1
|
Zhang J, Zhang M, Bhandari B, Wang M, Rui L. Effects and mechanisms of microencapsulation on the regulation in typical activities and flavor stability of Sichuan pepper oleoresin used for food processing and storage. Food Chem 2025; 480:143883. [PMID: 40112716 DOI: 10.1016/j.foodchem.2025.143883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Microencapsulation is considered to be an effective means to overcome the defects of Sichuan pepper oleoresin (SPO) and to enhance applications. To explore the improvement effect of microencapsulation on SPO in practical applications, the typical activities and flavor stability under different processing and storage conditions of SPO before and after embedding by sodium octenyl succinate starch-tea polyphenols complexes were investigated based on our previous study. The results indicated that microencapsulation improved the stability and water solubility of SPO, causing the antioxidant and antimicrobial activities to increase by 51.39 and 21.16 times. Although the flavor of SPO was highly unstable, encapsulation resisted the flavor deterioration of SPO during processing and storage, which was fundamentally attributed to the fact that coating and antioxidant effect of wall material reduced the dispersion of SPO and controlled its peroxide value to 59.59-89.23 meq/kg. This has important implications for improving the processing quality of flavored foods.
Collapse
Affiliation(s)
- Jiong Zhang
- School of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- School of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Mingqi Wang
- Zhengzhou Xuemailong Food Flavor Co. R&D Center, Zhengzhou, Henan, China
| | - Luming Rui
- School of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Yechun Food Production & Distribution Co., Ltd., 225000 Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Liang Y, Wu K, He D, Ou C, Lin J, Chai X, Xiang Y, Duan X, Cha Q, Zhang X, Xie W, Wang C, An Q, Wei S. Physicochemical and functional properties of cinnamon essential oil emulsions stabilized by galactomannan-rich aqueous extract from Gleditsia sinensis seeds and soy protein isolate. Int J Biol Macromol 2025; 295:139601. [PMID: 39788257 DOI: 10.1016/j.ijbiomac.2025.139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Cinnamon essential oil has gained widespread attention in the food industry as a safe and effective preservative. However, its low water solubility and high volatility limit its application in food, making the use of natural emulsifiers for its emulsification an increasingly popular focus of research. This study focuses on the extraction of galactomannan-rich aqueous extracts from Gleditsia sinensis seeds using a low-energy, low-pollution microwave-assisted method. The extracted aqueous extracts from Gleditsia sinensis seeds was combined with soy protein isolate to prepare a cinnamon essential oil emulsion, followed by physicochemical characterization and stabilization mechanism studies. The emulsions demonstrated excellent storage stability at 4 °C, along with robust ionic, pH, temperature, and freeze-thaw stability. Furthermore, the emulsions exhibited significant antioxidant activity and effectively inhibited the growth of Staphylococcus aureus and Listeria monocytogenes, highlighting their potential for application in food preservation. Preservation trials with orange juice confirmed that our emulsion achieved preservation comparable to that of the commercial food preservative potassium sorbate. These findings provide valuable insights for developing stable and functional natural food emulsifiers.
Collapse
Affiliation(s)
- Yinglin Liang
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Kegang Wu
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyangvb Center, Guangdong University of Technology, Jieyang City 522000, People's Republic of China
| | - Dong He
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyangvb Center, Guangdong University of Technology, Jieyang City 522000, People's Republic of China.
| | - Cansheng Ou
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Jiawei Lin
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xianghua Chai
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Yujuan Xiang
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Xuejuan Duan
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, People's Republic of China
| | - Qin Cha
- Institute of Traditional Chinese Medicine, Bijie City, Guizhou Province 551700, People's Republic of China
| | - Xiangyu Zhang
- Institute of Traditional Chinese Medicine, Bijie City, Guizhou Province 551700, People's Republic of China
| | - Wei Xie
- Guizhou Province, Bijie City, Zhijin County, Maochang Town, Qianzhi Mingguang Soaphorn Rice Processing Base, Bijie City 552103, People's Republic of China
| | - Chenghua Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Qiang An
- Technology Innovation Center of Natural Fragrances and Flavors, State Administration for Market Regulation, People's Republic of China
| | - Shengjian Wei
- Technology Innovation Center of Natural Fragrances and Flavors, State Administration for Market Regulation, People's Republic of China
| |
Collapse
|
3
|
Gan N, Song Y, Li Y, Liu P, Chen S, He Y, Zeng T, Wang W, Wu D. Characterization of the effects of bridging linker on the β-Lactoglobulin binding mechanism on the nanoscale metal-organic frameworks. Food Chem 2025; 464:141715. [PMID: 39442220 DOI: 10.1016/j.foodchem.2024.141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Revealing the interaction modes between nanoscale metal-organic frameworks (NMOFs) and food matrix is crucial for functional release but it still remains largely unknown to date. This study specifically focused on the milk protein adsorption mechanism of NMOFs using UiO66/UiO66-NH2 and β-lactoglobulin (β-LG) as models. UiO66 and UiO66-NH2 quenched the fluorescence of β-LG via static mechanism. Due to the enhanced electrostatic forces caused by NH2, UiO66-NH2-β-LG (2.83 × 105 mol·L-1) exhibited higher binding constant than UiO66-β-LG (2.61 × 105 mol·L-1), while UiO66 with higher hydrophobicity adsorbed more β-LG. The defects of UiO influenced the binding sites on the β-LG, and the higher the defect degree, the higher the binding energy. For the stability of the system, the H-bonding between UiO66 and SER30/PRO38, and the hydrophobic interaction between UiO66-NH2 and LYS101 played important roles. Furthermore, the secondary structure content of β-LG changed after interacting with both UiO, resulting in reduced density of β-LG.
