1
|
Jang YJ, Kim HD, Ye YJ, Kong M, Lim WS, Lee MH. Effects of ultrasound-induced structural modifications on the emulsifying properties of Tenebrio molitor proteins. ULTRASONICS SONOCHEMISTRY 2025; 117:107354. [PMID: 40233461 PMCID: PMC12022699 DOI: 10.1016/j.ultsonch.2025.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Ultrasonication has emerged as a promising technique for modifying physicochemical properties of proteins, enhancing their functionality in food applications. This study evaluated the effects of ultrasonic treatment on the structural and functional properties of mealworm-derived proteins (MPs) and their potential as emulsifiers. Dynamic light scattering revealed a significant reduction in MP particle size from 3464.3 nm (untreated) to 115.5 nm (30 min sonication), along with increased zeta potential, indicating improved colloidal stability. Sonication enhanced oil-holding capacity and solubility, suggesting improved interfacial adsorption and emulsification. Circular dichroism and FT-IR spectroscopy confirmed structural modifications, including increased α-helix content and enhanced hydrogen bonding interactions. Free sulfhydryl content and surface hydrophobicity analyses indicated ultrasound-induced unfolding, exposing functional groups that contribute to emulsifying properties. Sonicated MPs demonstrated superior emulsion stability under varying temperature, pH, and ionic conditions. Furthermore, digestibility analysis showed improved gastric digestion (72.7 % to 82.8 %) and enhanced lipid digestion in the small intestine (36.2 % to 47.9 %), suggesting greater bioavailability. These physicochemical modifications highlight the feasibility of using sonicated MP as natural emulsifiers with enhanced functionality. This study underscores their potential in food formulations, particularly for nutritionally fortified emulsions, contributing to sustainable and functional food ingredient development.
Collapse
Affiliation(s)
- Yun Jae Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyeong Do Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yu Ji Ye
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Woo Su Lim
- SejongBioPharm, Daegot-ro, Gimpo-si, Gyeonggi-do, 10028, Republic of Korea
| | - Min Hyeock Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Zhang Y, Lu J, Cui K, Wang H, Su J, Zhang W, Jiang W. The encapsulation strategies of clove essential oil enhance its delivery effect in food preservation applications. Food Chem 2025; 484:144465. [PMID: 40300405 DOI: 10.1016/j.foodchem.2025.144465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 05/01/2025]
Abstract
Food supply chain faces challenges from quality degradation, microbial contamination, and chemical synthetic fungicides. Recently, the remarkable food preserving ability and biological activity of natural clove essential oil (CEO) has gained significant attention. However, its application is limited by volatility, photothermal sensitivity, and inherent odor. To this end, encapsulation strategies have been attempted on CEO to enhance its bioavailability, as well as their efficacy in food preservation scenarios. This study outlines CEO's chemistry and delves into its antimicrobial/antioxidant mechanisms. Subsequently, latest advances in encapsulation strategies for CEO in food preservation are comprehensively reviewed, including film blending, emulsification techniques, polyelectrolyte complexation, ion gelation, etc. The encapsulation enhances CEO's benefits, augmenting its long-term bioavailability in diverse food preservation systems. Finally, CEO's security and limitations are also discussed in-depth. This work aims to compile recent trends in encapsulation strategies for active substances and guide judicious utilize for natural CEO preservative.
Collapse
Affiliation(s)
- Yiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jingxuan Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kuanbo Cui
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiaqi Su
- Department of Health Sciences and Technology, ETH, Zurich, Zurich, Switzerland.
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Devi N, Shayoraj, Geeta, Shivani, Ahuja S, Dubey SK, Sharma S, Kumar S. Antimicrobial biodegradable packaging films from phosphorylated starch: A sustainable solution for plastic waste. Carbohydr Res 2025; 550:109404. [PMID: 39879945 DOI: 10.1016/j.carres.2025.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
This study focused on developing biodegradable packaging films based on starch as an alternative to non-biodegradable such as petroleum-derived synthetic polymers. To improve its physicochemical properties, potato starch was chemically modified through phosphorylation. Starch phosphorylation was carried out using cyclic 1,3-propanediol phosphoryl chloride (CPPC), produced phosphorylated starch (PS), and analyzed using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Nuclear magnetic resonance (NMR), and Thermogravimetric analysis (TGA). The thermal stability of PS increased to 292 °C due to the formation of starch phosphate ester in comparison to pure starch (281 °C). Moreover, using glycerol as a plasticizer, the solvent casting method was employed to synthesize the PS/PVA biofilms. The synthesized biofilms (PPS) were further characterized using FT-IR, TGA, Mechanical testing, and Scanning electron microscopy (SEM). The result indicated that blend films have higher tensile strength (41.61 MPa) and elongation at break (240 %) than pure PVA film (29.84 MPa, 102 %). The soil burial study showed that the biodegradation of PPS blend films increased to 63.79 %. Nevertheless, the blend film showed decreased solubility, water absorption, water vapor transmission rate, and moisture content with PS, while its surface hydrophobicity increased from 61.2° to 95.6°. PPS blends have stronger antibacterial activity against S. aureus than E. coli. Accordingly, the prepared PPS III biofilm was further used for brown bread packaging. Compared to LDPE packaging, the bread wrapped in PPS III blend film exhibited enhanced visual appearance and extended shelf-life. The novelty of our work lies in the modification of starch using CPPC, which was further used to fabricate biodegradable films. Therefore, the developed biofilm may be a reference for additional research and can potentially replace synthetic, non-degradable polymer-based films in the packaging industry.
Collapse
Affiliation(s)
- Neeru Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Shayoraj
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Geeta
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Shivani
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Simran Ahuja
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Santosh Kumar Dubey
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Sanjay Sharma
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Satish Kumar
- Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
4
|
Asif F, Mahmood H, Jiangtao L, Ce S, Haiying C, Yuxiao W, Rentang Z, Yaqoob S, Jianbo X, Lin L, Hongxun T. Development of eco-friendly chitosan films incorporated with pomelo peel (Citrus Paradisi cv. Changshanhuyou) extract and application to prolong the shelf life of grapes. Int J Biol Macromol 2025; 304:140547. [PMID: 39929460 DOI: 10.1016/j.ijbiomac.2025.140547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/30/2024] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
Active packaging is an innovative technology that employs active materials to interact with the product and its environment, extending food shelf life. The aim of research was to develop a multifunctional film using pomelo (Citrus Paradisi cv. Changshanhuyou) peel extract (PPE) at concentrations of 5 %, 10 %, and 15 % as the active component, with chitosan (CS) serving as the primary carrier. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy confirmed the successful integration of PPE into the CS matrix. The effects of PPE on the anti-oxidant properties of the edible-films were evaluated to determine the optimal concentration for film production. Results showed that the 5 % PPE content enhanced film properties, including antioxidant and antibacterial activity. A subsequent study assessed the preservation effect of the films on grapes compared to untreated controls. Notably, the CSE2 film (5 % PPE) significantly reduced grape decay while maintaining pH, color, texture, and moisture within acceptable ranges over 16 days of storage at room temperature (26 °C ± 1). Findings showed that the potential of CSE2 film as an eco-friendly solution to reduce environmental pollution, minimize post-harvest losses, and extend grapes shelf life. Further research is needed to explore PPE effects on various foods and enhance composite edible films.
Collapse
Affiliation(s)
- Faryal Asif
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Hashar Mahmood
- School of Allied Health and Life Sciences, St. Mary's University Twickenham, London, United Kingdom
| | - Liu Jiangtao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Shi Ce
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Cui Haiying
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Wang Yuxiao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Tai'an City, Shandong Province, China
| | - Zhang Rentang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Tai'an City, Shandong Province, China
| | - Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Xiao Jianbo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China.
| | - Tao Hongxun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, Jiangsu Province, China.
| |
Collapse
|
5
|
Jiang G, He K, Chen M, Yang Y, Tang T, Tian Y. Development of multifunctional chitosan packaging film by plasticizing novel essential oil-based hydrophobic deep eutectic solvent: Structure, properties, and application. Carbohydr Polym 2025; 347:122701. [PMID: 39486942 DOI: 10.1016/j.carbpol.2024.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
To improve the limited mechanical and water barrier properties of chitosan film while granting extra functionalities simultaneously, present study pioneered the incorporation of chitosan film with newly developed essential oil (EO)-based hydrophobic deep eutectic solvents (HDES, EO:octanoic acid (OA), EO:menthol (ME) and OA:ME:EO). The highest tensile strength (66.22 MPa) and elongation at break (45.99 %) were obtained in OA:ME:EO-40 and OA:ME:EO-80 films, respectively. The OA:EO-based films showed excellent and stable hydrophobicity. HDESs also endowed film with additional functionalities including thermal stability, bio-compatibility, controlled release, antioxidant, and antibacterial capacity. The extension of the storage period of strawberry treated with OA:EO-containing films confirmed their preservation ability. Compared with ME:EO and OA:ME:EO, OA:EO had better compatibility with chitosan matrix and could serve as a promising plasticizer for strengthening functionalities of chitosan film. These results also promote application of HDESs as emerging plasticizers in manufacture of other polymer-based packaging film.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Kaiwen He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China.
