1
|
Badfar N, Jafarpour A, Casanova F, Sales Queiroz L, Tilahun Getachew A, Jacobsen C, Jessen F, Gringer N. Influence of Supercritical Fluid Extraction Process on Techno-Functionality of Enzymatically Derived Peptides from Filter-Pressed Shrimp Waste. Mar Drugs 2025; 23:122. [PMID: 40137308 PMCID: PMC11943989 DOI: 10.3390/md23030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
This study explored how combining supercritical fluid extraction (SFE) and enzymatic hydrolysis influences the structure and functionality of peptides recovered from filter-pressed shrimp waste. Freeze-dried press cake (PC) was defatted via SFE and hydrolyzed using Alcalase (ALC) and trypsin (TRYP). ALC-treated PC achieved the highest protein recovery (63.49%), extraction yield (24.73%), and hydrolysis degree (18.10%) (p < 0.05). SFE-treated hydrolysates showed higher zeta potential (-47.23 to -49.93 mV) than non-SFE samples (-25.15 to -38.62 mV) but had larger droplet sizes, indicating lower emulsion stability. SC-ALC displayed reduced fluorescence intensity and a red shift in maximum wavelength. TRYP hydrolysates reduced interfacial tension (20 mN/m), similar to sodium caseinate (Na-Cas, 13 mN/m), but with lesser effects. Dilatational rheology showed TRYP hydrolysates formed stronger, solid-like structures. These results emphasize protease efficacy over SFE for extracting functional compounds, enhancing shrimp waste valorization.
Collapse
Affiliation(s)
- Narjes Badfar
- Research Group for Bioactives—Analysis and Application, Division of Food Technology, National Food Institute, Technical University of Denmark, DK-2800 Copenhagen, Denmark; (N.B.); (A.J.); (L.S.Q.); (A.T.G.); (C.J.)
| | - Ali Jafarpour
- Research Group for Bioactives—Analysis and Application, Division of Food Technology, National Food Institute, Technical University of Denmark, DK-2800 Copenhagen, Denmark; (N.B.); (A.J.); (L.S.Q.); (A.T.G.); (C.J.)
| | - Federico Casanova
- Research Group for Food Production Engineering, Division of Food Technology, National Food Institute, Technical University of Denmark, DK-2800 Copenhagen, Denmark;
| | - Lucas Sales Queiroz
- Research Group for Bioactives—Analysis and Application, Division of Food Technology, National Food Institute, Technical University of Denmark, DK-2800 Copenhagen, Denmark; (N.B.); (A.J.); (L.S.Q.); (A.T.G.); (C.J.)
- Research Group for Food Production Engineering, Division of Food Technology, National Food Institute, Technical University of Denmark, DK-2800 Copenhagen, Denmark;
| | - Adane Tilahun Getachew
- Research Group for Bioactives—Analysis and Application, Division of Food Technology, National Food Institute, Technical University of Denmark, DK-2800 Copenhagen, Denmark; (N.B.); (A.J.); (L.S.Q.); (A.T.G.); (C.J.)
| | - Charlotte Jacobsen
- Research Group for Bioactives—Analysis and Application, Division of Food Technology, National Food Institute, Technical University of Denmark, DK-2800 Copenhagen, Denmark; (N.B.); (A.J.); (L.S.Q.); (A.T.G.); (C.J.)
| | - Flemming Jessen
- Research Group for Food Production Engineering, Division of Food Technology, National Food Institute, Technical University of Denmark, DK-2800 Copenhagen, Denmark;
| | - Nina Gringer
- Research Group for Food Production Engineering, Division of Food Technology, National Food Institute, Technical University of Denmark, DK-2800 Copenhagen, Denmark;
| |
Collapse
|
2
|
Christensen LF, Overgaard MT, Hansen EB, Gregersen Echers S. A homo-FRET assay for patatin-specific proteolytic activity. Food Chem 2025; 463:141105. [PMID: 39243617 DOI: 10.1016/j.foodchem.2024.141105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The potato protein patatin embeds bioactive peptides that require targeted hydrolysis to be released as promising food additives. This study presents a patatin-specific protease assay for assessing a wide range of protease activities in high-throughput format. Conjugating patatin to the amine reactive fluorogenic BODIPY FL dye provided a stable protease substrate with efficient homo-FRET quenching at a low degree (7-8) of labeling. Compared to commercial BODIPY-casein, BODIPY-patatin provided higher fluorescence enhancement (by de-quenching) at high protease concentrations, while the sensitivity was generally comparable for both highly specific (e.g. Trypsin) and industrial relevant proteases (e.g. Alcalase and Neutrase) at low doses. For Chymotrypsin, BODIPY-patatin provided a 39 % response improvement at 5 ng dose. A peptide-centric analysis of mass spectrometry-based bottom-up proteomics data identified several BODIPY-labeling sites with varying occupancies in patatin, indicating heterogenous labeling under the applied conjugation conditions. BODIPY-labeled patatin complements commercial BODIPY-labeled casein as a globular, plant-based alternative for screening of proteolytic activity.
Collapse
Affiliation(s)
- Lise Friis Christensen
- National Food Institute, Technical University of Denmark, Kemitorvet 202, 2800 Kongens Lyngby, Denmark.
| | - Michael Toft Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| | - Egon Bech Hansen
- National Food Institute, Technical University of Denmark, Kemitorvet 202, 2800 Kongens Lyngby, Denmark.