Collapse
Affiliation(s)
- Na Gan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Yilin Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Peiran Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Yi He
- Gastroenterology and Urology Department II, Hunan Cancer Hospital / the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha 410013, China
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Wei Wang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital / the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha 410013, China.
| | - Di Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
4
|
Cao Y, Yin L, Li F, Deng Y, Kong B, Liu Q, Wang H, Wang H. Characterization of sodium alginate film containing zein-Arabic gum nanoparticles encapsulated with oregano essential oil for chilled pork packaging. Int J Biol Macromol 2024; 278:134824. [PMID: 39154685 DOI: 10.1016/j.ijbiomac.2024.134824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Chilled pork retains most of its nutrients but is prone to deterioration during the production-to-consumption process. To address this issue this study aimed to develop zein-Arabic gum composite nanoparticles loaded with oregano essential oil (ZAG-OEO) and incorporate them into sodium alginate films to enhance the freshness and shelf life of chilled pork. Sodium alginate, known for its excellent film-forming properties, was selected as the matrix to prepare ZAG-OEO-containing sodium alginate films (SA-ZAG-OEO). The results revealed that the tensile strength and elongation at break of the prepared films were 47.73 ± 2.15 MPa and 6.27 ± 0.21 %, respectively, at a 2.5 % nanoparticle concentration. The water contact angle of the films incorporating nanoparticles reached 81.5 ± 1.95°. The incorporation of nanoparticles enhanced the thermal stability and antibacterial activity of the films. The prepared films were utilized for the storage of chilled pork, and the quality changes were analyzed. The results demonstrate that SA-ZAG-OEO films inhibit microbial growth and lipid oxidation, thereby delaying pork spoilage. This study offers new insights into extending the shelf life of chilled pork and developing advanced meat preservation methods for the future development of the meat industry.
Collapse
Affiliation(s)
- Yuhang Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lingyu Yin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yi Deng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hao Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
5
|
Sepeidnameh M, Fazlara A, Hosseini SMH, Pourmahdi Borujeni M. Encapsulation of grape seed oil in oil-in-water emulsion using multilayer technology: Investigation of physical stability, physicochemical and oxidative properties of emulsions under the influence of the number of layers. Curr Res Food Sci 2024; 8:100771. [PMID: 38831922 PMCID: PMC11145428 DOI: 10.1016/j.crfs.2024.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Many studies have shown that grape seed oil (GSO) is one of the vegetable fats that are plentiful in essential fatty acids and can be used as a fat substitute or to modify fat in food products to reduce saturated fatty acids. However, due to its low solubility and high sensitivity to oxidation, it is necessary to develop delivery systems that can distribute GSO in food more effectively. Recently, the preparation of emulsions using the layer-by-layer (LBL) method has many advantages in delivering lipid-soluble functional compounds. This research was used to check the formation of GSO oil-loaded primary, secondary and tertiary multilayer emulsions stabilized by mixture of anionic gelatin, cationic chitosan, and anionic basil seed gum (BSG) as the aqueous phase at pH 5, prepared using a layer-by-layer electrostatic deposition technique. Multilayer emulsions prepared by GSO and a mixture of gelatin, chitosan, and BSG as the aqueous phase at pH 5. Finally, the effect of the number of layers on the physicochemical properties (particle size, viscosity, turbidity, refractive index, and physical stability) and oxidative stability (peroxide value, thiobarbituric acid value, and fatty acid profile) during the storage time (30 days) at two temperatures 25 °C & 4 °C was investigated. Also, the zeta potential and Fourier transform infrared spectroscopy (FTIR) of mono-layer and multi-layer emulsions were investigated. The results revealed that by increasing the number of layers of multi-layer emulsion of GSO, the stability has improved. Thus, the tertiary emulsion has been more effective than the other two emulsions in maintaining the physicochemical characteristics and stability over time (P < 0.001). Morphological characterization and FTIR spectroscopy results confirmed that gelatin, chitosan, and BSG were successfully loaded into the LBL emulsions. This study can improve the original percept of multilayer emulsions and promulgate their potential applications for the entire encapsulation of essential fatty acids to enrich and prevent peroxide attack.
