1
|
Wang H, Xiang L, Zhang Z, Li G, Li P, Chen W, Fang Y, Lin X, Lin S. Elucidating the interaction mechanism of rutin with β-casein and β-lactoglobulin: A comprehensive analysis using multi-spectroscopy, molecular docking, and molecular dynamic simulations. Food Chem 2025; 476:143411. [PMID: 39987803 DOI: 10.1016/j.foodchem.2025.143411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Polyphenol-protein interactions are crucial for food processing, nutrition, and functional properties. This study investigates the interaction between rutin and β-casein (β-CAS) or β-lactoglobulin (β-LG) using multispectral analysis, molecular docking, and molecular dynamics (MD) simulations. Fluorescence spectroscopy reveals that rutin binds spontaneously (ΔG < 0) to β-CAS and β-LG, forming complexes with binding constants (Ka) at 298 K of 42.500 × 103 and 2.101 × 103 L·mol-1, respectively, and at 308 K of 5.814 × 103 and 4.350 × 103 L·mol-1. Multispectral analysis and microscopy reveal complex formation and changes in the proteins' secondary, crystalline, and microstructures. Molecular docking and MD simulations verify complex stability, showing heightened binding affinity between rutin and β-CAS. These results validate hydrophobic interactions and hydrogen bonding as the main forces between rutin and the two proteins. These findings offer insights for using milk proteins as rutin carriers and support potential food industry application.
Collapse
Affiliation(s)
- Hailin Wang
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China; Fujian Province-Indonesia Marine Food Joint Research and Development Center, College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Leiwen Xiang
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China; Fujian Province-Indonesia Marine Food Joint Research and Development Center, College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| | - Guoqiang Li
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhe Jiang Institute of Tianjin University, Shaoxing, Zhejiang, China.
| | - Peng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wentao Chen
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China; Fujian Province-Indonesia Marine Food Joint Research and Development Center, College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Yu Fang
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Xinyan Lin
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Shufen Lin
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| |
Collapse
|
2
|
Huang S, Yin X, Fang Y, Xiong T, Peng F. Effect of Limosilactobacillus fermentum NCU001464 fermentation on physicochemical properties, xanthine oxidase inhibitory activity and flavor profile of Pueraria Lobata. Food Chem 2025; 476:143490. [PMID: 39987810 DOI: 10.1016/j.foodchem.2025.143490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/22/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
This study examined the impact of Limosilactobacillus fermentum NCU001464 fermentation on physicochemical properties, xanthine oxidase inhibitory activity, and the flavor profile of Pueraria Lobata (PL). An orthogonal experiment determined the optimum conditions: inoculation amount of 6 %, a fermentation time of 32 h, and a fermentation temperature of 37 °C. Under these conditions, fermented PL exhibited significantly higher antioxidant capacity and xanthine oxidase inhibition ability than unfermented PL, possibly because of increased total flavonoid content from 1.27 mg RUT/mL to 1.50 mg RUT/mL. Notably, The compounds, kaempferol 3-rhamnoside 4'-xyloside and puerarin xyloside, significantly increased after fermentation, and molecular docking and dynamic simulations revealed their strong interactions with xanthine oxidase. Additionally, fermentation improved the flavor by reducing the inferior aroma of fat and green and increasing the sweet fruity notes. These results highlight the potential of fermented PL as a functional food and provide valuable theoretical foundations for its high-value applications.
Collapse
Affiliation(s)
- Siyun Huang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xin Yin
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yuling Fang
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; Jiangxi Medicine Academy of Nutrition and Health Management, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Fei Peng
- School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China; Jiangxi Medicine Academy of Nutrition and Health Management, No. 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
3
|
Yang Y, Wu MQ, Zhu PY, Ma CM, Wang B, Bian X, Liu XF, Zhang G, Zhang N. Interaction of rice glutelin with soybean 7S globulin formed co-assemblies with improved functional properties. Food Chem 2025; 475:143270. [PMID: 39946913 DOI: 10.1016/j.foodchem.2025.143270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Rice protein (RP) molecules tend to aggregate, limiting their functional properties and posing a significant challenge to the intensive processing of rice products. This study explored the interaction between soybean 7S globulin (7S) and rice glutelin (RG) to improve the structure and properties of RP. The results show that the tertiary structure of the RG-7S co-assemblies undergoes a certain degree of extension, increases the α-helix content, and reduces the β-sheet content in the secondary structure. Molecular dynamics provide further verification that hydrogen bonding and hydrophobic interactions are the main drivers of these conformational changes. When the RG-7S ratio was 1:1.500 (g/g), the solubility increased 20-fold, and the emulsifying activity index and foaming capacity increased by 3.33 and 1.89 times, respectively. This study confirms that 7S co-assembly with RG enhances the functional properties of RG, demonstrating the potential of this strategy for application in the food industry.