| | - Simon Gregersen Echers
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| |
Collapse
|
3
|
Pang L, Chen C, Liu M, Huang Z, Zhang W, Shi J, Yang X, Jiang Y. A comprehensive review of effects of ultrasound pretreatment on processing technologies for food allergens: Allergenicity, nutritional value, and technofunctional properties and safety assessment. Compr Rev Food Sci Food Saf 2025; 24:e70100. [PMID: 39746865 DOI: 10.1111/1541-4337.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Many proteins are essential food components but also major allergens. Reducing protein allergenicity while preserving its nutritional value and technofunctional properties has always been the goal of the food industry. Ultrasound (US) is a green processing method for modifying proteins. In addition, US pretreatment combined with other processing techniques (USPCT) has been increasingly used in the food industry. Therefore, this review presents an overview of recent advances in the impact of US and USPCT (US-combined enzymatic hydrolysis [USCE], US-combined glycation [USCG], and US-combined polyphenol conjugation [USCP]) on the allergenicity, nutritional value, and technofunctional properties of food allergens. We discuss the potential mechanisms, advantages, and limitations of these technologies for improving the properties of proteins and analyze their safety, challenges, and corresponding solutions. It was found that USPCT can improve the efficiency and effectiveness of different methods, which in turn can be more effective in reducing protein allergenicity and improving the nutritional value and functional properties of processed products. Future research should start with new processing methods, optimization of process conditions, industrial production, and the use of new research techniques to promote technical progress. This paper is expected to provide reference for the development of high-quality hypoallergenic protein raw materials.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chen Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ming Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhen Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jia Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Food Laboratory of Zhongyuan, Luohe, China
| |
Collapse
|
4
|
Ricardo F, Reyes LH, Cruz JC, Wiedman GR, Alvarez Solano OA, Pradilla D. In Silico Evaluation and Experimental Validation of Interfacial Properties in 3-5 Residue Peptides. J Phys Chem B 2024; 128:10272-10285. [PMID: 39378314 DOI: 10.1021/acs.jpcb.4c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Predicting the interfacial properties of peptides is important for replacing oil-derived surfactants in cosmetics, oil, and agricultural applications. This work validated experimentally the estimations of surface tension at the critical micelle concentration (STCMC) of six peptides performed through a random forest (RF) model in a previous contribution. In silico interfacial tensions of the peptides were obtained in the system decane-water, and dilational experiments were applied to elucidate the foaming potential. The RF model accurately classified the peptides into high and low potential to reduce the STCMC. The simulations at the decane-water interface correctly identified peptides with high, intermediate, and low interfacial properties, and the dilational rheology allowed the estimation of the possible potential of three peptides to produce foams. This study sets the basis for identifying surface-active peptides, but future work is necessary to improve the estimations and the correlation between dilational properties and foam stabilization.
Collapse
Affiliation(s)
- Fabián Ricardo
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Luis H Reyes
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Gregory R Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| | | | - Diego Pradilla
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
5
|
Madhavi BGK, Wijethunga AM, Okagu OD, Sun X. Defatted Wheat Germ Protein-Derived Peptides Showed Multiple Biological Activities from the Stomach to Small Intestine: In Silico and In Vitro Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20527-20536. [PMID: 39231371 DOI: 10.1021/acs.jafc.4c06539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
This study aimed to test the hypothesis that bioactive peptides can exert multiple bioactivities at different sites in the gastrointestinal tract. Our previous research identified 33 gastric-resistant peptides derived from wheat germ with potential antiadhesive activity against Helicobacter pylori in the stomach. In this work, in silico digestion of these peptides with trypsin, thermolysin, and chymotrypsin produced 67 peptide fragments. Molecular docking was conducted to predict their ACE and DPP-IV inhibitory activities in the small intestine. Three peptides (VPIPNPSGDR, VPY, and AR) were selected and synthesized for in vitro validation. Their generation in the gastrointestinal tract was verified via in vitro digestion, followed by mass spectrometry analysis. The IC50 values for ACE inhibition were 199.5 μM (VPIPNPSGDR), 316.3 μM (VPY), and 446.7 μM (AR). For DPP-IV inhibition, their IC50 values were 0.5, 1.6, and 4.0 mM, respectively. This research pioneers new directions in the emerging field of multifunctional peptides, providing scientific evidence to support the utilization of wheat germ as value-added food ingredients.
Collapse
Affiliation(s)
- Bolappa Gamage Kaushalya Madhavi
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Anushi Madushani Wijethunga
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Ogadimma D Okagu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Xiaohong Sun
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| |
Collapse
|
6
|
Bashash M, Wang-Pruski G, He QS, Sun X. The emulsifying capacity and stability of potato proteins and peptides: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e70007. [PMID: 39223759 DOI: 10.1111/1541-4337.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The potato has recently attracted more attention as a promising protein source. Potato proteins are commonly extracted from potato fruit juice, a byproduct of starch production. Potato proteins are characterized by superior techno-functional properties, such as water solubility, gel-forming, emulsifying, and foaming properties. However, commercially isolated potato proteins are often denatured, leading to a loss of these functionalities. Extensive research has explored the influence of different conditions and techniques on the emulsifying capacity and stability of potato proteins. However, there has been no comprehensive review of this topic yet. This paper aims to provide an in-depth overview of current research progress on the emulsifying capacity and stability of potato proteins and peptides, discussing research challenges and future perspectives. This paper discusses genetic diversity in potato proteins and various methods for extracting proteins from potatoes, including thermal and acid precipitation, salt precipitation, organic solvent precipitation, carboxymethyl cellulose complexation, chromatography, and membrane technology. It also covers enzymatic hydrolysis for producing potato-derived peptides and methods for identifying potato protein-derived emulsifying peptides. Furthermore, it reviews the influence of factors, such as physicochemical properties, environmental conditions, and food-processing techniques on the emulsifying capacity and stability of potato proteins and their derived peptides. Finally, it highlights chemical modifications, such as acylation, succinylation, phosphorylation, and glycation to enhance emulsifying capacity and stability. This review provides insight into future research directions for utilizing potato proteins as sustainable protein sources and high-value food emulsifiers, thereby contributing to adding value to the potato processing industry.
Collapse
Affiliation(s)
- Moein Bashash
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Xiaohong Sun
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
7
|
Ospina-Quiroga JL, Coronas-Lozano C, García-Moreno PJ, Guadix EM, Almécija-Rodríguez MDC, Pérez-Gálvez R. Use of olive and sunflower protein hydrolysates for the physical and oxidative stabilization of fish oil-in-water emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5541-5552. [PMID: 38362946 DOI: 10.1002/jsfa.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Olive and sunflower seeds are by-products generated in large amounts by the plant oil industry. The technological and biological properties of plant-based substrates, especially protein hydrolysates, have increased their use as functional ingredients for food matrices. The present study evaluates the physical and oxidative stabilities of 50 g kg-1 fish oil-in-water emulsions where protein hydrolysates from olive and sunflower seeds were incorporated at 20 g kg-1 protein as natural emulsifiers. The goal was to investigate the effect of protein source (i.e. olive and sunflower seeds), enzyme (i.e. subtilisin and trypsin) and degree of hydrolysis (5%, 8% and 11%) on the ability of the hydrolysate to stabilize the emulsion and retard lipid oxidation over a 7-day storage period. RESULTS The plant protein hydrolysates displayed different emulsifying and antioxidant capacities when incorporated into the fish oil-in-water emulsions. The hydrolysates with degrees of hydrolysis (DH) of 5%, especially those from sunflower seed meal, provided higher physical stability, regardless of the enzymatic treatment. For example, the average D [2, 3] values for the emulsions containing sunflower subtilisin hydrolysates at DH 5% only slightly increased from 1.21 ± 0.02 μm (day 0) to 2.01 ± 0.04 μm (day 7). Moreover, the emulsions stabilized with sunflower or olive seed hydrolysates at DH 5% were stable against lipid oxidation throughout the storage experiment, with no significant variation in the oxidation indices between days 0 and 4. CONCLUSION The results of the present study support the use of sunflower seed hydrolysates at DH 5% as natural emulsifiers for fish oil-in-water emulsions, providing both physical and chemical stability against lipid oxidation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, Granada, Spain
| |
Collapse
|
8
|
Yang Y, Huang L, Huang Z, Ren Y, Xiong Y, Xu Z, Chi Y. Food-derived peptides unleashed: emerging roles as food additives beyond bioactivities. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38889067 DOI: 10.1080/10408398.2024.2360074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Innovating food additives stands as a cornerstone for the sustainable evolution of future food systems. Peptides derived from food proteins exhibit a rich array of physicochemical and biological attributes crucial for preserving the appearance, flavor, texture, and nutritional integrity of foods. Leveraging these peptides as raw materials holds great promise for the development of novel food additives. While numerous studies underscore the potential of peptides as food additives, existing reviews predominantly focus on their biotic applications, leaving a notable gap in the discourse around their abiotic functionalities, such as their physicochemical properties. Addressing this gap, this review offers a comprehensive survey of peptide-derived food additives in food systems, accentuating the application of peptides' abiotic properties. It furnishes a thorough exploration of the underlying mechanisms and diverse applications of peptide-derived food additives, while also delineating the challenges encountered and prospects for future applications. This well-time review will set the stage for a deeper understanding of peptide-derived food additives.