Collapse
Affiliation(s)
- Marziyeh Sepeidnameh
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Fazlara
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Mahdi Pourmahdi Borujeni
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
6
|
Zhou S, Zhang W, Han X, Liu J, Asemi Z. The present state and future outlook of pectin-based nanoparticles in the stabilization of Pickering emulsions. Crit Rev Food Sci Nutr 2024; 65:2562-2586. [PMID: 38733326 DOI: 10.1080/10408398.2024.2351163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The stabilization of Pickering emulsions using micro/nanoparticles has gained significant attention due to their wide range of potential applications in industries such as cosmetics, food, catalysis, tissue engineering, and drug delivery. There is a growing demand for the development of environmentally friendly micro/nanoparticles to create stable Pickering emulsions. Naturally occurring polysaccharides like pectin offer promising options as they can assemble at oil/water interfaces. This polysaccharide is considered a green candidate because of its biodegradability and renewable nature. The physicochemical properties of micro/nanoparticles, influenced by fabrication methods and post-modification techniques, greatly impact the characteristics and applications of the resulting Pickering emulsions. This review focuses on recent advancements in Pickering emulsions stabilized by pectin-based micro/nanoparticles, as well as the application of functional materials in delivery systems, bio-based films and 3D printing using these emulsions as templates. The effects of micro/nanoparticle properties on the characteristics of Pickering emulsions and their applications are discussed. Additionally, the obstacles that currently hinder the practical implementation of pectin-based micro/nanoparticles and Pickering emulsions, along with future prospects for their development, are addressed.
Collapse
Affiliation(s)
- Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Xiao Han
- Jilin Jinziyuan Biotechnology Co., Ltd, Shuangliao, Jilin, China
| | - Jinhui Liu
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
- Huashikang (Shenyang) Health Industry Group Co., Ltd, Shenyang, Liaoning, China
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| |
Collapse
|
7
|
Tashakor AH, Rezaei A, Fouladseresht H, Mansury D. Characterization and investigation of cytotoxicity and antimicrobial properties of coencapsulated limonene and thymol into the Ferula assafoetida gum microparticles. Int J Biol Macromol 2024; 263:130338. [PMID: 38387626 DOI: 10.1016/j.ijbiomac.2024.130338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Thymol (Th) and d-limonene (L) exhibit low stability and are prone to oxidation when exposed to air, light, humidity, and high temperatures. This study examined the coencapsulation of Th and L into Ferula assafoetida gum (AFG) microparticles. Scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analyzer (TGA) were done to characterize the obtained complexes. Furthermore, the encapsulation efficiency, antibacterial properties, cytotoxicity, and anticancer properties of both the free and encapsulated forms of L and Th were measured. For all samples, by increasing the percentage of bioactive compound (L, Th, and L-Th) from 2.5 to 5 % w/w, the EE was increased. FTIR and XRD analysis results demonstrated that Th and L were successfully incorporated into the AFG. Additionally, thermogravimetric analysis showed that in the thermal graphs of all samples, the first weight loss occurred between 30 °C and 160 °C, which was due to the evaporation of water. In the free L and Th graph, a sharp reduction peak was observed in which 80 % of compounds were lost. These reduction peaks disappeared in the thermal graphs of L: AFG and Th: AFG revealing that the thermal stability of Th and L was significantly increased upon their incorporation into the AFG. The inclusion of Th into the AFG also led to an increase in its antibacterial activity, while L exhibited acceptable antibacterial activity, albeit not as high as Th. Additionally, according to the MIC results, Th: AFG had the best antibacterial activity among all compounds, especially on gram-positive bacteria. According to the result of the MTT assay, there was a significant difference between the IC50 of free Th (123.4 μg/ml) and Th: AFG (2312 μg/ml), and free L (1762 μg/ml) and L: AFG (2480 μg/ml) showing that encapsulated Th and L into the AFG has decreased the cytotoxicity of free compounds against L929 cell line. Also, Th: AFG had the best anticancer activity against Hella and CT26 cell lines among all compounds. Finally, the flow cytometry analysis demonstrated that the encapsulated particles effectively eliminated cancer cells. The outcomes imply that AFG can be employed as a suitable delivery system to enhance the use of Th and L into the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Amir Hossein Tashakor
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Li Q, Li R, Yong F, Zhao Q, Chen J, Lin X, Li Z, Wang Z, Xu B, Zhong S. Modulation the Synergistic Effect of Chitosan-Sodium Alginate Nanoparticles with Ca 2+: Enhancing the Stability of Pickering Emulsion on D-Limonene. Foods 2024; 13:622. [PMID: 38397600 PMCID: PMC10888333 DOI: 10.3390/foods13040622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Pickering emulsions (PEs) have been regarded as an effective approach to sustaining and preserving the bioactivities of essential oils. The aim of this research is to prepare a PE stabilized by chitosan/alginate nanoparticles (CS-SA NPs) for the encapsulation and stabilization of D-limonene. In this work, the influence of calcium ions (Ca2+) on the morphology and interaction of nanoparticles was studied, and then the preparation technology of CS-SA/Ca2+ NPs was optimized. The results showed that the presence of Ca2+ reduced the size of the nanoparticles and made them assume a spherical structure. In addition, under the conditions of 0.2 mg/mL CaCl2, 0.6 mg/mL SA, and 0.4 mg/mL CS, the CS-SA/Ca2+ NPs had the smallest size (274 ± 2.51 nm) and high stability (-49 ± 0.69 mV). Secondly, the PE was prepared by emulsifying D-limonene with CS-SA/Ca2+ NPs, and the NP concentrations and homogenization speeds were optimized. The results showed that the small droplet size PE could be prepared with 2 mg/mL NP and a homogenization speed of 20,000 r/min, and it had excellent antibacterial and antioxidant activities. Most importantly, the emulsion showed higher activity, higher resistance to ultraviolet (UV) and a higher temperature than free D-limonene. This research provides a feasible solution for the encapsulation, protection and delivery of essential oils.
