1
|
Zhang W, Chen L, Bian Q, Wang Z, Wang X, Zhong J. Structures and compositions of the oil/wall interfaces and wall layers affected the properties of spray-dried fish oil powders. Food Res Int 2025; 207:116075. [PMID: 40086961 DOI: 10.1016/j.foodres.2025.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/23/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Herein, 12 types of fish oil emulsions were used to prepare 12 types of spray-dried fish oil powders with three gelatins (positive fish gelatin, positive porcine skin gelatin, and negative bovine skin gelatin), two negative pectins (high and low methoxy pectin), and negative sodium starch octenyl succinate (SSOS). The powders consisted of microscale capsules with bi- or monolayer oil/wall interfaces, and monolayer wall layers. SSOS significantly decreased the bulk and tapped densities of the powders. All powders had low water activities (0.14-0.26). Gelatin/pectin and gelatin/pectin/SSOS powders had encapsulation efficiencies of 45.1 %-75.9 % and 70.1 %-93.0 %, respectively. The oxidative stability depended on the compositions of the powder wall layers. FG+/LMP/SSOS wall layer induced the lowest PV peak value (325 ± 15 mmol/kg oil). BSG-/HMP/SSOS wall layer induced the highest PV peak value (1273 ± 49 mmol/kg oil). The free fatty acid release percentages in the in vitro digestion system depended on the structures and compositions of oil/wall interfaces. FG+@LMP/SSOS interface induced the lowest FFA release percentage (33.9 % ± 1.7 %) and BSG-/HMP interface induced the highest FFA release (79.3 % ± 8.1 %). The results suggested useful information on the effect of oil/wall interfaces and wall layers on the preparation and properties of fish oil powders.
Collapse
Affiliation(s)
- Wenjie Zhang
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Medical Food Laboratory, Shanghai Institute for Pediatric Research, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lijia Chen
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Medical Food Laboratory, Shanghai Institute for Pediatric Research, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiqi Bian
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Medical Food Laboratory, Shanghai Institute for Pediatric Research, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhengquan Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Medical Food Laboratory, Shanghai Institute for Pediatric Research, Shanghai 200092, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
2
|
Yu J, Du G, Yao Y, Liao Q, Zhou T, Cui H, Hussain S, Hayat K, Zhang X, Ho CT. Microencapsulation of glutathione through water/oil emulsification and complex coacervation: Improved encapsulation efficiency, physicochemical stability, and sustained release effect. Food Res Int 2025; 202:115723. [PMID: 39967100 DOI: 10.1016/j.foodres.2025.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
The feasibility of preparing microcapsules of water-soluble ingredient via complex coacervation was explored. Gelatin and gum arabic were used as wall materials to encapsulate glutathione (GSH) through water in oil (W/O) emulsion. Soy lecithin at a concentration of 3 % (w/w) was used as an emulsifier, and the aqueous phase containing 15 % GSH (w/w) was emulsified with soybean oil at a ratio of 5:5 (w/w), which resulted in a stable W/O emulsion. Furthermore, GSH microcapsules produced under optimal conditions, core/wall ratio 1:1, wall material content 1 % (gelatin: gum arabic = 1:1), stirring rate 400 r/min, added 0.25 g glutamine transaminase (TGases) per gram of gelatin, exhibited good morphology, high encapsulation efficiency and yield, which being 92.88 % and 92.10 %, respectively. After comparing the effects of four different oil emulsions on the microencapsulation of GSH, it was found that all had excellent encapsulation efficiency, indicating that no specific oil phase was required for emulsions preparation. GSH microencapsulation by complex coacervation significantly enhanced its stability, reduced the loss ratio of GSH by 23.5 % when capsules were heated at 150 °C for 2 h. Moreover, GSH microencapsulation increased its retention by 23.25 % and 43.88 % during capsules storage at 40 °C and under light exposure, respectively. In addition, GSH microcapsules effectively prevented its degradation during simulated gastrointestinal digestion induced by salivary amylase, pepsin and acidic environments, while rapidly released GSH under trypsin and alkaline environments. This study provided new insights into water-soluble ingredients microencapsulation and its efficient application in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Jingyang Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Ge Du
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Yishun Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Qiuhong Liao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China
| | - Tong Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Heping Cui
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Khizar Hayat
- Department of Natural Sciences, Parkland College, Champaign, IL 61821, USA
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
3
|
Özkan A, Kolcu M, Yilmaz A, Akbaş G. Is Ecological Anxiety Due to Climate Change Associated With the Fertility Preferences of Women? J Eval Clin Pract 2025; 31:e14265. [PMID: 39660613 DOI: 10.1111/jep.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Eco-anxiety caused by climate change, which is a significant public health problem, has negative effects on sexual and reproductive health, and these effects are expected to increase continuously. This study was conducted to determine the relationship between eco-anxiety caused by climate change and the fertility preferences of women. METHODS This descriptive study was conducted between June and August 2024 with 491 women at the ages of 18 to 49 who were registered at a family health center. A personal information form, the Attitudes toward Fertility and Childbearing Scale, and the Hogg Eco-Anxiety Scale were used to collect data. RESULTS The mean total AFCS score of the participants was 66.1 ± 14.2, while their mean total HEAS score was 27.1 ± 7.0. There was a weak negative correlation between the AFCS scores and HEAS scores of the participants (r = -0.124, p = 0.006). CONCLUSION As the ecological anxiety levels of women increased, their attitudes toward childbearing became more negative.
Collapse
Affiliation(s)
- Asibe Özkan
- Department of Obstetrics and Gynecology Nursing, Hamidiye Faculty of Nursing, University of Health Sciences-Turkey, Istanbul, Turkey
| | - Merve Kolcu
- Department of Public Health Nursing, Hamidiye Faculty of Nursing, University of Health Sciences-Turkey, Istanbul, Turkey
| | - Aydan Yilmaz
- Department of Public Health Nursing, Hamidiye Faculty of Nursing, University of Health Sciences-Turkey, Istanbul, Turkey
| | - Gonca Akbaş
- Ministry of Health Giresun Bulancak Family Health Center, Giresun, Turkey
| |
Collapse
|
4
|
Li H, Zong Y, Chen W, Zhao Y, Geng J, He Z, Du R. Microencapsulation of Deer Oil in Soy Protein Isolate-Chitosan Complex Coacervate-Preparation, Characterization, and Simulated Digestion. Foods 2025; 14:181. [PMID: 39856848 PMCID: PMC11764948 DOI: 10.3390/foods14020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Deer oil (DO) is a potentially beneficial functional oil; however, its sensitivity to environmental factors (e.g., oxygen and heat), difficulty in transport, and unfavorable taste hinder practical use. In this study, DO was encapsulated through the cohesive action of soy protein isolate (SPI) and chitosan (CS). The optimal preparation conditions yielded microcapsules with DO's highest encapsulation efficiency (EE) (85.28 ± 1.308%) at an SPI/CS mixing ratio of 6:1 and a core-to-wall ratio of 1:2 at pH 6. Fluorescence and scanning electron microscopy were utilized to examine the microcapsules' structure, showing intact surfaces and effective encapsulation of oil droplets through SPI/CS composite coalescence. Through Fourier transform infrared spectroscopy (FTIR), the electrostatic interplay between SPI and CS was verified during the merging process. At room temperature, the microcapsules resisted core oxidation by reducing gas permeation. In vitro simulated digestion results indicated the microcapsules achieved a slow and sustained release of DO in the intestinal tract. This study further expands the application scope of deer oil and promotes the development of deer oil preparations and functional foods.
