1
|
Wang D, Liu L, Liu T, Zhao J, Chi H, Chen H, Tang J, Zhang X. Microcapsules stabilized by cellulose nanofibrils/whey protein complexes and modified with cinnamaldehyde: Characterization and release properties. Food Chem 2025; 473:143094. [PMID: 39879754 DOI: 10.1016/j.foodchem.2025.143094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
This work aims to optimize encapsulation of Zanthoxylum schinifolium essential oil (ZSEO) in microcapsule to enhance its stability and slow-release capability. Herein, the ZSEO microcapsules stabilized by bacterial cellulose nanofibrils/whey protein isolate (BCNFs/WPI) complexes and modified by cinnamaldehyde (CA) were successfully prepared via spray drying. The microcapsules formed by 1.0 wt% BCNFs/WPI complexes at a ratio of 1:7 and fortified with 0.7 wt% CA, exhibited superior physical properties, a smaller powder size and the highest encapsulation efficiency (90.81 %). The spectroscopy analysis and molecular dynamics simulations demonstrated the presence of hydrogen bonding and electrostatic interactions between CA and BCNFs/WPI/ZSEO components, contributing to an increase in the binding energy. The release kinetic modeling revealed that the microcapsules exhibited the delayed release capability in both aqueous and oily model fluids. Moreover, the ZSEO microcapsules modified with CA exhibited enhanced stability during in vitro digestion, offering valuable insights into the microencapsulation of essential oils.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Lin Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Tanghui Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Jie Zhao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Hai Chi
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Hongrui Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| | - Xingzhong Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China.
| |
Collapse
|
2
|
Tibaquira-Pérez L, Filomena-Ambrosio A, Bauer K, Cardoso-Cardenas M, Moreno FM, Quintanilla-Carvajal MX. Validation by in-vitro digestion and sensory analysis of incorporating vegetable oil encapsulates in cottage cheese. Food Chem 2025; 465:142027. [PMID: 39571427 DOI: 10.1016/j.foodchem.2024.142027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 12/18/2024]
Abstract
Malnutrition is a global issue linked to energy or nutrient imbalances, often resulting in deficiencies or overweight. Dairy products, rich in macronutrients and micronutrients, are a potential solution. However, processing, storage, and digestion can lead to nutrient loss. To enhance nutritional value, functional ingredients like microencapsulated compounds are used. This study focused on assessing the bioaccessibility of microencapsulated ingredients in cottage cheese, their impact on sensory attributes, and shelf-life. Two microencapsulated ingredients were studied: high oleic palm oil (HOPO), encapsulated using spray drying (SD) and a refractive window (RW) drying technique. The bioaccessibility of these ingredients was evaluated using the INFOGEST in-vitro digestion model. Results showed that HOPO encapsulated via SD in cottage cheese (CSD) preserved oleic and linoleic acids best, and via RW in cottage cheese (CRW) preserve vitamins in 63 % and antioxidants in 96 %. This highlights the effectiveness of microencapsulation techniques in enhancing dairy product functionality and a 72 % of fatty acids release suggesting potential strategies for combating malnutrition through fortified dairy products.
Collapse
Affiliation(s)
- Liceth Tibaquira-Pérez
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia
| | - Annamaria Filomena-Ambrosio
- Research group in Alimentación, Gestión de Procesos y Servicio, EICEA, Universidad de La Sabana, Chía, Colombia
| | - Katherine Bauer
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia
| | - Mary Cardoso-Cardenas
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia
| | - Fabian Moreno Moreno
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia
| | - María Ximena Quintanilla-Carvajal
- Agroindustrial processes research group, Faculty of Engineering, Universidad de La Sabana Campus del Puente del Común, Km. 7, vía Autopista Norte Bogotá, Colombia.
| |
Collapse
|
3
|
Bai G, Zhao M, Chen XW, Ma CG, Ma Y, Xianqing H. Fabrication, characterization and simulated gastrointestinal digestion of sea buckthorn pulp oil microcapsule: effect of wall material and interfacial bilayer stabilization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1737-1744. [PMID: 39390660 DOI: 10.1002/jsfa.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Sea buckthorn (Hippophae rhamnoides L.) pulp oil is rich in functional components; however, low water solubility and stability limit its applications. This study fabricated sea buckthorn pulp oil microcapsules using whey protein isolate (WPI), soy protein isolate (SPI), sodium caseinate (NaCN), gum arabic (GA), starch sodium octenylsuccinate (OSAS) and SPI mixed with chitosan (CHI). The influences of these wall materials on physicochemical properties, release behavior and digestibility were explored. RESULTS Protein-based wall materials (WPI, NaCN, SPI) demonstrated lower bulk densities due to their porous structures and larger particle sizes, while GA and OSAS produced denser microcapsules. Encapsulation efficiency was the highest for protein-based microcapsules (79.41-89.12%) and the lowest for GA and OSAS. The surface oil percentage of protein-based microcapsules (1.41-4.40%) was lower than that of the other microcapsules. Protein-based microcapsules showed concave and cracked surfaces, while GA and OSAS microcapsules were spherical and smooth. CHI improved reconstitution performance, leading to faster dissolution. During simulated gastrointestinal digestion, protein-based microcapsules released more free fatty acids (FFAs) in the intestinal phase, while CHI-modified SPI microcapsules showed a delayed release pattern due to thicker walls. CONCLUSION Protein-based wall materials were more effective for sea buckthorn pulp oil microencapsulation, providing higher encapsulation efficiency, better flow properties and releasing more FFAs. The addition of CHI led to the layer-by-layer self-assembly of the microcapsule wall and resulted in sustained release during in vitro intestinal digestion. These findings suggested the potential of protein-based microcapsules for targeted delivery and improved applications of bioactive oils in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ge Bai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Man Zhao
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Xiao-Wei Chen
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Chuan-Guo Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Yan Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Huang Xianqing
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| |
Collapse
|
4
|
Gholivand S, Tan TB, Yusoff MM, Qoms MS, Wang Y, Liu Y, Nyam KL, Tan CP. Eco-friendly encapsulation: Investigating plant-based protein-alginate shells for efficient delivery and digestion of hemp seed oil encapsulated via supercritical CO 2 dispersion. Food Chem 2025; 463:141515. [PMID: 39395350 DOI: 10.1016/j.foodchem.2024.141515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
In this study, supercritical carbon dioxide solution-enhanced dispersion (SEDS) was used to encapsulate hemp seed oil (HSO) within matrices of hemp seed protein isolate (HPI), pea protein (PPI) and soy protein (SPI) (0.5 % w/v) in complex with alginate (AL) (0.01 % w/v). The effects of different pH levels (3-9), NaCl concentrations (0-200 mmol/L) and simulated gastrointestinal conditions on HSO release and digestion patterns were analyzed. The findings revealed that SPI/AL microcapsules effectively maintained structural integrity and controlled oil release across diverse pH levels and salt concentrations. During gastrointestinal phases, minimal oil release was observed during oral digestion (<25 % for all samples), while significant (P < 0.05) gastric release occurred in PPI/AL (55.4 %) and SPI/AL (78.1 %) microcapsules. Surprisingly, HPI/AL microcapsules exhibited delayed and sustained release (27.9 %), indicating their potential as ideal wall material for delivering sensitive food and pharmaceutical ingredients to the intestinal stage while minimizing damage in the harsh gastric environment.