Collapse
Affiliation(s)
- Qian Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.L.); (R.L.); (F.Y.); (Q.Z.); (J.C.); (X.L.); (Z.L.); (Z.W.)
| | - Rui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.L.); (R.L.); (F.Y.); (Q.Z.); (J.C.); (X.L.); (Z.L.); (Z.W.)
| | - Fanxing Yong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.L.); (R.L.); (F.Y.); (Q.Z.); (J.C.); (X.L.); (Z.L.); (Z.W.)
| | - Qiaoli Zhao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.L.); (R.L.); (F.Y.); (Q.Z.); (J.C.); (X.L.); (Z.L.); (Z.W.)
| | - Jing Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.L.); (R.L.); (F.Y.); (Q.Z.); (J.C.); (X.L.); (Z.L.); (Z.W.)
| | - Xing Lin
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.L.); (R.L.); (F.Y.); (Q.Z.); (J.C.); (X.L.); (Z.L.); (Z.W.)
| | - Ziyu Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.L.); (R.L.); (F.Y.); (Q.Z.); (J.C.); (X.L.); (Z.L.); (Z.W.)
| | - Zhuo Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.L.); (R.L.); (F.Y.); (Q.Z.); (J.C.); (X.L.); (Z.L.); (Z.W.)
| | - Baojun Xu
- Food Science and Technology Programme, Department of Life Sciences, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.L.); (R.L.); (F.Y.); (Q.Z.); (J.C.); (X.L.); (Z.L.); (Z.W.)
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
9
|
Bains A, Sridhar K, Kaushik R, Chawla P, Sharma M. Enzyme-assisted polysaccharides extraction from Calocybe indica: Synergistic antibiofilm and oxidative stability of essential oil nanoemulsion. Int J Biol Macromol 2023; 242:124843. [PMID: 37182620 DOI: 10.1016/j.ijbiomac.2023.124843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Recently, mushroom polysaccharides have been explored to attribute to vital biologically important functions, and several extraction techniques can be employed, therefore, polysaccharides were extracted from the edible mushroom Calocybe indica to explore its functionality. Multiple enzymes viz., cellulase, pectinase, and protease (1:1:1) at temperature 47 °C and pH 4.64 with an extraction time of 2 h yielded 7.24 % polysaccharide content. The thermograph curve of polysaccharides showed two-stage decomposition at a different temperature range and decomposition of polysaccharides initiated with an onset temperature of 226.77 °C and a maximum peak at 248.90 °C. Hydrodistillation processed Eucalyptus globulus leaf oil was characterized using the chromatography technique and eucalyptol, p-cymene, Γ-terpinene, 4-epi-cubebol, spathulenol, viridiflorol, and p-mentha-1,5-dien-8-ol was observed as major components. As well, we formulated nanoemulsion using mushroom polysaccharide and eucalyptus leaf oil with 140.8 nm and evaluated synergistic antimicrobial and antibiofilm activity. MIC and MBC values for Pseudomonas aeruginosa, E. coli, and S. typhi were 12.50-3.125 and 6.25-1.56, and for S. aureus were 6.25, 6.25, 3.125, and 3.125, 3.125, 1.56 and for C. albicans the values were 12.50,12.50, 6.250 and 6.25,6.25, and 3.125 μl/mL respectively. The polysaccharides, essential oil, and nanoemulsion showed remarkable antibiofilm activity against S.aureus with inhibition of 57.42 ± 0.19, 59.62 ± 0.15, and 69.34 ± 0.19 %, while E. coli showed the least antibiofilm activity. However, all three tested samples showed significant (p < 0.05) differences against tested pathogenic microorganisms with inhibition of biofilm formation. Therefore, it could be inferred that the synergistic properties of essential oils with mushroom polysaccharides are a promising strategy to enhance antimicrobial efficacy and control foodborne pathogens.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India.
| |
Collapse
|
10
|
Gadelhaq SM, Aboelhadid SM, Abdel-Baki AAS, Hassan KM, Arafa WM, Ibrahium SM, Al-Quraishy S, Hassan AO, Abd El-Kareem SG. D-limonene nanoemulsion: lousicidal activity, stability, and effect on the cuticle of Columbicola columbae. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:63-75. [PMID: 36054616 DOI: 10.1111/mve.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The current study was conducted to investigate the efficacy and stability of D-limonene (DL) and its nanoemulsion (DLN) against pigeon feather lice (Columbicola columbae) and their mode of action. DL pure form and DLN were prepared and characterized freshly and after storage for 50 days. In vitro bioassay on live lice was conducted with different concentrations of DL, DLN, and deltamethrin (DM). The results revealed significant mortality rates in the DL-, DLN-, DM-treated groups when compared with the control (p < 0.05). The scanning electron micrographs of lice treated with DL and DLN revealed collapsed bodies with destruction in the cuticle of the mouthparts and damaged antennae. The 50 days stored DLN showed stability in their effectiveness when compared with the freshly prepared formulation. DL and DLN caused significant inhibition (p ≤ 0.05) in acetylcholinesterase activity (AchE). Malondialdehyde level (MDA) was significantly increased while glutathione was significantly decreased in DL- and DLN-treated lice. In conclusion, DL and DLN have significant lousicidal activities. DLN showed better stability than DL after storage for 50 days. In addition, the mode of action of DL may associate with its effect on the cuticle of the lice body, inhibition of AchE, and increasing oxidative stress in the treated lice.
