1
|
Xie F, Zheng W, Yuan C, Sun X, Zhang H, Song X, Huang S, Zhou T, Song Z, Ai L. Enzymatic degalactosylation of Tamarind seed polysaccharide and its impact on the quality of frozen grass carp surimi gels. Int J Biol Macromol 2025; 305:140543. [PMID: 39920939 DOI: 10.1016/j.ijbiomac.2025.140543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Tamarind seed polysaccharide (TSP) exhibits excellent cryoprotective effects on surimi gels, and this effect mainly depends on its side-chain structure, especially the galactose content of the side-chain. However, the precise correlation between TSP's side-chain structure and its cryoprotective effects on surimi gels remained elusive. In this investigation, we obtained TSPs with different galactose removal ratios by β-galactosidase hydrolysis and explored their impact on the freeze-thaw stability of surimi gels. The β-galactosidase treatment altered the monosaccharide composition, resulting in a decrease in the galactose/glucose (Gal/Glc) ratio from 0.37 (TSP-0 h) to 0.11 (TSP-24 h) and a reduction in molecular weight (Mw) from 7.35 × 105 to 2.36 × 105 Da. Additionally, this treatment modified the conformational behavior of TSP by breaking glycosidic bonds in the TSP side-chain. Notably, surimi gels fortified with TSP-8 h and TSP-24 h (featuring higher galactose removal) demonstrated superior water-holding capacity and enhanced physical stability. Furthermore, the intrinsic viscosity and Gal/Glc ratios proved to be pivotal determinants of TSP's influence on the freeze-thaw stability of surimi gels. These results offer a novel perspective on understanding TSP's cryoprotective role in surimi gels.
Collapse
Affiliation(s)
- Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weiqi Zheng
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chunmei Yuan
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Xueqi Sun
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Siyan Huang
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Tingrun Zhou
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Zibo Song
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Kraithong S, Liu Y, Sangsawad P, Bunyameen N. Mechanisms and key factors influencing ulvan gelation. Food Chem 2025; 484:144476. [PMID: 40279901 DOI: 10.1016/j.foodchem.2025.144476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/05/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Ulvan, a sulfated polysaccharide extracted from the green seaweed Ulva, is composed primarily of rhamnose, xylose, glucuronic acid, iduronic acid, sulfate, with minor sugars such as mannose, galactose, and arabinose. Its linear structure features L-rhamnose-3-sulfate, D-glucuronic acid, L-iduronic acid, and D-xylose. Ulvan exhibits distinctive rheological properties, including shear-thinning and shear-thickening behaviors, which are crucial for its applications in biomedicine (e.g., drug delivery systems) and food science (e.g., gelling agents, functional ingredients). However, challenges persist, such as variability in mechanical stability, biocompatibility, and batch-to-batch inconsistencies resulting from extraction methods. This review comprehensively examines the gelation mechanisms of ulvan, focusing on cross-linking interactions (ionic bonding with multivalent cations) and non-cross-linking interactions (electrostatic forces and hydrogen bonding). It further reviews how both extrinsic factors (e.g., pH, concentration) and intrinsic factors (e.g., molecular weight, sulfation) influence gelation, thus advancing the potential of ulvan-based materials in biomedical and industrial applications.
Collapse
Affiliation(s)
- Supaluck Kraithong
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nasuha Bunyameen
- Department of Research and Development Halal Product, Faculty of Science and Technology, Fatoni University, Pattani 94160, Thailand
| |
Collapse
|
3
|
Pradhan B, Ki JS. Seaweed-derived laminarin and alginate as potential chemotherapeutical agents: An updated comprehensive review considering cancer treatment. Int J Biol Macromol 2025; 293:136593. [PMID: 39426775 DOI: 10.1016/j.ijbiomac.2024.136593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Seaweed-derived bioactive substances such as polysaccharides have proven to be effective chemotherapeutic and chemopreventive agents. Laminarin and alginate antioxidant properties aid in the prevention of cancer through dynamic modulation of critical intracellular signaling pathways via apoptosis which produce low cytotoxicity and potential chemotherapeutic effects. Understanding the effects of laminarin and alginate on human cancer cells and their molecular roles in cell death pathways can help to develop a novel chemoprevention strategy. This review emphasizes the importance of apoptosis-modulating laminarin and alginate in a range of malignancies as well as their extraction, molecular structure, and weight. In addition, future nano-formulation enhancements for greater clinical efficacy are discussed. Laminarin and alginate are perfect ingredients because of their distinct physicochemical and biological characteristics and their use-based delivery systems in cancer. The effectiveness of laminarin and alginate against cancer and more preclinical and clinical trials will open up as new chemotherapeutic natural drugs which lead to established as potential cancer drugs.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea; Department of Botany, Model Degree College, Rayagada 765017, Odisha, India
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
4
|
Kraithong S, Ke X, Lee S, Bunyameen N, Kuang W, Huang Q, Zhang X, Huang R. Characterization of ulvan polysaccharide extracted from Ulva pertusa and its effect on thermal, rheological, and gelling properties of rice flour. Food Chem 2025; 465:141974. [PMID: 39546992 DOI: 10.1016/j.foodchem.2024.141974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Three ulvan fractions (UPs 1-3) were extracted from Ulva pertusa via hot-water extraction. UP1 exhibited a molecular weight of 729,151 Da, while UPs 2 and 3 ranged from 19,952 to 750,384 Da. These fractions differed in monosaccharide, uronic acid, and sulfate levels. Zeta potentials for polysaccharide solutions (0.2-0.6 % w/v) ranged from -34.4 to -25.1, all demonstrating shear-thinning behavior. Incorporating UPs 1-3 solutions (0.2-0.6 % w/v) with rice flour increased gelatinization temperatures and modified pasting properties, increasing peak time, peak viscosity, and trough viscosity while reducing breakdown, final, and setback viscosities. Ulvan polysaccharide improved the viscous behavior of rice flour paste, indicated by increased loss modulus and tan δ (p > 0.05). Furthermore, ulvan polysaccharide improved the microstructure and texture of rice flour gel, with UP1 (0.6 % w/v) forming denser matrices and better texture. Molecular docking analysis suggested that hydrogen bonding is the primary interaction between rice glutelin and ulvan components.
Collapse
Affiliation(s)
- Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xu Ke
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Graduate Training Base in Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, 518104 Shenzhen, PR China
| | - Suyong Lee
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 143-747, South Korea
| | - Nasuha Bunyameen
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan
| | - Weiyang Kuang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Liu X, Chi J, Lin Y, Ren W, Li Y, Jia W, Mowafy S, Li J, Li X. Mechanistic insights into combined effects of continuous microwave heating and tremella powder addition on physiochemical properties of Nemipterus virgatus surimi gel. Food Chem 2024; 460:140752. [PMID: 39121771 DOI: 10.1016/j.foodchem.2024.140752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The physicochemical properties of Nemipterus virgatus surimi gel were investigated, with tremella powder (TP) at concentrations ranging from 0 to 0.5% (w/w) combined with continuous microwave heating (CMH) using water-bath heating (WBH) as control. Results showed that TP addition (0.1%-0.3%, w/w) could significantly enhance the water holding capacity and reduce whiteness and cooking loss, attributed to the changed lateral relaxation time of water distribution. Notably, at 0.3% TP and 80 °C, the gel strength significantly increased by 96.84%, and the hardness, chewiness, and adhesiveness improved, but the quality of surimi decreased above 0.3% TP. The gel network structure was influenced by protein secondary structure composition, especially for increasing β-sheet in Raman spectra, thus promoting the gel microstructure density and uniform protein distribution. These findings offer insights for enhancing surimi gel quality and broadening tremella application in product processing.
Collapse
Affiliation(s)
- Xuejie Liu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Junhao Chi
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Yawen Lin
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China.
| | - Wenyan Ren
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Yafei Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Wenshen Jia
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Samir Mowafy
- Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Alexandria University, Egypt
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China.
| |
Collapse
|
6
|
Geng W, Tian M, Zhang X, Song M, Fan X, Li M, Ma Y, Benjakul S, Zhao Q. Effect of Inulin and Psyllium Husk Powder on Gel Properties and In Vitro Digestion of Hypophthalmichthys molitrix and Argopecten irradians Blended Surimi. Foods 2024; 13:3703. [PMID: 39594118 PMCID: PMC11593437 DOI: 10.3390/foods13223703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Dietary fiber is crucial in enhancing the nutritional and textural properties of surimi-based products. This study investigated blended surimi produced from silver carp and bay scallops, with the addition of different amounts (0%, 0.5%, 1%, 2%, and 3%) of inulin (INU) or psyllium husk powder (PHP) for their textural properties, protein conformation, and in vitro digestibility. The addition of INU negatively affected gel strength. However, incorporating 2.0% PHP into the blended gel improved gel strength and water-holding capacity by 8.01% and 0.79% compared to the control, respectively. Furthermore, PHP significantly increased the total sulfhydryl content and surface hydrophobicity of the blended gels (p < 0.05). Additionally, increases in endogenous fluorescence intensity accompanied by a blue shift were observed, indicating that the fluorophores (Trp and Tyr) were sequestered into a more non-polar environment due to conformational changes. The incorporation of PHP enhanced both the quality and digestibility of the blended surimi. This study provides a novel perspective for developing surimi-based food with improved quality, augmented digestion, and enhanced absorption.