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Tingting Tang
- College of agriculture and forestry science and technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
6
|
Bouftou A, Aghmih K, Belfadil D, Rezzouq A, Lakhdar F, Lamine M, Gmouh S, Majid S. Novel food preservation strategy using sprayed PVA/chitosan-based coatings activated by macroemulsions of chamomile essential oil adsorbed on activated carbon. Int J Biol Macromol 2024; 283:137829. [PMID: 39566802 DOI: 10.1016/j.ijbiomac.2024.137829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Active films based on polyvinyl alcohol (PVA) and chitosan (CS) were developed by encapsulating chamomile essential oil using an emulsification process, followed by adsorption onto activated carbon (AC) to stabilize the oil droplets. Microscopic analysis showed that the average size of the micelles was between 0.1 μm and 1.5 μm. The micelles obtained were incorporated into PVA/CS film formulations with different concentrations of chamomile essential oil (5 %, 10 %, 15 % w/w), and the optical, physical, mechanical, antibacterial, and antioxidant properties as well as the release rate of the encapsulated oil were studied to test their application in food packaging. The SEM images showed a homogeneous dispersion of the EO in the polymer matrix containing AC, due to the formation of hydrogen bonds, which is confirmed by the FTIR results and is accompanied by an increase in the viscosity of the film-forming solutions, a decrease in the crystallinity and an improvement in mechanical properties by an increase in elongation at break (15.95 ± 0.10 to 47.02 ± 0.06 %) of the films produced. In addition, some properties of the PVA/CS films were increased by the addition of EO-AC, notably thickness (0.097 ± 0.12 to 0.144 ± 0.01 mm) and opacity (1.632 ± 0.11 to 8.266 ± 0.12), while the water absorption rate and solubility of the films decreased. PVA/CS-EO-AC films exhibit good antioxidant and antibacterial activity against E. coli and S. aureus, high barrier properties (UV-blocking) and a controlled release of bioactive molecules contained in EO. The PVA/CS/EO-AC coating reduced the weight loss of the tested apples to (3.31 ± 0.29 %) compared to apples packaged in polyethylene film, and maintained their appearance after 3 weeks of storage. These results offer the possibility of reducing food waste through this new coating strategy based on the encapsulation of EO.
Collapse
Affiliation(s)
- Abderrahim Bouftou
- Laboratory of Materials Engineering for the Environment and Valorization (GeMEV), Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, 5366 Casablanca, Morocco
| | - Kaoutar Aghmih
- Laboratory of Materials Engineering for the Environment and Valorization (GeMEV), Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, 5366 Casablanca, Morocco
| | - Doha Belfadil
- Laboratory of Materials Engineering for the Environment and Valorization (GeMEV), Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, 5366 Casablanca, Morocco
| | - Asiya Rezzouq
- Laboratory of Materials Engineering for the Environment and Valorization (GeMEV), Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, 5366 Casablanca, Morocco
| | - Fatima Lakhdar
- Laboratory of Marine Biotechnology and Environment, Faculty of Sciences, Chouaib Doukkali University, BP 20, El Jadida 24000, Morocco
| | - Mustapha Lamine
- Laboratory of Mechanics, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, 5366 Casablanca, Morocco
| | - Said Gmouh
- Laboratory of Engineering and Materials (LIMAT), Faculty of Sciences ben m'sik, Hassan II University of Casablanca, 7955 Casablanca, Morocco
| | - Sanaa Majid
- Laboratory of Materials Engineering for the Environment and Valorization (GeMEV), Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, 5366 Casablanca, Morocco.
| |
Collapse
|
7
|
Priyanka S, S Karthick Raja Namasivayam, John F Kennedy, Meivelu Moovendhan. Starch-chitosan-Taro mucilage nanocomposite active food packaging film doped with zinc oxide nanoparticles - Fabrication, mechanical properties, anti-bacterial activity and eco toxicity assessment. Int J Biol Macromol 2024; 277:134319. [PMID: 39097046 DOI: 10.1016/j.ijbiomac.2024.134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
In this research, a novel active food packaging material was developed by blending starch, chitosan, and plant-based mucilage with zinc oxide nanoparticles. The polymeric nanocomposite film, created by incorporating zinc oxide nanoparticles into the mixture using a straightforward approach, was analyzed for its structural and functional attributes using FTIR, XRD, SEM, and TGA/DSC. These analyses revealed a robust interaction between the polymers' functional groups and the nanoparticles, forming a stable film. The film's mechanical properties, including tensile strength and Young's modulus, were high. It also showed reduced wettability and water solubility, enhancing water resistance. The biodegradability rate was 100 %. Antibacterial tests against Bacillus sp. and Pseudomonas sp. showed significant inhibition zones of 26 mm and 30 mm, respectively, demonstrating strong antibacterial effectiveness. The film's non-target toxicity was assessed through phytotoxicity experiments on Vigna angularis and soil nutrient evaluations, with no negative impact on plant growth or soil health observed. These results indicate that this nanocomposite is a safe, biocompatible option for food packaging.
Collapse
Affiliation(s)
- S Priyanka
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India.
| | - John F Kennedy
- Chembiotech Ltd, Institute of Research and Development, Kyrewood House, Worcestershire WR15 8FF, UK
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
8
|
Uddin MN, Hossain MT, Mahmud N, Alam S, Jobaer M, Mahedi SI, Ali A. Research and applications of nanoclays: A review. SPE POLYMERS 2024; 5:507-535. [DOI: 10.1002/pls2.10146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractNanoclays, a specific type of nanomaterial, have emerged as versatile and dynamic materials, with tremendous potential for advanced functional applications. Despite publishing a large number of research articles, there are relatively few review articles on this topic. This comprehensive review delves into the most widely used nanoclays and explores the diverse range of applications in different fields, such as aerospace, automobile, construction, biomedical, food packaging, and polymer composites. With their ability to enhance the performance of materials and products, nanoclays have become a highly desired material in various industries. The challenges associated with nanoclays like complex properties, difficulty in developing new synthesis methods, and challenges in investigating long‐term durability and stability have been summarized. The future research directions with the exciting possibilities to develop future innovative materials have been highlighted at the end of the article.Highlights
This review provides an extensive examination of the most widely used nanoclays, detailing their properties, types, and limitations.
A summary of publication trends over the last 15 years, based on Scopus data up to 2024, indicates growing interest and research output in nanoclays.
Applications of nanoclays span across aerospace, automobile, construction, biomedical, food packaging, and polymer composites, showcasing their versatility.
Key challenges discussed include complex properties, difficulties in new synthesis methods, and issues in long‐term durability and stability.
Future research directions highlight the potential for developing innovative materials using nanoclays.