Collapse
Affiliation(s)
- Sahar M Gadelhaq
- Parasitology Department, Faculty of Veterinary Medicine, Minia University, Minia, Egypt
| | - Shawky M Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | - Khaled M Hassan
- Department of Parasitology, Animal Health Research Institute, Beni-Suef, Egypt
| | - Waleed M Arafa
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Samar M Ibrahium
- Department of Parasitology, Animal Health Research Institute, Fayum, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Saudi Arabia
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
11
|
Zhong M, Ma L, Liu X, Liu Y, Wei S, Gao Y, Wang Z, Chu S, Dong S, Yang Y, Gao S, Li S. Exploring the influence of ultrasound on the antibacterial emulsification stability of lysozyme-oregano essential oil. ULTRASONICS SONOCHEMISTRY 2023; 94:106348. [PMID: 36871524 PMCID: PMC9988396 DOI: 10.1016/j.ultsonch.2023.106348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
A lysozyme-oregano essential oil (Lys-OEO) antibacterial emulsion was developed via ultrasonic treatment. Based on the general emulsion materials of ovalbumin (OVA) and inulin (IN), the addition of Lys and OEO successfully inhibited the growth of E. coli and S. aureus, two representatives of which were Gram-negative and Gram-positive bacteria respectively. The emulsion system in this study was designed to compensate for the limitation that Lys could only act on Gram-positive bacteria, and the stability of the emulsion was improved using ultrasonic treatment. The optimal amounts among OVA, Lys and OEO were found to be the mass ratio of 1:1 (Lys to OVA) and 20% (w/w) OEO. The ultrasonic treatment at the power of 200, 400, 600, and 800 W and time length of 10 min improved the stability of emulsion, in which the surface tension was below 6.04 mN/m and the Turbiscan stability index (TSI) did not exceed 10. The multiple light scattering showed that sonicated emulsions were less prone to delamination; salt stability and pH stability of emulsions were improved, CLSM image showed emulsion as oil-in-water type. In the meantime, the particles of the emulsions were found to become smaller and more uniform with ultrasonic treatment. The best dispersion and stability of the emulsion were both achieved at 600 W with a zeta potential of 7.7 mV, the smallest particle size and the most uniform particle distribution.
Collapse
Affiliation(s)
- Mengzhen Zhong
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Lulu Ma
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xin Liu
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Liu
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shuaishuai Wei
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Gao
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zhan Wang
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shang Chu
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shijian Dong
- Anhui Rongda Food Co., Ltd., Xuancheng 242000, China
| | - Yuping Yang
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
12
|
Robust stability and antimicrobial activity of d-limonene nanoemulsion by sodium caseinate and high pressure homogenization. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Wang LS, Gopalakrishnan S, Gupta A, Banerjee R, Lee YW, Rotello VM. Porous Polymerized High Internal Phase Emulsions Prepared Using Proteins and Essential Oils for Antimicrobial Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11675-11682. [PMID: 36098991 DOI: 10.1021/acs.langmuir.2c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High internal phase emulsions (HIPEs) provide a versatile platform for encapsulating large volumes of therapeutics that are immiscible in water. A stable scaffold is obtained by polymerizing the external phase, resulting in polyHIPEs. However, fabrication of polyHIPEs usually requires using a considerable quantity of surfactants along with nonbiocompatible components, which hinders their biological applications, e.g., drug-eluting devices. We describe here a straightforward method for generating porous biomaterials by using proteins as both the emulsifier and the building blocks for the fabrication of polyHIPEs. We demonstrate the versatility of this method by using different essential oils as the internal phase. After the gelation of protein building blocks is triggered by the addition of reducing agents, a stable protein hydrogel containing essential oils can be formed. These oils can be either extracted to obtain protein-based porous scaffolds or slowly released for antimicrobial applications.