Collapse
Affiliation(s)
- Wenhao Geng
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Miaomiao Tian
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xinyue Zhang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Maodong Song
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xinru Fan
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Meng Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
| | - Yongsheng Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116023, China
| |
Collapse
|
7
|
Eleroui M, Feki A, Kraiem M, Hamzaoui A, Boujhoud Z, Ibtissem Ben Amara, Kallel H. Physicochemical, structural, and biological properties of novel water-soluble polysaccharide derived from the Tunisian Hammada scoparia plant and its application on beef meat preservation. Heliyon 2024; 10:e39562. [PMID: 39506945 PMCID: PMC11538757 DOI: 10.1016/j.heliyon.2024.e39562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
This work aims to characterize a novel water-soluble polysaccharide from Hammada scoparia leaves named PSP. The Infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra confirmed the presence of different polysaccharide functional bands. The High-Performance Liquid Chromatography (HPLC) analysis identified a heteropolysaccharide composed of two monosaccharides. A semi-crystalline structure of PSP was proved using the X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis. The evaluation of the antioxidant activity revealed an interesting potential to prevent oxidative stress. Additionally, PSP showed interesting functional propreties such as good oil and water retention abilities, higher foaming stability, and higher emulsifying capacity and stability. However, the effect of PSP on the oxidation of lipids in the ground beef meat was established during nine days at 4 °C. Obtained data revealed a significant decrease in malondialdehyde levels, inhibition of metmyoglobin (MetMb) accumulation, and significant inhibition of microbial growth compared with the control sample during storage. Moreover, incorporating PSP in minced meat proved color pH and moisture stability. Overall, the findings in the present study confirmed that PSP could be considered a natural bioactive polymer for food applications.
Collapse
Affiliation(s)
- Malek Eleroui
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
| | - Amal Feki
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
| | - Marwa Kraiem
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
| | - Asma Hamzaoui
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
| | - Zakaria Boujhoud
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences of Settat, Settat, Morocco
| | - Ibtissem Ben Amara
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 30 0 0, Tunisia
- Cayenne General Hospital, Emergency Department, Cayenne, 97300, French Guiana
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de, Guyane, French Guiana
| | - Hatem Kallel
- Cayenne General Hospital, Emergency Department, Cayenne, 97300, French Guiana
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de, Guyane, French Guiana
- Intensive Care Unit, Cayenne General Hospital, French Guiana
| |
Collapse
|
8
|
Wang W, Yan L, Yi S. Fucoidan-Vegetable Oil Emulsion Applied to Myosin of Silver Carp: Effect on Protein Conformation and Heat-Induced Gel Properties. Foods 2024; 13:3220. [PMID: 39456282 PMCID: PMC11507639 DOI: 10.3390/foods13203220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
How to improve the gel properties of protein has become a research focus in the field of seafood processing. In this paper, a fucoidan (FU)-vegetable oil emulsion was prepared, and the mechanism behind the effect of emulsion on protein conformation and the heat-induced gel properties was studied. The results revealed that the FU-vegetable oil complex caused the aggregation and cross-linking of myosin, as well as increased the surface hydrophobicity and total sulfhydryl content of myosin. In addition, the addition of the compound (0.3% FU and 1% vegetable oil) significantly improved the gel strength, hardness, chewiness, and water-holding capacity of the myosin gel (p < 0.05). In particular, when the addition of camellia oil was 1%, the gel strength, hardness, chewiness, and water-holding capacity had the highest values of 612.47 g.mm, 406.80 g, 252.75 g, and 53.56%, respectively. Simultaneously, the emulsion (0.3% FU-1% vegetable oil) enhanced the hydrogen bonds and hydrophobic interaction of the myosin gels. The image of the microstructure showed that the emulsion with 0.3% FU-1% vegetable oil improved the formation of the stable three-dimensional network structure. In summary, the FU-vegetable oil complex can promote unfolding of the protein structure and improve the gel properties of myosin, thus providing a theoretical basis for the development of functional surimi products.
Collapse
Affiliation(s)
| | | | - Shumin Yi
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, National R&D Branch Center of Surimi and Surimi Products Processing, College of Food Science and Engineering, Bohai University, Jinzhou 121013, China; (W.W.); (L.Y.)
| |
Collapse
|
9
|
Li W, Liu H, Zhang Z, Liu Y, Zhang X, Qu Y, Shi W. Effect of Potentilla anserina L. powder on gel properties and volatile flavor characteristics of silver carp surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6035-6044. [PMID: 38437166 DOI: 10.1002/jsfa.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Potentilla anserina L. is rich in various nutrients, active ingredients and unique flavor, comprising a natural nutrition and health food. However, its application in aquatic food has been rarely reported. Therefore, the effects of Potentilla anserina L. powder (PAP) on gel properties and volatile flavor profile of silver carp surimi were investigated. RESULTS The gel strength and water-holding capacity of the surimi gels were significantly improved (P < 0.05), and the whiteness and cooking loss of all the samples decreased slightly with the increase in PAP content. The addition of PAP shortened the relaxation time (T2) of the surimi gels and converted some of the free water into immobile or bound water, which resulted in a better immobilization of water in the surimi. Scanning electron microscopy images demonstrated that the network of surimi gels with PAP added was denser and had a smoother surface compared to the control. Volatile components (VCs) analysis showed that 33 VCs were identified in the surimi gel samples with different additions of PAP, among which aldehydes, alcohols and esters were the major VCs, accounting for more than 50% of the VCs in the surimi gels. PAP addition reduced the fishy and rancid flavor compounds in surimi gels, such as 1-propanol, 1-octen-3-ol, etc., and promoted the production of aldehydes, alcohols, esters and other flavor substances. CONCLUSION These results of the present study provide theoretical support for the investigation and development of new nutrient-health-flavored surimi products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenting Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | | | - Zhen Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yiyi Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xuehua Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yinghong Qu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Zhou F, Jiang W, Tian H, Wang L, Zhu J, Luo W, Liang J, Xiang L, Cai X, Wang S, Wu Q, Lin H. Influence of EGCG ( Epigallocatechin Gallate) on Physicochemical-Rheological Properties of Surimi Gel and Mechanism Based on Molecular Docking. Foods 2024; 13:2412. [PMID: 39123603 PMCID: PMC11312070 DOI: 10.3390/foods13152412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The influence of epigallocatechin gallate (EGCG) on the physicochemical-rheological properties of silver carp surimi gel was investigated. The gel strength, texture, water-holding capacity (WHC), dynamic distribution of water, and rheological properties of surimi gels added with different levels (0, 0.02, 0.04, 0.06, 0.08, and 0.1%) of EGCG were measured. The results showed that with the increase of EGCG content, the gel strength, hardness, WHC, and immobilized water contents of surimi gels showed a trend of first increasing and then decreasing, and EGCG 0.02% and EGCG 0.04% showed better gel performance as compared with the control. EGCG 0.02% had the highest gel strength (406.62 g·cm), hardness (356.67 g), WHC (64.37%), and immobilized water contents (98.958%). The gel performance decreased significantly when the amounts of EGCG were higher than 0.06%. The viscosity, G', and G″ of the rheological properties also showed the same trends. The chemical interaction of surimi gels, secondary structure of myofibrillar protein (MP), and molecular docking results of EGCG and silver carp myosin showed that EGCG mainly affected the structure and aggregation behavior of silver carp myosin through non-covalent interactions such as those of hydrogen bonds, hydrophobic interactions, and electrostatic interactions. The microstructures of EGCG 0.02% and EGCG 0.04% were compact and homogeneous, and had better gel formation ability. The lower concentrations of EGCG formed a large number of chemical interactions such as those of disulfide bonds and hydrophobic interactions inside the surimi gels by proper cross-linking with MP, and also increased the ordered β-sheet structure of MP, which facilitated the formation of the compact three-dimensional network gel.
Collapse
Affiliation(s)
- Fengchao Zhou
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Wenting Jiang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Han Tian
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Liuyun Wang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
| | - Jiasi Zhu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
| | - Wei Luo
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Jie Liang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; (L.W.); (J.Z.); (J.L.)
| | - Leiwen Xiang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal Univeristy, Fuzhou 350300, China; (F.Z.); (W.J.); (W.L.); (L.X.)
| | - Xixi Cai
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Shaoyun Wang
- Institute of Food and Marine Bio-Resources, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.T.); (S.W.)
| | - Qiming Wu
- Fujian Province Yaming Food Co., Ltd., Putian 351100, China; (Q.W.); (H.L.)
| | - Honglai Lin
- Fujian Province Yaming Food Co., Ltd., Putian 351100, China; (Q.W.); (H.L.)
| |
Collapse
|
11
|
Ben Soltana O, Barkallah M, Hentati F, Elhadef K, Ben Hlima H, Smaoui S, Michaud P, Abdelkafi S, Fendri I. Improving the shelf life of minced beef by Cystoseira compressa polysaccharide during storage. Int J Biol Macromol 2024; 273:132863. [PMID: 38838888 DOI: 10.1016/j.ijbiomac.2024.132863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/26/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
A polysaccharide extracted from the brown alga Cystoseira compressa (CCPS) was evaluated as a food additive to extend the shelf-life of raw beef meat. The antioxidant potential of CCPS was demonstrated by its inhibition of β-carotene bleaching (64.28 %), superoxide radicals (70.12 %), and hydroxyl radicals (93 %) at a concentration of 10 mg/ml. The polysaccharide also showed antibacterial activity with MIC values between 6.25 mg/ml and 50 mg/ml against five foodborne pathogenic bacteria. Furthermore, CCPS exhibited excellent functional, foaming, and emulsifying properties. Furthermore, microbiological and chemical effects of CCPS at concentrations equivalent to 1 MIC (CCPS-1), 2 MIC (CCPS-2), and 4 MIC (CCPS-3) were conducted. Chemical analyses showed that treated beef had significantly reduced TBARS levels below 2 mg MDA/kg at day 14. The treatment also decreased carbonyl groups, improved heme iron transformation, inhibited microbial growth (p < 0.05), and kept MetMb levels below 40 % by day 14. Moreover, two multivariate approaches, principal component analysis (PCA) and hierarchical cluster analysis (HCA), were effectively used to analyze the results characterizing the main attributes of the stored meat samples. In conclusion, these findings demonstrated that CCPS could be employed as a functional and bioactive component in the meat industry.
