren J, Zhang J. The construction of CRISPR/Cas9-mediated FRET 16S rDNA sensor for detection of Mycobacterium tuberculosis. Analyst 2023; 148:2308-2315. [PMID: 37083189 DOI: 10.1039/d3an00462g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The simple and efficient detection of nucleic acids is important in the diagnosis of tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis). However, base mismatch will lead to false positive and false negative nucleic acid test, which seriously interferes with the accuracy of the final results. Herein, we demonstrated a CRISPR/Cas-9-mediated fluorescent strategy utilizing fluorescence resonance energy transfer (FRET) for the detection of bacteria. High-variable region of M. tuberculosis 16S rDNA fragment was used as the target, and CRISPR/Cas9 was used as the recognition element. The binding of the P1 probe of upconversion nanoparticles (UCNPs) @SiO2-P1 and the P2 probe of Fe3O4@Au-P2 caused the fluorescence quenching of UCNPs. In the presence of the target, the P2 probe hybridized with the target to form double-stranded DNA (dsDNA), which was recognized and cleaved by CRISPR/Cas9, resulting in the breaking of the P1-P2 duplex linkage. UCNPs moved away from Fe3O4@Au under a magnetic field, and the fluorescence signal was restored; bacteria were detected under the excitation of a 980 nm laser source. Using the CRISPR/Cas-9-mediated system, the sensor could distinguish single-base mismatches in 10 bases from the protospacer adjacent motif (PAM) region. The limit of detection (LOD) was 20 CFU mL-1 and the detection time was 2 h. It developed a new way of accurate nucleic acid detection for disease diagnosis.
Collapse
Affiliation(s)
- Ming Zhou
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Xin Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Herui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, P. R. China.
| | - Jialin Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
17
|
Liu Q, Wang J, Yao C, Yang L, Zhao L, Guo L, Liu JM, Wang S. Functional Micro-/Nanostructures in Agrofood Science: Precise Inspection, Hazard Elimination, and Potential Health Risks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1018-1034. [PMID: 36602253 DOI: 10.1021/acs.jafc.2c06838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanotechnology, biotechniques, and chemical engineering have arisen as new trends with significant impacts on agrofood science development. Advanced analytical techniques with high sensitivity, specificity, and automation based on micro-/nanomaterials for food hazard elimination have become leading research hotspots in agrofood science. Research progress in micro-/nanomaterials has provided a solid theoretical basis and technical support to solve problems in the industry. However, the rapid development of micro-/nanostructures has also raised concerns regarding potential risks to human health. This review presents the latest advances in the precise inspection and elimination of food hazards from micro-/nanomaterials and discusses the potential threats to human health posed by nanomaterials. The theoretical reference was provided for the application trend of micro-/nanomaterials in the field of agrofood science in the future.
Collapse
Affiliation(s)
- Qisijing Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin300071, China
| | - Jing Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin300071, China
| | - Chixuan Yao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin300071, China
| | - Lu Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin300071, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 32500, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 32500, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin300071, China
| |
Collapse
|
18
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small‐Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew Chem Int Ed Engl 2022; 61:e202207188. [DOI: 10.1002/anie.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Yu Shen
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Li Fu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University Xi'an 710032 China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| |
Collapse
|
19
|
Hao L, Li M, Peng K, Ye T, Wu X, Yuan M, Cao H, Yin F, Gu H, Xu F. Fluorescence Resonance Energy Transfer Aptasensor of Ochratoxin A Constructed Based on Gold Nanorods and DNA Tetrahedrons. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10662-10668. [PMID: 35939804 DOI: 10.1021/acs.jafc.2c03626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ochratoxin A (OTA) contamination of corn has received significant attention due to the wide distribution and high toxicity of OTA. The maximum residue limit standard of OTA in corn has been established by the Chinese Government and other unions. Nanoparticle-based fluorescence resonance energy transfer (FRET) assays are promising methods for the sensitive and fast detection of OTA. However, satisfactory detection sensitivity is commonly achieved with complicated signal amplification processes or specific nanoparticle morphologies, which means that these assays are not conducive to fast detection. This study proposes a simple and novel strategy to improve the sensitivity of FRET aptasensors. In this strategy, a DNA tetrahedron was first used in gold nanorod-based FRET aptasensors. DNA tetrahedron-modified gold nanorods are used as fluorescent acceptors, and Cy5-modified complementary sequences of the OTA aptamer are used as fluorescent donors. The aptamers of OTA are embedded in the DNA tetrahedrons, and FRET occurs when the aptamers hybridize with the Cy5-modified complementary sequences. The aptamer-integrated DNA tetrahedron modified on the surface of gold nanorods acts as an anchor, thus avoiding the crowding and entanglement of aptamers. Due to the competitive combination between the OTA aptamers and complementary sequences, the greater the amount of OTA, the less the amount of Cy5-modified complementary sequences that bind with the aptamers and the less the amount of Cy5 that is quenched. Thus, the fluorescence intensity is positively related to the OTA concentration. In this study, in the concentration range of 0.01-10 ng/mL, the fluorescence intensity was found to be linearly related to the logarithmic concentration of OTA. The limit of detection was calculated to be 0.005 ng/mL. The specificity of the developed biosensor was demonstrated to be efficient. The accuracy and stability of the developed aptasensor were also tested, and the method exhibited good performance in real samples.