Collapse
Affiliation(s)
- Yanli Yang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Lunjie Huang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhangjun Huang
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Yao Ren
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yanfei Xiong
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Zhenghong Xu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yuanlong Chi
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Christensen LF, Laforce IN, Wolkers-Rooijackers JCM, Mortensen MS, Smid EJ, Hansen EB. Lactococcus cell envelope proteases enable lactococcal growth in minimal growth media supplemented with high molecular weight proteins of plant and animal origin. FEMS Microbiol Lett 2024; 371:fnae019. [PMID: 38479791 DOI: 10.1093/femsle/fnae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Lactic acid bacteria (LAB) have evolved into fastidious microorganisms that require amino acids from environmental sources. Some LAB have cell envelope proteases (CEPs) that drive the proteolysis of high molecular weight proteins like casein in milk. CEP activity is typically studied using casein as the predominant substrate, even though CEPs can hydrolyze other protein sources. Plant protein hydrolysis by LAB has rarely been connected to the activity of specific CEPs. This study aims to show the activity of individual CEPs using LAB growth in a minimal growth medium supplemented with high molecular weight casein or potato proteins. Using Lactococcus cremoris MG1363 as isogenic background to express CEPs, we demonstrate that CEP activity is directly related to growth in the protein-supplemented minimal growth media. Proteolysis is analyzed based on the amino acid release, allowing a comparison of CEP activities and analysis of amino acid utilization by L. cremoris MG1363. This approach provides a basis to analyze CEP activity on plant-based protein substrates as casein alternatives and to compare activity of CEP homologs.
Collapse
Affiliation(s)
- Lise Friis Christensen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Ida Nynne Laforce
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | | | - Martin Steen Mortensen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Eddy J Smid
- Food Microbiology, Wageningen University & Research, PO Box 17, 6700AA Wageningen, The Netherlands
| | - Egon Bech Hansen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Nie C, Zou Y, Liao S, Gao Q, Li Q. Peptides as carriers of active ingredients: A review. Curr Res Food Sci 2023; 7:100592. [PMID: 37766891 PMCID: PMC10519830 DOI: 10.1016/j.crfs.2023.100592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Bioactive compounds are highly valuable in the fields of food and medicine, but their application is limited due to easy deterioration after oral or skin administration. In recent years, the use of peptides as delivery systems for bioactive compounds has been intensively researched because of their special physicochemical characteristics. Peptides can be assembled using various preparation methods and can form several composite materials such as hydrogels, micelles, emulsions and particles. The composite material properties are determined by peptides, bioactive compounds and the construction methods employed. Herein, this paper provides a comprehensive review of the peptides used for active ingredients delivery, fabrication methods for creating delivery systems, structures, targeting characteristics, functional activities and mechanism of delivery systems, as well as their absorption and metabolism, which provided theoretical basis and reference for further research and development of functional composites.
Collapse
Affiliation(s)
- Congyi Nie
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Sentai Liao
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Qunyu Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| |
Collapse
|
11
|
Yesiltas B, García-Moreno PJ, Mikkelsen RK, Echers SG, Hansen DK, Greve-Poulsen M, Hyldig G, Hansen EB, Jacobsen C. Physical and Oxidative Stability of Emulsions Stabilized with Fractionated Potato Protein Hydrolysates Obtained from Starch Production Side Stream. Antioxidants (Basel) 2023; 12:1622. [PMID: 37627617 PMCID: PMC10451251 DOI: 10.3390/antiox12081622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
This work studies the emulsifying and antioxidant properties of potato protein hydrolysates (PPHs) fractions obtained through enzymatic hydrolysis of potato protein using trypsin followed by ultrafiltration. Unfractionated (PPH1) and fractionated (PPH2 as >10 kDa, PPH3 as 10-5 kDa, PPH4 as 5-0.8 kDa, and PPH5 as <0.8 kDa) protein hydrolysates were evaluated. Pendant drop tensiometry and dilatational rheology were applied for determining the ability of PPHs to reduce interfacial tension and affect the viscoelasticity of the interfacial films at the oil-water interface. Peptides >10 kDa showed the highest ability to decrease oil-water interfacial tension. All PPH fractions predominantly provided elastic, weak, and easily stretchable interfaces. PPH2 provided a more rigid interfacial layer than the other hydrolysates. Radical scavenging and metal chelating activities of PPHs were also tested and the highest activities were provided by the unfractionated hydrolysate and the fractions with peptides >5 kDa. Furthermore, the ability of PPHs to form physically and oxidatively stable 5% fish oil-in-water emulsions (pH 7) was investigated during 8-day storage at 20 °C. Our results generally show that the fractions with peptides >5 kDa provided the highest physicochemical stability, followed by the fraction with peptides between 5 and 0.8 kDa. Lastly, promising sensory results with mostly mild attributes were obtained even at protein concentration levels that are higher than needed to obtain functional properties. The more prominent attributes (e.g., bitterness and astringency) were within an acceptable range for PPH3 and PPH4.