Collapse
Affiliation(s)
- Oumaima Ben Soltana
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Cultures (LR01ES21), Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Faiez Hentati
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Tunisia
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia.
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Cultures (LR01ES21), Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
12
|
Kraithong S, Bunyameen N, Theppawong A, Ke X, Lee S, Zhang X, Huang R. Potentials of Ulva spp.-derived sulfated polysaccharides as gelling agents with promising therapeutic effects. Int J Biol Macromol 2024; 273:132882. [PMID: 38848853 DOI: 10.1016/j.ijbiomac.2024.132882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Ulvan, a sulfated polysaccharide extracted from Ulva spp., has garnered significant attention in the food and pharmaceutical industries due to its potential health benefits. These include immunomodulation, antiviral, anti-inflammatory, anti-hyperlipidemic, and anti-cancer effects. Nonetheless, practical applications in these fields remain limited due to an incomplete understanding of its gelation mechanisms. Additionally, the underlying mechanisms of its gelation have not been completely understood and thoroughly reviewed. The primary objective is to provide current insights into ulvan's gelling mechanisms and potential health impacts. This review also delves into the existing applications of ulvan polysaccharides. By unraveling these aspects, the information provided in this work is expected to deepen our understanding of ulvan's gelation mechanisms and its prospective role in enhancing health, holding promise for advancements in the fields of food science and disease prevention. This work's theoretical insights contribute significantly to a deeper understanding of these aspects, which holds paramount importance in unleashing the full potential of ulvan and elevating its scientific significance.
Collapse
Affiliation(s)
- Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Nasuha Bunyameen
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan
| | - Atiruj Theppawong
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4,, B-9000 Ghent, Belgium
| | - Xu Ke
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Graduate Training Base in Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, 518104 Shenzhen, PR China
| | - Suyong Lee
- Department of Food Science and Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 143-747, South Korea.
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Liu J, Zhu X, Shi W. Enhancement mechanism of glycation with l-arabinose and xylose on texture properties of silver carp mince gel. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4128-4135. [PMID: 38308538 DOI: 10.1002/jsfa.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Glycation is a green processing technology. Based on our previous studies, glycation with l-arabinose and xylose was beneficial to enhance the texture properties of silver carp mince (SCM) gels. However, the possible enhancement mechanism remained unclear. Therefore, in this study, SCM gels with different types of reducing sugar (glucose, l-arabinose, and xylose) were prepared based on our previous study. The possible mechanism of texture enhancement of SCM gels was analyzed by investigating the changes in water distribution, protein structures, and microstructure in the gel system. RESULTS The glycation of l-arabinose and xylose enhanced the hardness, cohesiveness, chewiness, and resilience of SCM gels. Hardness increased from 1883.04 (control group) to 3624.54 (l-arabinose group) and 4348.18 (xylose group). Low-field nuclear magnetic resonance (LF-NMR) showed that glycation promoted the tight binding of immobilized water to proteins. Raman spectroscopic analysis showed that glycation increased the surface hydrophobicity and promoted the formation of disulfide bonds. Scanning electron microscopy (SEM) showed that glycation promoted the formation of uniform and dense three-dimensional network structure in SCM gels. CONCLUSION In summary, glycation enhanced the binding ability of immobilized water to proteins, improved the surface hydrophobicity, promoted the formation of disulfide bonds, and led to a more uniform and dense gel network structure of proteins, thus enhancing the texture properties of SCM gels. This research provided a theoretical basis for a better understanding of the mechanism of the effect of glycation on the quality of gel products and also provided technical support for the application of l-arabinose and xylose in new functional gel foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junya Liu
- College of Life Science and Chemistry, Jiangsu Key Laboratory of Biofunctional Molecule, Jiangsu Second Normal University, Nanjing, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xueshen Zhu
- College of Life Science and Chemistry, Jiangsu Key Laboratory of Biofunctional Molecule, Jiangsu Second Normal University, Nanjing, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
14
|
Sijin Z, Zhang L, Yin T, You J, Liu R, Wang L, Huang Q, Wang W, Ma H. Exploring the versatility of carbohydrates in surimi and surimi products: novel applications and future perspectives. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1874-1883. [PMID: 37885307 DOI: 10.1002/jsfa.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Carbohydrate is one kind of the most important additives in the production of surimi and surimi products, mainly due to its wide range of sources and superior functionality. In recent years, new carbohydrates (oligosaccharides and polysaccharides) have been gradually applied in the production of surimi and surimi products which is mainly driven by consumer requirement on nutritional and the flavors or taste quality and producer requirement on extending the shelf life, like low calorie intake, dietary fiber enrichment, rich taste and improvement of antioxidant properties. Besides anti-freezing and improvement in gelling ability, novel functionalities have been explored such as fat substitution, improving flavor, antibacterial effect, antioxidant effect and improving three-dimensional printability. With an in-depth study of the mechanism of carbohydrate improving the qualities of surimi and surimi products, the application of carbohydrates in surimi would be more effective. Therefore, this review summarizes the new carbohydrates applied in the processing of surimi and surimi products, and their novel functionalities. Additionally, progress of the research on the mechanism of carbohydrate improving the qualities of surimi is also reviewed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhang Sijin
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
- Wuhan Business University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Tao Yin
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Lan Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Weisheng Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Huawei Ma
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
15
|
Nie J, Xue C, Xiong S, Yin T, Huang Q. Comparative analysis of soluble and insoluble dietary fiber on improving the gelation performance and fishy odors of silver carp surimi. Int J Biol Macromol 2024; 262:129938. [PMID: 38325685 DOI: 10.1016/j.ijbiomac.2024.129938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
This work investigated the effects and mechanisms of soluble and insoluble dietary fiber (SDF and IDF) on the gelation performance and fishy odors of silver carp surimi. The results showed that the gel properties of surimi increased and then decreased with increasing SDF content, and the best gel properties were achieved at 1 wt% SDF. The gel strength, elasticity and deformation resistance of surimi increased in a dose-dependent manner as affected by IDF, but its effect on viscosity and recovery ratio was similar to SDF. Moreover, 2 wt% SDF and 1 wt% IDF reduced the content and odor activity value (OAV) of most fishy compounds in surimi, and the latter was superior to the former. The rheological characteristics indicated that SDF affected the thermal gelation properties of surimi mainly through filling, concentration and volume exclusion, and IDF mainly through filling, concentration and intermolecular interactions between IDF and myofibrillar protein. Additionally, SDF and IDF inhibited the release of fishy odors by improving the gel network structure and their adsorption, but more SDF (2 wt%) promoted the formation of escape channels for odors release. In summary, 1 wt% IDF could simultaneously improve the gelation performance and fishy odors of silver carp surimi.
Collapse
Affiliation(s)
- Jinggui Nie
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Chao Xue
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China; Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4108, Australia
| | - Shanbai Xiong
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Tao Yin
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China.
| |
Collapse
|
16
|
Jiang C, Yang X, Lin S, Yang Y, Yu J, Du X, Tang Y. Impact of Corn Starch Molecular Structures on Texture, Water Dynamics, Microstructure, and Protein Structure in Silver Carp ( Hypophthalmichthys molitrix) Surimi Gel. Foods 2024; 13:675. [PMID: 38472789 DOI: 10.3390/foods13050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
This study systematically investigates the impact of corn starch molecular structures on the quality attributes of surimi gel products. Employing molecular analyses to characterize corn starch, three amylopectin fractions (A, B1, and B2), categorized by the degree of polymerization ranges (6 < X ≤ 12, 12 < X ≤ 24, and 24 < X ≤ 36, respectively) were specifically focused on. The surimi gel quality was comprehensively assessed through texture profile analysis, nuclear magnetic resonance, scanning electron microscopy, stained section analysis, and Fourier transform infrared spectroscopy. Results indicated the substantial volume expansion of corn amylopectin upon water absorption, effectively occupying the surimi gel matrix and fostering the development of a more densely packed protein network. Starch gels with higher proportions of A, B1, and B2 exhibited improved hardness, chewiness, and bound water content in the resultant surimi gels. The weight-average molecular weight and peak molecular weight of corn starch showed a strong positive correlation with surimi gel hardness and chewiness. Notably, the secondary structure of proteins within the surimi gel was found to be independent of corn starch's molecular structure. This study provides valuable insights for optimizing formulations in surimi gel products, emphasizing the significance of elevated A, B1, and B2 content in corn starch as an optimal choice for crafting dense, chewy, water-retaining surimi gels.