Collapse
Affiliation(s)
- Hongyan Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
| | - Jianan Geng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (Y.Z.); (W.C.); (Y.Z.); (J.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Safety, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Zhang W, Chen L, Bian Q, Gong H, Li L, Wang Z, Wang X, Zhong J. Complex coacervation of low methoxy pectin with three types of gelatins for the encapsulation of fish oil. Food Chem 2024; 460:140567. [PMID: 39059327 DOI: 10.1016/j.foodchem.2024.140567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Herein, the complex coacervation of low methoxy pectin (LMP) with three types of gelatins was explored to encapsulate fish oil. The fish oil@gelatin-LMP complex coacervates with good precipitation separation could be obtained at low gelatin concentrations (Fish gelatin, FG: 10-80 mg/mL; porcine skin gelatin, PSG: 10-40 mg/mL; bovine skin gelatin, BSG: 10-80 mg/mL), high gelatin: fish oil mass ratios (4:1-1:1), appropriate gelatin: LMP mass ratios (3:1-12:1 for FG and PSG, 6:1 for BSG), and appropriate pH (FG: 4.90-5.50; PSG: 4.80-5.40; BSG: 4.10-4.50). FG induced similar loading ability, lower encapsulation ability, and comparable peroxide values to the mammalian gelatins. FG induced higher or similar free fatty acid released percentages to mammalian gelatins in the in vitro gastrointestinal model at low gelatin concentrations (10-40 mg/mL). These results provided useful information to understand the protein-polysaccharide complex coacervation to encapsulate oil-based bioactive substances.
Collapse
Affiliation(s)
- Wenjie Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lijia Chen
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qiqi Bian
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huan Gong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Li Li
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhengquan Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
6
|
Wang X, Liu B, Hayat K, Xia S, Cui H, Yu J. Fabrication and characterization of long-lasting antifungal film containing cinnamaldehyde-loaded complex coacervation microcapsules based on gelatin and gum Arabic. Int J Biol Macromol 2024; 281:136603. [PMID: 39419148 DOI: 10.1016/j.ijbiomac.2024.136603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
A novel long-acting antifungal active film was successfully created, as an alternative to conventional chemical food preservatives. The antifungal films incorporated with cinnamaldehyde (CA) microcapsules achieved long-lasting antifungal activity, mitigated yellowing caused by the direct addition of CA, and showed improved flexibility properties. CA multinuclear microcapsules were produced using gelatin with a Bloom value of 200 and gum Arabic, resulting in increased encapsulation efficiency (99.86 %), good dispersibility and enhanced antifungal ability (inhibition zone diameter of 32 mm). These microcapsules can be incorporated into films as a sustained-release antifungal agent. Compared to unencapsulated CA, the addition of 1 % CA microcapsules reduced the ultraviolet transmittance (<36.40 %) of the film while maintaining visible-light transmittance (36.40 %-65.20 %), and improving its elongation at break (23.49 %). The water vapor permeability of the film was not affected by the inclusion of CA microcapsules below 0.25 %. Moreover, microcapsules can enhance the thermal properties of the film. Antifungal films incorporated with 0.5 %-2 % microcapsules may offer better long-acting inhibition against A. brasiliensis. This study presents a new promising pathway for food storage.
Collapse
Affiliation(s)
- Xinshuo Wang
- State Key Laboratory of Food Science and Bioresource, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Bingjie Liu
- State Key Laboratory of Food Science and Bioresource, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH 45056, United States
| | - Shuqin Xia
- State Key Laboratory of Food Science and Bioresource, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Heping Cui
- State Key Laboratory of Food Science and Bioresource, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Bioresource, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
7
|
Fang F, Guan Z, Cai Y, Huang L, Tian Z, Wang J. Fabrication of cellulose nanofibers/epigallocatechin gallate complexes: Insights into structure, antioxidant properties and enhanced emulsion performance. Int J Biol Macromol 2024; 281:136164. [PMID: 39443173 DOI: 10.1016/j.ijbiomac.2024.136164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
In this work, cellulose nanofiber/epigallocatechin gallate (CNF/EGCG) complexes at different ratio were fabricated and the effects on characteristics and stability of emulsions under different oil phase fraction (φ) were investigated. The results of functional groups indicated the formation of CNF/EGCG complexes via hydrogen bond interaction, leading to enhanced antioxidant activity as the proportion of EGCG increased. The complexes exhibited more fragments but pure CNF were more homogenously dispersed in the aqueous phase. Enhancing the EGCG content reduced the droplet size of emulsions firstly before increased, while the apparent viscosity and viscoelastic properties displayed a contrary trend. Emulsion gels with smaller droplet size, higher apparent viscosity, excellent viscoelastic properties and physical stability could be formed at φ = 0.5 while emulsions at φ = 0.3 exhibited slight creaming. The emulsions at lower CNF/EGCG ratio presented better oxidative stability, which was ascribed to the higher antioxidant activity of the complexes and the thicker interfacial film. Results suggest that EGCG could be combined with CNF to improve the emulsion performance and be applied in extending the shelf-life of the emulsion-based products.
Collapse
Affiliation(s)
- Fang Fang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhaoyizhu Guan
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yongjian Cai
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Lihua Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China.
| | - Zijing Tian
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
8
|
Sultan M, Youssef AM, Taha G. Potential antimicrobial cotton fabrics treated with cinnamaldehyde/chitosan-alginate nanocapsules for food packaging purposes. Int J Biol Macromol 2024; 279:135384. [PMID: 39245090 DOI: 10.1016/j.ijbiomac.2024.135384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
In this study, cotton fabric was treated with chitosan/alginate nanocapsules containing cinnamaldehyde (CINA) as a natural antibacterial and antioxidant. Cinnamaldehyde was encapsulated into chitosan/alginate complex coacervate (CINA@CH/ALG). FTIR, XRD, TEM, and SEM were utilized to investigate the formation of CINA@CH/ALG nanocapsules. The weight ratios of chitosan, alginate, and the volume fractions of cinnamaldehyde have a considerable impact on the particle size of the CINA@CH/ALG nanocapsules but no significant effect on the zeta potential. The lowest particle size was 549.8 nm at a weight ratio of 1/1 and 712.6 nm for CH/ALG nanocapsules containing cinnamaldehyde oil fractions of 0.025 mL. The maximum encapsulation (91.4 %) and loading percentage (12.0 %) were achieved with 0.025 mL of cinnamaldehyde. The highest cumulative release was 50.76 % with 0.025 mL of cinnamaldehyde over 300 min. The releasing mechanism of CINA from CINA(0.025)@CH/AG follows the bi-exponential model. The maximum radical scavenging activity was 72.91 % with 0.1 mL of CINA. CINA@CH/ALG nanocapsules were applied to cotton fabric. All tested pathogen strains were sensitive to CINA@CH/ALG, with a CINA volume fraction of 0.025 representing the minimum inhibitory concentration (MIC). Salmonella Typhimurium is the pathogen most prone to cinnamaldehyde with an inhibition zone of 18 mm. The coating of cotton fabric with CINA@CH/ALG has implanted antibacterial and antifungal properties.
Collapse
Affiliation(s)
- Maha Sultan
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Ghada Taha
- Pre-treatment and Finishing of Cellulose-based Textiles Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| |
Collapse
|
9
|
Wang Z, Yu X, Song L, Jiao J, Prakash S, Dong X. Encapsulation of β-carotene in gelatin-gum Arabic-sodium carboxymethylcellulose complex coacervates: Enhancing surimi gel properties and exploring 3D printing potential. Int J Biol Macromol 2024; 278:134129. [PMID: 39069046 DOI: 10.1016/j.ijbiomac.2024.134129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
This study investigates the utilization of functional additives (β-carotene microcapsules) and 3D printing technology for the production of innovative surimi products. The β-carotene microcapsules were prepared using different ratios of gelatin (Ge), gum Arabic (Ara), and carboxymethylcellulose sodium (CMC). Among these ratios, the ratio of 5:5:1 (Ge:Ara:CMC) resulted in more stable microcapsules spherical structures and better environmental stability. Subsequently, different concentrations (5-20 %) of the obtained β-carotene microcapsules were added to surimi samples. As the concentration increased, there was an improvement in the gel strength of the surimi. However, no significant changes were observed when the concentration was 15 % (p > 0.05). All samples exhibited shear thinning behavior. The addition of microcapsules improved the resilience and thixotropy of surimi, making it more suitable for 3D printing applications. The inclusion of β-carotene microcapsules in surimi products not only meets the nutritional needs of consumers, but also provides valuable insights for the development of functional surimi products.