Collapse
Affiliation(s)
- Li-Sheng Wang
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Sanjana Gopalakrishnan
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ruptanu Banerjee
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
14
|
Zhang S, Li X, Yan X, Julian McClements D, Ma C, Liu X, Liu F. Ultrasound-assisted preparation of lactoferrin-EGCG conjugates and their application in forming and stabilizing algae oil emulsions. ULTRASONICS SONOCHEMISTRY 2022; 89:106110. [PMID: 35961190 PMCID: PMC9382344 DOI: 10.1016/j.ultsonch.2022.106110] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 05/09/2023]
Abstract
The aim of this study was to prepare lactoferrin-epigallocatechin-3-gallate (LF-EGCG) conjugates and to determine their ability to protect emulsified algal oil against aggregation and oxidation. LF-EGCG conjugates were formed using an ultrasound-assisted alkaline treatment. The ultrasonic treatment significantly improved the grafting efficiency of LF and EGCG and shortened the reaction time from 24 h to 40 min. Fourier transform infrared spectroscopy and circular dichroism spectroscopy analyses showed that the covalent/non-covalent complexes could be formed between LF and EGCG, with the CO and CN groups playing an important role. The formation of the conjugates reduced the α-helix content and increased the random coil content of the LF. Moreover, the antioxidant activity of LF was significantly enhanced after conjugation with EGCG. LF-EGCG conjugates as emulsifiers were better at inhibiting oil droplet aggregation and oxidation than LF alone. This study demonstrates that ultrasound-assisted formation of protein-polyphenol conjugates can enhance the functional properties of the proteins, thereby extending their application as functional ingredients in nutritionally fortified foods.
Collapse
Affiliation(s)
- Sairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xueqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
15
|
Kang Z, Chen S, Zhou Y, Ullah S, Liang H. Rational construction of citrus essential oil nanoemulsion with robust stability and high antimicrobial activity based on combination of emulsifiers. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Lin D, Su J, Chen S, Wei J, Zhang L, Li X, Yuan F. Formation mechanism of binary complex based on β-lactoglobulin and propylene glycol alginate with different molecular weights: Structural characterization and delivery of curcumin. Front Nutr 2022; 9:965600. [PMID: 35928836 PMCID: PMC9344013 DOI: 10.3389/fnut.2022.965600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The complexation of protein and polysaccharide has shown considerable potential for the encapsulation of functional food components. In this work, propylene glycol alginate (PGA) molecules with different molecular weights (100, 500, and 2,000 kDa) were prepared through H2O2 oxidation, which were further combined with β-lactoglobulin nanoparticles (β-lgNPs) to form PGA-β-lgNPs complexes for the delivery of curcumin (Cur). Results showed that the depolymerization of PGA molecule was resulted from the breakage of glycosidic bonds in the main chain, and the depolymerization rate of PGA molecule depended on the reaction time, temperature, solution pH and H2O2 concentration. As the increasing molecular weight of PGA, the particle size, zeta-potential and turbidity of the complexes were obviously increased. The formation of PGA/β-lgNPs complexes was mainly driven by non-covalent interaction, including electrostatic gravitational interaction, hydrogen bonding and hydrophobic effect. Interestingly, the difference in the molecular weight of PGA also led to significantly differences in the micro-morphology of the complexes, as PGA with a high molecular weight (2,000 kDa) generated the formation of a “fruit-tree” shaped structure, whereas PGA with relatively low molecular weight (100 and 500 kDa) led to spherical particles with a “core-shell” structure. In addition, the incorporation of PGA molecules into β-lgNPs dispersion also contributed to the improvement in the encapsulation efficiency of Cur as well as physicochemical stability of β-lgNPs, and PGA with a higher molecular weight was confirmed with a better effect. Findings in the current work may help to further understand the effect of molecular weight of polysaccharide on the physical and structural properties as well as effectiveness as delivery systems of polysaccharide-protein complexes, providing for the possibility for the design and development of more efficient carriers for bioactive compounds in food system.
Collapse
Affiliation(s)
- Dongdong Lin
- School of Physical Science and Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
- *Correspondence: Dongdong Lin,
| | - Jiaqi Su
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Shuai Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- School of Public Health, Wuhan University, Wuhan, China
| | - Jiao Wei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Liang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiude Li
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Fang Yuan
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Fang Yuan,
| |
Collapse
|
17
|
Sequential adsorption of whey proteins and low methoxy pectin at the oil-water interface: An interfacial rheology study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Tavasoli S, Liu Q, Jafari SM. Development of Pickering emulsions stabilized by hybrid biopolymeric particles/nanoparticles for nutraceutical delivery. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Lelis CA, de Carvalho APA, Conte Junior CA. A Systematic Review on Nanoencapsulation Natural Antimicrobials in Foods: In Vitro versus In Situ Evaluation, Mechanisms of Action and Implications on Physical-Chemical Quality. Int J Mol Sci 2021; 22:12055. [PMID: 34769485 PMCID: PMC8584738 DOI: 10.3390/ijms222112055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Natural antimicrobials (NA) have stood out in the last decade due to the growing demand for reducing chemical preservatives in food. Once solubility, stability, and changes in sensory attributes could limit their applications in foods, several studies were published suggesting micro-/nanoencapsulation to overcome such challenges. Thus, for our systematic review the Science Direct, Web of Science, Scopus, and Pub Med databases were chosen to recover papers published from 2010 to 2020. After reviewing all titles/abstracts and keywords for the full-text papers, key data were extracted and synthesized. The systematic review proposed to compare the antimicrobial efficacy between nanoencapsulated NA (nNA) and its free form in vitro and in situ studies, since although in vitro studies are often used in studies, they present characteristics and properties that are different from those found in foods; providing a comprehensive understanding of primary mechanisms of action of the nNA in foods; and analyzing the effects on quality parameters of foods. Essential oils and nanoemulsions (10.9-100 nm) have received significant attention and showed higher antimicrobial efficacy without sensory impairments compared to free NA. Regarding nNA mechanisms: (i) nanoencapsulation provides a slow-prolonged release to promote antimicrobial action over time, and (ii) prevents interactions with food constituents that in turn impair antimicrobial action. Besides in vitro antifungal and antibacterial, nNA also demonstrated antioxidant activity-potential to shelf life extension in food. However, of the studies involving nanoencapsulated natural antimicrobials used in this review, little attention was placed on proximate composition, sensory, and rheological evaluation. We encourage further in situ studies once data differ from in vitro assay, suggesting food matrix greatly influences NA mechanisms.