Collapse
Affiliation(s)
- Congyun Jiang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Yang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, China
| | - Yumeng Yang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Jinzhi Yu
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinqi Du
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Yue Tang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, China
- Engineering Research Center of Food, The Education Department of Liaoning Province, Dalian 116034, China
| |
Collapse
|
17
|
Kraiem M, Ben Hamouda S, Eleroui M, Ajala M, Feki A, Dghim A, Boujhoud Z, Bouhamed M, Badraoui R, Pujo JM, Essafi-Benkhadir K, Kallel H, Ben Amara I. Anti-Inflammatory and Immunomodulatory Properties of a Crude Polysaccharide Derived from Green Seaweed Halimeda tuna: Computational and Experimental Evidences. Mar Drugs 2024; 22:85. [PMID: 38393056 PMCID: PMC10890560 DOI: 10.3390/md22020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, we investigated for the first time the anti-inflammatory and immunomodulatory properties of crude polysaccharide (PSHT) extracted from green marine algae Halimeda tuna. PSHT exhibited anti-oxidant activity in vitro through scavenging 1, 1-diphenyl-2-picryl hydroxyl free radical, reducing Fe3+/ferricyanide complex, and inhibiting nitric oxide. PSHT maintained the erythrocyte membrane integrity and prevented hemolysis. Our results also showed that PSHT exerted a significant anti-edematic effect in vivo by decreasing advanced oxidation protein products and malondialdehyde levels and increasing the superoxide dismutase and glutathione peroxidase activities in rat's paw model and erythrocytes. Interestingly, PSHT increased the viability of murine RAW264.7 macrophages and exerted an anti-inflammatory effect on lipopolysaccharide-stimulated cells by decreasing pro-inflammatory molecule levels, including nitric oxide, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF-α). Our findings indicate that PSHT could be used as a potential immunomodulatory, anti-inflammatory, anti-hemolytic, and anti-oxidant agent. These results could be explained by the computational findings showing that polysaccharide building blocks bound both cyclooxygenase-2 (COX-2) and TNF-α with acceptable affinities.
Collapse
Affiliation(s)
- Marwa Kraiem
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Sonia Ben Hamouda
- Laboratory of Molecular Epidemiology and Experimental Pathology–LR16IPT04, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; (S.B.H.); (K.E.-B.)
| | - Malek Eleroui
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Marwa Ajala
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Amal Feki
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Amel Dghim
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| | - Zakaria Boujhoud
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences of Settat, Hassan First University of Settat, Settat 26000, Morocco;
| | - Marwa Bouhamed
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax 3029, Tunisia;
| | - Riadh Badraoui
- Department of General Biology, University of Ha’il, Ha’il 81451, Saudi Arabia;
- Section of Histology–Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta 1007, Tunisia
| | - Jean Marc Pujo
- Emergency Department, Cayenne General Hospital, Cayenne 97300, French Guiana;
| | - Khadija Essafi-Benkhadir
- Laboratory of Molecular Epidemiology and Experimental Pathology–LR16IPT04, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia; (S.B.H.); (K.E.-B.)
| | - Hatem Kallel
- Intensive Care Unit, Cayenne General Hospital, Cayenne 97300, French Guiana;
- Tropical Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, University of Guiana, Cayenne 97300, French Guiana
| | - Ibtissem Ben Amara
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, PB 261, Sfax 3000, Tunisia; (M.K.); (M.E.); (M.A.); (A.F.); (A.D.)
| |
Collapse
|
18
|
Wang Z, Wang L, Yu X, Wang X, Zheng Y, Hu X, Zhang P, Sun Q, Wang Q, Li N. Effect of polysaccharide addition on food physical properties: A review. Food Chem 2024; 431:137099. [PMID: 37572481 DOI: 10.1016/j.foodchem.2023.137099] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The texture, flavor, performance and nutrition of foods are affected by their physical properties during processing, cooking, storage, and shelf life. In addition to chemical, physical, and enzymatic modification methods, polysaccharide addition is also considered a safe, effective, and convenient food modification strategy. However, thus far, literature review on the effects of polysaccharides on the physical properties of foods is few. Therefore, the present work reviews the effects of polysaccharides on water retention capacity, rheological property, suspension ability, viscoelasticity, emulsifying property, gelling property, stability, and starch regeneration and digestion. Furthermore, the existing problems and future recommendations during food physical property modification by polysaccharides are presented. This work aims to provide some theoretical references for future research, development, and application of polysaccharides on food physical property modification.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lu Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoxue Yu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueqin Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Peiyao Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Zhang S, Zhang L, Yin T, You J, Liu R, Wang L, Huang Q, Wang W, Ma H. A mini review on manipulation of carbohydrate for better use in surimi and surimi products: modification and compounding. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:14-20. [PMID: 37551539 DOI: 10.1002/jsfa.12906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
Carbohydrate is widely used in the production of surimi and surimi products to improve their qualities, such as anti-freezing capability, gelling ability, nutrition, flavor and 3D printability. More and more native carbohydrates have been modified through physical methods (e.g., ball milling, irradiation and differential sedimentation), chemical method (e.g., deacetylation, hydroxypropylation and acetic acid esterification) or enzymatic method (e.g., chitosanase) before being used in the processing of surimi and surimi products in recent years. At the same time, different carbohydrates are compounded and applied to surimi and surimi products. The modified and compounded carbohydrates in surimi have been proved to improve quality of surimi and surimi products more pronouncedly than native carbohydrates. Therefore, this review summarizes the manipulation of carbohydrate by modification and compounding to improve the qualities of surimi and surimi products. Moreover, the prospects for carbohydrate modification and compounding for use in surimi and surimi products are discussed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sijing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Wuhan Business University, Wuhan, People's Republic of China
| | - Liangzi Zhang
- Wuhan Business University, Wuhan, People's Republic of China
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Wuhan Business University, Wuhan, People's Republic of China
- National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lan Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, People's Republic of China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Weisheng Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, People's Republic of China
| | - Huawei Ma
- Guangxi Key Laboratory of Aquatic Preservation and Processing Technology, Guangxi Academy of Fishery Science, Nanning, People's Republic of China
| |
Collapse
|
20
|
Fan JC, Liu GH, Wang K, Xie C, Kang ZL. Effects of Potassium Bicarbonate on Gel, Antioxidant and Water Distribution of Reduced-Phosphate Silver Carp Surimi Batter under Cold Storage. Gels 2023; 9:836. [PMID: 37888409 PMCID: PMC10606452 DOI: 10.3390/gels9100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
The changes in storage loss, water distribution status, gel characteristics, thiobarbituric acid reactive substances (TBARSs), total volatile basic nitrogen, and total plate count of cooked reduced-phosphate silver carp surimi batter during cold storage at 4 °C were investigated. The storage loss, content of free water, pH, hardness, TBARSs, total volatile basic nitrogen value, and total plate count of all cooked silver carp surimi batters significantly increased (p < 0.05) with an increase in cold storage time. Meanwhile, the content of immobilized water, whiteness, springiness, and cohesiveness significantly decreased (p < 0.05). At the same cold storage time, the sample of cooked reduced-phosphate silver carp surimi batter had lower water mobility, darker color, and better texture characteristics than the cooked silver carp surimi batter without potassium bicarbonate; however, the values of TBARSs, total volatile basic nitrogen, and total plate count were not significantly different (p > 0.05). This meant that there was no difference between potassium bicarbonate and sodium tripolyphosphate in antioxidant and antibacterial activity during the cold storage of silver carp surimi batter. To summarize, the use of potassium bicarbonate instead of sodium tripolyphosphate could produce cooked reduced-phosphate silver carp surimi batter with better water-holding capacity and gel characteristics during cold storage.
Collapse
Affiliation(s)
- Jing-Chao Fan
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China; (G.-H.L.); (K.W.); (C.X.)
| | - Guang-Hui Liu
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China; (G.-H.L.); (K.W.); (C.X.)
| | - Kai Wang
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China; (G.-H.L.); (K.W.); (C.X.)
| | - Chun Xie
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China; (G.-H.L.); (K.W.); (C.X.)
| | - Zhuang-Li Kang
- College of Tourism and Culinary, Yangzhou University, Yangzhou 225127, China;
| |
Collapse
|
21
|
Almukainzi M, El-Masry TA, Selim H, Saleh A, El-Sheekh M, Makhlof MEM, El-Bouseary MM. New Insight on the Cytoprotective/Antioxidant Pathway Keap1/Nrf2/HO-1 Modulation by Ulva intestinalis Extract and Its Selenium Nanoparticles in Rats with Carrageenan-Induced Paw Edema. Mar Drugs 2023; 21:459. [PMID: 37755072 PMCID: PMC10533125 DOI: 10.3390/md21090459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023] Open
Abstract
Currently, there is growing interest in exploring natural bioactive compounds with anti-inflammatory potential to overcome the side effects associated with the well-known synthetic chemicals. Algae are a rich source of bioactive molecules with numerous applications in medicine. Herein, the anti-inflammatory effect of Ulva intestinalis alone or selenium nanoparticles loaded with U. intestinalis (UISeNPs), after being fully characterized analytically, was investigated by a carrageenan-induced inflammation model. The pretreated groups with free U. intestinalis extract (III and IV) and the rats pretreated with UISeNPs (groups V and VI) showed significant increases in the gene expression of Keap1, with fold increases of 1.9, 2.27, 2.4, and 3.32, respectively. Similarly, a remarkable increase in the Nrf2 gene expression, with 2.09-, 2.36-, 2.59-, and 3.7-fold increases, was shown in the same groups, respectively. Additionally, the groups III, IV, V, and VI revealed a significantly increased HO-1 gene expression with a fold increase of 1.48, 1.61, 1.87, and 2.84, respectively. Thus, both U. intestinalis extract and the UISeNPs boost the expression of the cytoprotective/antioxidant pathway Keap1/Nrf2/HO-1, with the UISeNPs having the upper hand over the free extract. In conclusion, U. intestinalis and UISeNPs have proven promising anti-inflammatory activity through mediating different underlying mechanisms.