Collapse
Affiliation(s)
- Betül Yesiltas
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.K.M.); (G.H.); (E.B.H.)
| | | | - Rasmus K. Mikkelsen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.K.M.); (G.H.); (E.B.H.)
| | | | | | | | - Grethe Hyldig
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.K.M.); (G.H.); (E.B.H.)
| | - Egon B. Hansen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.K.M.); (G.H.); (E.B.H.)
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (R.K.M.); (G.H.); (E.B.H.)
| |
Collapse
|
12
|
Varona E, García-Moreno PJ, Gregersen Echers S, Olsen TH, Marcatili P, Guardiola F, Overgaard MT, Hansen EB, Jacobsen C, Yesiltas B. Antioxidant peptides from alternative sources reduce lipid oxidation in 5% fish oil-in-water emulsions (pH 4) and fish oil-enriched mayonnaise. Food Chem 2023; 426:136498. [PMID: 37295051 DOI: 10.1016/j.foodchem.2023.136498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Bioinformatics tools were used to predict radical scavenging and metal chelating activities of peptides derived from abundant potato, seaweed, microbial, and spinach proteins. The antioxidant activity was evaluated in 5% oil-in-water emulsions (pH4) and best-performing peptides were tested in mayonnaise and compared with EDTA. Emulsion physical stability was intact. The peptide DDDNLVLPEVYDQD showed the highest protection against oxidation in both emulsions by retarding the formation of oxidation products and depletion of tocopherols during storage, but it was less efficient than EDTA when evaluated in mayonnaise. In low-fat emulsions, formation of hydroperoxides was reduced 4-folds after 5 days compared to control. The concentration effect of the peptide was confirmed in mayonnaise at the EDTA equimolar concentration. The second-best performing peptides were NNKWVPCLEFETEHGFVYREHH in emulsion and AGDWLIGDR in mayonnaise. In general, the peptide efficacy was higher in low-fat emulsions. Results demonstrated that peptide negative net charge was important for chelating activity.
Collapse
Affiliation(s)
- Elisa Varona
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark; Faculty of Pharmacy and Food Science, Torribera Food Science Campus, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Pedro J García-Moreno
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark; Department of Chemical Engineering, University of Granada, Spain
| | | | - Tobias H Olsen
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Francesc Guardiola
- Faculty of Pharmacy and Food Science, Torribera Food Science Campus, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Egon B Hansen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
13
|
Aery S, Parry A, Araiza-Calahorra A, Evans SD, Gleeson HF, Dan A, Sarkar A. Ultra-stable liquid crystal droplets coated by sustainable plant-based materials for optical sensing of chemical and biological analytes. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:5831-5845. [PMID: 37153011 PMCID: PMC10158717 DOI: 10.1039/d3tc00598d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Herein, we demonstrate for the first time the synthesis of ultra-stable, spherical, nematic liquid crystal (LC) droplets of narrow size polydispersity coated by sustainable, biodegradable, plant-based materials that trigger a typical bipolar-to-radial configurational transition in dynamic response to chemical and biological analytes. Specifically, a highly soluble polymer, potato protein (PoP) and a physically-crosslinked potato protein microgel (PoPM) of ∼100 nm in diameter, prepared from the PoP, a byproduct of the starch industry, were compared for their ability to coat LC droplets. Although both PoP and PoPM were capable of reducing the interfacial tension between water and n-tetradecane <30 mN m-1, PoPM-coated LC droplets showed better stability than the PoP-coated droplets via a Pickering-like mechanism. Strikingly, the Pickering LC droplets outperformed PoP-stabilized droplets in terms of dynamic response with 5× lower detection limit to model chemical analytes (sodium dodecyl sulphate, SDS) due to the difference in SDS-binding features between the protein and the microgel. To eliminate the effect of size polydispersity on the response, monodisperse Pickering LC droplets of diameter ∼16 μm were additionally obtained using microfluidics, which mirrored the response to chemical as well as biological analytes, i.e., primary bile acid, an important biomarker of liver diseases. We demonstrate that these eco-friendly microgels used for creating monodisperse, ultra-stable, LC complex colloids are powerful templates for fabricating next generation, sustainable optical sensors for early diagnosis in clinical settings and other sensing applications.
Collapse
Affiliation(s)
- Shikha Aery
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds LS2 9JT UK
| | - Adele Parry
- School of Physics and Astronomy, University of Leeds LS2 9JT UK
| | - Andrea Araiza-Calahorra
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds LS2 9JT UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds LS2 9JT UK
| | - Helen F Gleeson
- School of Physics and Astronomy, University of Leeds LS2 9JT UK
| | - Abhijit Dan
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat Haringhata West Bengal 741249 India
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds LS2 9JT UK
| |
Collapse
|
14
|
Tang T, Wu N, Tang S, Xiao N, Jiang Y, Tu Y, Xu M. Industrial Application of Protein Hydrolysates in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1788-1801. [PMID: 36692023 DOI: 10.1021/acs.jafc.2c06957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Protein hydrolysates, which may be produced by the protein in the middle of the process or added as an ingredient, are part of the food formula. In food, protein hydrolysates are found in many forms, which can regulate the texture and functionality of food, including emulsifying properties, foaming properties, and gelation. Therefore, the relationship between the physicochemical and structural characteristics of protein hydrolysates and their functional characteristics is of significant importance. In recent years, researchers have conducted many studies on the role of protein hydrolysates in food processing. This Review explains the relationship between the structure and function of protein hydrolysates, and their interaction with the main ingredients of food, to provide reference for their development and further research.