Collapse
Affiliation(s)
- Carini Aparecida Lelis
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; (C.A.L.); (A.P.A.d.C.)
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Anna Paula Azevedo de Carvalho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; (C.A.L.); (A.P.A.d.C.)
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; (C.A.L.); (A.P.A.d.C.)
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
20
|
Li J, Li Y, Zhong J, Wang Y, Liu X, Qin X. Effect of cellulose nanocrystals on the formation and stability of oil-in-water emulsion formed by octenyl succinic anhydride starch. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Fonseca JVDS, Batista JDF, de Oliveira MC, Diniz NCM, Lima MDS, Madruga MS, Magnani M, Borges GDSC. Low-fat and rich-fibers macauba (Acrocomia spp.) sauces: Physical and oxidative stability, nutritional quality and sensory characteristics. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Salehi O, Sami M, Rezaei A. Limonene loaded cyclodextrin nanosponge: Preparation, characterization, antibacterial activity and controlled release. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Cortes Morales EA, Sedaghat Doost A, Velazquez G, Van der Meeren P. Comparison of low- and high-methoxyl pectin for the stabilization of whey protein isolate as carrier for lutein. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Impact of oil type on the location, partition and chemical stability of resveratrol in oil-in-water emulsions stabilized by whey protein isolate plus gum Arabic. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Effect of Ultra-high temperature processing on the physicochemical properties and antibacterial activity of d-limonene emulsions stabilized by β-lactoglobulin/Gum arabic bilayer membranes. Food Chem 2020; 332:127391. [PMID: 32603920 DOI: 10.1016/j.foodchem.2020.127391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
The objectives of the present work were to investigate the influence of Gum Arabic (GA) on the physicochemical properties and ultra-high temperature (UHT) processability of β-lactoglobulin(β-lg)-stabilized d-limonene emulsions. Moreover, we also wanted to evaluate the antimicrobial efficiency and mechanism of β-lg-GA bilayer d-limonene emulsions. Physicochemically stable bilayer emulsions could be formed with an optimal concentration of GA (1.00 wt%), which showed a higher tolerance to both flocculation and coalescence, as well as better protective effects on d-limonene against UHT-treatment that up to 94.32% of d-limonene was retained in emulsions. Likewise, it is also noteworthy that no obvious difference in the minimal inhibitory concentration could be found between bilayer emulsions with or without UHT processing. Moreover, the antimicrobial effects of the bilayer emulsions with UHT treatment were shown to be dose-dependent, which was evidenced from the results of scanning electron microscopy and the determination of released cell constituents. Keywords: β-lactoglobulin; gum arabic; d-limonene emulsion; physicochemical stability; UHT processability, antimicrobial efficiency.
Collapse
|
26
|
Zhang Y, Liang S, Zhang J, Chi Y, Tian B, Li L, Jiang B, Li D, Feng Z, Liu C. Preparation of whey protein isolate nanofibrils by microwave heating and its application as carriers of lipophilic bioactive substances. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109213] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Insight into the stabilization mechanism of emulsions stabilized by Maillard conjugates: Protein hydrolysates-dextrin with different degree of polymerization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105347] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Effect of storage temperature and relative humidity on long-term colloidal stability of reconstitutable emulsions stabilised by hydrophobically modified starch. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Wang Y, Zhang R, Ahmed S, Qin W, Liu Y. Preparation and Characterization of Corn Starch Bio-Active Edible Packaging Films Based on Zein Incorporated with Orange-Peel Oil. Antioxidants (Basel) 2019; 8:E391. [PMID: 31514341 PMCID: PMC6769863 DOI: 10.3390/antiox8090391] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 01/10/2023] Open
Abstract
Zein, corn starch (CS), and orange-peel oil (OPO) extracted from orange peels were used to prepare novel corn starch/orange-peel oil/zein nanocapsules (OZN) bio-active food packaging materials. The results showed that the OZN were round, smooth and in compact morphology with an average diameter of 102.7 ± 10.5 nm from OPO and zein (3:10, w/w). By testing the turbidity and atomic force microscopy (AFM) of OZN and the mechanical properties and water vapor permeability of the composite films, the comprehensive properties of composite films with different mass ratios were analyzed. It showed that the addition of OZN improved the mechanical and moisture barrier properties and extended the release time of OPO. When the ratio of OZN and CS is 5:5, the highest elongation at break and tensile strengths is achieved, at values of 30.91% ± 2.52% and 12.19 ± 1.97 MPa respectively. The relative release concentration of OPO was highest at a ratio of 5/5, and over time it would last longer to maintain a higher release concentration. Besides, the oxidation resistance of the composite film was good, especially when the ration of starch CS to OZN was 5/5, it had the highest DPPH radical scavenging activity (30.16% ± 1.69%). Thus, it can be used as a bio-active edible food packaging film to ensure the safety of food products and reduce environmental pressure to some extent.