Collapse
Affiliation(s)
- May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (M.A.); (A.S.)
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Hend Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (M.A.); (A.S.)
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt;
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
22
|
Yin Q, Wu L, Zhang X, Zheng Z, Luo S, Zhong X, Zhao Y. Preparation of high complex concentration emulsion stabilized by soy protein/dextran sulfate composite particles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37185886 DOI: 10.1002/jsfa.12663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Soy protein isolate (SPI) could be used as an emulsifier to stabilize emulsions, while SPI is unstable under low acidic conditions. The stable composite particles of SPI and dextran sulfate (DS) could be formed by the electrostatic interaction at the pH was 3.5. And the SPI/DS composite particles were used to prepare the high complex concentration emulsion. The stabilization properties of high complex concentration emulsion were investigated. RESULTS Compared to uncompounded SPI, the particle size of SPI/DS composite particles was smaller at 1.52 μm, and the absolute value of the potential increased to 19.9 mV when the mass ratio of SPI to DS was 1:1 and the pH was 3.5. With the DS ratio increased, the solubility of the composite particles increased to 14.44 times of the untreated protein at pH 3.5, while the surface hydrophobicity decreased. Electrostatic interactions and hydrogen bonds were the main forces between SPI and DS, and DS was electrostatically adsorbed on the surface of SPI. The emulsion stability significantly enhanced with the increase of complex concentration (38.88 times higher than at 1% concentration), the emulsion average droplet size was the lowest (9.64 μm), and the absolute value of potential was the highest (46.67 mV) when the mass ratio of SPI to DS was 1:1 and the complex concentration of 8%. The stability of the emulsion against freezing was improved. CONCLUSION The SPI/DS complex has high solubility and stability under low acidic conditions, and the SPI/DS complex' emulsion has a well stability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Yin
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Liang Wu
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Xinli Zhang
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Shuizhong Luo
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Xiyang Zhong
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| | - Yanyan Zhao
- School of Food and Biological Engineering, The Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230601, China
| |
Collapse
|
23
|
Kamali M, Shabanpour B, Pourashouri P, Kordjazi M. Effect of chitosan-coated Ulva intestinalis sulfated polysaccharide nanoliposome on melanosis and quality of Pacific white shrimp during ice storage. Int J Biol Macromol 2023; 230:123275. [PMID: 36646348 DOI: 10.1016/j.ijbiomac.2023.123275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
This study investigates chitosan coating containing nanoliposome of Ulva intestinalis sulfated polysaccharide, its effect on melanosis, as well as the quality of Pacific white shrimp during 20 days of storage in ice. The sulfated polysaccharide was extracted from Ulva intestinalis (USP), and its impact on the shrimp's polyphenol oxidase (PPO) enzyme inhibition in different concentrations was measured. The optimum concentration of USP with the highest inhibition percentage was selected and used. USPs were loaded in nanoliposome or coated in chitosan then shrimps were immersed in these coatings. 1.5 % USP showed the highest inhibitory effect of PPO enzyme after 1 and 3 min with values of 63.03 % and 48.74 %. The melanosis of shrimps with different types of USP coating was significantly lower than the control. The lowest color change (ΔE), total viable counts (TVC) bacterial, TVN content, and weight loss were achieved in the Ch-USP treatment. The highest sensory score was found in the Ch-N-USP treatment. This coverage delayed the increase of psychrophilic bacteria (PBC) and chemical tests (TBA, FFA, and PV). Therefore, Ch-USP and Ch-N-USP treatments can be used as a natural substitute for sodium metabisulfite to increase the shelf life and shrimp quality during ice storage.
Collapse
Affiliation(s)
- Masume Kamali
- Department of Fishery Products Processing, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran.
| | - Bahareh Shabanpour
- Department of Fishery Products Processing, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Parastoo Pourashouri
- Department of Fishery Products Processing, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Moazameh Kordjazi
- Department of Fishery Products Processing, Faculty of Fisheries and Environmental Science, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
24
|
Seaweed-Derived Sulfated Polysaccharides; The New Age Chemopreventives: A Comprehensive Review. Cancers (Basel) 2023; 15:cancers15030715. [PMID: 36765670 PMCID: PMC9913163 DOI: 10.3390/cancers15030715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Seaweed-derived bioactive compounds are regularly employed to treat human diseases. Sulfated polysaccharides are potent chemotherapeutic or chemopreventive medications since it has been discovered. They have exhibited anti-cancer properties by enhancing immunity and driving apoptosis. Through dynamic modulation of critical intracellular signalling pathways, such as control of ROS generation and preservation of essential cell survival and death processes, sulfated polysaccharides' antioxidant and immunomodulatory potentials contribute to their disease-preventive effectiveness. Sulfated polysaccharides provide low cytotoxicity and good efficacy therapeutic outcomes via dynamic modulation of apoptosis in cancer. Understanding how sulfated polysaccharides affect human cancer cells and their molecular involvement in cell death pathways will showcase a new way of chemoprevention. In this review, the significance of apoptosis and autophagy-modulating sulfated polysaccharides has been emphasized, as well as the future direction of enhanced nano-formulation for greater clinical efficacy. Moreover, this review focuses on the recent findings about the possible mechanisms of chemotherapeutic use of sulfated polysaccharides, their potential as anti-cancer drugs, and proposed mechanisms of action to drive apoptosis in diverse malignancies. Because of their unique physicochemical and biological properties, sulfated polysaccharides are ideal for their bioactive ingredients, which can improve function and application in disease. However, there is a gap in the literature regarding the physicochemical properties and functionalities of sulfated polysaccharides and the use of sulfated polysaccharide-based delivery systems in functional cancer. Furthermore, the preclinical and clinical trials will reveal the drug's efficacy in cancer.
Collapse
|
25
|
Gold Nanoparticles Synthesized by an Aqueous Extract of Codium tomentosum as Potential Antitumoral Enhancers of Gemcitabine. Mar Drugs 2022; 21:md21010020. [PMID: 36662193 PMCID: PMC9865996 DOI: 10.3390/md21010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer still poses a global threat, since a lot of tumors remain untreatable despite all the available chemotherapeutic drugs, whose side effects, it must also be noted, still raise concerns. The antitumoral properties of marine seaweeds make them a potential source of new, less toxic, and more active antitumoral agents. Furthermore, these natural extracts can be combined with nanotechnology to increase their efficacy and improve targeting. In this work, a Codium tomentosum (CT) aqueous extract was employed for the green synthesis of gold nanoparticles (Au@CT). The complete characterization of Au@CT was performed by UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Zeta potential, electron microscopy, X-ray powder diffraction (XRD), high-performance steric exclusion chromatography (HPSEC), and by the determination of their antioxidant capacity. The antiproliferative activity of Au@CT was then tested in hepatic (HEPG-2) and pancreatic (BxPC-3) cell lines. Their potential capacity as enhancers of gemcitabine, a drug frequently used to treat both types of tumors, was also tested. The activity of Au@CT was compared to the activity of the CT extract alone. A synergistic effect with gemcitabine was proven for HEPG-2. Our results showed that gold nanoparticles synthesized from seaweed extracts with antitumoral activity could be a good gemcitabine enhancer.
Collapse
|
26
|
Sousa TCDA, Silva ELL, Ferreira VCDS, Madruga MS, Silva FAPD. Oxidative stability of green weakfish (Cynoscion virescens) by-product surimi and surimi gel enhanced with a Spondias mombin L. waste phenolic-rich extract during cold storage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
27
|
Zheng M, Hong J, Chuai P, Chen Y, Ni H, Li Q, Jiang Z. Impacts of agar gum and fucoidan on gel properties of surimi products without phosphate. Food Sci Nutr 2022; 10:3759-3771. [PMID: 36348786 PMCID: PMC9632187 DOI: 10.1002/fsn3.2973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Phosphate is widely used in surimi products to improve the gel properties. However, excess addition of phosphate occurs, which can harm the consumer's health. This study aimed to evaluate the effects of agar gum and fucoidan on maintaining the gel properties of surimi products instead of phosphate. Interestingly, our results showed that 0.125% of agar gum and fucoidan to replace phosphate could enhance water-holding capacity and maintain gel strength and textual properties of surimi products well. Especially at frozen storage for 1 year, 0.125% of agar gum reduced the expressible moisture content of surimi products by around 10% (p < .05). Sensory evaluation showed that 0.125% of agar gum and fucoidan instead of phosphate can improve tissue and fondness of surimi products in refrigerated storage for 24 h but not in frozen storage for 1 year. The addition of agar gum and fucoidan at a high concentration >0.50% increased the WHC, but significantly decreased gel strength and springiness of surimi products (p < .05). Particularly, 1.00% of agar gum and fucoidan reduced gel strength by around 20% (p < .05). It might be due to the destruction of the gel network structure of surimi protein following the excess addition of these polysaccharides. It can be concluded that 0.125% of agar gum and fucoidan can replace phosphate to develop high-quality surimi products, and excessive addition of them have negative effects.