Collapse
Affiliation(s)
- Md. Nur Uddin
- Department of Textile Engineering Dhaka University of Engineering and Technology Gazipur Bangladesh
| | - Md. Tanvir Hossain
- Department of Textile Engineering Bangladesh University of Business and Technology (BUBT) Dhaka Bangladesh
| | - Nadim Mahmud
- Department of Textile Engineering Dhaka University of Engineering and Technology Gazipur Bangladesh
| | - Sadikul Alam
- Department of Textile Engineering Dhaka University of Engineering and Technology Gazipur Bangladesh
| | - Md Jobaer
- Department of Electrical and Electronics Engineering Northern University Bangladesh Dhaka Bangladesh
| | - Sajjatul Islam Mahedi
- Bachelor of Medicine and Bachelor of Surgery Eastern Medical College Cumilla Bangladesh
| | - Ayub Ali
- Department of Textile Engineering Dhaka University of Engineering and Technology Gazipur Bangladesh
| |
Collapse
|
9
|
Cerdá-Gandia R, Agüero Á, Arrieta MP, Fenollar O. Effect of Different Porous Size of Porous Inorganic Fillers on the Encapsulation of Rosemary Essential Oil for PLA-Based Active Packaging. Polymers (Basel) 2024; 16:2632. [PMID: 39339096 PMCID: PMC11435855 DOI: 10.3390/polym16182632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Essential oils are interesting active additives for packaging manufacturing as they can provide the final material with active functionalities. However, they are frequently volatile compounds and can be degraded during plastic processing. In this work Rosmarinus officinalis (RO) essential oil was encapsulated into Diatomaceous earth (DE) microparticles and into Halloysite nanotubes (HNTs) and further used to produce eco-friendly active packaging based on polylactic acid (PLA). PLA-based composites and nanocoposites films based on PLA reinforced with DE + RO and HNTs + RO, respectively, were developed by melt extrusion followed by cast-film, simulating the industrial processing conditions. As these materials are intended as active food packaging films, the obtained materials were fully characterized in terms of their mechanical, thermal and structural properties, while migration of antioxidant RO was also assessed as well as the compostability at laboratory scale level. Both DE and HNTs were able to protect the Rosmarinus officinalis (RO) from thermal degradation during processing, allowing to obtain films with antioxidant properties as demonstrated by the antioxidant assays after the materials were exposed for 10 days to a fatty food simulant. The results showed that incorporating Rosmarinus officinalis encapsulated in either DE or HNTs and the good dispersion of such particles into the PLA matrix strengthened its mechanical performance and sped up the disintegration under composting conditions of PLA, while allowing to obtain films with antioxidant properties of interest as antioxidant active food packaging materials.
Collapse
Affiliation(s)
- Raúl Cerdá-Gandia
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
- FAPERIN S.L. Av. de los Trabajadores, 27, 03430 Onil, Spain
| | - Ángel Agüero
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Octavio Fenollar
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| |
Collapse
|
10
|
Zhao Y, Ma X, Wang G, Gao L, Zhang M, Ding Y, Lv S. Pomegranate peel extract incorporated soy protein isolate/Artemisia sphaerocephala Krasch. gum composite films for fresh-cut apples preservation. Int J Biol Macromol 2024; 280:135649. [PMID: 39284472 DOI: 10.1016/j.ijbiomac.2024.135649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The objective of this study was to prepare an active packaging film using phosphorylated soy protein isolate (PPS) and Artemisia sphaerocephala Krasch. gum (ASKG) as film matrices, with the incorporation of pomegranate peel extract (PPE) to preserve fresh-cut apples. The results showed that PA-PPE (PPS/ASKG-PPE) films significantly increased thickness by 24.47 %, tensile strength by 58.76 %, and elongation at break by 30.48 %. Additionally, water vapor permeability and oxygen permeability decreased significantly to 6.17 × 10-13 and 0.62 × 10-13 Kg•m•m-2•s-1•Pa-1, respectively. FTIR, XRD, and SEM analyses confirmed the formation of intermolecular hydrogen bonds between PPS, ASKG, and polyphenols extracted from pomegranate peel, indicating excellent compatibility. Furthermore, radical scavenging activity experiments demonstrated that these films exhibited a remarkable ability to scavenge DPPH and ABTS+ radicals up to 70.44 % and 74.28 %, respectively, when the PPE content was at 3 wt%. Moreover, PPS could achieve a sustained release effect on polyphenols with a relatively low release rate (63.83 %) even after seven days' time elapsed. Finally, the PA-PPE film displayed superior performance in reducing the weight loss and browning index of fresh-cut apples within 24 h of storage. The development of PA-PPE film could promote sustainable resource protection and demonstrate promising prospects in the field of fresh-cut fruit packaging.
Collapse
Affiliation(s)
- Yucong Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xueli Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guohua Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Le Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mengyao Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yong Ding
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
11
|
Martin BA, Dalmolin LF, Lemos CN, de Menezes Vaidergorn M, da Silva Emery F, Vargas-Rechia CG, Ramos AP, Lopez RFV. Electrostimulable polymeric films with hyaluronic acid and lipid nanoparticles for simultaneous topical delivery of macromolecules and lipophilic drugs. Drug Deliv Transl Res 2024; 14:2499-2519. [PMID: 38381316 DOI: 10.1007/s13346-024-01526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
This study focused on developing electrically stimulable hyaluronic acid (HA) films incorporating lipid nanoparticles (NPs) designed for the topical administration of lipophilic drugs and macromolecules. Based on beeswax and medium-chain triglycerides, NPs were successfully integrated into silk fibroin/chitosan films containing HA (NP-HA films) at a density of approximately 1011 NP/cm2, ensuring a uniform distribution. This integration resulted in a 40% increase in film roughness, a twofold decrease in Young's modulus, and enhanced film flexibility and bioadhesion work. The NP-HA films, featuring Ag/AgCl electrodes, demonstrated the capability to conduct a constant electrical current of 0.2 mA/cm2 without inducing toxicity in keratinocytes and fibroblasts during a 15-min application. Moreover, the NPs facilitated the homogeneous distribution of lipophilic drugs within the film, effectively transporting them to the skin and uniformly distributing them in the stratum corneum upon film administration. The sustained release of HA from the films, following Higuchi kinetics, did not alter the macroscopic characteristics of the film. Although anodic iontophoresis did not noticeably affect the release of HA, it did enhance its penetration into the skin. This enhancement facilitated the permeation of HA with a molecular weight (MW) of up to 2 × 105 through intercellular and transcellular routes. Confocal Raman spectroscopy provided evidence of an approximate 100% increase in the presence of HA with a MW in the range of 1.5-1.8 × 106 in the viable epidermis of human skin after only 15 min of iontophoresis applied to the films. Combining iontophoresis with NP-HA films exhibits substantial potential for noninvasive treatments focused on skin rejuvenation and wound healing.
Collapse
Affiliation(s)
- Bianca Aparecida Martin
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Luciana Facco Dalmolin
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Camila Nunes Lemos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Miguel de Menezes Vaidergorn
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Flavio da Silva Emery
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Carem Gledes Vargas-Rechia
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Ana Paula Ramos
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Renata F V Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| |
Collapse
|
12
|
Trigueiro P, Pereira JPDL, Ferreira MG, Silva LB, Neves L, Peña-Garcia RR. Clay Minerals and Biopolymers in Film Design: Overview of Properties and Applications. MINERALS 2024; 14:613. [DOI: 10.3390/min14060613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Research to replace petroleum-based plastics has been quite challenging. Currently, there is a lot of interest in biopolymers as an alternative. However, biopolymers do not have suitable mechanical properties when in film form, which limits their applications. To resolve this issue, clay minerals are being incorporated as a strategy. Clay minerals offer the films good barrier, thermal, rheological, optical, and mechanical properties. They can also work with other additives to promote antioxidant and antimicrobial activity. This brief review focuses on incorporating clay minerals with other nanofillers and bioactives to improve their physical, chemical, and functional characteristics. The synergy of these materials gives the films exceptional properties and makes them suitable for applications such as food coatings, packaging materials, dressings, and bandages for treating skin wounds.
Collapse
Affiliation(s)
- Pollyana Trigueiro
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Juliane P. de L. Pereira
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Mirelly G. Ferreira
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Lucas B. Silva
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Luan Neves
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| | - Ramón R. Peña-Garcia
- Programa de Pós-Graduação em Engenharia Física, Universidade Federal Rural de Pernambuco, Cabo de Santo Agostinho 52171-900, PE, Brazil
| |
Collapse
|
13
|
Saleh M, Salam MA, Capanoglu E. Encapsulation of Black Rice Bran Extract in a Stable Nanoemulsion: Effects of Thermal Treatment, Storage Conditions, and In Vitro Digestion. ACS OMEGA 2024; 9:12585-12595. [PMID: 38524420 PMCID: PMC10955592 DOI: 10.1021/acsomega.3c07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/25/2023] [Accepted: 01/23/2024] [Indexed: 03/26/2024]
Abstract
This study aimed to improve the dispersibility of phenolic compounds from black rice bran through the encapsulation process within nanoemulsion. The study focused on assessing the stability of the nanoemulsions, which were prepared using a combination of surfactants with distinct hydrophilic-lipophilic balance (HLB) values and sunflower oil under different thermal treatments and storage conditions. The study revealed a significant correlation between the mixed surfactant HLB value and the nanoemulsions properties, including average particle size, polydispersity index (PDI), and ζ-potential. Specifically, an increase in the HLB value was associated with a decrease in the initial average particle size. The encapsulated polyphenols exhibited remarkable stability over a storage period of up to 30 days at different temperatures with no significant changes observed in particle size or PDI. The study also investigated the impact of different ionic strengths (0.2, 0.5, and 1.00 mol L-1 NaCl) on the physical stability and antioxidant black rice bran extract nanoemulsion, and the results revealed that adding NaCl influenced the particle size and surface charge of the nanoemulsions. Total phenolic content and DPPH results demonstrated a significant impact of salt concentration on antioxidant properties, with varying trends observed among the HLB formulations. Furthermore, the behavior of the encapsulated extracts during digestion was examined, and their antioxidant activity was evaluated.