Collapse
Affiliation(s)
- Tingting Tang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuaishuai Tang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nanhai Xiao
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Jiang
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
15
|
Ricardo F, Ruiz-Puentes P, Reyes LH, Cruz JC, Alvarez O, Pradilla D. Estimation and prediction of the air–water interfacial tension in conventional and peptide surface-active agents by random Forest regression. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Wang Y, Li Z, Li H, Selomulya C. Effect of hydrolysis on the emulsification and antioxidant properties of plant-sourced proteins. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Gregersen Echers S, Abdul-Khalek N, Mikkelsen RK, Holdt SL, Jacobsen C, Hansen EB, Olsen TH, Sejberg JJ, Overgaard MT. Is Gigartina a potential source of food protein and functional peptide-based ingredients? Evaluating an industrial, pilot-scale extract by proteomics and bioinformatics. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
18
|
Targeted hydrolysis of native potato protein: A novel workflow for obtaining hydrolysates with improved interfacial properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Christensen LF, García-Béjar B, Bang-Berthelsen CH, Hansen EB. Extracellular microbial proteases with specificity for plant proteins in food fermentation. Int J Food Microbiol 2022; 381:109889. [DOI: 10.1016/j.ijfoodmicro.2022.109889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
|
20
|
Zhang H, Zhao X, Chen X, Xu X. Thoroughly review the recent progresses in improving O/W interfacial properties of proteins through various strategies. Front Nutr 2022; 9:1043809. [DOI: 10.3389/fnut.2022.1043809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Along with the future food market developing world widely, the personalized nutrition and rational function food design are found to be urgently attracted. Oil in a water (O/W) emulsion system has an excellent ability to maintain nutraceuticals and thus plays a promising role in producing future functional foods. Understanding the interfacial related mechanisms involved are essential for improving the quality of food products. Protein can effectively reduce interfacial tension and stable immiscible phases. The interfacial properties of proteins directly affect the emulsion qualities, which have gradually become a prospective topic. This review will first briefly discuss the interfacial-related fundamental factors of proteins. Next, the paper thoroughly overviewed current physical and chemical strategies tailored to improving the interfacial and emulsion properties of proteins. To be summarized, a higher flexibility could allow protein to be more easily unfolded and adsorbed onto the interface but could also possibly form a softer interfacial film. Several physical strategies, such as thermal, ultrasound and especially high-pressure homogenization are well applied to improve the interfacial properties. The interfacial behavior is also altered by various green chemical strategies, such as pH adjustment, covalent modification, and low molecular weight (LMW) surfactant addition. These strategies upgraded emulsion properties by increasing adsorption load, accelerating diffusion and adsorption rate, associated with lowering interfacial tension, and promoting interfacial protein interactions. Future researches targeted at elucidating interfacial-bulk protein interactions, unraveling interfacial behavior through in silico tools, exploring connection between interfacial-industrial processing properties, and clarifying the interfacial-sensory-digestive relationships of O/W emulsions is needed to develop emulsion applications.
Collapse
|
21
|
Chen Y, Sun Y, Ding Y, Ding Y, Liu S, Zhou X, Wu H, Xiao J, Lu B. Recent progress in fish oil-based emulsions by various food-grade stabilizers: Fabrication strategy, interfacial stability mechanism and potential application. Crit Rev Food Sci Nutr 2022; 64:1677-1700. [PMID: 36062818 DOI: 10.1080/10408398.2022.2118658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fish oil, rich in a variety of long-chain ω-3 PUFAs, is widely used in fortified foods due to its broad-spectrum health benefits. However, its undesired characteristics include oxidation sensitivity, poor water solubility, and fishy off-flavor greatly hinder its exploitation in food field. Over the past two decades, constructing fish oil emulsions to encapsulate ω-3 PUFAs for improving their physicochemical and functional properties has undergone great progress. This review mainly focuses on understanding the fabrication strategies, stabilization mechanism, and potential applications of fish oil emulsions, including fish oil microemulsions, nanoemulsions, double emulsions, Pickering emulsions and emulsion gels. Furthermore, the role of oil-water interfacial stabilizers in the fish oil emulsions stability will be discussed with a highlight on food-grade single emulsifiers and natural complex systems for achieving this purpose. Additionally, its roles and applications in food industry and nutrition field are delineated. Finally, possible innovative food trends and applications are highlighted, such as novel fish oil-based delivery systems construction (e.g., Janus emulsions and nutraceutical co-delivery systems), exploring digestion and absorption mechanisms and enhancing functional evaluation (e.g., nutritional supplement enhancer, and novel fortified/functional foods). This review provides a reference for the application of fish oil-based emulsion systems in future precision diet intervention implementations.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Yi Sun
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huawei Wu
- Ningbo Today Food Co Ltd, Ningbo, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Lin D, Sun LC, Chen YL, Liu GM, Miao S, Cao MJ. Peptide/protein hydrolysate and their derivatives: Their role as emulsifying agents for enhancement physical and oxidative stability of emulsions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Antioxidant peptides derived from potato, seaweed, microbial and spinach proteins: Oxidative stability of 5% fish oil-in-water emulsions. Food Chem 2022; 385:132699. [DOI: 10.1016/j.foodchem.2022.132699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023]
|
24
|
Li Z, Anankanbil S, Li L, Lyu J, Nadzieja M, Guo Z. Alkylsuccinylated oxidized cellulose-based amphiphiles as a novel multi-purpose ingredient for stabilizing O/W emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
25
|
Asaithambi N, Singha P, Singh SK. Recent application of protein hydrolysates in food texture modification. Crit Rev Food Sci Nutr 2022; 63:10412-10443. [PMID: 35653113 DOI: 10.1080/10408398.2022.2081665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for clean labels has increased the importance of natural texture modifying ingredients. Proteins are unique compounds that can impart unique textural and structural changes in food. However, lack of solubility and extensive aggregability of proteins have increased the demand for enzymatically hydrolyzed proteins, to impart functional and structural modifications to food products. The review elaborates the recent application of various proteins, protein hydrolysates, and their role in texture modification. The impact of protein hydrolysates interaction with other food macromolecules, the effect of pretreatments, and dependence of various protein functionalities on textural and structural modification of food products with controlled enzymatic hydrolysis are explained in detail. Many researchers have acknowledged the positive effect of enzymatically hydrolyzed proteins on texture modification over natural protein. With enzymatic hydrolysis, various textural properties including foaming, gelling, emulsifying, water holding capacity have been effectively improved. It is evident that each protein is unique and imparts exceptional structural changes to different food products. Thus, selection of protein requires a fundamental understanding of its structure-substrate property relation. For wider applicability in the industrial sector, more studies on interactions at the molecular level, dosage, functionality changes, and sensorial attributes of protein hydrolysates in food systems are required.
Collapse
Affiliation(s)
- Niveditha Asaithambi
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| |
Collapse
|
26
|
Osheter T, Linder C, Wiesman Z. Time Domain (TD) Proton NMR Analysis of the Oxidative Safety and Quality of Lipid-Rich Foods. BIOSENSORS 2022; 12:bios12040230. [PMID: 35448290 PMCID: PMC9031308 DOI: 10.3390/bios12040230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 05/17/2023]
Abstract
Food safety monitoring is highly important due to the generation of unhealthy components within many food products during harvesting, processing, storage, transportation and cooking. Current technologies for food safety analysis often require sample extraction and the modification of the complex chemical and morphological structures of foods, and are either time consuming, have insufficient component resolution or require costly and complex instrumentation. In addition to the detection of unhealthy chemical toxins and microbes, food safety needs further developments in (a) monitoring the optimal nutritional compositions in many different food categories and (b) minimizing the potential chemical changes of food components into unhealthy products at different stages from food production until digestion. Here, we review an efficient methodology for overcoming the present analytical limitations of monitoring a food's composition, with an emphasis on oxidized food components, such as polyunsaturated fatty acids, in complex structures, including food emulsions, using compact instruments for simple real-time analysis. An intelligent low-field proton NMR as a time domain (TD) NMR relaxation sensor technology for the monitoring of T2 (spin-spin) and T1 (spin-lattice) energy relaxation times is reviewed to support decision-making by producers, retailers and consumers in regard to food safety and nutritional value during production, shipping, storage and consumption.