Collapse
Affiliation(s)
- Mingjing Zheng
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianLiaoningChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenFujianChina
- Research Center of Food Biotechnology of Xiamen CityXiamenFujianChina
| | - Jinling Hong
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
| | - Pengjie Chuai
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
| | - Yanhong Chen
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianLiaoningChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenFujianChina
- Research Center of Food Biotechnology of Xiamen CityXiamenFujianChina
| | - Hui Ni
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianLiaoningChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenFujianChina
- Research Center of Food Biotechnology of Xiamen CityXiamenFujianChina
| | - Qingbiao Li
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianLiaoningChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenFujianChina
- Research Center of Food Biotechnology of Xiamen CityXiamenFujianChina
| | - Zedong Jiang
- College of Ocean Food and Biological EngineeringJimei UniversityXiamenChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianLiaoningChina
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme EngineeringXiamenFujianChina
- Research Center of Food Biotechnology of Xiamen CityXiamenFujianChina
| |
Collapse
|
28
|
Song C, Lin Y, Hong P, Liu H, Zhou C. Compare with different vegetable oils on the quality of the Nemipterus virgatus surimi gel. Food Sci Nutr 2022; 10:2935-2946. [PMID: 36171767 PMCID: PMC9469861 DOI: 10.1002/fsn3.2889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
To enhance the quality and flavor of surimi-based products, we investigated the effects of vegetable oils (peanut, soybean, corn, coconut, olive, and safflower seed oils) on the texture, water-holding capacity (WHC), microstructure, and flavor of the Nemipterus virgatus surimi gel. The results showed that 6 kinds of vegetable oils could improve the whiteness and flavor of gels. However, peanut, olive, and coconut oils enriching oleic acid or lauric acid were easy to accumulate with an average diameter of more than 0.15 μm. Thus, the gel with the oil showed a loose network structures with large cavities, and the texture was deteriorated, accompanied by decreased WHC (p < .05). Compared with other vegetable oils, soybean, corn and safflower seed oils enriching linoleic acid were emulsified with protein forming a stable interfacial protein film. The gel with the oil showed an increase in the WHC and bound water content. Furthermore, the oil droplets with an average diameter of less than 0.15 μm were evenly distributed in the gel matrix, and the gel exhibited dense network structures with small cavities and smooth surface. In general, soybean and safflower seed oils can be used as a potential additive to improve the quality and flavor of surimi-based products.
Collapse
Affiliation(s)
- Chunyong Song
- College of Food Science and Technology Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Guangdong Provincial Engineering Technology Research Center of Marine Food Guangdong Modern Agricultural Science and Technology Innovation Center Guangdong Ocean University Zhanjiang Guangdong China
| | - Yufeng Lin
- College of Food Science and Technology Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Guangdong Provincial Engineering Technology Research Center of Marine Food Guangdong Modern Agricultural Science and Technology Innovation Center Guangdong Ocean University Zhanjiang Guangdong China
| | - Pengzhi Hong
- College of Food Science and Technology Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Guangdong Provincial Engineering Technology Research Center of Marine Food Guangdong Modern Agricultural Science and Technology Innovation Center Guangdong Ocean University Zhanjiang Guangdong China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong China
| | - Huanming Liu
- College of Food Science and Technology Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Guangdong Provincial Engineering Technology Research Center of Marine Food Guangdong Modern Agricultural Science and Technology Innovation Center Guangdong Ocean University Zhanjiang Guangdong China
| | - Chunxia Zhou
- College of Food Science and Technology Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Guangdong Provincial Engineering Technology Research Center of Marine Food Guangdong Modern Agricultural Science and Technology Innovation Center Guangdong Ocean University Zhanjiang Guangdong China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong China
| |
Collapse
|
29
|
Effect of Washing Times on the Quality Characteristics and Protein Oxidation of Silver Carp Surimi. Foods 2022; 11:foods11162397. [PMID: 36010395 PMCID: PMC9407351 DOI: 10.3390/foods11162397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
The aim of this work is to evaluate the effects of different washing times (zero (W0), one (W1), two (W2), and three (W3) times) on the physicochemical characteristics, gel property, and protein oxidation of silver carp surimi during 4 °C refrigeration. The results showed that the yield, types of fatty acids, redness (a*), total volatile basic nitrogen, and thiobarbituric acid reactive substances of the surimi tended to decrease, and the whiteness, pH, gel strength, and water retention tended to increase with the increase of washing times. Meanwhile, washing removed some fatty acids and the fatty acid species showed a decreasing trend. The FTIR spectra showed that washing did not change the functional group composition but changed the content of each group of the functional groups, while decreasing the proportion of β-sheet structures. Compared with the unwashed surimi, washing caused some of the immobilized water in the minced fish to be transferred to free water, and the water fluidity was enhanced. The washing enhanced the water holding capacity in the surimi gels, and the microstructure of the surimi gels was denser and delayed the protein oxidation during refrigeration. However, the difference between W2 and W3 surimi was not significant (p > 0.05). In practice, W2 can be used to produce surimi to improve its yield and reduce water consumption.
Collapse
|
30
|
Figueroa FA, Abdala-Díaz RT, Pérez C, Casas-Arrojo V, Nesic A, Tapia C, Durán C, Valdes O, Parra C, Bravo-Arrepol G, Soto L, Becerra J, Cabrera-Barjas G. Sulfated Polysaccharide Extracted from the Green Algae Codium bernabei: Physicochemical Characterization and Antioxidant, Anticoagulant and Antitumor Activity. Mar Drugs 2022; 20:md20070458. [PMID: 35877751 PMCID: PMC9317217 DOI: 10.3390/md20070458] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Codium bernabei is a green alga that grows on Chilean coasts. The composition of its structural polysaccharides is still unknown. Hence, the aim of this work is to isolate and characterize the hot water extracted polysaccharide fractions. For this purpose, the water extracts were further precipitated in alcohol (TPs) and acid media (APs), respectively. Both fractions were characterized using different physicochemical techniques such as GC-MS, GPC, FTIR, TGA, and SEM. It is confirmed that the extracted fractions are mainly made of sulfated galactan unit, with a degree of sulfation of 19.3% (TPs) and 17.4% (ATs) and a protein content of 3.5% in APs and 15.6% in TPs. Other neutral sugars such as xylose, glucose, galactose, fucose, mannose, and arabinose were found in a molar ratio (0.05:0.6:1.0:0.02:0.14:0.11) for TPs and (0.05:0.31:1.0:0.03:0.1:0.13) for ATs. The molecular weight of the polysaccharide samples was lower than 20 kDa. Both polysaccharides were thermally stable (Tonset > 190 °C) and showed antioxidant activity according to the ABTS•+ and DPPH tests, where TPs fractions had higher scavenging activity (35%) compared to the APs fractions. The PT and APTTS assays were used to measure the anticoagulant activity of the polysaccharide fractions. In general, the PT activity of the TPs and APs was not different from normal plasma values. The exception was the TPs treatment at 1000 µg mL−1 concentration. The APTTS test revealed that clotting time for both polysaccharides was prolonged regarding normal values at 1000 µg mL−1. Finally, the antitumor test in colorectal carcinoma (HTC-116) cell line, breast cancer (MCF-7) and human leukemia (HL-60) cell lines showed the cytotoxic effect of TPs and APs. Those results suggest the potential biotechnological application of sulfate galactan polysaccharides isolated from a Chilean marine resource.
Collapse
Affiliation(s)
- Fabian A. Figueroa
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile; (F.A.F.); (C.P.); (A.N.); (L.S.); (J.B.)
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4191996, Chile;
| | - Roberto T. Abdala-Díaz
- Departamento de Ecología, Facultad de Ciencias, Instituto de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain;
- Correspondence: (R.T.A.-D.); (G.C.-B.)
| | - Claudia Pérez
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile; (F.A.F.); (C.P.); (A.N.); (L.S.); (J.B.)
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4191996, Chile;
| | - Virginia Casas-Arrojo
- Departamento de Ecología, Facultad de Ciencias, Instituto de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain;
| | - Aleksandra Nesic
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile; (F.A.F.); (C.P.); (A.N.); (L.S.); (J.B.)
- Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 12–14 Mike Petrovića Street, 11000 Belgrade, Serbia
| | - Cecilia Tapia
- Laboratorio de Especialidad Clínica Dávila-OMESA, Recoleta 464, Recoleta, Santiago 8431657, Chile; (C.T.); (C.D.)
| | - Carla Durán
- Laboratorio de Especialidad Clínica Dávila-OMESA, Recoleta 464, Recoleta, Santiago 8431657, Chile; (C.T.); (C.D.)
| | - Oscar Valdes
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480005, Chile;
| | - Carolina Parra
- Laboratorio de Recursos Renovables, Centro de Biotecnología, Barrio Universitario s/n, Universidad de Concepción, Concepción 4030000, Chile;
| | - Gastón Bravo-Arrepol
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4191996, Chile;
| | - Luis Soto
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile; (F.A.F.); (C.P.); (A.N.); (L.S.); (J.B.)
| | - José Becerra
- Laboratorio de Química de Productos Naturales, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile; (F.A.F.); (C.P.); (A.N.); (L.S.); (J.B.)