Collapse
Affiliation(s)
- Liling Hao
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mengqiu Li
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kaimin Peng
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tai Ye
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiuxiu Wu
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Yuan
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Cao
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fengqin Yin
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huajie Gu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Fei Xu
- School of Health Science and Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
20
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Fang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Yu Shen
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Bo Peng
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Hua Bai
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Limin Wang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Jiaxin Zhang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wenbo Hu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Li Fu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wei Zhang
- Air Force Medical University Teaching and Evaluation Center CHINA
| | - Lin Li
- Nanjing Tech University Institute of Advanced Materials 30 South Puzhu Road 210008 Nanjing CHINA
| | - Wei Huang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| |
Collapse
|
21
|
Jiang S, Li Q, Jia W, Wang F, Cao X, Shen X, Yao Z. Expanding the application of ion exchange resins for the preparation of antimicrobial membranes to control foodborne pathogens. CHEMOSPHERE 2022; 295:133963. [PMID: 35167836 DOI: 10.1016/j.chemosphere.2022.133963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Although ion exchange resins (IERs) have been extensively adopted in water treatment, there are no reports on the application thereof for synthesizing antibacterial materials against pathogenic bacteria. The present study is the first in which the ion exchange characteristic of IERs was utilized to introduce silver ions that possess efficient antibacterial properties. The resulting antibacterial materials were incorporated into polylactic acid (PLA) and/or polybutylene adipate terephthalate (PBAT) to prepare antibacterial membranes. XPS spectra revealed the occurrence of in-situ reduction of silver ions to metallic silver, which was preferable since the stability of silver in the materials was improved. EDS mapping analysis indicated that the distribution of silver was consistent with the distribution of sulfur in the membranes, verifying the ion exchange methodology proposed in the present study. To investigate the antibacterial performance of the prepared membranes, zone of inhibition tests and bacteria-killing tests were performed. The results revealed that neither bare polymeric membranes of PLA and PBAT nor IER-incorporated polymeric membranes exhibited noticeable antibacterial activities. In comparison, the antibacterial membranes demonstrated effective and sustainable antibacterial activities against pathogenic bacteria Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The prepared antibacterial membranes exhibited potential in food-related applications such as food packaging to delay food spoilage due to microbial growth.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Wenting Jia
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
22
|
Jiang S, Li Q, Wang F, Wang Z, Cao X, Shen X, Yao Z. Highly effective and sustainable antibacterial membranes synthesized using biodegradable polymers. CHEMOSPHERE 2022; 291:133106. [PMID: 34848235 DOI: 10.1016/j.chemosphere.2021.133106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
In order to reduce foodborne diseases caused by bacterial infections, antibacterial membranes have received increasing research interests in recent years. In this study, highly effective antibacterial membranes were prepared using biodegradable polymers, including polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), and carboxymethyl cellulose (CMC). The cation exchange property of CMC was utilized to introduce silver to prepare antibacterial materials. The presence of silver in the membranes was confirmed by EDS mapping, and the reduction of silver ions to metallic silver was confirmed by the Ag3d XPS spectrum which displayed peaks at 374.46 eV and 368.45 eV, revealing that the oxidation state of silver changed to zero. Two common pathogenic bacteria, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), were used to investigate the antibacterial performance of the prepared membranes. Zone of inhibition and bacteria-killing tests revealed that the antibacterial membranes were efficient in inhibiting the growth of bacteria (diameters of inhibition zone ranged from 16 mm to 19 mm for fresh membranes) and capable of killing 100% of bacteria under suitable conditions. Furthermore, after 6 cycles of continuous zone of inhibition tests, the membranes still showed noticeable antibacterial activities, which disclosed the sustainable antibacterial properties of the membranes.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zeru Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
23
|
The Quality Analysis and Deterioration Mechanism of Liquid Egg White during Storage. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The quality of liquid egg white (LEW) during storage is critical for the development of the egg industry. In order to effectively control its storage quality, the effects of packaging materials and storage conditions on the quality of LEW were investigated. High-throughput sequencing (HTS) was applied to explore changes in bacterial population proportions and microflora in the spoilage of LEW. The shelf life of LEW packaged with glass (LEW-PG), plastic (LEW-PP), and tinplate (LEW-PT) was preliminarily determined to be 8, 5, and 7 days, respectively. LEW-PG possessed superior sensory scores (65) and L values (87.5), and a lower growth rate of total volatile basic nitrogen (TVB-N) content among the three samples on the last day of shelf life, and was chosen for further study. During 24 days of storage, the sensory scores of the LEW-PG in 10 °C and 4 °C groups decreased by 32.7% and 25.7%, respectively. There was no significant difference in foaming properties of LEW-PG between the 10 °C and 4 °C groups (p > 0.05). HTS analysis showed that the abundance of species composition in the 10 °C samples was higher than that in the 4 °C samples, though the latter possessed a higher community diversity. At the genus level, the dominant bacteria in the 10 °C group were Pseudomonas (21.79%), others (19.21%), and Escherichia (11.21%), while others (37.5%), Escherichia (30.40%), and Bifidobacterium (17.72%) were highly abundant in the 4 °C samples. It is hoped that this study could provide theoretical support for quality control of LEW during storage.