Collapse
|
27
|
Scott GG, Börner T, Leser ME, Wooster TJ, Tuttle T. Directed Discovery of Tetrapeptide Emulsifiers. Front Chem 2022; 10:822868. [PMID: 35252117 PMCID: PMC8891517 DOI: 10.3389/fchem.2022.822868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Oil in water emulsions are an important class of soft material that are used in the food, cosmetic, and biomedical industries. These materials are formed through the use of emulsifiers that are able to stabilize oil droplets in water. Historically emulsifiers have been developed from lipids or from large biomolecules such as proteins. However, the ability to use short peptides, which have favorable degradability and toxicity profiles is seen as an attractive alternative. In this work, we demonstrate that it is possible to design emulsifiers from short (tetra) peptides that have tunability (i.e., the surface activity of the emulsion can be tuned according to the peptide primary sequence). This design process is achieved by applying coarse grain molecular dynamics simulation to consecutively reduce the molecular search space from the 83,521 candidates initially considered in the screen to four top ranking candidates that were then studied experimentally. The results of the experimental study correspond well to the predicted results from the computational screening verifying the potential of this screening methodology to be applied to a range of different molecular systems.
Collapse
Affiliation(s)
- Gary G. Scott
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Tim Börner
- Institute of Materials Sciences, Nestlé Research Center, Lausanne, Switzerland
| | - Martin E. Leser
- Institute of Materials Sciences, Nestlé Research Center, Lausanne, Switzerland
| | - Tim J. Wooster
- Institute of Materials Sciences, Nestlé Research Center, Lausanne, Switzerland
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
- *Correspondence: Tell Tuttle,
| |
Collapse
|
28
|
Rahimi R, Ahmadi Gavlighi H, Amini Sarteshnizi R, Barzegar M, Udenigwe CC. In vitro antioxidant activity and antidiabetic effect of fractionated potato protein hydrolysate via ultrafiltration and adsorption chromatography. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Gregersen S, Kongsted ASH, Nielsen RB, Hansen SS, Lau FA, Rasmussen JB, Holdt SL, Jacobsen C. Enzymatic extraction improves intracellular protein recovery from the industrial carrageenan seaweed Eucheuma denticulatum revealed by quantitative, subcellular protein profiling: A high potential source of functional food ingredients. Food Chem X 2021; 12:100137. [PMID: 34746746 PMCID: PMC8554166 DOI: 10.1016/j.fochx.2021.100137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 01/13/2023] Open
Abstract
Seaweeds are regarded as a sustainable source of food protein, but protein extraction is severely impaired by the complex extracellular matrix. In this work, we investigated the protein-level effects of enzymatic extraction upstream of carrageenan extraction for the industrial red seaweed Eucheuma denticulatum. Combination of quantitative proteomics and bioinformatic prediction of subcellular localization was shown to have immense potential for process evaluation; even in the case of poorly annotated species such as E. denticulatum. Applying cell wall degrading enzymes markedly improved the relative recovery of intracellular proteins compared to treatment with proteolytic enzymes or no enzymatic treatment. Moreover, results suggest that proteomics data may prove useful for characterizing amino acid composition and that length-normalization is a viable approach for relative protein quantification in non-specific analysis. Importantly, the extracts were abundant in proteins, which contained both previously verified and novel, potential bioactive peptides, highlighting their potential for application as functional food ingredients.
Collapse
Affiliation(s)
- Simon Gregersen
- Department of Chemistry and Bioscience, Aalborg University, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tong X, Cao J, Sun M, Liao P, Dai S, Cui W, Cheng X, Li Y, Jiang L, Wang H. Physical and oxidative stability of oil-in-water (O/W) emulsions in the presence of protein (peptide): Characteristics analysis and bioinformatics prediction. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Carranza-Saavedra D, Zapata-Montoya JE, Váquiro-Herrera HA, Solanilla-Duque JF. Study of biological activities and physicochemical properties of Yamú (Brycon siebenthalae) viscera hydrolysates in sodium alginate-based edible coating solutions. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The fishing industry produces waste such as viscera, which is an environmental problem for many countries. Obtaining protein from these wastes are useful for the food industry. In this study, the chemical composition, amino acid profile, solubility, digestibility and thermal properties of Yamú protein isolate (PI) and its hydrolysates obtained by enzymatic hydrolysis were characterized. The hydrolysates (0.05, 0.1, 0.5, 1 and 2% w/v) were mixed with a sodium alginate-based solution to form an edible coating solution (ECS). Antioxidant capacity antimicrobial activity, Zeta potential (ζ) and adsorption kinetics properties were determined. PI contains 88% (w/w) protein showing better solubility, digestibility and thermal stability properties. The hydrolysate concentrations with DPPH inhibitory ECS were 0.1 and 0.5% (w/v). The kinetic properties of ECS showed good stability and excellent adsorption. These results suggest that this Yamú protein has high nutritional potential as an ingredient for the production of functional foods.
Collapse
Affiliation(s)
- Darwin Carranza-Saavedra
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
- Grupo de investigación en Nutrición y Tecnología de Alimentos (Nutec), Universidad de Antioquia , Medellín 050010 , Colombia
| | - José Edgar Zapata-Montoya
- Grupo de investigación en Nutrición y Tecnología de Alimentos (Nutec), Universidad de Antioquia , Medellín 050010 , Colombia
| | - Henry Alexander Váquiro-Herrera
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
| | - José Fernando Solanilla-Duque
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
- Departamento de Agroindustria , Facultad de Ciencias Agrarias, Universidad del Cauca , Popayán 190001 , Colombia
| |
Collapse
|
32
|
Impact of Tetrapeptide-FSEY on Oxidative and Physical Stability of Hazelnut Oil-In-Water Emulsion. Foods 2021; 10:foods10061400. [PMID: 34204278 PMCID: PMC8234661 DOI: 10.3390/foods10061400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
This study investigates the antioxidant behaviors of a hazelnut tetrapeptide, FSEY (Phe-Ser-Glu-Tyr), in an oil-in-water emulsion. The emulsion was prepared with stripped hazelnut oil at a ratio of 10%. O/W emulsions, both with and without antioxidants (FSEY and TBHQ), were incubated at 37 °C. The chemical stabilities, including those of free radicals and primary and secondary oxidation productions, along with the physical stabilities, which include particle size, zeta-potential, color, pH, and ΔBS, were analyzed. Consequently, FSEY displayed excellent antioxidant behaviors in the test system by scavenging free lipid radicals. Both primary and secondary oxidation products were significantly lower in the FSEY groups. Furthermore, FSEY assisted in stabilizing the physical structure of the emulsion. This antioxidant could inhibit the increase in particle size, prevent the formation of creaming, and stabilize the original color and pH of the emulsion. Consequently, FSEY may be an effective antioxidant additive to use in emulsion systems.