Collapse
Affiliation(s)
- Zheming Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiliang Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Liang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jian Jiao
- Beijing Tong Ren Tang Health (Dalian) Seafoods Co., Ltd., Dalian 116034, Liaoning, China
| | - Sangeeta Prakash
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
10
|
Haro-González JN, de Alba BNS, Morales-Hernández N, Espinosa-Andrews H. Type A gelatin-amidated low methoxyl pectin complex coacervates for probiotics protection: Formation, characterization, and viability. Food Chem 2024; 453:139644. [PMID: 38761735 DOI: 10.1016/j.foodchem.2024.139644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
This work developed and characterized the physicochemical properties of a type A gelatin and amidated low-methoxyl pectin complex coacervate (GA-LMAP-CC) hydrogel and evaluated its suitability for preserving the viability of probiotics under in vitro gastrointestinal conditions. The formation of GA-LMAP-CC was achieved via height electrostatic attraction at pH 3 and a mixing ratio of 1, exhibiting thermoreversible gel behavior. The hydrogel had a porosity of 44% and a water absorption capacity of up to 12 times. Water absorption profiles were obtained at different pH values (2, 5, and 7). The influence of GA-LMAP-CC depended on the medium, which controlled the hydration and water absorption rate. GA-LMAP-CC promoted the viability of B. longum BB536 and L. acidophilus strains under simulated gastrointestinal conditions, thereby enhancing their potential for intestinal colonization. The hydrogel has suitable properties for potential application in food and pharmaceutical areas to encapsulate and preserve probiotics.
Collapse
Affiliation(s)
- José Nabor Haro-González
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero # 1227, 45019, Col. El Bajío del Arenal, Zapopan, Jalisco, Mexico.
| | - Brenda Nathalie Schlienger de Alba
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero # 1227, 45019, Col. El Bajío del Arenal, Zapopan, Jalisco, Mexico.
| | - Norma Morales-Hernández
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero # 1227, 45019, Col. El Bajío del Arenal, Zapopan, Jalisco, Mexico.
| | - Hugo Espinosa-Andrews
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero # 1227, 45019, Col. El Bajío del Arenal, Zapopan, Jalisco, Mexico.
| |
Collapse
|
11
|
Al-Nimry SS, Alkilani AZ, Alda'ajeh NA. Transdermal drug delivery of rizatriptan using microneedles array patch: preparation, characterization and ex-vivo/in-vivo study. Pharm Dev Technol 2024; 29:776-789. [PMID: 39159078 DOI: 10.1080/10837450.2024.2393218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Given the extensive first pass metabolism of rizatriptan in oral administration and its delayed absorption during a migraine attack as a result of gastric stasis, focus has been on transdermal delivery. The main purpose of this study is to prepare and assess transdermal formulation of rizatriptan, loaded on hydrogel microneedles delivery system, to avoid first pass metabolism and also improve its percutaneous permeation rate. Rizatriptan hydrogel microneedles were prepared using micromolding method and evaluated in terms of mechanical strength, encapsulation efficiency, permeation and in-vivo skin absorption. Different formulations of rizatriptan microneedles (F1-F5) were successfully prepared using different concentrations of carboxymethyl cellulose and gelatin type A. Rizatriptan hydrogel microneedles demonstrated favorable mechanical properties, including withstanding insertion forces, thereby enhancing its skin insertion ability. In permeation study, the percent cumulative drug released after 24 h ranged between 93.1-100% which means that microneedles were able to deliver the drug effectively. For in-vivo study, F3 formulation was selected due to its superior characteristics over other formulations as it exhibited the highest swelling capacity, and demonstrated favorable mechanical properties. Furthermore, F3 showcased the most controlled drug release over a 24-hour period. Relative bioavailability of F3 microneedles was 179.59% compared to oral administration based on the AUC0-24. The observed AUC0-24 in F3 microneedles was statistically significant and 1.80 times greater than that in oral administration. The higher rizatriptan level in the microneedle demonstrated adequate drug permeability through the rat skin, suggesting the potential of microneedles for enhanced therapeutic effectiveness.
Collapse
Affiliation(s)
- Suhair S Al-Nimry
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Nareman A Alda'ajeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
12
|
Shen J, Zhang M, Yang C. Microencapsulation of ginger essential oil using mung bean protein isolate-chitosan complex coacervates: Application in the preservation of crab meatballs and the prediction of shelf life. Food Chem 2024; 449:139263. [PMID: 38657553 DOI: 10.1016/j.foodchem.2024.139263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Crab meatballs with more unsaturated fat tend to spoil. Ginger essential oil (GEO) with oxidation resistance was encapsulated into microcapsules (GM) by complex cohesion of mung bean protein isolate (MBPI) and chitosan (CS) in a ratio of 8:1 at pH = 6.4, encapsulation efficiency (EE) and payload (PL) of GM (D50 = 26.16 ± 0.45 μm) with high thermal stability were 78.35 ± 1.02% and 55.43 ± 0.64%. GM (0.6%, w/w) did not interfere with the original flavor of crab meatballs, and lowered values of pH, thiobarbituric acid reactive substances (TBARS) and total bacteria counts (TBC) of the products than those spiked with GEO and the control. The prediction accuracy of the logistic first-order growth kinetic equation in line with TBC (2.84%) was better than that of zero-order and Arrhenius coupled equation based on pH (7.48%) and TBARS (5.94%), but all of them could predict the shelf life of crab meatballs containing GM stored at 4-25 °C.
Collapse
Affiliation(s)
- Ju Shen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Chaohui Yang
- Yechun Food Production and Distribution Co., Ltd, 225000 Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
Gao X, Liu Z, Chen J, Zhu D, Liu H, Li J, Zhao X, Mi H. Encapsulation of luteolin by self-assembled Rha/SSPS/SPI nano complexes: Characterization, stability, and gastrointestinal digestion in vitro. Food Res Int 2024; 188:114532. [PMID: 38823889 DOI: 10.1016/j.foodres.2024.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Luteolin has anti-inflammatory, antioxidant, and anti-tumor functions, but its poor water solubility and stability limit its applications in foods as a functional component. In this study, the nanocomposites loading luteolin (Lut) with soybean protein isolate (SPI), soluble soybean polysaccharide (SSPS) and/or rhamnolipid (Rha) were prepared by layer-by-layer shelf assembly method, and their properties were also evaluated. The results showed that Rha/SPI/Lut had the smallest particle size (206.24 nm) and highest loading ratio (8.03 μg/mg) while Rha/SSPS/SPI/Lut had the highest encapsulation efficiency (82.45 %). Rha interacted with SPI through hydrophobic interactions as the main driving force, while SSPS attached to SPI with only hydrogen bonding. Furthermore, the synergistic effect between Rha and SSPS was observed in Rha/SSPS/SPI/Lut complex, in consequence, it had the best thermal and storage stability, and the slowest release in gastrointestinal digestion. Thus, this approach provided an alternative way for the application of luteolin in functional foods.