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4191996, Chile;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4191996, Chile;
- Centro Nacional de Excelencia Para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio (CIPA), Avda. Collao 1202, Concepción 4051381, Chile
- Correspondence: (R.T.A.-D.); (G.C.-B.)
| |
Collapse
|
31
|
de Albuquerque Sousa TC, Ferreira VCDS, da Silva Araújo ÍB, da Silva FAP. Natural Additives as Quality Promoters in Surimi: a Brief Review. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2092434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Thamyres César de Albuquerque Sousa
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Valquiria Cardoso da Silva Ferreira
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Íris Braz da Silva Araújo
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Fábio Anderson Pereira da Silva
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| |
Collapse
|
32
|
Zhang X, Zhang Y, Dong Y, Ding H, Chen K, Lu T, Dai Z. Study on the mechanism of protein hydrolysate delaying quality deterioration of frozen surimi. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Badfar N, Abdolahi M, Stubbe PR, Jafarpour A. Texture and viscoelastic characteristics of silver carp (Hypophthalmichthys molitrix) surimi affected by combination of washing regimes and hydrogen peroxide. J Texture Stud 2022; 53:490-502. [PMID: 35297060 DOI: 10.1111/jtxs.12675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
This study aimed to apply H2 O2 at different concentrations in combination with mince:water (M:W) ratios and different washing cycles (WC) in order to produce surimi gel from silver carp without compromising its quality characteristics. Color, texture, microstructure and rheological properties of surimi gels were investigated. Water holding capacity, texture profile and gel strength, showed a greater dependency on number of washing cycles than the M:W ratios and percentage of H2 O2 (p<0.05), i.e., higher washing cycles, firmer surimi gel. Accordingly, T2 (one WC, 2% H2 O2 , 1:3), T10 (two WC, 1% H2 O2 , 1:2) and T16 (three WC, 1% H2 O2 , 1:2) treatments resulted the most cohesive and resilient surimi compared to the rest (p<0.05), confirmed by SEM images. However, all treated fish mince samples with H2 O2 , resulted in a surimi gel with lower texture quality compared to the control surimi prepared by conventional washing process without H2 O2 (p<0.05). A temperature sweep test was conducted based on the LVR stress and frequency values and the aforementioned surimi gels exhibited an obvious valley shape pattern at temperature range of 48-62°C. In the creep-recovery test, the Burgers model satisfactorily described the internal structure of the surimi gel samples as the lowest deformation belonged to the control samples followed by T2. However, after 300s strain, neither of surimi gels were fully recovered their original shape. Altogether, further studies are needed to clarify the effects of H2 O2 in reduction of washing cycles, without significantly affecting the textural and rheological properties of resultant surimi gel.
Collapse
Affiliation(s)
- Narjes Badfar
- Department of Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari-Iran
| | - Mehdi Abdolahi
- Division of Food and Nutrition Science, Chalmers University of Technology, Sweden
| | - Peter Reimer Stubbe
- The Food Production Technology Research Group, Division of Food Technology, National Food Institute, Technical University of Denmark (DTU), Denmark
| | - Ali Jafarpour
- Department of Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari-Iran.,Research group for Bioactives - Analysis and Application, Division of Food Technology, National Food Institute, Technical University of Denmark (DTU), Denmark
| |
Collapse
|
34
|
Cao Y, Zhao L, Huang Q, Xiong S, Yin T, Liu Z. Water migration, ice crystal formation, and freeze-thaw stability of silver carp surimi as affected by inulin under different additive amounts and polymerization degrees. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
Walayat N, Liu J, Nawaz A, Aadil RM, López-Pedrouso M, Lorenzo JM. Role of Food Hydrocolloids as Antioxidants along with Modern Processing Techniques on the Surimi Protein Gel Textural Properties, Developments, Limitation and Future Perspectives. Antioxidants (Basel) 2022; 11:486. [PMID: 35326135 PMCID: PMC8944868 DOI: 10.3390/antiox11030486] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/26/2022] Open
Abstract
Texture is an important parameter in determining the quality characteristics and consumer acceptability of seafood and fish protein-based products. The addition of food-based additives as antioxidants (monosaccharides, oilgosaccharides, polysaccharides and protein hydrolysates) in surimi and other seafood products has become a promising trend at an industrial scale. Improvement in gelling, textural and structural attributes of surimi gel could be attained by inhibiting the oxidative changes, protein denaturation and aggregation with these additives along with new emerging processing techniques. Moreover, the intermolecular crosslinking of surimi gel can be improved with the addition of different food hydrocolloid-based antioxidants in combination with modern processing techniques. The high-pressure processing (HPP) technique with polysaccharides can develop surimi gel with better physicochemical, antioxidative, textural attributes and increase the gel matrix than conventional processing methods. The increase in protein oxidation, denaturation, decline in water holding capacity, gel strength and viscoelastic properties of surimi gel can be substantially improved by microwave (MW) processing. The MW, ultrasonication and ultraviolet (UV) treatments can significantly increase the textural properties (hardness, gumminess and cohesiveness) and improve the antioxidative properties of surimi gel produced by different additives. This study will review potential opportunities and primary areas of future exploration for high-quality surimi gel products. Moreover, it also focuses on the influence of different antioxidants as additives and some new production strategies, such as HPP, ultrasonication, UV and MW and ohmic processing. The effects of additives in combination with different modern processing technologies on surimi gel texture are also compared.
Collapse
Affiliation(s)
- Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Asad Nawaz
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agricultural, Faisalabad 38000, Pakistan;
| | - María López-Pedrouso
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, A Coruna, Spain
| | - José M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Vinas, Ourense, Spain;
- Facultade de Ciencias, Universidade de Vigo, 32004 Rua Doutor Temes Fernandez, Ourense, Spain
| |
Collapse
|
36
|
Low-Content Pre-Emulsified Safflower Seed Oil Enhances the Quality and Flavor of the Nemipterus Virgatus Surimi Gel. Gels 2022; 8:gels8020106. [PMID: 35200487 PMCID: PMC8871502 DOI: 10.3390/gels8020106] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Surimi-based products occupy an important position in the aquatic product processing industry. To enhance the quality and flavor of surimi-based products, the effects of pre-emulsified safflower seed oil on the texture, water-holding capacity (WHC), microstructure, and flavor of Nemipterus virgatus surimi gel was evaluated. The texture and whiteness of the gel were improved, and the WHC increased (p < 0.05) as the content of safflower seed oil increased up to 2 mL per 100 g surimi. Furthermore, the drops of pre-emulsified safflower seed oils with an average diameter of less than 0.10 μm were evenly distributed in gel matrix. Microstructure and infrared spectroscopy analyses indicated that low-content pre-emulsified safflower seed oil acted as filler particles to occupy void spaces, resulting in gel exhibiting a dense network structure. Volatile analysis showed the gel containing pre-emulsified oil enriched volatile compounds, mainly resulting from the oxidation and decomposition of oils by the activation of lipoxygenase, which synergistically contributes to unique flavors of gel. Consequently, low-content pre-emulsified safflower seed oil can used to enhance the quality and flavor of N. virgatus surimi-based products. These findings are especially relevant to the current growing interest in low-fat and high-protein diets.
Collapse
|
37
|
Liu J, Huang S, Feng Q, Luo Y, Shi W. Sensory quality and digestibility evaluation of silver carp sausage glycated with
l
‐arabinose. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junya Liu
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Shuqin Huang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Qian Feng
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Yixuan Luo
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Wenzheng Shi
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Shanghai China
| |
Collapse
|
38
|
Rizkyana AD, Ho TC, Roy VC, Park JS, Kiddane AT, Kim GD, Chun BS. Sulfation and characterization of polysaccharides from Oyster mushroom (Pleurotus ostreatus) extracted using subcritical water. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
39
|
Yu W, Wang Z, Pan Y, Jiang P, Pan J, Yu C, Dong X. Effect of κ-carrageenan on quality improvement of 3D printed Hypophthalmichthys molitrix-sea cucumber compound surimi product. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Liu J, Chai J, Yuan Y, Zhang T, Saini RK, Yang M, Shang X. Dextran sulfate facilitates egg white protein to form transparent hydrogel at neutral pH: Structural, functional, and degradation properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Jiang X, Chen Q, Xiao N, Du Y, Feng Q, Shi W. Changes in Gel Structure and Chemical Interactions of Hypophthalmichthys molitrix Surimi Gels: Effect of Setting Process and Different Starch Addition. Foods 2021; 11:foods11010009. [PMID: 35010135 PMCID: PMC8750783 DOI: 10.3390/foods11010009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The modifications of histological properties and chemical forces on heated surimi gels with starch addition (0-12 g/100 g surimi) were investigated. Two types of heating processes (direct heating and two-step heating) were carried out on surimi gels in order to reveal the effect of setting on mixed matrices. The results of transverse relaxation time showed less immobile water and free water converted into bound water in a matrix subjected to the setting process. Scanning electron microscope and light microscopy images revealed inefficient starch-swelling in two-step heated gels. Chemical interactions and forces in direct cooking gels were more vulnerable to starch addition, resulting in significant decreases in hydrophobic interaction and sulfhydryl content (p < 0.05). With the increment of starch, the disulfide stretching vibrations of the gauche-gauche-gauche conformation were reduced in both gel matrices. The structural variations of different components collectively resulted in changes in texture profile analysis and water holding capacity. Overall, the results demonstrated that starch addition had a great and positive effect on the weak gel matrix by direct heating.