Collapse
Affiliation(s)
- Somayeh Gholivand
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Tai Boon Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Masni Mat Yusoff
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohammed S Qoms
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Kar Lin Nyam
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia.
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Li H, Zong Y, Chen W, Zhao Y, Geng J, He Z, Du R. Microencapsulation of Deer Oil in Soy Protein Isolate-Chitosan Complex Coacervate-Preparation, Characterization, and Simulated Digestion. Foods 2025; 14:181. [PMID: 39856848 PMCID: PMC11764948 DOI: 10.3390/foods14020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Deer oil (DO) is a potentially beneficial functional oil; however, its sensitivity to environmental factors (e.g., oxygen and heat), difficulty in transport, and unfavorable taste hinder practical use. In this study, DO was encapsulated through the cohesive action of soy protein isolate (SPI) and chitosan (CS). The optimal preparation conditions yielded microcapsules with DO's highest encapsulation efficiency (EE) (85.28 ± 1.308%) at an SPI/CS mixing ratio of 6:1 and a core-to-wall ratio of 1:2 at pH 6. Fluorescence and scanning electron microscopy were utilized to examine the microcapsules' structure, showing intact surfaces and effective encapsulation of oil droplets through SPI/CS composite coalescence. Through Fourier transform infrared spectroscopy (FTIR), the electrostatic interplay between SPI and CS was verified during the merging process. At room temperature, the microcapsules resisted core oxidation by reducing gas permeation. In vitro simulated digestion results indicated the microcapsules achieved a slow and sustained release of DO in the intestinal tract. This study further expands the application scope of deer oil and promotes the development of deer oil preparations and functional foods.
Collapse
Affiliation(s)
- Hongyan Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
| | - Jianan Geng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Safety, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
6
|
Mannai F, Elhleli H, Abouzied R, Khiari R, Nacer SN, Belgacem MN, Moussaoui Y. Encapsulation of sunflower and flaxseed oils using Opuntia (Cactaceae) mucilage as a core-shell material through coacervation methods: A study on formulation, characterization, and in vitro digestion. Food Chem 2024; 459:140447. [PMID: 39024875 DOI: 10.1016/j.foodchem.2024.140447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Sunflower oil (SFO) and Flaxseed oil (FSO) were microencapsulated using simple and complex coacervation techniques with Opuntia (Cactaceae) mucilage (Mu) and with a combination of Mu with chitosan (Chit). The encapsulation efficiency (EE) of SFO and FSO in emulsions using Mu/Chit shells was 96.7% and 97.4%, respectively. Morphological studies indicated successful entrapment of oils in core shells with particle sizes ranging from 1396 ± 42.4 to 399.8 ± 42.3 nm. The thermogravimetric analyses demonstrated enhanced core protection with thermal stability noted for microcapsules regardless of encapsulation method. The stability of the microcapsules, during in vitro digestion was studied. The obtained results revealed that the microcapsules are intact in oral conditions and have a slow release of oil over stomach digestion and rapid release in the small intestine. The results showed that Mu and Mu/Chit coacervates can be used as effective carrier systems to encapsulate sensitive ingredients and functional oils.
Collapse
Affiliation(s)
- Faten Mannai
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15), Gafsa, Tunisia; University of Gafsa, Faculty of Sciences of Gafsa, Tunisia
| | - Hanedi Elhleli
- University of Gafsa, Faculty of Sciences of Gafsa, Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15), Gafsa, Tunisia; University of Gafsa, Faculty of Sciences of Gafsa, Tunisia
| | - Ragab Abouzied
- Cellulose and Paper Department, National Research Centre, 33 Bohouthst., Dokki, Giza 12622, Egypt
| | - Ramzi Khiari
- Higher Institute of Technological Studies of Ksar Hellal, Department of Textile, Tunisia; University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, Grenoble, F-38000, France
| | - Salah Neghmouche Nacer
- El Oued University, Faculty of Exact Sciences, Chemistry Department, ElOued, 39000, Algeria
| | | | - Younes Moussaoui
- University of Gafsa, Faculty of Sciences of Gafsa, Tunisia; University of Sfax, Faculty of Sciences of Sfax, Organic Chemistry Laboratory (LR17ES08), Sfax, Tunisia.
| |
Collapse
|
7
|
Jiang M, Hu Z, Huang Y, Chen XD, Wu P. Impact of wall materials and DHA sources on the release, digestion and absorption of DHA microcapsules: Advancements, challenges and future directions. Food Res Int 2024; 191:114646. [PMID: 39059932 DOI: 10.1016/j.foodres.2024.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
Docosahexaenoic acid (DHA), an essential omega-3 fatty acid, offers significant health benefits but faces challenges such as distinct odor, oxidation susceptibility, and limited intestinal permeability, hindering its broad application. Microencapsulation, widely employed, enhances DHA performance by facilitating controlled release, digestion, and absorption in the gastrointestinal tract. Despite extensive studies on DHA microcapsules and related delivery systems, understanding the mechanisms governing encapsulated DHA release, digestion, and absorption, particularly regarding the influence of wall materials and DHA sources, remains limited. This review starts with an overview of current techniques commonly applied for DHA microencapsulation. It then proceeds to outline up-to-date advances in the release, digestion and absorption of DHA microcapsules, highlighting the roles of wall materials and DHA sources. Importantly, it proposes strategies for overcoming challenges and exploiting opportunities to enhance the bioavailability of DHA microcapsules. Notably, spray drying dominates DHA microencapsulation (over 90 % usage), while complex coacervation shows promise for future applications. The combination of proteins and carbohydrates or phospholipids as wall material exhibits potential in controlling release and digestion of DHA microcapsules. The source of DHA, particularly algal oil, demonstrates higher lipid digestibility and absorptivity of free fatty acids (FFAs) than fish oil. Future advancements in DHA microcapsule development include formulation redesign (e.g., using plant proteins as wall material and algal oil as DHA source), technique optimization (such as co-microencapsulation and pre-digestion), and creation of advanced in vitro systems for assessing DHA digestion and absorption kinetics.