Collapse
Affiliation(s)
- Xiaoya Gao
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - Zuxin Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - Jingxin Chen
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China.
| | - Danshi Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China
| | - Xiaohui Zhao
- Department of Oncology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Hongbo Mi
- College of Food Science and Engineering, Bohai University, Jinzhou 121000, China.
| |
Collapse
|
14
|
Sabbagh F, Deshmukh AR, Choi Y, Kim BS. Effect of Microsphere Concentration on Catechin Release from Microneedle Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28276-28289. [PMID: 38788676 DOI: 10.1021/acsami.4c06064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
In this work, microspheres were developed by cross-linking glutaraldehyde in an aqueous gelatin solution with a surfactant and solvent. A poly(vinyl alcohol) (PVA) solution was produced and combined with catechin-loaded microspheres. Different microsphere concentrations (0%, 5%, 10%, and 15%) were applied to the PVA microneedles. The moisture content, particle size, swelling, and drug release percentage of microneedles were studied using various microsphere concentrations. Fourier transform infrared and scanning electron microscopy (SEM) investigations validated the structure of gelatin microspheres as well as their decoration in microneedles. The SEM scans revealed that spherical microspheres with a wrinkled and folded morphology were created, with no physical holes visible on the surface. The gelatin microspheres generated had a mean particle size of 20-30 μm. Ex vivo release analysis indicated that microneedles containing 10% microspheres released the most catechin, with 42.9% at 12 h and 84.4% at 24 h.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Aarti R Deshmukh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yoseok Choi
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
15
|
Wen C, Lin X, Tang J, Fan M, Liu G, Zhang J, Xu X. New perspective on protein-based microcapsules as delivery vehicles for sensitive substances: A review. Int J Biol Macromol 2024; 270:132449. [PMID: 38777020 DOI: 10.1016/j.ijbiomac.2024.132449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Sensitive substances have attracted wide attention due to their rich functional activities, such as antibiosis activities, antioxidant activities and prevent disease, etc. However, the low stability of sensitive substances limits their bioavailability and functional activities. Protein-based microcapsules can encapsulate sensitive substances to improve their adverse properties due to their good stability, strong emulsifying ability and wide source. Therefore, it is necessary to fully elaborate and summarize protein-based microcapsules to maximize their potential benefits in nutritional interventions. The focus of this review is to highlight the classification of protein-based microcapsules. In addition, the principles, advantages and disadvantages of preparation methods for protein-based microcapsules are summarized. Some novel preparation methods for protein-based microcapsules are also emphasized. Moreover, the mechanism of protein-based microcapsules that release sensitive substances in vitro is elucidated and summarized. Furthermore, the applications of protein-based microcapsules are outlined. Protein-based microcapsules can effectively encapsulate sensitive substances, which improve their bioavailability, and provide protective effects during storage and gastrointestinal digestion. In addition, microcapsules can improve the sensory quality of food and enhance its stability. The performance of protein-based microcapsules for delivering sensitive substances is influenced by factors such as protein type, the ratio between protein ratio and the other wall material, the preparation process, etc. Future research should focus on the new composite protein-based microcapsule delivery system, which can be applied to in vivo research and have synergistic effects and precise nutritional functions. In summary, protein-based microcapsules have broader research prospects in the functional foods and nutrition field.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jialuo Tang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Meidi Fan
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
16
|
Tahir A, Ahmad RS, Khan MK, Imran M, Hailu GG. Optimization of Production Parameters for Fabrication of Gum Arabic/Whey Protein-Based Walnut Oil Loaded Nanoparticles and Their Characterization. ACS OMEGA 2024; 9:22839-22850. [PMID: 38826541 PMCID: PMC11137705 DOI: 10.1021/acsomega.4c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024]
Abstract
The encapsulation of fatty acids, including walnut oil, within complexes is a promising strategy to address challenges, for instance, low water solubility and susceptibility to oxidation while incorporating these oils into food products. Additionally, encapsulation can effectively mask undesirable odor and flavor. The current study focuses on the optimization of walnut oil nanoparticles (WON) using complexes fabricated from gum arabic and whey protein by applying a response surface methodology. The impact of three different independent variables were determined, such as surfactant mixture (33-66%), walnut oil (5-25%), and sonication time (60-300 s), under three distinct desired conditions (low, medium, and high) on four different responses, i.e., particle size, polydispersity index (PDI), moisture level, and encapsulation efficiency (EE). The findings of the present study indicate that the point prediction-based WON resulted in significantly low particle size (82.94 nm), PDI (0.19), moisture content (3.49%), and high EE (77.26%). Fourier transform infrared spectroscopy (FTIR) study demonstrated the successful encapsulation of walnut oil and wall material into nanocapsules. Differential scanning calorimetry (DSC) verified the improved thermal stability property of WON after incorporation, and scanning electron microscopy (SEM) indicated that the WON had relatively fragile and smooth surfaces, along with the presence of few porous structures. The recorded experimental data from the existing study showed that the developed formulation of WON was potentially useful as a value-added ingredient for food industries.
Collapse
Affiliation(s)
- Ali Tahir
- Department
of Food Science, Faculty of Life Sciences, Government College University Faisalabad Faisalabad, Punjab 38000, Pakistan
- Biological
Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Rabia Shabir Ahmad
- Department
of Food Science, Faculty of Life Sciences, Government College University Faisalabad Faisalabad, Punjab 38000, Pakistan
| | - Muhammad Kamran Khan
- Department
of Food Science, Faculty of Life Sciences, Government College University Faisalabad Faisalabad, Punjab 38000, Pakistan
| | - Muhammad Imran
- Department
of Food Science, Faculty of Life Sciences, Government College University Faisalabad Faisalabad, Punjab 38000, Pakistan
| | | |
Collapse
|
17
|
Majeed F, Razzaq A, Rehmat S, Azhar I, Mohyuddin A, Rizvi NB. Enhanced dye sequestration with natural polysaccharides-based hydrogels: A review. Carbohydr Polym 2024; 330:121820. [PMID: 38368085 DOI: 10.1016/j.carbpol.2024.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Due to the expansion of industrial activities, the concentration of dyes in water has been increasing. The dire need to remove these pollutants from water has been heavily discussed. This study focuses on the reproducible and sustainable solution for wastewater treatment and dye annihilation challenges. Adsorption has been rated the most practical way of the several decolorization procedures due to its minimal initial investment, convenient utility, and high-performance caliber. Hydrogels, which are three-dimensional polymer networks, are notable because of their potential to regenerate, biodegrade, absorb bulky amounts of water, respond to stimuli, and have unique morphologies. Natural polysaccharide hydrogels are chosen over synthetic ones because they are robust, bioresorbable, non-toxic, and cheaply accessible. This study has covered six biopolymers, including chitosan, cellulose, pectin, sodium alginate, guar gum, and starch, consisting of their chemical architecture, origins, characteristics, and uses. The next part describes these polysaccharide-based hydrogels, including their manufacturing techniques, chemical alterations, and adsorption effectiveness. It is deeply evaluated how size and shape affect the adsorption rate, which has not been addressed in any prior research. To assist the readers in identifying areas for further research in this subject, limitations of these hydrogels and future views are provided in the conclusion.