Collapse
Affiliation(s)
- Mohamed
N. Saleh
- Agricultural
Research Center, Food Technology Research
Institute, 3725004 Giza, Egypt
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Türkiye
| | | | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Türkiye
| |
Collapse
|
14
|
Koc-Bilican B. Linden-based mucilage biodegradable films: A green perspective on functional and sustainable food packaging. Int J Biol Macromol 2024; 261:129805. [PMID: 38286374 DOI: 10.1016/j.ijbiomac.2024.129805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
This study focuses on the utilization of linden mucilage, extracted from the linden tree, as a potential natural polymer source for the production of composite films. The films, which incorporating linden water extract, essential oil, and oil, exhibited improved thermal stability, surface morphology, and water resistance. Biodegradability assessments, particularly for films using essential oil and oil, showed promising outcomes by maintaining structural integrity. Antimicrobial assays demonstrated significant resistance against pathogens, indicating potential applications requiring microbial resistance. Mechanical analyses revealed a trade-off between tensile strength and elongation at break with addition of components. Composite films exhibited reduced water vapor permeability which correlate with water solubility and contact angle measurements. Soil biodegradation studies highlighted the films' potential to mitigate environmental impact. Cytotoxicity tests confirmed the safety of these films for potential food applications. Additionally, antioxidant assays showed increased radical scavenging activity in films with added components. In conclusion, linden-based composite films exhibit promising characteristics, suggesting their potential as sustainable and functional materials, particularly for use in food packaging.
Collapse
Affiliation(s)
- Behlul Koc-Bilican
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey; ASUBTAM-Science and Technology Application and Research Center, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
15
|
Lim WS, Kim MH, Park HJ, Lee MH. Characterization of Polyvinyl Alcohol (PVA)/Polyacrylic Acid (PAA) Composite Film-Forming Solutions and Resulting Films as Affected by Beeswax Content. Polymers (Basel) 2024; 16:310. [PMID: 38337201 DOI: 10.3390/polym16030310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Recently, the food packaging industry has focused on developing an eco-friendly and sustainable food packaging system. This study describes the effect of beeswax on the physical, structural, and barrier properties of a polyvinyl alcohol (PVA)/polyacrylic acid (PAA) composite film. The incorporation of beeswax improved the barrier properties against oxygen, water, and oil. However, the addition of a high content of beeswax caused phase separation in the film-forming solution. The destabilization mechanisms such as clarification and creaming formation in the film-forming solution were revealed by turbidimetric analysis. The results of scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) indicates that non-homogeneous structures in the film-forming solution were formed as a function of increased beeswax content due to the agglomeration of beeswax. The mechanical properties of the films were also evaluated to determine the most appropriate content of beeswax. There was a slight decrease in tensile strength and an increase in elongation as beeswax content increased up to 10%. Thus, the PVA/PAA composite film with 10% beeswax was chosen for further applications. In summary, the PVA/PAA composite film developed in this study with 10% beeswax exhibited a significant improvement in barrier properties and has the potential for use in commerce.
Collapse
Affiliation(s)
- Woo Su Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ha Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Jin Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Hyeock Lee
- Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
16
|
Li H, Jiang F, Chen J, Wang Y, Zhou Z, Lian R. Development of seaweed-derived polysaccharide/cellulose nanocrystal-based antifogging labels loaded with alizarin for monitoring aquatic products' freshness. Int J Biol Macromol 2023; 253:126640. [PMID: 37657568 DOI: 10.1016/j.ijbiomac.2023.126640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Intelligent freshness indicator labels have attracted great interest for their massive potential in monitoring the freshness of aquatic products over the years. However, there is still a challenge where fogging on the labels during dramatic temperature changes affects the reading of freshness. At the same time, the freshness indicator labels need high mechanical strength to resist collision damage during transportation and storage. Herein, an antifogging freshness indicator label was developed based on seaweed extracts and alizarin. Firstly, soluble polysaccharides and insoluble components were extracted from Gelidium amansii, and cellulose nanocrystal (CNC) was further prepared from the insoluble components by sulfuric acid hydrolysis. Subsequently, a polysaccharide-based film was fabricated using soluble polysaccharides as the matrix materials and CNC as the reinforcement agent. Antifogging experiments showed that the hydrophilic composite films presented good antifogging performance. After loading with alizarin, the composite indicator label exhibited both antifogging and freshness-indicating properties for the salmon sample. The work provided a new idea for developing freshness indicator labels suitable for low-temperature transportation and storage.
Collapse
Affiliation(s)
- Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Fan Jiang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Zhigang Zhou
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Renjie Lian
- Jinghai Group Co., Ltd., Rongcheng 264307, PR China
| |
Collapse
|
17
|
Pham BTT, Hoang HNT, Trinh CD, Bui QTP, Phung TK, Nguyen TT. Development of gelatin/agarose active coatings functionalized with Ocimum gratissimum L. essential oil for enhancing storability of 'Booth 7' avocado. Int J Biol Macromol 2023; 253:127516. [PMID: 37866575 DOI: 10.1016/j.ijbiomac.2023.127516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Novel active coating from gelatin/agarose (GA) functionalized with Ocimum gratissimum L. essential oil (OGO) had been developed as a medium to evaluate their properties before being applied for avocado preservation. The resultant coating films showed enhanced mechanical, water-barrier, bactericidal, antioxidant, and UV-shielding properties by adding OGO. The best tensile strength (2.91 MPa) and flexibility (45.82 %) was found in the GA film containing 5 % (w/w) of OGO (GA-OGO-5). Furthermore, this coating formulation presented moderate antibacterial activities against Listeria, Pseudomonas, Salmonella, and Escherichia. The GA-OGO-5 coating film also divulged the highest hydrophobicity and adequate antioxidant function (30.75 μg/mL) and thus, was chosen to coat on 'Booth 7' avocados by dipping method. The GA-OGO-5 coating layers were to be efficient to decline the respiration rate of avocado during 6-day storage at 25 °C and 64 %RH. Peel color, weight loss (5.22 %), total soluble solids (8.14 %), and solution pH (6.79) at the end of storage also indicated that the GA-OGO-5 coating presented the best effectiveness for enhancing the storability of avocado as compared to uncoated and GA-treated fruit. Therefore, the GA-OGO coating has been considered as an alternative post-harvest technique to enhance the avocado storability and could be further commercialized for industry application.
Collapse
Affiliation(s)
- Bao-Tran Tran Pham
- Institute of Technology Application and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Hong-Nhung Thi Hoang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Viet Nam
| | | | - Quynh Thi Phuong Bui
- Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Viet Nam
| | - Thanh Khoa Phung
- Department of Chemical Engineering, School of Chemical and Environmental Engineering, International University, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh, Viet Nam
| | - Thuong Thi Nguyen
- Institute of Technology Application and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
18
|
Popyrina TN, Demina TS, Akopova TA. Polysaccharide-based films: from packaging materials to functional food. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2736-2747. [PMID: 37711569 PMCID: PMC10497487 DOI: 10.1007/s13197-022-05595-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 09/16/2023]
Abstract
A wider application of naturally derived polysaccharides is of great interest as materials for food packaging industry. Biocompatibility and biodegradability of polysaccharide-based films and coatings ally with a shift from application of non-biodegradable petrochemical polymers to the more environmentally friendly ones. Due to a range of inherent features in chemical structure and bioactivity, the polysaccharide materials could bring additional functionality to food packaging. The chelating ability of the polysaccharides provides also their application as carriers of additional active components, such as nanoparticles, essential oils and polyphenols. The improved physicochemical, antibacterial and antioxidant properties of the filled films allows to consider the edible polysaccharide-based films as functional food products. This review is aimed at analysis of evolution of polysaccharide-based food packaging materials from inert one starting from cellophane to recent research works on development of multicomponent polysaccharide-based functional food films and coatings.