Collapse
Affiliation(s)
- Maoshuai Jiang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zejun Hu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Suzhou, Jiangsu 215152, China.
| | - Yixiao Huang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peng Wu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
8
|
de Souza HF, dos Santos FR, Cunha JS, Pacheco FC, Pacheco AFC, Soutelino MEM, Martins CCN, Andressa I, Rocha RDS, da Cruz AG, Paiva PHC, Brandi IV, Kamimura ES. Microencapsulation to Harness the Antimicrobial Potential of Essential Oils and Their Applicability in Dairy Products: A Comprehensive Review of the Literature. Foods 2024; 13:2197. [PMID: 39063282 PMCID: PMC11275287 DOI: 10.3390/foods13142197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
This literature review explores cutting-edge microencapsulation techniques designed to enhance the antimicrobial efficacy of essential oils in dairy products. As consumer demand for natural preservatives rises, understanding the latest advancements in microencapsulation becomes crucial for improving the shelf life and safety of these products. The bibliometric analysis utilized in this review highlighted a large number of documents published on this topic in relation to the following keywords: essential oils, AND antimicrobials, AND dairy products, OR microencapsulation. The documents published in the last 11 years, between 2013 and 2023, showed a diversity of authors and countries researching this topic and the keywords commonly used. However, in the literature consulted, no study was identified that was based on bibliometric analysis and that critically evaluated the microencapsulation of essential oils and their antimicrobial potential in dairy products. This review synthesizes findings from diverse studies, shedding light on the various encapsulation methods employed and their impact on preserving the quality of dairy goods. Additionally, it discusses the potential applications and challenges associated with implementation in the dairy industry. This comprehensive analysis aims to provide valuable insights for researchers, food scientists, and industry professionals seeking to optimize the use of essential oils with antimicrobial properties in dairy formulations.
Collapse
Affiliation(s)
- Handray Fernandes de Souza
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (H.F.d.S.); (R.d.S.R.)
| | - Fabio Ribeiro dos Santos
- Department of Food Technology, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil; (F.R.d.S.); (J.S.C.); (F.C.P.); (I.A.)
| | - Jeferson Silva Cunha
- Department of Food Technology, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil; (F.R.d.S.); (J.S.C.); (F.C.P.); (I.A.)
| | - Flaviana Coelho Pacheco
- Department of Food Technology, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil; (F.R.d.S.); (J.S.C.); (F.C.P.); (I.A.)
| | - Ana Flávia Coelho Pacheco
- Instituto de Laticínios Cândido Tostes, Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Lieutenant Luiz de Freitas, 116, Juiz de Fora 36045-560, MG, Brazil; (A.F.C.P.); (P.H.C.P.)
| | | | - Caio Cesar Nemer Martins
- Forest Engineering Department, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil;
| | - Irene Andressa
- Department of Food Technology, Federal University of Viçosa, University Campus, Viçosa 36570-900, MG, Brazil; (F.R.d.S.); (J.S.C.); (F.C.P.); (I.A.)
| | - Ramon da Silva Rocha
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (H.F.d.S.); (R.d.S.R.)
| | - Adriano Gomes da Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro, Rio de Janeiro 20270-021, RJ, Brazil;
| | - Paulo Henrique Costa Paiva
- Instituto de Laticínios Cândido Tostes, Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Lieutenant Luiz de Freitas, 116, Juiz de Fora 36045-560, MG, Brazil; (A.F.C.P.); (P.H.C.P.)
| | - Igor Viana Brandi
- Institute of Agricultural Sciences, Federal University of Minas Gerais, Av. Universitária, 1000, Montes Claros 39404-547, MG, Brazil;
| | - Eliana Setsuko Kamimura
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (H.F.d.S.); (R.d.S.R.)
| |
Collapse
|
9
|
Shishir MRI, Suo H, Taip FS, Ahmed M, Xiao J, Wang M, Chen F, Cheng KW. Seed mucilage-based advanced carrier systems for food and nutraceuticals: fabrication, formulation efficiency, recent advancement, challenges, and perspectives. Crit Rev Food Sci Nutr 2024; 64:7609-7631. [PMID: 36919601 DOI: 10.1080/10408398.2023.2188564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Seed mucilages are potential sources of natural polysaccharides. They are biodegradable, biocompatible, sustainable, renewable, and safe for human consumption. Due to the desirable physicochemical and functional properties (e.g. gelling, thickening, stabilizing, and emulsifying), seed mucilages have attracted extensive attention from researchers for utilization as a promising material for the development of advanced carrier systems. Seed mucilages have been utilized as natural polymers to improve the properties of various carrier systems (e.g. complex coacervates, beads, nanofibers, and gels) and for the delivery of diverse hydrophilic and lipophilic compounds (e.g. vitamins, essential oils, antioxidants, probiotics, and antimicrobial agents) to achieve enhanced stability, bioavailability, bioactivity of the encapsulated molecules, and improved quality attributes of food products. This review highlights the recent progress in seed mucilage-based carrier systems for food and nutraceutical applications. The main contents include (1) sources, extraction methods, and physicochemical and functional characteristics of seed mucilages, (2) application of seed mucilages for the development of advanced carrier systems, (3) major issues associated with carrier fabrication, and (4) mechanisms of carrier development, latest improvements in carrier formulation, carrier efficiency in the delivery of bioactive agents, and application in food and nutraceuticals. Furthermore, major challenges and future perspectives of seed mucilage-based carriers for a commercial application are discussed.
Collapse
Affiliation(s)
- Mohammad Rezaul Islam Shishir
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
| | - Hao Suo
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Farah Saleena Taip
- Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maruf Ahmed
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur, Bangladesh
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Mingfu Wang
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Feng Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Ka-Wing Cheng
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Rahim MA, Regenstein JM, Al-Asmari F, Imran M, Ramadan MF, Rocha JMF, Hussain I, Zongo E. Optimized spray-dried conditions' impact on fatty acid profiles and estimation of in vitro digestion of spray-dried chia/fish oil microcapsules. Sci Rep 2024; 14:14802. [PMID: 38926468 PMCID: PMC11208571 DOI: 10.1038/s41598-024-65214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Long-chain polyunsaturated fatty acids (LCPUFA) are of interest due to their potential health properties and have a significant role in reducing the risk of various chronic diseases in humans. It is commonly used as a supplement. However, lipid oxidation is an important negative factor caused by environmental, processing, and limited water solubility of LCPUFA, making them difficult to incorporate into food products. The objective of this research work was to prevent oxidation, extend shelf life, enhance the stability of fatty acids, and to achieve controlled release by preparing spray-dried powder (SDM). For spray-drying, aqueous emulsion blends were formulated using a 1:1 ratio of chia seed oil (CSO) and fish oil (FO) and using a laboratory-scale spray-dryer with varying conditions: inlet air temperature (IAT, 125-185 °C), wall material (WM, 5-25%), pump speed (PS, 3-7 mL/min), and needle speed (NS, 3-11 s). The maximum alpha-linolenic acid (ALA) content was 33 ± 1%. The highest values of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the microcapsules were 8.4 ± 0.4 and 13 ± 1%, respectively. Fourier transform infrared and X-Ray diffraction analysis results indicated that SDM was successfully formulated with Gum Arabic and maltodextrin (MD). The blending without encapsulation of CSO and FO was digested more efficiently and resulted in more oil being released with simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and SGF + SIF conditions without heating. No significant changes were observed for saturated, monounsaturated, and LCPUFA, whether exposed or not to gastrointestinal conditions. However, compared to the release of SDM, it can be useful for designing delivery systems for the controlled release of essential fatty acids.