Collapse
Affiliation(s)
- Xin Jiang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Qing Chen
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Naiyong Xiao
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Yufan Du
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Qian Feng
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Wenzheng Shi
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
- National Research and Development Center for Processing Technology of Freshwater Aquatic Products (Shanghai), Shanghai 201306, China
- Correspondence: ; Tel.: +86-156-9216-5859
| |
Collapse
|
42
|
Process optimization, digestibility and antioxidant activity of extruded rice with Agaricus bisporus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Zhang S, Liu B, Yan G, Wu H, Han Y, Cui H. Chemical properties and anti-fatigue effect of polysaccharide from Pholiota nameko. J Food Biochem 2021; 46:e14015. [PMID: 34821398 DOI: 10.1111/jfbc.14015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022]
Abstract
The aim of this study was to explore the primary chemical properties and anti-fatigue effect in vivo of Pholiota nameko polysaccharide (PNP). Through UV-visible spectrum, the absorption peaks of proteins, nucleic acids and pigments were not found. The organic functional groups of polysaccharides (3,289.97, 1,584.72, and 1,045.23 cm-1 so on) were measured by IR spectroscopy. The PNP was a semi-crystalline or non-crystalline substance, possessed a three-dimensional lump structure with a smooth, dense surface and amorphous structure according to the scanning electron microscopy and XRD images. Moreover, the PNP was chain or bright-spot structures formed by the entanglement of multiple polysaccharide fibers on the basis of atomic force microscopy. The results of anti-fatigue suggested the PNP could significantly extend the forced swim time from 121.58 ± 18.48 and 101.91 ± 14.27 min to 154.95 ± 24.26 and 134.13 ± 25.71 min in male and female mice respectively. The LDH activity was up to 31.68 ± 4.60 U/ml in male mice and 29.49 ± 5.12 U/ml in female mice. Meanwhile, the Ca2+ -Mg2+ -ATPase activity was reached to 2.49 ± 0.41 μmol/(mg·h) in male mice and 2.44 ± 0.29 μmol/(mg·h) in female mice. The SOD activity was increased to 5.92 ± 1.19 U/ml in male mice and 5.89 ± 0.98 U/ml in female mice, while the MDA content was decreased to 2.24 ± 0.34 nmol/mg in male mice and 2.02 ± 0.41 nmol/mg in female mice. These results showed a theoretical basis for application of the PNP in food and pharmacy as a natural physical strengthening substance. PRACTICAL APPLICATIONS: Fatigue affects physical and mental health in vivo, which resulted in negative effects on everyday tasks, leisure activities, cognitive and behavioral performances and is very common in modern life. Therefore, this study was designed to explore the primary chemical properties and research the anti-fatigue effects of Pholiota nameko polysaccharide (PNP) in mice. And then, it would be a reference for the development and utilization of PNP as a kind of healthy food on sub-health.
Collapse
Affiliation(s)
- Sisheng Zhang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Bo Liu
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Guoyue Yan
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Han Wu
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Yaochen Han
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Hongxia Cui
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China.,Hebei Province Key Laboratory of Applied Chemistry, Qinhuangdao, China.,Hebei Province Key Laboratory of Nano-Biotechnology, Qinhuangdao, China
| |
Collapse
|
44
|
Gao X, Yongsawatdigul J, Wu R, You J, Xiong S, Du H, Liu R. Effect of ultrasound pre-treatment modes on gelation properties of silver carp surimi. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
45
|
Liu C, Li W, Lin B, Yi S, Ye B, Mi H, Li J, Wang J, Li X. Comprehensive analysis of ozone water rinsing on the water-holding capacity of grass carp surimi gel. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
46
|
Yang M, Yang L, Xu J, Nie Y, Wu W, Zhang T, Wang X, Zhong J. Comparison of silver carp fin gelatins extracted by three types of methods: Molecular characteristics, structure, function, and pickering emulsion stabilization. Food Chem 2021; 368:130818. [PMID: 34403998 DOI: 10.1016/j.foodchem.2021.130818] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 08/06/2021] [Indexed: 01/20/2023]
Abstract
High value-added utilization of different aquatic by-products is an increasingly urgent issue in aquatic science and industry. In this work, the effects of extraction methods on the molecular characteristics, structural properties, functional properties, and Pickering emulsion stabilization behaviors of silver carp fin gelatins were comprehensively studied. All the results showed molecular characteristics of silver carp fin gelatin was the key parameter to determine their functional properties such as wide gel strength range, excellent water-holding capacity, and excellent Pickering emulsion stabilization ability. The Pickering emulsion stabilization mechanisms of fin gelatins involved an "extraction method - protein molecular characteristics - fat-binding capacity - droplet structure - water phase properties - Pickering emulsion stability" route. This work could be helpful to understand the basic information on how the molecular characteristics determine the functions of gelatins. It would be also useful for the high value-added utilization of aquatic by-products and gelatins.
Collapse
Affiliation(s)
- Mengyang Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lili Yang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiamin Xu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yinghua Nie
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjuan Wu
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ting Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China.
| |
Collapse
|
47
|
Machado S, González-Ballesteros N, Gonçalves A, Magalhães L, Sárria Pereira de Passos M, Rodríguez-Argüelles MC, Castro Gomes A. Toxicity in vitro and in Zebrafish Embryonic Development of Gold Nanoparticles Biosynthesized Using Cystoseira Macroalgae Extracts. Int J Nanomedicine 2021; 16:5017-5036. [PMID: 34326639 PMCID: PMC8315781 DOI: 10.2147/ijn.s300674] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Research on gold nanoparticles (AuNPs) occupies a prominent place in the field of biomedicine nowadays, being their putative toxicity and bioactivity areas of major concern. The green synthesis of metallic nanoparticles using extracts from marine organisms allows the avoidance of hazardous production steps while maintaining features of interest, thus enabling the exploitation of their promising bioactivity. OBJECTIVE To synthesize and characterize AuNPs using, for the first time, macroalga Cystoseira tamariscifolia aqueous extract (Au@CT). METHODS Algal aqueous extracts were used for the synthesis of AuNPs, which were characterized using a wide panel of physicochemical techniques and biological assays. RESULTS The characterization by UV-Vis spectroscopy, transmission electron microscopy, Z-potential and infrared spectroscopy confirmed that Au@CT were stable, spherical and polycrystalline, with a mean diameter of 7.6 ± 2.2 nm. The antioxidant capacity of the extract, prior to and after synthesis, was analyzed in vitro, showing that the high antioxidant potential was not lost during the synthesis. Subsequently, in vitro and in vivo toxicity was screened, by comparing two species of the genus Cystoseira (C. tamariscifolia and C. baccata) and the corresponding biosynthesized gold nanoparticles (Au@CT and Au@CB). Cytotoxicity was tested in mouse (L929) and human (BJ5ta) fibroblast cell lines. In both cases, only the highest (nominal) test concentration of both extracts (31.25 mg/mL) or Au@CB (12.5 mM) significantly affected cell viability, as measured by the MTT assay. These results were corroborated by a Fish Embryo Acute Toxicity (FET) test. Briefly, it was shown that, at the highest (nominal) tested concentration (31.25 mg/mL), CT extract induced significantly higher cytotoxicity and embryotoxicity than CB extract. However, it was demonstrated that Au@CT, but not Au@CB, were generally non-toxic. At sub-lethal (nominal) test concentrations (1.25 and 2.5 mM), Au@CT affected zebrafish embryonic development to a much lesser extent than Au@CB. In vitro wound healing assays also revealed that, while other experimental conditions did not impact cell migration, CT and Au@CT displayed a moderate positive effect. CONCLUSION Au@CT and Au@CB display promising features, desirable for biomedical applications, as wound healing.
Collapse
Affiliation(s)
- Sofia Machado
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | | | - Anabela Gonçalves
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Luana Magalhães
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Marisa Sárria Pereira de Passos
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| | | | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
48
|
Monto AR, Li M, Wang X, Wijaya GYA, Shi T, Xiong Z, Yuan L, Jin W, Li J, Gao R. Recent developments in maintaining gel properties of surimi products under reduced salt conditions and use of additives. Crit Rev Food Sci Nutr 2021; 62:8518-8533. [PMID: 34047645 DOI: 10.1080/10408398.2021.1931024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Salt is a necessary condition to produce a surimi product that is based on the gelation of salt-soluble myofibrillar proteins. Recently, there has been a growing concern among consumers to consume healthy foods due to the threat of several chronic diseases caused by an unhealthy diet. Methods of reducing salt content out of concern for health issues caused by excessive sodium intake may affect the gel properties of surimi, as can many health-oriented food additives. Several studies have investigated different strategies to improve the health characteristics of surimi products without decreasing gel properties. This review reports recent developments in this area and how the gel properties were successfully maintained under reduced-salt conditions and the use of additives. This review of recent studies presents a great deal of progress made in the health benefits of surimi and can be used as a reference for further development in the surimi product processing industry.
Collapse
Affiliation(s)
- Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mengzhe Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
49
|
Liu Y, Yu J, Zhu J, Peng W, Chen Y, Luo X, Chen C, Li L. Effects of salt‐induced changes in protein network structure on the properties of surimi gels: computer simulation and digestion study. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yujia Liu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Jiamei Yu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Weiyu Peng
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Yuquan Chen
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Xinyi Luo
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Canhao Chen
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| |
Collapse
|
50
|
Feki A, Sellem I, Hamzaoui A, Ben Amar W, Mellouli L, Zariat A, Nasri M, Ben Amara I. Effect of the incorporation of polysaccharide from Falkenbergia rufolanosa on beef sausages for quality and shelf life improvement. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|