Collapse
Affiliation(s)
- Tatiana N. Popyrina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya str., Moscow, Russia 117393
| | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya str., Moscow, Russia 117393
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow, Russia 119991
- Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, Moscow, Russia 125993
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya str., Moscow, Russia 117393
| |
Collapse
|
19
|
Szerlauth A, Varga S, Szilagyi I. Molecular Antioxidants Maintain Synergistic Radical Scavenging Activity upon Co-Immobilization on Clay Nanoplatelets. ACS Biomater Sci Eng 2023; 9:5622-5631. [PMID: 37738637 PMCID: PMC10565722 DOI: 10.1021/acsbiomaterials.3c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Unbalanced levels of reactive oxygen species (ROS) result in oxidative stress, affecting both biomedical and industrial processes. Antioxidants can prevent ROS overproduction and thus delay or inhibit their harmful effects. Herein, activities of two molecular antioxidants (gallic acid (GA), a well-known phenolic compound, and nicotinamide adenine dinucleotide (NADH), a vital biological cofactor) were tested individually and in combination to assess possible synergistic, additive, or antagonistic effects in free radical scavenging and in redox capacity assays. GA was a remarkable radical scavenger, and NADH exhibited moderate antioxidant activity, while their combination at different molar ratios led to a synergistic effect since the resulting activity was superior to the sum of the individual GA and NADH activities. Their coimmobilization was performed on the surface of delaminated layered double hydroxide clay nanoplatelets by electrostatic interactions, and the synergistic effect was maintained upon such a heterogenization of these molecular antioxidants. The coimmobilization of GA and NADH expands the range of their potential applications, in which separation of antioxidant additives is important during treatments or manufacturing processes.
Collapse
Affiliation(s)
- Adel Szerlauth
- MTA-SZTE Lendület
Biocolloids Research Group, Department of Physical Chemistry and Materials
Science, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
| | - Szilárd Varga
- MTA-SZTE Lendület
Biocolloids Research Group, Department of Physical Chemistry and Materials
Science, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
| | - Istvan Szilagyi
- MTA-SZTE Lendület
Biocolloids Research Group, Department of Physical Chemistry and Materials
Science, Interdisciplinary Excellence Centre, University of Szeged, Szeged H-6720, Hungary
| |
Collapse
|
20
|
Barbosa ML, de Oliveira LM, Paiva R, Dametto AC, Dias DDS, Ribeiro CA, Wrona M, Nerín C, Barud HDS, Cruz SA. Evaluation the Potential of Onion/Laponite Composites Films for Sustainable Food Packaging with Enhanced UV Protection and Antioxidant Capacity. Molecules 2023; 28:6829. [PMID: 37836672 PMCID: PMC10574679 DOI: 10.3390/molecules28196829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Agro-industrial residues have attracted attention for their applications in the field of biodegradable packaging. Recently, our research group has developed onion-based films with promising properties for this type of application due to their non-toxicity, biocompatibility and biodegradability. Therefore, in this study, we investigated the effect of Laponite clay concentration on the physicochemical and antioxidant properties of the onion-based films, which were prepared by a casting method. The XRD and FTIR data confirm the presence of the mineral clay in the onion-based films. These findings are consistent with those obtained from FE-SEM analysis, which revealed the presence of typical Laponite grains. In terms of wettability, the results show that the clay decreases the hydrophilic character of the material but slightly increases the water vapor permeation. Optical characterization revealed that the materials exhibited zero transmittance in the UV region and increased opacity in the visible region for composites containing 5% and 10% Laponite. Furthermore, the antioxidant test demonstrated higher antioxidant potential in the composites compared to the pure films. Consequently, these results suggest that the formation of Laponite and onion composites could be an essential strategy for developing natural polymers in the field of food contact packaging.
Collapse
Affiliation(s)
- Maciel L. Barbosa
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil; (M.L.B.); (R.P.)
| | - Leticia M. de Oliveira
- Department of Physics, Federal University of the São Francisco Valley (UNIVASF), Petrolina 56300-000, Brazil;
| | - Robert Paiva
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil; (M.L.B.); (R.P.)
| | | | - Diogenes dos S. Dias
- BioSmart Nanotechnology Ltda., Araraquara 14808-162, Brazil; (A.C.D.); (D.d.S.D.)
| | - Clovis A. Ribeiro
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, Brazil;
| | - Magdalena Wrona
- Engineering Research Institute of Aragon (I3A), University of Zaragoza, María de Luna 3, 50018 Zaragoza, Spain;
| | - Cristina Nerín
- Engineering Research Institute of Aragon (I3A), University of Zaragoza, María de Luna 3, 50018 Zaragoza, Spain;
| | - Hernane da S. Barud
- Laboratory of Biopolymers and Biomaterials (BIOPOLMAT), University of Araraquara (UNIARA), Araraquara 14801-320, Brazil;
| | - Sandra A. Cruz
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil; (M.L.B.); (R.P.)
| |
Collapse
|
21
|
Hu J, Jiao W, Chen Q, Liu B, Fu M. Preparation of a multilayer antibacterial film and its application for controlling postharvest disease in temperate fruit (including apple, pear, and peach) under ambient storage. Food Sci Nutr 2023; 11:5188-5198. [PMID: 37701234 PMCID: PMC10494645 DOI: 10.1002/fsn3.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 09/14/2023] Open
Abstract
The objective of this study was to provide formulation of a new multilayer antibacterial film and to investigate the optimal use concentration of chitosan and carboxymethyl cellulose in the range from 0.5% to 2%, as well as its application for controlling postharvest disease in temperate fruit (apple, pear, and peach). The multilayer antibacterial film used chitosan (CS) and carboxymethyl cellulose (CMC) as polysaccharide macromolecule, lemon essential oil (LEO) as active agent, and ε-polylysine (ε-PL) as the main antibacterial ingredient. The results showed that the physical properties of the self-assembled film were adjusted by the electrostatic layer-by-layer (LbL) deposition. Fourier transform infrared (FT-IR) analysis and thermogravimetric (TGA) revealed that hydrogen bonds were generated during the self-assembly of CS-LEO/CMC-ε-PL film, resulting in changes in intermolecular interactions and thermal stability. Furthermore, compared with CS-LEO single-layer film, the multilayer film exhibited higher retention rate of LEO. In vivo test, the self-assembled film significantly inhibited the infection of postharvest pathogenic fungi including Penicillium expansum (P. expansum) and Alternaria alternata (A. alternata) on fruit. To summarize, the CS-LEO/CMC-ε-PL LbL self-assembly coating notably controlled postharvest pathogen rot on fruit, and reduced the loss of fruit during storage and transportation. Our results suggest that the polysaccharide-based edible coating prepared in this work may offer an alternative to synthetic waxes.
Collapse
Affiliation(s)
- Jingjing Hu
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Wenxiao Jiao
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Qingmin Chen
- College of Food Science and EngineeringShandong Agricultural and Engineering UniversityJinanChina
| | - Bangdi Liu
- Academy of Agricultural Planning and EngineeringMinistry of Agriculture and Rural AffairsBeijingChina
| | - Maorun Fu
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| |
Collapse
|
22
|
Yan X, Wardana AA, Wigati LP, Meng F, Leonard S, Nkede FN, Tanaka F, Tanaka F. Characterization and bio-functional performance of chitosan/poly (vinyl alcohol)/trans-cinnamaldehyde ternary biopolymeric films. Int J Biol Macromol 2023; 246:125680. [PMID: 37406895 DOI: 10.1016/j.ijbiomac.2023.125680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Bioactive films of chitosan (CS)/polyvinyl alcohol (PVA)/trans-cinnamaldehyde (CIN) were prepared by co-blending, and the impact of varying concentrations (0.5, 1.0 and 1.5 %) of CIN on the physicochemical properties of the ternary films was investigated. The ATR/FT-IR analysis revealed that the bioactive film is modulated by Schiff base (C=N) and hydrogen-bond interactions of CS, PVA, and CIN. Inclusion of CIN into the film improved mechanical properties with tensile strength increased from 0.5 % (68.52 MPa) to 1.5 % (76.95 MPa). The presence of CIN within the CS/PVA film also remarkably affected oxygen permeability and improved light transmittance. Additionally, the water barrier and contact angle properties were improved with increasing CIN content. The morphology of the CIN-containing films appeared non-stratified and dense when observed by SEM and AFM. Moreover, spore germination and in vitro assays confirmed strong antifungal activity of the CIN-containing film against P. italicum (~90 %) and B. cinerea (~85 %). The ternary films also exhibited excellent antioxidant activity, as evidenced by DPPH radical scavenging activity (31.43 %) and ferric reducing power (OD700 nm = 0.172) at the highest CIN concentration tested. Thus, this bioactive CIN films are proposed as a versatile packaging material for the food industry.