Collapse
Affiliation(s)
- Muhammad Abdul Rahim
- Department of Food Science and Nutrition, Faculty of Medicine and Allied Health Sciences, Times Institute, Multan, Pakistan.
| | | | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, 31982, Hofuf, Al-Ahsa, Kingdom of Saudi Arabia
| | - Muhammad Imran
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - João Miguel F Rocha
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, S/N, 4200-465, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Imtiaz Hussain
- Department of Food Science and Technology, Faculty of Agriculture, University of Poonch, Rawalakot, Azad Kashmir, Pakistan
| | - Eliasse Zongo
- Laboratoire de Recherche et d'Enseignement en Santé et Biotechnologies Animales, Université Nazi BONI, 01 BP 1091, Bobo Dioulasso, Burkina Faso.
| |
Collapse
|
11
|
Huang M, Xu Y, Xu L, Chen X, Ding M, Bai Y, Xu X, Zeng X. The evaluation of mixed-layer emulsions stabilized by myofibrillar protein-chitosan complex for delivering astaxanthin: Fabrication, characterization, stability and in vitro digestibility. Food Chem 2024; 440:138204. [PMID: 38134832 DOI: 10.1016/j.foodchem.2023.138204] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Muscle protein based functional foods have been attracted great interests in novel food designing. Herein, myofibrillar protein (MP)-chitosan (CH) electrostatic complexes were employed to fabricate mixed-layer emulsions to protect and deliver astaxanthin. The MP/CH complex fabricated mixed-layer emulsions displayed higher stability against pH and temperature changes, exhibiting smaller droplet and homogenous distributions. After UV-light irradiation for 8 h, the mixed-layer emulsions had higher astaxanthin retention (69.11 %, 1:1 group). During storage, a lower degree of lipid oxidation, protein oxidation and higher astaxanthin retention were obtained, indicating desirable protections of mixed-layer emulsions. The vitro digestion reveled the mixed-layer emulsions could decrease the release of free fatty acids. Meanwhile, the bioaccessibility of astaxanthin was higher (30.43 %, 2:1 group) than monolayer emulsion. In all, the MP/CH prepared mixed-layer emulsions could protect and deliver fat-soluble bioactive compounds, and contributed to develop muscle protein based functional foods to meet the needs of slow and controlled release.
Collapse
Affiliation(s)
- Mingyuan Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Yujuan Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P.R. China
| | - Lina Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mengzhen Ding
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Yun Bai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China.
| | - Xianming Zeng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| |
Collapse
|
12
|
Anand V, Ksh V, Vasudev S, Kumar M, Kaur C. Investigating the effect of wall material and pressure homogenisation on encapsulation parameters and thermal stability in chia seed oil microcapsules. J Microencapsul 2024; 41:66-78. [PMID: 38096025 DOI: 10.1080/02652048.2023.2292228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
AIM To evaluate the effect of different wall material (WM) matrices followed by homogenisation to encapsulate chia seed oil (CSO) using freeze drying technology. METHODS CSO was encapsulated using three ratios (100/0, 50/50, and 100/0) of two WM matrices: MTS/WPC (modified tapioca starch-whey protein concentrate) and MD/WPC (maltodextrin-whey protein concentrate). The evaluation included encapsulation efficiency (EE), oxidative stability, and α-linolenic acid (ALA) retention. Homogenised microcapsules (-H) were then assessed for storage and thermal stability, along with cumulative oil release. RESULTS The MD-WPC-H 50/50 microcapsules had superior EE (97.32%), higher ALA retention (60.2%), storage stability (up to 30 days), higher thermal stability (up to 700 °C), and desirable oil release in simulated condition. CONCLUSION Selecting suitable WM and homogenisation is key for improving EE, storage, thermal stability, and targeted release. The CSO microcapsule can serve as a functional ingredient to improve the quality of diverse food products.
Collapse
Affiliation(s)
- Vishnu Anand
- Division of Food Science and Postharvest Technology, ICAR-IARI, New Delhi, India
| | - Vikono Ksh
- Division of Food Science and Postharvest Technology, ICAR-IARI, New Delhi, India
| | | | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Charanjit Kaur
- Division of Food Science and Postharvest Technology, ICAR-IARI, New Delhi, India
| |
Collapse
|
13
|
Can Karaca A, Assadpour E, Jafari SM. Plant protein-based emulsions for the delivery of bioactive compounds. Adv Colloid Interface Sci 2023; 316:102918. [PMID: 37172542 DOI: 10.1016/j.cis.2023.102918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Emulsion-based delivery systems (EBDSs) can be used as effective carriers for bioactive compounds (bioactives). Recent studies have shown that plant proteins (PLPs) have the potential to be utilized as stabilizers of emulsions for loading, protection and delivery of bioactives. Different strategies combining physical, chemical and biological techniques can be applied for alteration of the structural characteristics and improving the emulsification and encapsulation performance of PLPs. The stability, release, and bioavailability of the encapsulated bioactives can be tailored via optimizing the processing conditions and formulation of the emulsions. This paper presents cutting-edge information on PLP-based emulsions carrying bioactives in terms of their preparation methods, physicochemical characteristics, stability, encapsulation efficiency and release behavior of bioactives. Strategies applied for improvement of emulsifying and encapsulation properties of PLPs used in EBDSs are also reviewed. Special emphasis is given to the use of PLP-carbohydrate complexes for stabilizing bioactive-loaded emulsions.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
14
|
Alberdi-Cedeño J, Aichner M, Mistlberger-Reiner A, Shi A, Pignitter M. Effect of Encapsulation Material on Lipid Bioaccessibility and Oxidation during In Vitro Digestion of Black Seed Oil. Antioxidants (Basel) 2023; 12:antiox12010191. [PMID: 36671054 PMCID: PMC9854819 DOI: 10.3390/antiox12010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Different encapsulation materials might not only affect lipid hydrolysis but also lipid oxidation during in vitro digestion. Thus, this study aimed to investigate the effect of two commonly used shell materials, starch and gelatin, on the extent of lipolysis and bioaccessibility of the main and some minor lipid compounds, as well as on the oxidative status in encapsulated black seed oil (Nigella sativa) during in vitro digestion. The study was carried out using 1H nuclear magnetic resonance spectroscopy, liquid chromatography-mass spectrometry and high-performance liquid chromatography-UV. It was shown that starch increased the level of lipid hydrolysis in black seed oil during gastric in vitro digestion, while no differences were observed in the intestinal digestates between starch-encapsulated oil and gelatin-encapsulated oil. Similarly, the bioaccessibility of minor compounds (tocopherols, sterols and thymoquinone) was not influenced by the shell materials. However, regarding lipid oxidation, a 20- and 10-fold rise of free oxylipins was obtained in oils encapsulated by starch and gelatin, respectively, after intestinal in vitro digestion. This study evidenced that gelatin rather than starch should be used for the encapsulation of oils to minimize the digestion-induced formation of bioactive oxylipins.