Collapse
Affiliation(s)
- Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Ming-Qian Wu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Peng-Yu Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Fei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
4
|
Zhou F, Lu B, Chen X, Jia Z, Tao F, Peng J. Interaction of major tea polyphenols with bovine milk proteins and its effect on in vitro bioaccessibility of tea polyphenols. Food Chem 2025; 475:143341. [PMID: 39956065 DOI: 10.1016/j.foodchem.2025.143341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/13/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
Adding bovine milk into tea and tea-containing beverages has been popular nowadays, while this dietary system may affect the digestion and absorption of tea polyphenols. In this work, the interactions of tea polyphenols with bovine milk proteins and their impacts on the bioaccessibility of tea polyphenols were investigated. The results indicate that tea polyphenols interact with amino acid residues of bovine milk proteins through hydrogen bonds and van der Waals forces spontaneously. Tea polyphenols cause static fluorescence quenching of bovine milk proteins, with different interaction types through one binding site. The interaction between tea polyphenols and bovine milk proteins forms a complex, which reduces the contents of α-helix, β-turn, and random coil in the secondary structure of bovine milk proteins while increasing the β-sheet content. Tea polyphenol-bovine milk protein interaction can enhance the bioaccessibility of tea polyphenols, with esterified tea polyphenols epicatechin gallate and epigallocatechin gallate showing better improvement effects.
Collapse
Affiliation(s)
- Fei Zhou
- College of Quality and Standardization, China Jiliang University, Hangzhou 310018, China; College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Zhejiang Medicine Co., Ltd., Xinchang Pharmaceutical Factory, Xinchang 312500, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Xiachao Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenbao Jia
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Fei Tao
- College of Quality and Standardization, China Jiliang University, Hangzhou 310018, China
| | - Jiyu Peng
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
| |
Collapse
|
5
|
Liu Y, Li Z, Lu S, Gao S, Xu M, Yuan Z, Li Y, Gao Y, Shangguan J, Xiang X. The roles of flaxseed gum and its oligosaccharides as stabilizers in zein nanoparticles for apigenin delivery: Stability, antioxidant activity, bioavailability, molecular simulations. Food Chem 2025; 484:144439. [PMID: 40286715 DOI: 10.1016/j.foodchem.2025.144439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/26/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Apigenin (Ap) is a bioactive compound, but its application is limited by poor solubility, stability, and bioavailability. This study developed flaxseed gum (FG) and its oligosaccharides (FGOS)-coated zein nanoparticles for Ap delivery (FG/Zein@Ap and FGOS/Zein@Ap). Compared to FG/Zein@Ap, FGOS/Zein@Ap exhibited smaller size, higher zeta potential, encapsulation efficiency (∼71.70 %), and loading capacity (∼7.66 %) as evidenced by dynamic light scattering, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). FGOS/Zein@Ap also provided better stability of Ap under various conditions, thereby promoting stronger in vitro antioxidant activity, raising bioaccessibility and bioavailability. Molecular docking and molecular dynamics simulations revealed that FGOS interacted more strongly with zein, primarily through hydrogen bonding and van der Waals forces. This interaction provided greater binding stability throughout the simulation period, compared to FG. This study enhances the understanding of FG and FGOS, providing valuable insights for oligosaccharides-based delivery systems for hydrophobic bioactives.
Collapse
Affiliation(s)
- Yufei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Ziliang Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China; Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Shuaijun Lu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Shang Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Mengting Xu
- Junji College, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Ze Yuan
- Junji College, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yue Li
- Junji College, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yiqiao Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xia Xiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
6
|
Mu X, Roghzai H, Zeng L, Sun X, Zhao X. Curcumin-loaded zein and shellac composite nanoparticles for ulcerative colitis treatment. Eur J Pharm Biopharm 2025; 209:114658. [PMID: 39914574 DOI: 10.1016/j.ejpb.2025.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/08/2024] [Accepted: 02/02/2025] [Indexed: 03/10/2025]
Abstract
This study highlights the efficacy of microfluidic technology in creating curcumin (Cur) loaded zein + shellac (Z + S) hybrid nanoparticles (NPs), presenting a promising avenue for enhancing Cur's availability in the food industry, especially in beverages, and positioning it as a potent antioxidant strategy for applications such as the treatment of enteritis. The study revealed that an increase in the proportion of shellac led to a gradual increase in the particle size of Z + S NPs, while the polydispersity index (PDI) initially decreasing and then increasing. When Cur is encapsulated, an increase in the proportion of shellac resulted in a gradual decrease in particle size and PDI, accompanied by an increase in encapsulation efficiency (EE). When the ratio of zein and shellac remained constant, elevating the Cur concentration led to a gradual decrease in EE and a gradual increase in drug loading. The consistently low Zeta potential (below -20 mV) confirmed the colloidal stability of the NPs, making them suitable for prolonged storage. The NPs exhibited excellent biocompatibility with normal cells and demonstrated effective free radical scavenging capabilities. Mixing of shellac and zein regulated the release profile of Cur from the NPs, mapping the food fate in human body, enhancing the treatment efficacy of ulcerative colitis. In vivo experiment demonstrated that the NPs are able to effectively relieve the dextran sulphate sodium induced enteritis, providing a promising approach for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Xiaoyan Mu
- School of Pharmacy, Changzhou University, Changzhou 213164 China; School of Chemical Engineering, Changzhou University, Changzhou 213164 China
| | - Hemin Roghzai
- School of Pharmacy, Changzhou University, Changzhou 213164 China; College of Science, University of Sulaimani, Kurdistan 46001 Iraq
| | - Lingwen Zeng
- School of Chemical Engineering, Changzhou University, Changzhou 213164 China
| | - Xiaoqiang Sun
- School of Chemical Engineering, Changzhou University, Changzhou 213164 China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164 China.