Collapse
Affiliation(s)
- Xirui Yan
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Ata Aditya Wardana
- Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Laras Putri Wigati
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Fanze Meng
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Sergio Leonard
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Francis Ngwane Nkede
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Fumina Tanaka
- Faculty of Agriculture, Kyushu University, W5-874, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan.
| | - Fumihiko Tanaka
- Faculty of Agriculture, Kyushu University, W5-874, 744, Motooka, Nishi-Ku, Fukuoka-shi, Fukuoka 819-0395, Japan
| |
Collapse
|
23
|
Li R, Zhuang D, Feng H, Wang S, Zhu J. Novel “all-in-one” multifunctional gelatin-based film for beef freshness maintaining and monitoring. Food Chem 2023; 418:136003. [PMID: 36996647 DOI: 10.1016/j.foodchem.2023.136003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
In this study, a novel multifunctional food packaging was developed by incorporating alizarin (AL) and oregano essential oil Pickering emulsion (OEOP) into a gelatin film matrix. The incorporation of OEOP and alizarin improved the UV-vis resistance property of the film, blocking almost all UV-vis light (decreasing 71.80% to 0.06% at 400 nm). The elongation-at-break (EBA) was 4.02 times of that of gelatin film, indicating the improved mechanical properties of the films. This film showed a significant color change from yellow to purple in the pH range of 3-11 and a considerable sensitivity to ammonia vapor within 4 min, which was attributed to the deprotonation of the alizarin molecule. The film's antioxidant and dynamic antimicrobial capacity was significantly improved owing to the sustained release effect of OEOP. Furthermore, the multifunctional film effectively slowed down the beef spoilage rate and provided real-time visual monitoring of freshness through color changes. Additionally, the color change of the beef quality was linked to the RGB values of the film through a smartphone APP. Overall, this work broadens the possibilities of applications in the food packaging industry for multifunctional food packaging film with preservation and monitoring functions.
Collapse
|
24
|
Jafarzadeh S, Forough M, Kouzegaran VJ, Zargar M, Garavand F, Azizi-Lalabadi M, Abdollahi M, Jafari SM. Improving the functionality of biodegradable food packaging materials via porous nanomaterials. Compr Rev Food Sci Food Saf 2023; 22:2850-2886. [PMID: 37115945 DOI: 10.1111/1541-4337.13164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023]
Abstract
Non-biodegradability and disposal problems are the major challenges associated with synthetic plastic packaging. This review article discusses a new generation of biodegradable active and smart packaging based on porous nanomaterials (PNMs), which maintains the quality and freshness of food products while meeting biodegradability requirements. PNMs have recently gained significant attention in the field of food packaging due to their large surface area, peculiar structures, functional flexibility, and thermal stability. We present for the first time the recently published literature on the incorporation of various PNMs into renewable materials to develop advanced, environmentally friendly, and high-quality packaging technology. Various emerging packaging technologies are discussed in this review, along with their advantages and disadvantages. Moreover, it provides general information about PNMs, their characterization, and fabrication methods. It also briefly describes the effects of different PNMs on the functionality of biopolymeric films. Furthermore, we examined how smart packaging loaded with PNMs can improve food shelf life and reduce food waste. The results indicate that PNMs play a critical role in improving the antimicrobial, thermal, physicochemical, and mechanical properties of natural packaging materials. These tailor-made materials can simultaneously extend the shelf life of food while reducing plastic usage and food waste.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Civil and Mechanical Engineering, Curtin University, Bentley, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Çankaya, Turkey
| | | | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Ireland
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
25
|
Kumar L, Deshmukh RK, Hakim L, Gaikwad KK. Halloysite Nanotube as a Functional Material for Active Food Packaging Application: A Review. FOOD BIOPROCESS TECH 2023:1-14. [PMID: 37363381 PMCID: PMC10151217 DOI: 10.1007/s11947-023-03092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/07/2023] [Indexed: 06/28/2023]
Abstract
Halloysite nanotubes (HNTs) are naturally occurring nanomaterials with a tubular shape and high aspect ratio, a promising functional additive for active food packaging applications. HNTs have been shown to possess unique properties such as high surface area, thermal stability, and biocompatibility, making them attractive for active food packaging materials. This review summarizes recent research on the use of HNTs as functional additives in active food packaging applications, including antimicrobial packaging, ethylene scavenging packaging, moisture, and gas barrier packaging. The potential benefits and challenges associated with the incorporation of HNTs into food packaging materials are discussed. The various modification methods, such as the physical, chemical, biological, and electrostatic methods, along with their impact on the properties of HNTs, are discussed. The advantages and challenges associated with each modification approach are also evaluated. Overall, the modification of HNTs has opened new possibilities for the development of advanced packaging materials with improved performance for various functional food packaging materials with enhanced properties and extended shelf life.
Collapse
Affiliation(s)
- Lokesh Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Lokman Hakim
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| | - Kirtiraj K. Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand India
| |
Collapse
|
26
|
Yao L, Man T, Xiong X, Wang Y, Duan X, Xiong X. HPMC films functionalized by zein/carboxymethyl tamarind gum stabilized Pickering emulsions: Influence of carboxymethylation degree. Int J Biol Macromol 2023; 238:124053. [PMID: 36934825 DOI: 10.1016/j.ijbiomac.2023.124053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Pickering emulsions are promising systems to act as carriers of active hydrophobic components, and to improve compatibility and the water vapor barrier properties of bio-based films. This study aimed to investigated the effects of cinnamon essential oil Pickering emulsions (CEOEs) using zein/carboxymethyl tamarind gum as stabilizers on the mechanical, barrier, antibacterial and antioxidant properties of Hydroxypropyl methyl cellulose (HPMC) films, and assessed the influence of carboxymethylation degree. In addition, the effect of the packaging was studied on the shelf life of cherry tomatoes. Results showed that the droplet size reduced approximately from 93.03 to 10.59 μm with the increasing degree of substitution (DS), greatly facilitating the droplet uniform distribution in film matrix. Moreover, with the addition of CEOEs, significant increase was observed with the tensile strength from 8.46 to 25.41 MPa, and the water vapor permeability decreased from 6.18 × 10-10 to 4.24 × 10-10 g·m-1·s-1·Pa-1. The films exhibited good UV barrier properties without sacrificing the transparency after adding CEO. Furthermore, the antibacterial and antioxidant activities of the prepared films have also been greatly improved. Consequently, the CEOEs was an ideal alternative for incorporation with HPMC based films for increasing the shelf life of cherry tomatoes.
Collapse
Affiliation(s)
- Lili Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Tao Man
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yicheng Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xinxin Duan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
27
|
Shahabi N, Soleimani S, Ghorbani M. Investigating functional properties of halloysite nanotubes and propolis used in reinforced composite film based on soy protein/basil seed gum for food packaging application. Int J Biol Macromol 2023; 231:123350. [PMID: 36681220 DOI: 10.1016/j.ijbiomac.2023.123350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the effect of halloysite nanotubes (HNTs) on the physicochemical characteristics of the soy protein isolated/basil seed gum (SPI/BSG) film activated with propolis (PP). The obtained results of scanning electron microscope (SEM), thermal gravimetric analysis (TGA), and tensile investigations illustrated that the addition of HNTs as nanofiller led to positive changes in the morphology, thermal stability, and mechanical characteristics of SPI/BSG films. The barrier properties of films considerably decreased with incorporation of HNTs. Furthermore, the encapsulation of PP as bioactive agent into the produced films significantly increased (P < 0.05) the antioxidant potential of the samples in DPPH radical-scavenging activity assays. The antibacterial effects of film also significantly increased (P < 0.05) after the encapsulation of PP. In conclusion, the produced films illustrated acceptable efficiency for usage in food packaging system.