Collapse
Affiliation(s)
- Jon Alberdi-Cedeño
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain
| | - Martha Aichner
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Agnes Mistlberger-Reiner
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
15
|
Napiórkowska A, Kurek M. Coacervation as a Novel Method of Microencapsulation of Essential Oils-A Review. Molecules 2022; 27:molecules27165142. [PMID: 36014386 PMCID: PMC9416238 DOI: 10.3390/molecules27165142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
These days, consumers are increasingly "nutritionally aware". The trend of "clean label" is gaining momentum. Synthetic additives and preservatives, as well as natural ones, bearing the E symbol are more often perceived negatively. For this reason, substances of natural origin are sought tfor replacing them. Essential oils can be such substances. However, the wider use of essential oils in the food industry is severely limited. This is because these substances are highly sensitive to light, oxygen, and temperature. This creates problems with their processing and storage. In addition, they have a strong smell and taste, which makes them unacceptable when added to the product. The solution to this situation seems to be microencapsulation through complex coacervation. To reduce the loss of essential oils and the undesirable chemical changes that may occur during their spray drying-the most commonly used method-complex coacervation seems to be an interesting alternative. This article collects information on the limitations of the use of essential oils in food and proposes a solution through complex coacervation with plant proteins and chia mucilage.
Collapse
|
16
|
Cao C, Yuan D, Kong B, Chen Q, He J, Liu Q. Effect of different κ-carrageenan incorporation forms on the gel properties and in vitro digestibility of frankfurters. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Rostamabadi MM, Falsafi SR, Nishinari K, Rostamabadi H. Seed gum-based delivery systems and their application in encapsulation of bioactive molecules. Crit Rev Food Sci Nutr 2022; 63:9937-9960. [PMID: 35587167 DOI: 10.1080/10408398.2022.2076065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Now-a-days, the food/pharma realm faces with great challenges for the application of bioactive molecules when applying them in free form due to their instability in vitro/in vivo. For promoting the biological and functional properties of bioactive molecules, efficient delivery systems have played a pivotal role offering a controlled delivery and improved bioavailability/solubility of bioactives. Among different carbohydrate-based delivery systems, seed gum-based vehicles (SGVs) have shown great promise, facilitating the delivery of a high concentration of bioactive at the site of action, a controlled payload release, and less bioactive loss. SGVs are potent structures to promote the bioavailability, beneficial properties, and in vitro/in vivo stability of bioactive components. Here, we offer a comprehensive overview of seed gum-based nano- and microdevices as delivery systems for bioactive molecules. We have a focus on structural/functional attributes and health-promoting benefits of seed gums, but also strategies involving modification of these biopolymers are included. Diverse SGVs (nano/microparticles, functional films, hydrogels/nanogels, particles for Pickering nanoemulsions, multilayer carriers, emulsions, and complexes/conjugates) are reviewed and important parameters for bioactive delivery are highlighted (e.g. bioactive-loading capacity, control of bioactive release, (bio)stability, and so on). Future challenges for these biopolymer-based carriers have also been discussed. HighlightsSeed gum-based polymers are promising materials to design different bioactive delivery systems.Seed gum-based delivery systems are particles, fibers, complexes, conjugates, hydrogels, etc.Seed gum-based vehicles are potent structures to promote the bioavailability, beneficial properties, and in vitro/in vivo stability of bioactive components.
Collapse
Affiliation(s)
- Mohammad Mahdi Rostamabadi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
- Food Hydrocolloid International Science and Technology, Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, China
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Maillard-Type Protein-Polysaccharide Conjugates and Electrostatic Protein-Polysaccharide Complexes as Delivery Vehicles for Food Bioactive Ingredients: Formation, Types, and Applications. Gels 2022; 8:gels8020135. [PMID: 35200516 PMCID: PMC8871776 DOI: 10.3390/gels8020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Due to their combination of featured properties, protein and polysaccharide-based carriers show promising potential in food bioactive ingredient encapsulation, protection, and delivery. The formation of protein–polysaccharide complexes and conjugates involves non-covalent interactions and covalent interaction, respectively. The common types of protein–polysaccharide complex/conjugate-based bioactive ingredient delivery systems include emulsion (conventional emulsion, nanoemulsion, multiple emulsion, multilayered emulsion, and Pickering emulsion), microcapsule, hydrogel, and nanoparticle-based delivery systems. This review highlights the applications of protein–polysaccharide-based delivery vehicles in common bioactive ingredients including polyphenols, food proteins, bioactive peptides, carotenoids, vitamins, and minerals. The loaded food bioactive ingredients exhibited enhanced physicochemical stability, bioaccessibility, and sustained release in simulated gastrointestinal digestion. However, limited research has been conducted in determining the in vivo oral bioavailability of encapsulated bioactive compounds. An in vitro simulated gastrointestinal digestion model incorporating gut microbiota and a mucus layer is suggested for future studies.