Collapse
|
24
|
Haruna SA, Li H, Zareef M, Mehedi Hassan M, Arslan M, Geng W, Wei W, Abba Dandago M, Yao-Say Solomon Adade S, Chen Q. Application of NIR spectroscopy for rapid quantification of acid and peroxide in crude peanut oil coupled multivariate analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120624. [PMID: 34824004 DOI: 10.1016/j.saa.2021.120624] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Two key parameters (acidity and peroxide content) for evaluation of the oxidation level in crude peanut oil have been studied. The titrimetric analysis was carried out for reference data collection. Then, near-infrared spectroscopy in combination with chemometric algorithms such as partial least square (PLS); bootstrapping soft shrinkage-PLS (BOSS-PLS); uninformative variable elimination-PLS (UVE-PLS), and competitive-adaptive reweighted sampling-PLS (CARS-PLS) were attempted and assessed. The correlation coefficients of prediction (Rp), root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) were used to individually evaluate the performance of the models. Optimum results were noticed with CARS-PLS, 0.9517 ≤ Rc ≤ 0.9670, 0.9503 ≤ Rp ≤ 0.9637, 0.0874 ≤ RMSEP ≤ 0.5650, and 3.14 ≤ RPD ≤ 3.64. Therefore, this affirmed that the near-infrared spectroscopy coupled with CARS-PLS could be used as a simple, fast, and non-invasive technique for quantifying acid value and peroxide value in crude peanut oil.
Collapse
Affiliation(s)
- Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Food Science and Technology, Kano University of Science and Technology, Wudil, P.M.B 3244, Kano, Kano State, Nigeria
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenhui Geng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Munir Abba Dandago
- Department of Food Science and Technology, Kano University of Science and Technology, Wudil, P.M.B 3244, Kano, Kano State, Nigeria
| | | | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
25
|
Huang Q. Simultaneous quantitative analysis of Listeria monocytogenes and Staphylococcus aureus based on antibiotic-introduced lateral flow immunoassay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5866-5874. [PMID: 34877941 DOI: 10.1039/d1ay01467f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Food poisoning caused by microorganisms has caused widespread concern. Herein, a highly sensitive on-site screening test strip for the detection of different pathogenic microorganisms (Listeria monocytogenes and Staphylococcus aureus) was designed. In this analysis platform, colloidal gold-coupled vancomycin was used as a signal unit to label Gram-positive bacteria, and highly sensitive polyclonal antibodies were used as recognition molecules to capture these specific strains. Compared with the traditional dual-antibody sandwich model, this new type of antibiotic-pathogen-antibody sandwich model is low-cost and can simultaneously detect multiple microorganisms. Under optimal conditions, this strategy showed satisfactory sensitivity and a wide linear range (L. monocy and S. aure could be directly assayed within linear ranges of 5 × 104 to 107 and 5 × 102 to 107 CFU mL-1, and the visual detection limits were 105 and 103 CFU mL-1, respectively). The analytical performance and practicability of this sensor system have been further studied. This developed biosensor was applied to bacteria-contaminated water, milk and broth with satisfactory results. All of these attractive characteristics make the assay possess potential applications in food safety, medical diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Qiong Huang
- Shanxi Technology and Business College, 030006 Taiyuan, Shanxi Province, People's Republic of China.
| |
Collapse
|