Collapse
Affiliation(s)
- Fiza Majeed
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Ammarah Razzaq
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Shabnam Rehmat
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan; School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Irfan Azhar
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, Multan 60000, Pakistan
| | | |
Collapse
|
18
|
Zhang Y, Xie S, Huang W, Zhan L, Huang Y, Chen P, Xie F. Fabrication and characterization of complex coacervates utilizing gelatin and carboxymethyl starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3585-3593. [PMID: 38150581 DOI: 10.1002/jsfa.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Modified polysaccharides have greatly expanded applications in comparison with native polysaccharides due to their improved compatibility and interactions with proteins and active compounds in food-related areas. Nonetheless, there is a noticeable dearth of research concerning the utilization of carboxymethyl starch (CMS) as a microcapsule wall material in food processing, despite its common use in pharmaceutical delivery. The development of an economical and safe embedding carrier using CMS and gelatin (GE) holds immense importance within the food-processing industry. In this work, the potential of innovative coacervates formed by the combination of GE and CMS as a reliable, stable, and biodegradable embedding carrier is evaluated by turbidity measurements, thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and rheological measurements. RESULTS The results indicate that GE-CMS coacervates primarily resulted from electrostatic interactions and hydrogen bonding. The optimal coacervation was observed at pH 4.6 and with a GE/CMS blend ratio of 3:1 (w/w). However, the addition of NaCl reduced coacervation and made it less sensitive to temperature changes (35-55 °C). In comparison with individual GE or CMS, the coacervates exhibited higher thermal stability, as shown by TGA. X-ray diffraction analysis shows that the GE-CMS coacervates maintained an amorphous structure. Rheological testing reveals that the GE-CMS coacervates exhibited shear-thinning behavior and gel-like properties. CONCLUSION Overall, attaining electroneutrality in the mixture boosts the formation of a denser structure and enhances rheological properties, leading to promising applications in food, biomaterials, cosmetics, and pharmaceutical products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yiling Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shumin Xie
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Weijuan Huang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhan
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yingwei Huang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pei Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
19
|
Hamid S, Oukil NF, Moussa H, Mahdjoub MM, Djihad N, Berrabah I, Bouhenna MM, Chebrouk F, Hentabli M. Enhancing basil essential oil microencapsulation using pectin/casein biopolymers: Optimization through D-optimal design, controlled release modeling, and characterization. Int J Biol Macromol 2024; 265:130948. [PMID: 38503374 DOI: 10.1016/j.ijbiomac.2024.130948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
A D-optimal design was employed to optimize the microencapsulation (MEC) of basil essential oil (BEO) within a biopolymer matrix using the complex coacervation technique. BEO microcapsules (BEO-MCs) obtained under the optimal conditions exhibited high yield and efficiency with 80.45 ± 0.01 % and 93.10 ± 0.18 %, respectively. The successful MEC of BEO with an average particle size of 4.81 ± 2.86 μm was confirmed by ATR-FTIR, X-RD, and SEM analyses. Furthermore, the thermal stability of BEO-MCs was assessed using TGA-DSC analysis, which provided valuable insights into the MC's thermal stability. Furthermore, the proposed model, with a high R2 value (0.99) and low RMSE (1.56 %), was the most suitable one among the tested models for the controlled release kinetics of the optimal BEO-MCs under simulated gastrointestinal conditions. The successful optimization of BEO MEC using biopolymers through the D-optimal design could be a promising avenue for food and pharmaceutical industries, providing new strategies for the development of effective products.
Collapse
Affiliation(s)
- Sarah Hamid
- Laboratoire de Biotechnologie Végétale et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Naima Fadloun Oukil
- Laboratoire de Biotechnologie Végétale et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Hamza Moussa
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria
| | - Malik Mohamed Mahdjoub
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria
| | - Nadjet Djihad
- Laboratoire de Biotechnologie Végétale et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Ismail Berrabah
- Laboratoire des Matériaux Polymères Avancés (LMPA), Faculté de Technologie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Mustapha Mounir Bouhenna
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP384, Bou-Ismail, Tipaza 42004, Algeria
| | - Farid Chebrouk
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP384, Bou-Ismail, Tipaza 42004, Algeria
| | - Mohamed Hentabli
- Laboratoire de Biomatériaux et Phénomènes de Transport (LBMPT), Université Yahia Fares de Médéa, Médéa 26000, Algeria
| |
Collapse
|
20
|
Ma D, Yang B, Zhao J, Yuan D, Li Q. Advances in protein-based microcapsules and their applications: A review. Int J Biol Macromol 2024; 263:129742. [PMID: 38278389 DOI: 10.1016/j.ijbiomac.2024.129742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Due to their excellent emulsification, biocompatibility, and biological activity, proteins are widely used as microcapsule wall materials for encapsulating drugs, natural bioactive substances, essential oils, probiotics, etc. In this review, we summarize the protein-based microcapsules, discussing the types of proteins utilized in microcapsule wall materials, the preparation process, and the main factors that influence their properties. Additionally, we conclude with examples of the vital role of protein-based microcapsules in advancing the food industry from primary processing to deep processing and their potential applications in the biomedical, chemical, and textile industries. However, the low stability and controllability of protein wall materials lead to degraded performance and quality of microcapsules. Protein complexes with polysaccharides or modifications to proteins are often used to improve the thermal instability, pH sensitivity, encapsulation efficiency and antioxidant capacity of microcapsules. In addition, factors such as wall material composition, wall material ratio, the ratio of core to wall material, pH, and preparation method all play critical roles in the preparation and performance of microcapsules. The application area and scope of protein-based microcapsules can be further expanded by optimizing the preparation process and studying the microcapsule release mechanism and control strategy.
Collapse
Affiliation(s)
- Donghui Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China
| | - Dongdong Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611400, China.
| |
Collapse
|
21
|
Ghandehari-Alavijeh S, Can Karaca A, Akbari-Alavijeh S, Assadpour E, Farzaneh P, Saidi V, Jafari SM. Application of encapsulated flavors in food products; opportunities and challenges. Food Chem 2024; 436:137743. [PMID: 37852072 DOI: 10.1016/j.foodchem.2023.137743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Flavors are considered among the most important components of food formulations since they can predominantly affect the consumer acceptance and satisfaction. However, most flavors are highly volatile and inherently sensitive to pH, light, thermal processes, and chemical reactions such as oxidation and hydrolysis. Encapsulation is used as an effective strategy for protecting flavors from environmental conditions and extending their shelf life. Moreover, release characteristics of flavors can be modified via application of appropriate carriers and wall materials. This review focuses on the use of encapsulated flavors in various food products. Various factors affecting flavor retention during encapsulation, flavor release mechanisms, profiles and kinetics are discussed. Finally, the challenges associated with the use of encapsulated flavors in food products (in situ) and to model systems (in vitro), their storage stability, product requirements and problems related to the market are presented.
Collapse
Affiliation(s)
- Somayeh Ghandehari-Alavijeh
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Parisa Farzaneh
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Vahideh Saidi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
22
|
Wang H, Cheng Y, Zhu J, Yang Y, Qiao S, Li H, Ma L, Zhang Y. Gelatin/polychromatic materials microgels enhanced by carnosic acid inclusions and its application in 2D pattern printing and multi-nozzle food 3D printing. Int J Biol Macromol 2024; 261:129749. [PMID: 38281522 DOI: 10.1016/j.ijbiomac.2024.129749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/16/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Natural polychromatic biomaterials (like carminic acid and gardenia yellow) possess coloring merits and functionality, but are instable under light and heat. Self-assembly of gelatin and polychromatic materials could be induced by carnosic acid inclusions, illustrating great potential in food application. Antioxidant properties, pigment retention rates, UV irradiation stability, rheological properties, and physical resistances (oil, ethanol, heat and microwave) of samples were improved by carnosic acid inclusions, owing to the newly formed hydrogen bonding and electrostatic interactions (UV spectrum, particle size, zeta potential, FTIR, XPS and SEM). The improved properties contributed to the 2D printed pattern stability and the applicability for producing specialized products with high printability and fastness. On the basis of Subtractive Color-Mixing Principle, further three-dimensional dyeing microgel systems were built and modulated; it could functionalize bean paste/carboxymethyl-cellulose food systems, maintain the excellent self-supporting ability & mechanical strength, and promote single/dual-nozzle 3D printing application. Therefore, the self-assembled gelatin/polychromatic materials/carnosic acid microgel samples could not only achieve outstanding 2D printed pattern stability, and could be also promisingly applied in single/dual-nozzle 3D printing for modern innovative, creative food fields.