Collapse
Affiliation(s)
- Nasim Shahabi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Sajad Soleimani
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Wang SY, Herrera-Balandrano DD, Jiang YH, Shi XC, Chen X, Liu FQ, Laborda P. Application of chitosan nanoparticles in quality and preservation of postharvest fruits and vegetables: A review. Compr Rev Food Sci Food Saf 2023; 22:1722-1762. [PMID: 36856034 DOI: 10.1111/1541-4337.13128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
Chitosan is an interesting alternative material for packaging development due to its biodegradability. However, its poor mechanical properties and low permeability limit its actual applications. Chitosan nanoparticles (CHNPs) have emerged as a suitable solution to overcome these intrinsic limitations. In this review, all studies regarding the use of CHNPs to extend the shelf life and improve the quality of postharvest products are covered. The characteristics of CHNPs and their combinations with essential oils and metals, along with their effects on postharvest products, are compared and discussed throughout the manuscript. CHNPs enhanced postharvest antioxidant capacity, extended shelf life, increased nutritional quality, and promoted tolerance to chilling stress. Additionally, the CHNPs reduced the incidence of postharvest phytopathogens. In most instances, smaller CHNPs (<150 nm) conferred higher benefits than larger ones (>150 nm). This was likely a result of the greater plant tissue penetrability and surface area of the smaller CHNPs. The CHNPs were either applied after preparing an emulsion or incorporated into a film, with the latter often exhibiting greater antioxidant and antimicrobial activities. CHNPs were used to encapsulate essential oils, which could be released over time and may enhance the antioxidant and antimicrobial properties of the CHNPs. Even though most applications were performed after harvest, preharvest application had longer lasting effects.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
29
|
Hagh HB, Unsworth LD, Doustdar F, Olad A. Fibrous electrospun polycaprolactone nanomat reinforced with halloysite nanotubes: Preparation and study of its potential application as tissue engineering scaffold. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Haleh Bakhtkhosh Hagh
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Larry D. Unsworth
- Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Fatemeh Doustdar
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
30
|
Liu S, Chen Z, Zhang H, Li Y, Maierhaba T, An J, Zhou Z, Deng L. Comparison of eugenol and dihydromyricetin loaded nanofibers by electro-blowing spinning for active packaging. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Singhi H, Kumar L, Sarkar P, Gaikwad KK. Chitosan based antioxidant biofilm with waste Citrus limetta pomace extract and impregnated with halloysite nanotubes for food packaging. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
32
|
Zhao R, Chen J, Yu S, Niu R, Yang Z, Wang H, Cheng H, Ye X, Liu D, Wang W. Active chitosan/gum Arabic-based emulsion films reinforced with thyme oil encapsulating blood orange anthocyanins: Improving multi-functionality. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
33
|
Fabrication and Evaluation of Basil Essential Oil-Loaded Halloysite Nanotubes in Chitosan Nanocomposite Film and Its Application in Food Packaging. Antibiotics (Basel) 2022; 11:antibiotics11121820. [PMID: 36551477 PMCID: PMC9774598 DOI: 10.3390/antibiotics11121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing health concerns regarding the use of plasticware have led to the development of ecofriendly biodegradable packaging film from natural polymer and food additives. In the present study, basil essential oil (BEO) loaded halloysite nanotubes (HNTs) composite films were synthesized using a solution casting method. The effects of BEO and nanotube concentration on the mechanical, physical, structural, barrier, and antioxidant properties of films were evaluated. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) demonstrated well-dispersed HNTs and BEO in tailored composite films. The addition of BEO in Chitosan (Ch) film caused darkening of the film color; furthermore, the incorporation of HNTs in varied concentrations increased opaqueness in Ch/BEO film. The Ch/BEO film, upon adding HNTs 5-30 wt%, exhibited a corresponding increase in the film thickness (0.108-0.135 mm) when compared with the Ch/BEO film alone (0.081 mm). The BEO-loaded HNTs composite films displayed reduced moisture content and characteristic barrier and UV properties. The Ch/BEO film with 15 wt% HNTs was found to have enhanced antioxidant activity. The Ch/BEO/HNTs composite also managed to prevent broccoli florets from losing weight and firmness during storage. The enhanced barrier and antioxidant qualities of the nanocomposite film suggest its potential application in the food processing and packaging sector. This is the first ever report on the fabrication of nanocomposite film using BEO and HNTs for food packaging. The low production cost and ecofriendly approach make the film acceptable for further research and commercialization thereafter.
Collapse
|
34
|
Wang D, Wang X, Sun Z, Liu F, Wang D. A fast-response visual indicator film based on polyvinyl alcohol/methylcellulose/black wolfberry anthocyanin for monitoring chicken and shrimp freshness. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
35
|
Bhowmik S, Agyei D, Ali A. Bioactive chitosan and essential oils in sustainable active food packaging: Recent trends, mechanisms, and applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Wang K, Wu L, Li Y, Li H. Preparation and characterization of chitosan/halloysite nanotubes composite film with ethylene scavenging and gas resistance for active food packaging. J Food Saf 2022. [DOI: 10.1111/jfs.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Kun Wang
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming China
| | - Linhuanyi Wu
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming China
| | - Yongshi Li
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming China
| | - Hui Li
- Faculty of Agriculture and Food Kunming University of Science and Technology Kunming China
| |
Collapse
|
37
|
In Situ Polymerization of Linseed Oil-Based Composite Film: Enhancement of Mechanical and Water Barrier Properties by the Incorporation of Cinnamaldehyde and Organoclay. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228089. [PMID: 36432190 PMCID: PMC9699561 DOI: 10.3390/molecules27228089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Linseed oil-based composite films were prepared with cinnamaldehyde (Cin) using a modified clay (organoclay) through in situ polymerization, which is the result of the interaction between Cin and organoclay. The incorporation of organoclay reduces the polymer chain's mobility and, therefore, increases the thermal stability of the composite films. In some experimental conditions, the clay is located both inside and on the surface of the film, thus, affecting the mechanical and thermal properties as well as the surface properties of the composite films. The incorporation of organoclay decreases the water contact angle of the composite film by more than 15%, whatever the amount of cinnamaldehyde. However, the incorporation of cinnamaldehyde has the opposite effect on film surface properties. Indeed, for the water vapor permeability (WVP), the effect of cinnamaldehyde on the film barrier properties is much higher in the presence of organoclay. The incorporation of hydrophobic compounds into the polymer films reduces the water content, which acts as a plasticizer and, therefore, decreases the WVP by more than 17%. Linseed oil has a natural antioxidant activity (~97%) due to the higher content of unsaturated fatty acids, and this activity increased with the amount of organoclay and cinnamaldehyde.
Collapse
|
38
|
Lee MH, In Yong H, Kim YJ, Choi YS. High-pressure induced structural modification of porcine myofibrillar protein and its relation to rheological and emulsifying properties. Meat Sci 2022; 196:109032. [DOI: 10.1016/j.meatsci.2022.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
39
|
Amini M, Rasouli M, Ghoranneviss M, Momeni M, Ostrikov KK. Synergistic cellulose-based nanocomposite packaging and cold plasma decontamination for extended saffron preservation. Sci Rep 2022; 12:18275. [PMID: 36316404 PMCID: PMC9619018 DOI: 10.1038/s41598-022-23284-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
Sterilization of saffron packaging and maintaining the quality of saffron content are the main priorities in saffron preservation. Common modalities do not offer lasting saffron preservation and it is urgent to develop novel packaging approaches from renewable resources and prevent packaging waste. Here, simultaneous decontamination and quality maintenance of saffron is demonstrated, for the first time, through the synergistic application of nano-clay-loaded carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) nanocomposites (CNCs) and cold plasmas (CP). Compared to the separate uses of CP and CMC/PVA/nano clay, our results confirm the synergies between CP and CMC/PVA/nano clay cause complete inactivation of Escherichia coli bacteria, while not significantly affecting the concentrations of the essential saffron components (safranal, crocin, and picrocrocin). Overall, the CP-treated CMC/PVA/nano clay fosters saffron preservation, through contamination removal and quality maintenance of the food product. The synergistic application of CP and CMC/PVA/nano clay thus represents a promising strategy for packaging, sterilization, and preservation of high-value food products.
Collapse
Affiliation(s)
- Maryam Amini
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Rasouli
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran ,grid.412265.60000 0004 0406 5813Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
| | - Mahmood Ghoranneviss
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Momeni
- grid.440804.c0000 0004 0618 762XFaculty of Physics, Shahrood University of Technology, Semnan, Iran
| | - Kostya Ken Ostrikov
- grid.1024.70000000089150953School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
40
|
Antimicrobial film based on poly(lactic acid) and natural halloysite nanotubes for controlled cinnamaldehyde release. Int J Biol Macromol 2022; 224:848-857. [DOI: 10.1016/j.ijbiomac.2022.10.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
41
|
Bangar SP, Whiteside WS, Dunno KD, Cavender GA, Dawson P. Fabrication and characterization of active nanocomposite films loaded with cellulose nanocrystals stabilized Pickering emulsion of clove bud oil. Int J Biol Macromol 2022; 224:1576-1587. [DOI: 10.1016/j.ijbiomac.2022.10.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
42
|
Wang LS, Gopalakrishnan S, Gupta A, Banerjee R, Lee YW, Rotello VM. Porous Polymerized High Internal Phase Emulsions Prepared Using Proteins and Essential Oils for Antimicrobial Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11675-11682. [PMID: 36098991 DOI: 10.1021/acs.langmuir.2c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High internal phase emulsions (HIPEs) provide a versatile platform for encapsulating large volumes of therapeutics that are immiscible in water. A stable scaffold is obtained by polymerizing the external phase, resulting in polyHIPEs. However, fabrication of polyHIPEs usually requires using a considerable quantity of surfactants along with nonbiocompatible components, which hinders their biological applications, e.g., drug-eluting devices. We describe here a straightforward method for generating porous biomaterials by using proteins as both the emulsifier and the building blocks for the fabrication of polyHIPEs. We demonstrate the versatility of this method by using different essential oils as the internal phase. After the gelation of protein building blocks is triggered by the addition of reducing agents, a stable protein hydrogel containing essential oils can be formed. These oils can be either extracted to obtain protein-based porous scaffolds or slowly released for antimicrobial applications.