Collapse
|
33
|
Helmick H, Turasan H, Yildirim M, Bhunia A, Liceaga A, Kokini JL. Cold Denaturation of Proteins: Where Bioinformatics Meets Thermodynamics to Offer a Mechanistic Understanding: Pea Protein As a Case Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6339-6350. [PMID: 34029090 DOI: 10.1021/acs.jafc.0c06558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein structure can be altered with heat, but models which predict denaturation show that globular proteins also spontaneously unfold at low temperatures through cold denaturation. By an analysis of the primary structure of pea protein using bioinformatic modeling, a mechanism of pea protein cold denaturation is proposed. Pea protein is then fractionated into partially purified legumin and vicilin components, suspended in ethanol, and subjected to low temperatures (-10 to -20 °C). The structural characterizations of the purified fractions are conducted through FTIR, ζ potential, dynamic light scattering, and oil binding, and these are compared to the results of commercial protein isolates. The observed structural changes suggest that pea protein undergoes changes in structure as the result of low-temperature treatments, which could lead to innovative industrial processing techniques for functionalization by low-temperature processing.
Collapse
Affiliation(s)
- Harrison Helmick
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Hazal Turasan
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Merve Yildirim
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Arun Bhunia
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Andrea Liceaga
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| | - Jozef L Kokini
- Purdue University Food Science Department, 745 Agriculture Mall Drive West Lafayette, Indiana 47907, United States
| |
Collapse
|
34
|
García-Moreno PJ, Yang J, Gregersen S, Jones NC, Berton-Carabin CC, Sagis LM, Hoffmann SV, Marcatili P, Overgaard MT, Hansen EB, Jacobsen C. The structure, viscoelasticity and charge of potato peptides adsorbed at the oil-water interface determine the physicochemical stability of fish oil-in-water emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106605] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Galves C, Galli G, Miranda CG, Kurozawa LE. Improving the emulsifying property of potato protein by hydrolysis: an application as encapsulating agent with maltodextrin. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Dini C, Quiroga AV, Viña SZ, García MA. Extraction and Characterization of Proteins from Pachyrhizus ahipa Roots: an Unexploited Protein-Rich Crop. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:179-188. [PMID: 33755896 DOI: 10.1007/s11130-021-00890-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 05/14/2023]
Abstract
Pachyrhizus ahipa is an unexploited crop known to be rich in proteins compared to other edible roots and tubers. These proteins are not prolamins, thus ahipa represents an interesting new source of ingredients for gluten-free foods. In this work, ahipa proteins (AP) were extracted and partially characterized in pursuit of their use as food ingredients. The effect of ultrasound treatment on protein extraction efficiency was evaluated. AP were characterized by their size, amino acid composition, surface hydrophobicity, intrinsic fluorescence, FTIR spectra, solubility, and thermal and emulsifying properties. AP were efficiently removed from the vegetal tissue using PBS or water, regardless of the use of ultrasound, but not easily recovered by precipitation. This protein fraction was composed of small proteins, with sizes ranging from 9 to 30 kDa, and highly polar. AP resulted particularly rich in aspartic acid (59% of the total amino acid content), for which they can be classified as Asp-rich proteins. Their elevated content of acidic groups was evidenced in the ATR-FTIR spectrum. The amide I band deconvolution as well as the low surface hydrophobicity and denaturation enthalpy indicated that these proteins are mainly unordered structures. The emulsifying properties of AP were enhanced when the concentration was increased from 0.1 to 1% (w/v) but resulted lower than those of soy protein. The high polarity, small size, and low isoelectric point make AP particularly suitable for acidic food matrices.
Collapse
Affiliation(s)
- Cecilia Dini
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos), Facultad de Ciencias Exactas UNLP - CONICET La Plata - CICPBA, 47 y 116 S/N, 1900, La Plata, Buenos Aires, Argentina.
| | - A V Quiroga
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos), Facultad de Ciencias Exactas UNLP - CONICET La Plata - CICPBA, 47 y 116 S/N, 1900, La Plata, Buenos Aires, Argentina
| | - S Z Viña
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos), Facultad de Ciencias Exactas UNLP - CONICET La Plata - CICPBA, 47 y 116 S/N, 1900, La Plata, Buenos Aires, Argentina
- Curso de Bioquímica y Fitoquímica, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, 60 y 119 S/N, 1900, La Plata, Buenos Aires, Argentina
| | - M A García
- CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos), Facultad de Ciencias Exactas UNLP - CONICET La Plata - CICPBA, 47 y 116 S/N, 1900, La Plata, Buenos Aires, Argentina
| |
Collapse
|
37
|
Yesiltas B, Gregersen S, Lægsgaard L, Brinch ML, Olsen TH, Marcatili P, Overgaard MT, Hansen EB, Jacobsen C, García-Moreno PJ. Emulsifier peptides derived from seaweed, methanotrophic bacteria, and potato proteins identified by quantitative proteomics and bioinformatics. Food Chem 2021; 362:130217. [PMID: 34098440 DOI: 10.1016/j.foodchem.2021.130217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Global focus on sustainability has accelerated research into alternative non-animal sources of food protein and functional food ingredients. Amphiphilic peptides represent a class of promising biomolecules to replace chemical emulsifiers in food emulsions. In contrast to traditional trial-and-error enzymatic hydrolysis, this study utilizes a bottom-up approach combining quantitative proteomics, bioinformatics prediction, and functional validation to identify novel emulsifier peptides from seaweed, methanotrophic bacteria, and potatoes. In vitro functional validation reveal that all protein sources contained embedded novel emulsifier peptides comparable to or better than sodium caseinate (CAS). Thus, peptides efficiently reduced oil-water interfacial tension and generated physically stable emulsions with higher net zeta potential and smaller droplet sizes than CAS. In silico structure modelling provided further insight on peptide structure and the link to emulsifying potential. This study clearly demonstrates the potential and broad applicability of the bottom-up approach for identification of abundant and potent emulsifier peptides.