Collapse
Affiliation(s)
- Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China; Modern"Chuan cai Yu wei" Food Industry Innovation Research Institute, PR China
| | - Yang Cheng
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China; Modern"Chuan cai Yu wei" Food Industry Innovation Research Institute, PR China
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Huanduan Li
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China; Modern"Chuan cai Yu wei" Food Industry Innovation Research Institute, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China; Modern"Chuan cai Yu wei" Food Industry Innovation Research Institute, PR China.
| |
Collapse
|
23
|
Chen Y, Zhao T, Cheng L, Yang B, Wen L. Degree of methyl esterification: A key factor for the encapsulation of icaritin with pectin. Int J Biol Macromol 2024; 260:129361. [PMID: 38218280 DOI: 10.1016/j.ijbiomac.2024.129361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Pectin is a promising nano-carrier. The degree of methyl esterification (DM) influences the physiochemical properties of pectin. However, the effect of DM on the encapsulation capacity of pectin remains unclear. In this work, low methyl-esterified pectin (LMP) and high methyl-esterified pectin (HMP) were prepared. The molecular weight, rheological properties of these pectins with various DM levels were determined. Then icaritin/pectin micelles (IPMs) were prepared using HMP and LMP. Notably, higher loading capacities (18.75-20.12 %) were observed in HMP-IPMs compared to LMP-IPMs (15.72-16.64 %). Furthermore, LMP-IPMs demonstrated a DM-dependent reduction in particle sizes, ranging from 449 to 527 nm. In contrast, the particle sizes of HMP-IPMs varied between 342 and 566 nm, with smaller particle sizes observed in HMP-IPMs at higher DM levels. A significant positive correlation was found between DM and the formation of IPMs, including encapsulation efficiency, loading capacity, Zeta potential, and polydispersity index. Alkali de-esterification showed a weak impact on the pectin structure. Hydroxyl groups like 7-OH and 5-OH of icaritin might be involved in the formation of IPMs. The hydrogen-bond interactions between pectin and icaritin could be enhanced as DM increased.
Collapse
Affiliation(s)
- Yipeng Chen
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lina Cheng
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Bao Yang
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lingrong Wen
- Key State Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
25
|
Yavuz-Düzgün M, Ayar EN, Şensu E, Topkaya C, Özçelik B. A comparative study on the encapsulation of black carrot extract in potato protein-pectin complexes. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2628-2638. [PMID: 37599846 PMCID: PMC10439065 DOI: 10.1007/s13197-023-05787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/27/2023] [Accepted: 06/01/2023] [Indexed: 08/22/2023]
Abstract
This manuscript reveals the effect of the emulsification step on the black carrot extract (BCE) stabilization by potato protein isolate (PPI)-citrus pectin (CP) coacervates. The effect of core-to-wall ratio and concentration of wall material were also investigated. This was the first attempt to compare the characteristics of emulsified core particles (ECP) and non-emulsified core particles (NECP) coated with complex coacervates. Potato protein was used as an encapsulating agent by complex coacervation for the first time, and it showed excellent characteristics for the encapsulation. Non-hygroscopic particles were produced with emulsification while most of NECPs were slightly hygroscopic. The mean particle diameter of powders ranged from 65.05 to 152.47 μm which is suitable with SEM micrographs. ECPs showed lower particle size values with increased wall concentration at the constant core-to-wall ratio. Encapsulation efficiency (EE) increased, and anthocyanin retention (AR) decreased when emulsification was included. EE of NECP and ECP was between 69.26-82.84% and 85.48-90.15% while AR was between 79.08-102.16% and 53.90-83.37%, respectively. FT-IR and ζ-potential values proved the complexation between PPI and CP in ECPs as well as the interaction of PP, CP, and BCE in NECPs. DSC thermograms proved the success of the encapsulation procedure and thermo-stability of the BCE-loaded particles. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05787-z.
Collapse
Affiliation(s)
- Merve Yavuz-Düzgün
- Department of Gastronomy and Culinary Arts, Faculty of Applied Sciences, Altinbas University, Esentepe, Büyükdere Cd. No:147 Şişli, 34394 Istanbul, Turkey
- Chemical and Metallurgical Engineering Faculty Food Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Eda Nur Ayar
- Chemical and Metallurgical Engineering Faculty Food Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Eda Şensu
- Chemical and Metallurgical Engineering Faculty Food Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Cansu Topkaya
- Chemical and Metallurgical Engineering Faculty Food Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Beraat Özçelik
- Chemical and Metallurgical Engineering Faculty Food Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- BIOACTIVE Research & Innovation Food Manufacturing Industry Trade LTD Co, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
26
|
Fatkullin R, Kalinina I, Naumenko N, Naumenko E. Use of Micronization and Complex Coacervation to Preserve Antioxidant Properties of Flavonoids. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:9456931. [PMID: 37745180 PMCID: PMC10516702 DOI: 10.1155/2023/9456931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
The plant flavonoids taxifolin and rutin are among the best known and best studied antioxidants. In addition to their antioxidant properties, other pharmacobiological properties have been established for these substances. At the same time, taxifolin and rutin are chemically labile. They are prone to oxidative degradation and have poor water solubility. Under conditions of their real consumption, all this can lead to a significant reduction or complete loss of bioactivity of these flavonoids. Flavonoid modification and encapsulation techniques can be used to overcome these barrier factors. The use of micronization process for taxifolin and rutin allows changing the lipophilicity values of antioxidants. For micronized taxifolin, the log P value is 1.3 (1.12 for the control forms), and for rutin, it was 0.15 (-0.64 for the control forms). The antioxidant activity of micronized flavonoids has increased about 1.16 times compared to control forms. The present study evaluates the possibility of using encapsulation of premyconized flavonoids by complex coacervation, in order to preserve their antioxidant properties. The results of an in vitro digestion study show that the encapsulated forms of antioxidants retain their bioactivity and bioavailability better than their original forms. The bioavailability indices for the encapsulated forms of flavonoids are more than 1.6 times higher than for their original forms. The digested fractions of the encapsulated properties reveal better antioxidant properties than their original forms in in vitro tests evaluating the antioxidant properties on cultures of the protozoan Paramecium caudatum and human neuroblastoma SH-SY5Y cells. Encapsulated rutin indicates the highest activity, 0.64 relative to PMA. Thus, the studies represent the feasibility of using encapsulation to protect flavonoids during digestion and ensure the preservation of their antioxidant properties.
Collapse
Affiliation(s)
- Rinat Fatkullin
- Department of Food and Biotechnology, South Ural State University (National Research University), 76 Lenin Avenue, Chelyabinsk 454080, Russia
| | - Irina Kalinina
- Department of Food and Biotechnology, South Ural State University (National Research University), 76 Lenin Avenue, Chelyabinsk 454080, Russia
| | - Natalya Naumenko
- Department of Food and Biotechnology, South Ural State University (National Research University), 76 Lenin Avenue, Chelyabinsk 454080, Russia
| | - Ekaterina Naumenko
- Department of Food and Biotechnology, South Ural State University (National Research University), 76 Lenin Avenue, Chelyabinsk 454080, Russia
| |
Collapse
|
27
|
Liu Y, Jiang J. Preparation of β-ionone microcapsules by gelatin/pectin complex coacervation. Carbohydr Polym 2023; 312:120839. [PMID: 37059564 DOI: 10.1016/j.carbpol.2023.120839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/25/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
β-ionone has a unique violet odor and good biological activity, which is an essential fragrance component and potential anticancer drug. In this paper, β-ionone was encapsulated using complex coacervation of gelatin and pectin, followed by cross-linking with glutaraldehyde. The pH value, wall material concentration, core-wall ratio, homogenization conditions, and curing agent content were investigated in the single-factor experiments. For example, the encapsulation efficiency increased with the homogenization speed, which reached a relatively high value at 13000 r/min for 5 min. The gelatin/pectin ratio (3:1, w/w) and pH value (4.23) significantly affected the size, shape, and encapsulation efficiency of the microcapsule. The fluorescence microscope and SEM were used to characterize the morphology of the microcapsules, in which the microcapsule has a stable morphology, uniform size, and spherical multinuclear structure. FTIR measurements confirmed the electrostatic interactions between gelatin and pectin during complex coacervation. Thermogravimetric analysis (TGA) revealed that the microcapsules could maintain good thermal stability over 260 °C. The release rate of β-ionone microcapsule was only 20.6 % after 30 days at the low temperature of 4 °C. These findings provide an effective carrier to deliver flavors like β-ionone and could be useful in the fields of daily chemicals and textiles.