Collapse
Affiliation(s)
- Li-Sheng Wang
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Sanjana Gopalakrishnan
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Ruptanu Banerjee
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
43
|
Chitosan Na-montmorillonite films incorporated with citric acid for prolonging cherry tomatoes shelf life. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Lamarra J, Rivero S, Pinotti A. Functionalized biomaterials based on poly(vinyl alcohol) and chitosan as a vehicle for controlled release of cabreuva essential oil. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Javier Lamarra
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT‐CONICET La Plata, CIC, UNLP) La Plata Argentina
- Facultad de Ciencias Exactas UNLP La Plata Argentina
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT‐CONICET La Plata, CIC, UNLP) La Plata Argentina
- Facultad de Ciencias Exactas UNLP La Plata Argentina
| | - Adriana Pinotti
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT‐CONICET La Plata, CIC, UNLP) La Plata Argentina
- Facultad de Ingeniería UNLP La Plata Argentina
| |
Collapse
|
45
|
Zehra A, Wani SM, Bhat TA, Jan N, Hussain SZ, Naik HR. Preparation of a biodegradable chitosan packaging film based on zinc oxide, calcium chloride, nano clay and poly ethylene glycol incorporated with thyme oil for shelf-life prolongation of sweet cherry. Int J Biol Macromol 2022; 217:572-582. [PMID: 35810854 DOI: 10.1016/j.ijbiomac.2022.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/16/2022] [Accepted: 07/02/2022] [Indexed: 11/05/2022]
Abstract
This study includes development of chitosan-based films with incorporated essential thyme oil and different combinations of cross-linkers viz., ZnO, CaCl2, NC, and PEG for the safe storage of sweet cherries. The resulting films stored with sweet cherries were analyzed for different physicochemical and antimicrobial properties. Incorporation of ZnO, CaCl2, NC, and PEG in chitosan-based films maintained fruit quality by conserving higher total soluble solids, titratable acidity, and reduced weight loss. The combined ZnO + CaCl2 + NC + PEG in chitosan-based films also suppressed microbial activity. The sensorial quality of fruits stored with CH + ZnO + CaCl2 + NC + PEG treatment was also stable during storage. In conclusion, the combined CH + ZnO + CaCl2 + NC + PEG with added thyme oil application is an effective approach to maintain the postharvest quality and could be an alternative to increase the shelf life of sweet cherries, besides decreasing environmental impacts of non-biodegradable packages.
Collapse
Affiliation(s)
- Aiman Zehra
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, JandK 190025, India
| | - Sajad Mohd Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, JandK 190025, India.
| | - Tashooq Ahmad Bhat
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, JandK 190025, India.
| | - Nusrat Jan
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, JandK 190025, India
| | - Syed Zameer Hussain
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, JandK 190025, India
| | - Haroon Rashid Naik
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, JandK 190025, India
| |
Collapse
|
46
|
Anis A. Essential oils and chitosan based polymeric edible films and coatings as alternative to chemical preservatives. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2039187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Arfat Anis
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Synthesis and characterization of poly(lactic acid)/clove essential oil/alkali-treated halloysite nanotubes composite films for food packaging applications. Int J Biol Macromol 2022; 216:927-939. [DOI: 10.1016/j.ijbiomac.2022.07.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022]
|
48
|
Nasr AM, Mortagi YI, Elwahab NHA, Alfaifi MY, Shati AA, Elbehairi SEI, Elshaarawy RFM, Kamal I. Upgrading the Transdermal Biomedical Capabilities of Thyme Essential Oil Nanoemulsions Using Amphiphilic Oligochitosan Vehicles. Pharmaceutics 2022; 14:pharmaceutics14071350. [PMID: 35890246 PMCID: PMC9317589 DOI: 10.3390/pharmaceutics14071350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: Thymus vulgaris L. (thyme) essential oil (TEO) has gained much attention because of its long history of medicinal usage. However, the lack of precise chemical profiling of the TEO and methods to optimize the bioactivity and delivery of its constituents has hampered its research on quality control and biological function; (2) Methods: The current study aimed to analyze the TEO’s chemical composition using the GC-MS method and identify its key components. Another objective of this work is to study the impact of the protective layer of amphiphilic oligochitosan (AOC) on the physicochemical stability and transdermal potentials of TEO multilayer nanoemulsions formulated by the incorporation of TEO, Tween80, lecithin (Lec), and AOC; (3) Results: The AOC protective layer significantly improved the stability of TEO-based NEs as revealed by the constancy of their physicochemical properties (particle size and zeta potential) during storage for a week. Excessive fine-tuning of thyme extract NEs and the AOC protective layer’s persistent positive charge have been contributed to the thyme extract’s improved anti-inflammatory, transdermal, and anti-melanoma potentials; (4) Conclusions: the AOC-coated NEs could offer novel multifunctional nanoplatforms for effective transdermal delivery of lipophilic bioactive materials.
Collapse
Affiliation(s)
- Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; (A.M.N.); (I.K.)
| | - Yasmin I. Mortagi
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, Egypt;
| | - Nashwa H. Abd Elwahab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia 41636, Egypt;
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (M.Y.A.); (A.A.S.); (S.E.I.E.)
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (M.Y.A.); (A.A.S.); (S.E.I.E.)
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (M.Y.A.); (A.A.S.); (S.E.I.E.)
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
| | - Reda F. M. Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, Suez 43533, Egypt
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: or
| | - Islam Kamal
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; (A.M.N.); (I.K.)
| |
Collapse
|
49
|
Romruen O, Kaewprachu P, Karbowiak T, Rawdkuen S. Development of Intelligent Gelatin Films Incorporated with Sappan ( Caesalpinia sappan L.) Heartwood Extract. Polymers (Basel) 2022; 14:2487. [PMID: 35746061 PMCID: PMC9228210 DOI: 10.3390/polym14122487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
This study aimed to develop intelligent gelatin films incorporated with sappan (Caesalpinia sappan L.) heartwood extracts (SE) and characterize their properties. The intelligent gelatin film was prepared through a casting method from gelatin (3%, w/v), glycerol (25% w/w, based on gelatin weight), and SE at various concentrations (0, 0.25, 0.50, 0.75, and 1.00%, w/v). The thickness of the developed films ranged from 43 to 63 μm. The lightness and transparency of the films decreased with the increasing concentration of SE (p < 0.05). All concentrations of gelatin films incorporated with SE exhibited great pH sensitivity, as indicated by changes in film color at different pH levels (pH 1−12). Significant decreases in tensile strength were observed at 1.00% SE film (p < 0.05). The addition of SE reduced gelatin films’ solubility and water vapor permeability (p < 0.05). The chemical and physical interactions between gelatin and SE affected the absorption peaks in FTIR spectra. SE was affected by increased total phenolic content (TPC) and antioxidant activity of the gelatin film, and the 1.00% SE film showed the highest TPC (15.60 mg GAE/g db.) and antioxidant activity (DPPH: 782.71 μM Trolox/g db. and FRAP: 329.84 mM/g db.). The gelatin films combined with SE could inhibit S. aureus and E. coli, while the inhibition zone was not observed for E. coli; it only affected the film surface area. The result suggested that gelatin films incorporated with SE can be used as an intelligent film for pH indicators and prolong the shelf life of food due to their antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Orapan Romruen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Pimonpan Kaewprachu
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand;
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Thomas Karbowiak
- UMR PAM-Food and Wine Science & Technology, Agrosup Dijon, Université de Bourgogne Franche-Comté, Esplanade Erasme, 21000 Dijon, France;
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
50
|
Multilayer gelatin/myofibrillar films containing clove essential oil: Properties, protein-phenolic interactions, and migration of active compounds. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|