Collapse
Affiliation(s)
- Betül Yesiltas
- National Food Institute, Technical University of Denmark, Denmark.
| | - Simon Gregersen
- Department of Chemistry and Bioscience, Aalborg University, Denmark.
| | - Linea Lægsgaard
- National Food Institute, Technical University of Denmark, Denmark
| | - Maja L Brinch
- National Food Institute, Technical University of Denmark, Denmark
| | - Tobias H Olsen
- Department of Bio and Health Informatics, Technical University of Denmark, Denmark
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Denmark
| | | | - Egon B Hansen
- National Food Institute, Technical University of Denmark, Denmark
| | | | - Pedro J García-Moreno
- National Food Institute, Technical University of Denmark, Denmark; Department of Chemical Engineering, University of Granada, Spain.
| |
Collapse
|
38
|
The effect of fatty acid chain length and saturation on the emulsification properties of pork myofibrillar proteins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Jafarpour A, Gregersen S, Marciel Gomes R, Marcatili P, Hegelund Olsen T, Jacobsen C, Overgaard MT, Sørensen ADM. Biofunctionality of Enzymatically Derived Peptides from Codfish ( Gadus morhua) Frame: Bulk In Vitro Properties, Quantitative Proteomics, and Bioinformatic Prediction. Mar Drugs 2020; 18:E599. [PMID: 33260992 PMCID: PMC7759894 DOI: 10.3390/md18120599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Protein hydrolysates show great promise as bioactive food and feed ingredients and for valorization of side-streams from e.g., the fish processing industry. We present a novel approach for hydrolysate characterization that utilizes proteomics data for calculation of weighted mean peptide properties (length, molecular weight, and charge) and peptide-level abundance estimation. Using a novel bioinformatic approach for subsequent prediction of biofunctional properties of identified peptides, we are able to provide an unprecedented, in-depth characterization. The study further characterizes bulk emulsifying, foaming, and in vitro antioxidative properties of enzymatic hydrolysates derived from cod frame by application of Alcalase and Neutrase, individually and sequentially, as well as the influence of heat pre-treatment. All hydrolysates displayed comparable or higher emulsifying activity and stability than sodium caseinate. Heat-treatment significantly increased stability but showed a negative effect on the activity and degree of hydrolysis. Lower degrees of hydrolysis resulted in significantly higher chelating activity, while the opposite was observed for radical scavenging activity. Combining peptide abundance with bioinformatic prediction, we identified several peptides that are likely linked to the observed differences in bulk emulsifying properties. The study highlights the prospects of applying proteomics and bioinformatics for hydrolysate characterization and in food protein science.
Collapse
Affiliation(s)
- Ali Jafarpour
- Research Group for Bioactives-Analysis and Application, Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (R.M.G.); (C.J.); (A.-D.M.S.)
| | - Simon Gregersen
- Section for Biotechnology, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark;
| | - Rocio Marciel Gomes
- Research Group for Bioactives-Analysis and Application, Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (R.M.G.); (C.J.); (A.-D.M.S.)
| | - Paolo Marcatili
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (P.M.); (T.H.O.)
| | - Tobias Hegelund Olsen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (P.M.); (T.H.O.)
| | - Charlotte Jacobsen
- Research Group for Bioactives-Analysis and Application, Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (R.M.G.); (C.J.); (A.-D.M.S.)
| | - Michael Toft Overgaard
- Section for Biotechnology, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark;
| | - Ann-Dorit Moltke Sørensen
- Research Group for Bioactives-Analysis and Application, Division of Food Technology, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (R.M.G.); (C.J.); (A.-D.M.S.)
| |
Collapse
|
40
|
Prediction and Identification of Antioxidant Peptides in Potato Protein Hydrolysate. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8889555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Principal component analysis (PCA) was used to cluster the possible amino acid compositions of antioxidant peptides in potato protein hydrolysate (PPH). The antioxidant peptides exhibiting high ABTS+• scavenging capacity were isolated with the procedure of ultrafiltration, gel filtration, and preparative RP-HPLC and identified by UPLC-MS/MS. Phe, Tyr, and His were shown to group together with ABTS+• scavenging capacity in component matrix plot. Three prominent peptides, namely, Phe-Tyr, Tyr-Phe-Glu, and Pro-Pro-His-Tyr-Phe, which matched the sequence of patatin and were made up of Phe and Tyr, were identified. The peptide Tyr-Phe-Glu demonstrated antioxidant activity against Caco-2 cell oxidation induced by H2O2. The results suggested that multivariate analysis could be used to predict the amino acid compositions of antioxidant peptides.
Collapse
|
41
|
García-Moreno PJ, Gregersen S, Nedamani ER, Olsen TH, Marcatili P, Overgaard MT, Andersen ML, Hansen EB, Jacobsen C. Identification of emulsifier potato peptides by bioinformatics: application to omega-3 delivery emulsions and release from potato industry side streams. Sci Rep 2020; 10:690. [PMID: 31959786 PMCID: PMC6971092 DOI: 10.1038/s41598-019-57229-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/20/2019] [Indexed: 11/08/2022] Open
Abstract
In this work, we developed a novel approach combining bioinformatics, testing of functionality and bottom-up proteomics to obtain peptide emulsifiers from potato side-streams. This is a significant advancement in the process to obtain emulsifier peptides and it is applicable to any type of protein. Our results indicated that structure at the interface is the major determining factor of the emulsifying activity of peptide emulsifiers. Fish oil-in-water emulsions with high physical stability were stabilized with peptides to be predicted to have facial amphiphilicity: (i) peptides with predominantly α-helix conformation at the interface and having 18-29 amino acids, and (ii) peptides with predominantly β-strand conformation at the interface and having 13-15 amino acids. In addition, high physically stable emulsions were obtained with peptides that were predicted to have axial hydrophobic/hydrophilic regions. Peptides containing the sequence FCLKVGV showed high in vitro antioxidant activity and led to emulsions with high oxidative stability. Peptide-level proteomics data and sequence analysis revealed the feasibility to obtain the potent emulsifier peptides found in this study (e.g. γ-1) by trypsin-based hydrolysis of different side streams in the potato industry.
Collapse
Affiliation(s)
- Pedro J García-Moreno
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark.
- Department of Chemical Engineering, University of Granada, Granada, Spain.
| | - Simon Gregersen
- Department of Chemistry and Bioscience, Aalborg University, Copenhagen, Denmark
| | - Elham R Nedamani
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Tobias H Olsen
- Department of Bio and Health Informatics, Technical University of Denmark, Copenhagen, Denmark
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Copenhagen, Denmark
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Copenhagen, Denmark
| | - Mogens L Andersen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Egon B Hansen
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|