Collapse
|
28
|
Chen Y, Jiang Y, Wen L, Yang B. Interaction between ultrasound-modified pectin and icaritin. Food Chem 2023; 426:136618. [PMID: 37354572 DOI: 10.1016/j.foodchem.2023.136618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Pectin can improve the bioaccessibility of icaritin as a nanocarrier, and ultrasound can modify the pectin structure. However, the interaction between ultrasound-modified pectin (UMP) and icaritin remains unclearly. In this work, the effects of UMP on the physiochemical properties of icaritin/pectin micelles (IPMs) were investigated. The IPMs prepared with UMP (UMP-IPMs) showed lower encapsulation efficiencies and loading capacities, comparing with native IPMs. UMP-IPMs had smaller particle sizes (325-399 nm) than native IPMs (551 nm). The Mw, viscosity, G' and G" of pectin were determined. NMR spectra indicated that the repeating unit in pectins remained consistently before and after ultrasound treatment, and 7-OH of icaritin was involved in hydrogen bond formation with pectin. The larger chemical shift movement of 6-H and 7-OH for U3-IPMs than P0-IPMs suggested that stronger hydrogen bond interaction between icaritin and pectin. UMP-IPMs exhibited stronger anti-proliferation activities against HepG2 cells than native IPMs.
Collapse
Affiliation(s)
- Yipeng Chen
- State Key Laboratory of Plant Diversity and Prominent Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- State Key Laboratory of Plant Diversity and Prominent Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingrong Wen
- State Key Laboratory of Plant Diversity and Prominent Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bao Yang
- State Key Laboratory of Plant Diversity and Prominent Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Zhang W, Li B, Lv Y, Wei S, Zhang S, Hu Y. Synergistic effects of combined cinnamaldehyde and nonanal vapors against Aspergillus flavus. Int J Food Microbiol 2023; 402:110277. [PMID: 37331114 DOI: 10.1016/j.ijfoodmicro.2023.110277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023]
Abstract
This study evaluated the synergistic antifungal effects of vapor-phase natural agents against Aspergillus flavus with an aim to prevent fungal contamination in agricultural products. Screening different combinations of natural antifungal vapor agents using the checkerboard assay revealed that the cinnamaldehyde and nonanal (SCAN) blend could exert the strongest synergistic antifungal activities against A. flavus, with a minimum inhibitory concentration (MIC) of 0.03 μL/mL, which caused a 76 % decrease in fungal population compared to when each agent was used separately. Subsequent gas chromatography-mass spectrometry (GC/MS) analysis demonstrated that the cinnamaldehyde/nonanal combination was stable and no effects on their individual molecular structures. SCAN at 2 × MIC completely inhibited the fungal conidia production and mycelial growth. The calcofluor white (CFW) and dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining assays showed that SCAN treatment could accelerate the destruction of cell wall integrity and accumulation of reactive oxygen species (ROS) in A. flavus. Moreover, pathogenicity assay indicated that in contrast to separate treatment with cinnamaldehyde or nonanal, SCAN could cause a decrease in the production of A. flavus asexual spores and AFB1 on peanuts, which verified its potential synergistic activity against fungal propagation. In addition, SCAN effectively preserves the organoleptic and nutritional properties of stored peanuts. Overall, our findings strongly indicated that the cinnamaldehyde/nonanal combination is a potentially significant antifungal agent against A. flavus contamination during the postharvest storage of peanuts.
Collapse
Affiliation(s)
- Wei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Bangbang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, People's Republic of China; Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, People's Republic of China.
| |
Collapse
|
30
|
Tan Y, Zi Y, Peng J, Shi C, Zheng Y, Zhong J. Gelatin as a bioactive nanodelivery system for functional food applications. Food Chem 2023; 423:136265. [PMID: 37167667 DOI: 10.1016/j.foodchem.2023.136265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/01/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Gelatin has long been used as an encapsulant agent in the pharmaceutical and biomedical industries because of its low cost, wide availability, biocompatibility, and degradability. However, the exploitation of gelatin for nanodelivery application is not fully achieved in the functional food filed. In this review article, we highlight the latest work being performed for gelatin-based nanocarriers, including polyelectrolyte complexes, nanoemulsions, nanoliposomes, nanogels, and nanofibers. Specifically, we discuss the applications and challenges of these nanocarriers for stabilization and controlled release of bioactive compounds. To achieve better efficacy, gelatin is frequently used in combination with other biomaterials such as polysaccharides. The fabrication and synergistic effects of the newly developed gelatin composite nanocarriers are also present.
Collapse
Affiliation(s)
- Yang Tan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zi
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiawei Peng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yulu Zheng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
31
|
Spray-and freeze-drying of microcapsules prepared by complex coacervation method: A review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
32
|
Kang X, Guo W, Ding K, Zhan S, Lou Q, Huang T. Microwave processing technology influences the functional and structural properties of fish gelatin. J Texture Stud 2023; 54:127-135. [PMID: 36176227 DOI: 10.1111/jtxs.12727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
The objective of this study was to evaluate the effects of microwave processing technology (MPT, 240-800 W, 1 and 4 min) on the functional and structural properties of fish gelatin (FG). It showed that MPT could increase gel strength and texture properties of FG, especially for 240 W. MPT greatly increased emulsifying activity index (EAI) of FG, but decreased its emulsion stability index (ESI). Rheology results showed that MPT increased viscosity of FG, but decreased gelation times. Intrinsic fluorescence and Fourier transform infrared (FTIR) spectroscopy results indicated that MPT could unfold gelatin, contributing to the formation of H-bonds. Scanning electron microscopy (SEM) analysis revealed that low power and short time of MPT-treated gelatin gels had much more dense and less voids. This work provided guidance for the applications of MPT to improve the functional properties of FG, and the results show that MPT-treated FG can replace mammalian gelatin and meet the religious requirement.
Collapse
Affiliation(s)
- Xinzi Kang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Keying Ding
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qiaoming Lou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.,Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
33
|
Wang H, Cheng Y, Zhu J, Ouyang Z, Tang M, Ma L, Zhang Y. High temperature induced stable gelatin-gardenia blue system with hyperchromic effect and its food application in 2D writing/printing and 3D printing. Food Chem 2023; 401:134119. [DOI: 10.1016/j.foodchem.2022.134119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
|
34
|
Antibacterial mechanisms of star anise essential oil microcapsules encapsulated by rice protein-depolymerized pectin electrostatic complexation and its application in crab meatballs. Int J Food Microbiol 2023; 384:109963. [DOI: 10.1016/j.ijfoodmicro.2022.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
35
|
Alginates Combined with Natural Polymers as Valuable Drug Delivery Platforms. Mar Drugs 2022; 21:md21010011. [PMID: 36662184 PMCID: PMC9861938 DOI: 10.3390/md21010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Alginates (ALG) have been used in biomedical and pharmaceutical technologies for decades. ALG are natural polymers occurring in brown algae and feature multiple advantages, including biocompatibility, low toxicity and mucoadhesiveness. Moreover, ALG demonstrate biological activities per se, including anti-hyperlipidemic, antimicrobial, anti-reflux, immunomodulatory or anti-inflammatory activities. ALG are characterized by gelling ability, one of the most frequently utilized properties in the drug form design. ALG have numerous applications in pharmaceutical technology that include micro- and nanoparticles, tablets, mucoadhesive dosage forms, wound dressings and films. However, there are some shortcomings, which impede the development of modified-release dosage forms or formulations with adequate mechanical strength based on pure ALG. Other natural polymers combined with ALG create great potential as drug carriers, improving limitations of ALG matrices. Therefore, in this paper, ALG blends with pectins, chitosan, gelatin, and carrageenans were critically reviewed.