Collapse
|
20
|
Calvo-Lerma J, Asensio-Grau A, García-Hernández J, Heredia A, Andrés A. Exploring the Impact of Solid-State Fermentation on Macronutrient Profile and Digestibility in Chia ( Salvia hispanica) and Sesame ( Sesamum Indicum) Seeds. Foods 2022; 11:410. [PMID: 35159560 PMCID: PMC8834584 DOI: 10.3390/foods11030410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Fermentation of plant-based substrates with edible fungi enhances the nutrient profile and digestibility, but it has been scarcely applied to edible seeds, which are rich in healthy lipids. In this study, chia and sesame seeds were solid-state fermented with Pleurotus ostreatus, followed by drying and milling. Fermentation led to increased content of lipid and protein in both seeds' products, and a change in fatty acid profile in favor of increased polyunsaturated fatty acids. Then, the samples were subjected to in vitro digestion. Lipolysis, determined by nuclear magnetic resonance, was higher in sesame than in chia products, and the fermented counterparts had increased values compared to the controls. In terms of physical properties, fermentation showed reduced particle size and increased matrix degradation and decreased viscosity of the digestion medium, which were related to increased lipolysis. In conclusion, applying solid-state fermentation on chia and sesame seeds could be a recommendable approach.
Collapse
Affiliation(s)
- Joaquim Calvo-Lerma
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish Scientific Research Council, 28006 Madrid, Spain
| | - Andrea Asensio-Grau
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos, Universitat Politècnica de València, 46022 València, Spain;
| | - Ana Heredia
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
| | - Ana Andrés
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 València, Spain; (J.C.-L.); (A.H.); (A.A.)
| |
Collapse
|
21
|
Ferreira S, Nicoletti VR. Use of a tubular heat exchanger to achieve complex coacervation in a semi-continuous process: Effects of capsules curing temperature and shear rate. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Bordón MG, Alasino NPX, Villanueva-Lazo Á, Carrera-Sánchez C, Pedroche-Jiménez J, Millán-Linares MDC, Ribotta PD, Martínez ML. Scale-up and optimization of the spray drying conditions for the development of functional microparticles based on chia oil. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Formulation, spray-drying and physicochemical characterization of functional powders loaded with chia seed oil and prepared by complex coacervation. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.06.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Embaby HE, Miyakawa T, Hachimura S, Muramatsu T, Nara M, Tanokura M. Crystallization and melting properties studied by DSC and FTIR spectroscopy of goldenberry (Physalis peruviana) oil. Food Chem 2021; 366:130645. [PMID: 34325243 DOI: 10.1016/j.foodchem.2021.130645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/03/2021] [Accepted: 07/17/2021] [Indexed: 11/04/2022]
Abstract
The chemical and thermal characteristics of goldenberry pomace oil (GPO) and goldenberry seed oil (GSO) were investigated. GPO and GSO contained high levels of unsaturated fatty acids (90.1% and 85.1%, respectively), and the major fatty acid was linoleic (62.0% and 72.8%, respectively). Additionally, GPO contained eleven triacylglycerol (TAG) species, three of which represented 82.7%, namely C54:6, C54:4 and C52:4, and trilinolein was the dominant one (35.5%). GSO contained nine TAG species, two of which represented 80.3%, namely C54:6 and C52:4, and trilinolein was dominant (53.3%). The DSC analysis of GPO and GSO revealed that three exothermal peaks were detected during cooling. Three endothermal peaks (one of which is exothermal for GSO) were detected during melting, and the most significant peaks occurred at low temperatures. FTIR spectra indicated that GPO and GSO did not contain peroxides or trans fatty acids, but they did contain low concentrations of free fatty acids.
Collapse
Affiliation(s)
- Hassan Elsayed Embaby
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tomonari Muramatsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masayuki Nara
- Department of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba 272-0827, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
25
|
Amaya Cano JS, Segura Pacheco S, Salcedo Galán F, Arenas Bustos I, Rincón Durán C, Hernández Carrión M. Formulation of a responsive in vitro digestion wall material, sensory and market analyses for chia seed oil capsules. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Čakarević J, Torbica A, Belović M, Tomić J, Sedlar T, Popović L. Pumpkin oil cake protein as a new carrier for encapsulation incorporated in food matrix: Effect of processing, storage and
in vitro
digestion on bioactivity. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jelena Čakarević
- Faculty of Technology University of Novi Sad Bulevar cara Lazara 1 Novi Sad Serbia
| | - Aleksandra Torbica
- Institute of Food Technology University of Novi Sad Bulevar cara Lazara 1 Novi Sad Serbia
| | - Miona Belović
- Institute of Food Technology University of Novi Sad Bulevar cara Lazara 1 Novi Sad Serbia
| | - Jelena Tomić
- Institute of Food Technology University of Novi Sad Bulevar cara Lazara 1 Novi Sad Serbia
| | - Tea Sedlar
- Faculty of Technology University of Novi Sad Bulevar cara Lazara 1 Novi Sad Serbia
| | - Ljiljana Popović
- Faculty of Technology University of Novi Sad Bulevar cara Lazara 1 Novi Sad Serbia
| |
Collapse
|
27
|
da Silva Soares B, de Carvalho CWP, Garcia-Rojas EE. Microencapsulation of Sacha Inchi Oil by Complex Coacervates using Ovalbumin-Tannic Acid and Pectin as Wall Materials. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02594-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Nanoliposomes and Nanoemulsions Based on Chia Seed Lipids: Preparation and Characterization. Int J Mol Sci 2020; 21:ijms21239079. [PMID: 33260309 PMCID: PMC7731419 DOI: 10.3390/ijms21239079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
Polyunsaturated fatty acids (PUFA) are important in reducing the risk for cardiovascular, metabolic and neurodegenerative diseases. Chia (Salvia hispanica L.) seeds contain high levels of omega-3 PUFA, α-linolenic acid (ALA) in particular, and are a potential source for development of omega-3 PUFA-based products. Our objective was to obtain and characterize chia seed lipids, focusing on phospholipid fraction, and to investigate their use in the formulation of nanoemulsions (NE) and nanoliposomes (NL). Solvent-based lipid extraction was performed on the ORURO variety of chia seeds, followed by lipid composition analysis using GC and LC-MS and physico-chemical characterization of chia NL and NE. Folch extraction led to a slightly higher yield of ALA as compared to Soxhlet extraction. Lipid, phospholipid, and fatty acid composition analysis of the oil and residue revealed that the residue was rich in phospholipids; these were used to prepare NE and NL. Physico-chemical characterization showed that NE and NL were generally spherical (transmission electron microscopy), with a size of <120 nm under hydrated conditions that remained stable over 5 days. In conclusion, chia oil and phospholipid-rich residue can be used to obtain stable NL or NE using a simple method that involves spontaneous emulsification during lipid hydration, which potentially may be useful in cosmetics, pharmaceutical, and other health applications.