| |
Collapse
|
7
|
Huang Z, Wang Y, McClements DJ, Dong R, Wang Y, Wang Q, Liu H, Yu Q, Xie J, Chen Y. Investigation of the interaction mechanism of citrus pectin-polyphenol-protein complex. Food Chem 2025; 468:142419. [PMID: 39700817 DOI: 10.1016/j.foodchem.2024.142419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Citrus pectin is an anionic polysaccharide in citrus, which may improve the stability of citrus juices. This study investigated the influence of citrus pectin on the stability of protein-polyphenol complexes in the citrus juice model system and its interaction mechanism by multispectral and molecular dynamics (MD) simulations. Dynamic light scattering (DLS) and differential scanning calorimetry (DSC) showed that the citrus pectin-proanthocyanidin-zein complex improved the model citrus juices' cloud and thermal stability. Molecular dynamics (MD) simulations suggested that both pectin and proanthocyanidin bound to the U-shaped cavity of the zein molecules. Electrostatic and van der Waals forces were predominant in citrus pectin-zein. In contrast, van der Waals forces predominantly drove in proanthocyanidin-zein. This study indicated that citrus pectin could stabilize juice by delaying the onset of protein-polyphenol haze formation, which may provide new strategies for improving the quality, stability, and nutritional profile of fruit juice systems.
Collapse
Affiliation(s)
- Ziyan Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | | | - Ruihong Dong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qin Wang
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510000, China
| | - Huifan Liu
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510000, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
8
|
Wang D, Li J, Yang H, Zhang Y, Zhu M, Xiao Z. Production, characterization, and application of zein-polyphenol complexes and conjugates: A comprehensive review. Food Chem 2025; 467:142309. [PMID: 39644665 DOI: 10.1016/j.foodchem.2024.142309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
The corn protein zein has several advantages, such as low production cost, excellent biodegradability, good biocompatibility, and low allergenicity. However, the application of zein in the food industry is limited by its high hydrophobicity. To increase the functionality of zein and meet the diverse requirements of food systems, researchers have explored several methods to form complexes or conjugates through noncovalent or covalent interactions, respectively, with polyphenols. This paper comprehensively reviews the formation mechanisms, preparation methods, and influencing factors of zein-polyphenol complexes and conjugates. In addition, the paper presents the techniques used to characterize zein-polyphenol complexes and conjugates and their various new functional properties and bioactivities including water solubility, emulsification activity, in vitro antioxidant activity and antibacterial activity, as well as factors that affect these properties. Furthermore, the potential uses of these compounds in the food sector and future research areas are discussed.
Collapse
Affiliation(s)
- Dexiong Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China
| | - Jianan Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China
| | - Hongli Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China
| | - Yifan Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China
| | - Minpeng Zhu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China.
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China; Shenyang Key Laboratory of Grain and Oil Deep Processing, Shenyang 110034, Liaoning Province, China.
| |
Collapse
|
9
|
Wang D, Wang J, Lang Y, Huang M, Hu S, Liu H, Sun B, Long Y, Wu J, Dong W. Interactions between food matrices and odorants: A review. Food Chem 2025; 466:142086. [PMID: 39612859 DOI: 10.1016/j.foodchem.2024.142086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/20/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Currently, although odorants of various foods have been thoroughly studied, the regulation of food aromas is still difficult due to the interaction between odorants and food matrices. These complex matrices in food may interact with odorants to change the volatility of odorants, which in turn affect food aroma. Clarifying the interaction between them are promising for predicting food aroma formation, which will provide valuable support for a high-efficiency food industry. Herein, the research progresses on interactions between food matrices and odorants are reviewed. First, the analysis methods and their advantages and disadvantages are introduced and discussed emphatically, including sensory-analysis methods, characterization methods of the volatility changes of odorants, and the research methods of interaction mechanism. Further, the research advances of interactions among proteins, carbohydrates, lipids, and polyphenols with odorants are summarized briefly. Finally, the existing problems are discussed and the research prospects are proposed.