Collapse
Affiliation(s)
- Yue Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Rong Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- California Nano Systems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Zhang H, Fan Q, Li D, Chen X, Liang L. Impact of gum Arabic on the partition and stability of resveratrol in sunflower oil emulsions stabilized by whey protein isolate. Colloids Surf B Biointerfaces 2019; 181:749-755. [PMID: 31234062 DOI: 10.1016/j.colsurfb.2019.06.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/23/2019] [Accepted: 06/15/2019] [Indexed: 11/28/2022]
Abstract
In protein-stabilized oil-in-water emulsions, a co-emulsifier may also be an antioxidant, increasing the oxidative stability of the oil and adding nutritional value to the formulation. We investigated the impact of gum Arabic on the partition and stability of resveratrol in sunflower oil emulsions produced using whey protein isolate in the absence and presence of calcium. Gum Arabic increased the protein and resveratrol contents at the oil-water interface and the stability of resveratrol, which was enhanced by calcium. Resveratrol increased the oxidative stability of the oil. These results indicate that resveratrol is stable in the interfacial membrane of emulsions made with whey protein isolate, calcium and gum Arabic and suggest that oil-in-water emulsions could be used as potential carriers of co-encapsulated functional oils and polyphenolic antioxidants.
Collapse
Affiliation(s)
- Haixia Zhang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qi Fan
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan, Shandong, China
| | - Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xing Chen
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
31
|
Electrospinning of bilayer emulsions: The role of gum Arabic as a coating layer in the gelatin-stabilized emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Yang L, Qin X, Kan J, Liu X, Zhong J. Improving the Physical and Oxidative Stability of Emulsions Using Mixed Emulsifiers: Casein-Octenyl Succinic Anhydride Modified Starch Combinations. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1018. [PMID: 31315272 PMCID: PMC6669503 DOI: 10.3390/nano9071018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
This study aims to investigate the influence of casein and octenyl succinic anhydride modified starch (OSAS) combinations on the physical and oxidative stability of fish oil-in-water emulsions. The interaction between casein and OSAS was manifested in changes in protein structure and hydrogen-bonding interaction. Casein-OSAS combinations could effectively inhibit droplet aggregation at pH 4 and attenuate droplet growth at a high CaCl2 concentration of 0.2 mol/L, compared with casein as an emulsifier. Nanoemulsions stabilized by casein-OSAS combinations or casein showed better oxidative stability compared with OSAS-stabilized emulsions. Therefore, casein-OSAS combinations can improve some physical properties of protein-based emulsions and oxidative stability of modified starch-based emulsions, suggesting protein-modified starch combinations are more promising in the emulsion-based food industry compared to each of the two emulsifiers alone.
Collapse
Affiliation(s)
- Liu Yang
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Jinfeng Zhong
- College of Food Science, Southwest University, Chongqing 400700, China.
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400700, China.
| |
Collapse
|
33
|
Zhu Y, Xu W, Zhang J, Liao Y, Firempong CK, Adu-Frimpong M, Deng W, Zhang H, Yu J, Xu X. Self-microemulsifying Drug Delivery System for Improved Oral Delivery of Limonene: Preparation, Characterization, in vitro and in vivo Evaluation. AAPS PharmSciTech 2019; 20:153. [PMID: 30915610 DOI: 10.1208/s12249-019-1361-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
The current investigation aimed at formulating self-microemulsifying drug delivery system (SMEDDS) to ameliorate oral bioavailability of a hydrophobic functional ingredient, limonene. Solubility test, compatibility test, and pseudo-ternary phase diagrams (PTPD) were adopted to screen the optimal compositions of limonene-SMEDDS (L-SMEDDS). The characteristics of this system assessed in vitro, mainly included determination of particle size distribution, observation of morphology via transmission electron microscopy (TEM), testing of drug release in different dissolution media, and evaluation of stability. The oral bioavailability study in vivo of the formulated limonene was performed in rats with the free limonene as the reference. Compared with the free limonene, the distribution study of L-SMEDDS was conducted in Kunming mice after oral administration. The optimized SMEDDS (ethyl oleate, 14.2%; Cremophor EL, 28.6%; isopropanol, 28.6%; and loaded limonene, 28.6%) under the TEM (about 100 nm) was spherical with no significant variations in size/appearance for 30 days at 4, 25, and 60°C. In comparison with free limonene, higher than 89.0% of limonene was released from SMEDDS within 10 min in different dissolution media. An in vivo study showed a 3.71-fold improved oral bioavailability of the formulated limonene compared to the free limonene. The tissue distribution results showed that limonene predominantly accumulated in the various tissues for the L-SMEDDS compared with the free limonene. Hence, L-SMEDDS could remarkably improve the concentration of limonene in the various organs. These findings hinted that the oral bioavailability of limonene could be improved via an effectual delivery system like SMEDDS.
Collapse
|