Collapse
|
29
|
Complex coacervates of β-lactoglobulin/sodium alginate for the microencapsulation of black pepper (Piper nigrum L.) essential oil: Simulated gastrointestinal conditions and modeling release kinetics. Int J Biol Macromol 2020; 160:861-870. [DOI: 10.1016/j.ijbiomac.2020.05.265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
|
30
|
Fırtın B, Yenipazar H, Saygün A, Şahin-Yeşilçubuk N. Encapsulation of chia seed oil with curcumin and investigation of release behaivour & antioxidant properties of microcapsules during in vitro digestion studies. Lebensm Wiss Technol 2020; 134:109947. [PMID: 32834119 PMCID: PMC7409937 DOI: 10.1016/j.lwt.2020.109947] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
In this study, it was aimed to investigate the effects of both using curcumin and microencapsulation method on in vitro release behaivour of chia seed oil and its antioxidant potential during simulated gastrointestinal (GI) tract. Maltodextrin (MD) and gum Arabic (GA) was used as wall materials for freeze dried capsules. Sample 6, having 1:3 MD to GA ratio, 1:5 chia seed oil to wall material ratio and 40% total dry matter content, was found to have the optimum results in terms of emulsion stability (CI% = 0), zeta potential (-32.2 ± 0.8 mV) and size distribution (600 ± 8 nm). Moreover, release profiles of encapsulated chia seed oil samples were evaluated to determine if curcumin addition has any significant effect. The results revealed that curcumin addition decreased the release of chia seed oil from 44.6% to 37.2%. On contrary, it increased total phenolic content of in fraction of intestine to 22 mg gallic acid equivalents (GAE)/L.
Collapse
Affiliation(s)
- Burcu Fırtın
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469, Istanbul, Turkey
| | - Hande Yenipazar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469, Istanbul, Turkey
| | - Ayşe Saygün
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469, Istanbul, Turkey
| | - Neşe Şahin-Yeşilçubuk
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469, Istanbul, Turkey
| |
Collapse
|
31
|
Bastos LPH, dos Santos CHC, de Carvalho MG, Garcia-Rojas EE. Encapsulation of the black pepper (Piper nigrum L.) essential oil by lactoferrin-sodium alginate complex coacervates: Structural characterization and simulated gastrointestinal conditions. Food Chem 2020; 316:126345. [DOI: 10.1016/j.foodchem.2020.126345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
|
32
|
|
33
|
Fu J, Song L, Liu Y, Bai C, Zhou D, Zhu B, Wang T. Improving oxidative stability and release behavior of docosahexaenoic acid algae oil by microencapsulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2774-2781. [PMID: 32020617 DOI: 10.1002/jsfa.10309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Spray-dried docosahexaenoic acid algae oil (DHA AO) microcapsules were prepared using whey protein isolate and glucose syrup (WPI + GS), or sodium starch octenylsuccinate and glucose syrup (SSOS + GS), or whey protein isolate and lactose (WPI + L). The effect of the formulations on encapsulation properties, oxidative protection and in vitro oil release pattern of the resulting microencapsulates was investigated. RESULTS A high encapsulation efficiency of over 98% of DHA AO was obtained for microcapsules with all three wall materials. Among the wall materials, SSOS + GS exhibited a better micro-particulation ability reflected by more uniform size and smoother surface of the formed microcapsules and no agglomerates. DHA AO microcapsules with all the wall materials showed good protection of the oil from oxidation during storage with an increasing order of WPI + GS, SSOS + GS and WPI + L. Moreover, microencapsulation significantly increased the release of DHA AO in the intestinal phase of the in vitro digestion process with an increasing order of SSOS + GS, WPI + GS and WPI + L, indicating the increased stability of the oil in the highly acidic gastric environment and the enhanced lipid digestibility in the small intestine. CONCLUSIONS The results suggest that it is possible to transform a highly oxidizable liquid functional food ingredient such as DHA AO into a stable and easy-to-handle solid powder through spray drying with properly selected wall materials. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingjing Fu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Liang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Yunhang Liu
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Changjun Bai
- Qingdao Seawit Life Science Co. Ltd, Qingdao, PR China
| | | | - Beiwei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Tong Wang
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
34
|
Chew SC, Tan CP, Tan CH, Nyam KL. In-vitro bioaccessibility of spray dried refined kenaf ( Hibiscus cannabinus) seed oil applied in coffee drink. Journal of Food Science and Technology 2020; 57:2507-2515. [PMID: 32549601 DOI: 10.1007/s13197-020-04286-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/12/2019] [Accepted: 01/29/2020] [Indexed: 10/24/2022]
Abstract
This study aimed to investigate the effect of a coffee beverage matrix on the oil release percentage and bioaccessibility of bioactive compounds from microencapsulated refined kenaf seed oil (MRKSO) using an in vitro gastrointestinal digestion model. Refined kenaf seed oil was spray-dried with gum arabic, β-cyclodextrin, and sodium caseinate. Oil release percentage, total phenolic content, radical scavenging activity of DPPH and ABTS, tocopherol and tocotrienol contents, as well as phytosterol content, were measured in the oil released from digested MRKSO along with the coffee matrix and compared to the digested MRKSO without coffee matrix and undigested MRKSO. Refined kenaf seed oil showed a significantly higher oxidative stability index than crude, degummed, and neutralized oil samples. About 91.2 and 94.7% of the oils were released from the digested MRKSO without and with coffee matrix, respectively. Oil released from the digested MRKSO with coffee matrix showed an increase in the total phenolic content (200.5%), DPPH (172.7%), and ABTS (68.1%) values, tocopherol and tocotrienol contents (24.6%), as well as the phytosterol content (62.0%), compared to oil released from the digested MRKSO without coffee matrix. MRKSO was successfully incorporated in the coffee drink and can use as a partial replacement for coffee creamers or supplementation in coffee drinks.
Collapse
Affiliation(s)
- Sook-Chin Chew
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, 56000 Kuala Lumpur, Malaysia.,School of Foundation Studies, Xiamen University Malaysia Campus, Bandar Serenia, 43900 Sepang, Selangor Malaysia
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Choon-Hui Tan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, 56000 Kuala Lumpur, Malaysia
| | - Kar-Lin Nyam
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Timilsena YP, Haque MA, Adhikari B. Encapsulation in the Food Industry: A Brief Historical Overview to Recent Developments. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/fns.2020.116035] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Knez Hrnčič M, Ivanovski M, Cör D, Knez Ž. Chia Seeds ( Salvia hispanica L.): An Overview-Phytochemical Profile, Isolation Methods, and Application. Molecules 2019; 25:E11. [PMID: 31861466 PMCID: PMC6994964 DOI: 10.3390/molecules25010011] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022] Open
Abstract
Chia (Salvia hispanica L.) is a small seed that comes from an annual herbaceous plant, Salvia hispanica L. In recent years, usage of Chia seeds has tremendously grown due to their high nutritional and medicinal values. Chia was cultivated by Mesopotamian cultures, but then disappeared for centuries until the middle of the 20th century, when it was rediscovered. Chia seeds contain healthy ω-3 fatty acids, polyunsaturated fatty acids, dietary fiber, proteins, vitamins, and some minerals. Besides this, the seeds are an excellent source of polyphenols and antioxidants, such as caffeic acid, rosmarinic acid, myricetin, quercetin, and others. Today, chia has been analyzed in different areas of research. Researches around the world have been investigating the benefits of chia seeds in the medicinal, pharmaceutical, and food industry. Chia oil is today one of the most valuable oils on the market. Different extraction methods have been used to produce the oil. In the present study, an extensive overview of the chemical composition, nutritional properties, and antioxidant and antimicrobial activities, along with extraction methods used to produce chia oil, will be discussed.