Collapse
|
36
|
Wu K, Zhang T, Chai X, Duan X, He D, Yu H, Liu X, Tao Z. Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-cyclodextrins: In Vitro and In Silico Evidence. Foods 2022; 12:foods12010045. [PMID: 36613259 PMCID: PMC9818807 DOI: 10.3390/foods12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Essential oils (EOs) have good natural antioxidant and antimicrobial properties; however, their volatility, intense aroma, poor aqueous solubility, and chemical instability limit their applications in the food industry. The encapsulation of EOs in β-cyclodextrins (β-CDs) is a widely accepted strategy for enhancing EO applications. The complexation of cinnamon essential oil (CEO) with five types of β-CDs, containing different substituent groups (β-CD with primary hydroxyl, Mal-β-CD with maltosyl, CM-β-CD with carboxymethyl, HP-β-CD with hydroxypropyl, and DM-β-CD with methyl), inclusion process behaviors, volatile components, and antioxidant and antibacterial activities of the solid complexes were studied. The CEOs complexed with Mal-β-CD, CM-β-CD, and β-CD were less soluble than those complexed with DM-β-CD and HP-β-CD. Molecular docking confirmed the insertion of the cinnamaldehyde benzene ring into various β-CD cavities via hydrophobic interactions and hydrogen bonds. GC-MS analysis revealed that HP-β-CD had the greatest adaptability to cinnamaldehyde. The CEO encapsulated in β-, Mal-β-, and CM-β-CD showed lower solubility but better control-release characteristics than those encapsulated in DM- and HP-β-CD, thereby increasing their antioxidant and antibacterial activities. This study demonstrated that β-, Mal-β-, and CM-β-CD were suitable alternatives for the encapsulation of CEO to preserve its antioxidant and antibacterial activities for long-time use.
Collapse
|
37
|
Kajla P, Goyal N, Bangar SP, Chaudhary V, Lorenzo JM. Flaxseed Proteins (Linum usitassimum): Thermal, Functional and Spectroscopic Characterization. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Dewi EN, Purnamayati L, Jaswir I. Effects of thermal treatments on the characterisation of microencapsulated chlorophyll extract of Caulerpa racemosa. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.6.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Caulerpa racemosa is a macroalga that has a green pigment, that is, chlorophyll. Chlorophyll is highly sensitive to damage during heat processing. In the present work, C. racemosa chlorophyll extract was microencapsulated with fish gelatine and Arabic gum coatings, using a freeze-drying technique, to protect against heat damage. The microcapsules were subjected to high temperatures (120, 140, and 160°C) for 5 h. The protective effect of microcapsules on chlorophyll stability was assessed by measuring chlorophylls a and b degradation, total phenolic content, antioxidant activity, functional group analysis, colour, particle size, and morphology via scanning electron microscopy. Chlorophyll b significantly decreased by 87.78% in comparison with chlorophyll a (61.49%) during heating; the characteristic green colour of chlorophyll changed to brownish-green following heat exposure. However, chlorophyll was still present in the microcapsules as detected by the presence of the functional group C=O bond at 1600 nm wavelength. The heat treatment did not affect microcapsule particle size and morphology. Particle size distribution ranged from 91.58 to 112.51 µm, and the microcapsule was flake-shaped. The activation energy of chlorophyll a was 19336.96 kJ/mol·K; this was higher than that of chlorophyll b, which was 1780.53 kJ/mol·K. Based on the results, microcapsules produced using fish gelatine and Arabic gum as coating materials were able to protect chlorophyll in C. racemosa extract from heat damage.
Collapse
|
39
|
Feng J, Tian H, Chen X, Cai X, Shi X, Wang S. Interaction between fish gelatin and tremella polysaccharides from aqueous solutions to complex coacervates: Structure and rheological properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Microencapsulation of Rose Essential Oil Using Perilla Protein Isolate-Sodium Alginate Complex Coacervates and Application of Microcapsules to Preserve Ground Beef. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Rout S, Tambe S, Deshmukh RK, Mali S, Cruz J, Srivastav PP, Amin PD, Gaikwad KK, Andrade EHDA, Oliveira MSD. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Sun J, Cheng Y, Zhang T, Zang J. Microencapsulation of Carvacrol by Complex Coacervation of Walnut Meal Protein Isolate and Gum Arabic: Preparation, Characterization and Bio-Functional Activity. Foods 2022; 11:3382. [PMID: 36359995 PMCID: PMC9657042 DOI: 10.3390/foods11213382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 07/28/2023] Open
Abstract
As a natural phenolic compound, carvacrol has attracted much attention due to its excellent antibacterial and antioxidant activities. However, its application is limited due to its instability, such as easy volatilization, easy oxidation, etc. Protein-polysaccharide interactions provide strategies for improving their stability issues. In this study, the plant-based carvacrol microcapsules via complex coacervation between walnut meal protein isolate (WMPI) and gum Arabic (GA) has been fabricated and characterized. The formation conditions of WMPI-GA coacervates were determined by some parameters, such as pH, zeta-potential, and turbidity. The optimum preparation conditions were achieved at pH 4.0 with a WMPI-to-GA ratio of 6:1 (w/w). The mean particle size, loading capacity (LC), and encapsulation efficiency (EE) of the microcapsules were 43.21 μm, 26.37%, and 89.87%, respectively. Fourier transform infrared spectroscopy (FT-IR) and fluorescence microscopy further confirmed the successful microencapsulation of carvacrol. The microencapsulation of carvacrol improved the thermal stability of the free carvacrol. The swelling capacity results indicated that it could resist gastric acid, and facilitate its intestinal absorption. Meanwhile, the carvacrol molecules trapped within the microcapsules could be continuously released in a concentration-dependent manner. Furthermore, the microcapsules presented good antioxidant activity and antibacterial activity against the Gram-negative (E. coli) and the Gram-positive (S. aureus) bacteria. These results indicated that the obtained carvacrol microcapsules have a potential application value as a food preservative in the food industry.
Collapse
|
43
|
Liu Y, Wang H, Fu R, Zhang L, Liu M, Cao W, Wu R, Wang S. Preparation and characterization of cinnamon essential oil extracted by deep eutectic solvent and its microencapsulation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
44
|
Chen K, Zhang M, Mujumdar AS, Wang M. Encapsulation of different spice essential oils in quinoa protein isolate-gum Arabic coacervates for improved stability. Carbohydr Polym 2022; 300:120250. [DOI: 10.1016/j.carbpol.2022.120250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2022]
|
45
|
Almond gum-sodium caseinate complexes for loading propolis extract: Characterization, antibacterial activity, release, and in-vitro cytotoxicity. Food Chem 2022; 405:134801. [DOI: 10.1016/j.foodchem.2022.134801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022]
|
46
|
Namazzadeh G, Ehsani A, Ghasempour Z. Microencapsulation of red beet extract using
Chitosan‐Persian
Gum Complex Coacervates. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ghazal Namazzadeh
- Students Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Ehsani
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Zahra Ghasempour
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
47
|
The Role of Multilayer Electrospun Poly(Vinyl Alcohol)/Gelatin nanofibers loaded with Fluconazole and Cinnamaldehyde in the Potential Treatment of Fungal Keratitis. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Guo Q, Li S, Du G, Chen H, Yan X, Chang S, Yue T, Yuan Y. Formulation and characterization of microcapsules encapsulating carvacrol using complex coacervation crosslinked with tannic acid. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
|
50
|
Chen Q, Jia C, Xu Y, Jiang Z, Hu T, Li C, Cheng X. Dual-pH responsive chitosan nanoparticles for improving in vivo drugs delivery and chemoresistance in breast cancer. Carbohydr Polym 2022; 290:119518. [DOI: 10.1016/j.carbpol.2022.119518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
|