Collapse
Affiliation(s)
- Maša Knez Hrnčič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Maja Ivanovski
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Darija Cör
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (M.I.); (D.C.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
37
|
da Silva Soares B, Siqueira RP, de Carvalho MG, Vicente J, Garcia-Rojas EE. Microencapsulation of sacha inchi oil (Plukenetia volubilis L.) using complex coacervation: Formation and structural characterization. Food Chem 2019; 298:125045. [DOI: 10.1016/j.foodchem.2019.125045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/18/2023]
|
38
|
Ding J, Xu Z, Qi B, Cui S, Wang T, Jiang L, Zhang Y, Sui X. Fabrication and characterization of soybean oil bodies encapsulated in maltodextrin and chitosan-EGCG conjugates: An in vitro digestibility study. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
de Campo C, Queiroz Assis R, Marques da Silva M, Haas Costa TM, Paese K, Stanisçuaski Guterres S, de Oliveira Rios A, Hickmann Flôres S. Incorporation of zeaxanthin nanoparticles in yogurt: Influence on physicochemical properties, carotenoid stability and sensory analysis. Food Chem 2019; 301:125230. [PMID: 31374531 DOI: 10.1016/j.foodchem.2019.125230] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
Zeaxanthin nanoparticles (Zea-NP) and zeaxanthin nanoemulsion (Zea-NE) were incorporated in yogurt. Control yogurt (CY), yogurt added of nanoparticles (Y-NP) and yogurt added of nanoemulsion (Y-NE) were evaluated weekly regarding pH, titratable acidity, color, textural parameters, viscosity and syneresis during 28 days. Zeaxanthin retention in Y-NP and Y-NE was also determined over storage. Sensory attributes and morphology were evaluated in all yogurt samples, and zeaxanthin bioaccessibility after in vitro digestion was analyzed in Y-NP and Y-NE after preparation. At the end of storage time, zeaxanthin retention was higher in Y-NP (22.31 ± 2.53%) than in Y-NE (16.84 ± 0.53%). Despite the lower firmness and viscosity observed in Y-NP, these changes were not sensory perceived. The bioaccessibility after in vitro digestion suggested that nanoencapsulation provided a controlled release of the carotenoid. Zea-NP can be incorporated in yogurt, allowing the dispersion of a hydrophobic compound in a hydrophilic matrix, providing stability.
Collapse
Affiliation(s)
- Camila de Campo
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Renato Queiroz Assis
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Médelin Marques da Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)-Campus Rolante, Rodovia RS-239, Km 68, n. 3505, CEP 95690-000 Rolante, RS, Brazil
| | - Tania Maria Haas Costa
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil; Departamento de Química, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Karina Paese
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90610-000 Porto Alegre, RS, Brazil
| | - Silvia Stanisçuaski Guterres
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), CEP 90610-000 Porto Alegre, RS, Brazil
| | - Alessandro de Oliveira Rios
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Simone Hickmann Flôres
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
40
|
da Silva Stefani F, de Campo C, Paese K, Stanisçuaski Guterres S, Haas Costa TM, Hickmann Flôres S. Nanoencapsulation of linseed oil with chia mucilage as structuring material: Characterization, stability and enrichment of orange juice. Food Res Int 2019; 120:872-879. [DOI: 10.1016/j.foodres.2018.11.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 12/14/2022]
|
41
|
Julio LM, Copado CN, Crespo R, Diehl BW, Ixtaina VY, Tomás MC. Design of microparticles of chia seed oil by using the electrostatic layer-by-layer deposition technique. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Zettel V, Hitzmann B. Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Wang S, Shi Y, Han L. Development and evaluation of microencapsulated peony seed oil prepared by spray drying: Oxidative stability and its release behavior during in-vitro digestion. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
In-vitro digestion of refined kenaf seed oil microencapsulated in β-cyclodextrin/gum arabic/sodium caseinate by spray drying. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. Int J Biol Macromol 2018; 107:1800-1810. [DOI: 10.1016/j.ijbiomac.2017.10.044] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 01/30/2023]
|
46
|
Gharibzahedi SMT, George S, Greiner R, Estevinho BN, Frutos Fernández MJ, McClements DJ, Roohinejad S. New Trends in the Microencapsulation of Functional Fatty Acid-Rich Oils Using Transglutaminase Catalyzed Crosslinking. Compr Rev Food Sci Food Saf 2018; 17:274-289. [DOI: 10.1111/1541-4337.12324] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - Saji George
- Dept. of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus; McGill Univ.; Ste-Anne de Bellevue Quebec Canada
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Inst.; Federal Research Inst. of Nutrition and Food; Haid-und-Neu-Straße 9 76131 Karlsruhe Germany
| | - Berta N. Estevinho
- LEPABE, Dept. de Engenharia Química; Faculdade de Engenharia da Univ. do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | | | | | - Shahin Roohinejad
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Inst.; Federal Research Inst. of Nutrition and Food; Haid-und-Neu-Straße 9 76131 Karlsruhe Germany
- Burn and Wound Healing Research Center, Div. of Food and Nutrition; Shiraz Univ. of Medical Sciences; Shiraz Iran
| |
Collapse
|
47
|
Wang B, Timilsena YP, Blanch E, Adhikari B. Lactoferrin: Structure, function, denaturation and digestion. Crit Rev Food Sci Nutr 2017; 59:580-596. [DOI: 10.1080/10408398.2017.1381583] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bo Wang
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Yakindra Prasad Timilsena
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
- Materials Science and Engineering, CSIRO Manufacturing Flagship, Clayton South, VIC, Australia
| | - Ewan Blanch
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Benu Adhikari
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
- Materials Science and Engineering, CSIRO Manufacturing Flagship, Clayton South, VIC, Australia
| |
Collapse
|
48
|
Preparation and study of digestion behavior of lactoferrin-sodium alginate complex coacervates. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|