Collapse
Affiliation(s)
- Danqing Wang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Juan Wang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Ying Lang
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Mingquan Huang
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China.
| | - Shenglan Hu
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Hongqin Liu
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China.
| | - Yao Long
- Guizhou Wangmao Jiuqu Research Institute Co., Ltd., Guiyang, Guizhou 550081, PR China
| | - Jihong Wu
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| | - Wei Dong
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing 100048, PR China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| |
Collapse
|
10
|
Huang M, Song Y, Wang H, Li H, Zhou R, Cao Q, Dong L, Ren G, Wu D, Lei Q, Fang W, Deng D, Xie H. Fabrication and characterization of lysozyme fibrils/Zein complexes for resveratrol encapsulation: Improving stability, antioxidant and antibacterial activities. Food Chem 2025; 464:141746. [PMID: 39454440 DOI: 10.1016/j.foodchem.2024.141746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Resveratrol (Res), a naturally occurring hydrophobic polyphenol, boasts numerous health-promoting bio-functionalities. However, its limited water solubility and stability impede further applications in the food industry. This study aims to address these challenges by fabricating stable Res-loaded lysozyme fibrils/zein (Ly-F/Z) complexes. The complexes were prepared using an antisolvent precipitation method. The interaction mechanism between Ly-F and zein was elucidated through dynamic light scattering, Fourier-transform infrared spectroscopy and dissociative experiments, revealing the involvement of hydrogen bonding, electrostatic forces and hydrophobic interactions in complex formation. The Ly-F/Z complexes were utilized to encapsulate Res, resulting in an encapsulation efficiency of 82.58 %. X-ray diffraction analysis confirmed the successful encapsulation of Res within Ly-F/Z complexes, presenting an amorphous state. The Ly-F/Z-Res complexes exhibited a "fruit tree" morphology with dense fruit, showcasing remarkable stability, antioxidant and antibacterial activities. Consequently, the Ly-F/Z complexes can serve as promising delivery systems for Res in functional foods.
Collapse
Affiliation(s)
- Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuling Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Han Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Rongmi Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qing Cao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lijuan Dong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Di Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qunfang Lei
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Dan Deng
- Hangzhou Linping Hospital of Traditional Chinese and Western Medicine, Linping, 311100, Zhejiang, China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
11
|
Cheng Y, Sun X, Zhang Z, Li W, Yuan L, Yang X. High internal phase emulsions stabilized by fluorescent phycocyanin for improved stability and bioaccessibility of β-carotene. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:780-790. [PMID: 39253908 DOI: 10.1002/jsfa.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND High internal phase emulsions (HIPE) are distinguished from ordinary emulsions by higher oil-phase percentage and better storage stability. Recently, HIPE stabilized with protein-based particles has received more attention. However, organic precipitation, chemical cross-linking and thermal denaturation are often needed to stabilize emulsions with natural proteins, and there is an urgent need to reduce the pollution of organic reagents. RESULTS HIPE loaded with β-carotene stabilized by phycocyanin was prepared under mild conditions. It demonstrated strong stability in terms of temperature and storage, as evidenced by its 94.17% retention rate and 81.06% bioavailability. This stability was ascribed to the efficient defense against heat and UV rays, which was probably associated with the oil-droplet environment and interfacial protection of phycocyanin. It is speculated that the possible main interaction site between phycocyanin and sorbitol exists near amino acids 110 to 120 of the B chain. The hydrogen bond and hydrophobic interaction between them make the phycocyanin fully adsorbed on the oil-water interface when sorbitol is stable, forming a strong oil-water structure, which increases the stability of the emulsion. CONCLUSION The outstanding fluorescence characteristics provide a feasible alternative for fluorescent emulsions to distribute and trace active compounds in vitro. HIPE loaded with β-carotene might have potential as a 3D printing material for edible functional foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Cheng
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiaolin Sun
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
12
|
Wang H, Lu W, Chen D, Dang Y, Chen X, Gou Z, Wang Y, Zhang C, Xiao C. Insight into the enhancement and mechanism of saltiness perception by salty peptides from bovine bone. Food Chem 2025; 463:141552. [PMID: 39383793 DOI: 10.1016/j.foodchem.2024.141552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Food-derived salty peptides have been considered promising substitutes for sodium salt. In this work, three novel salty dipeptides Asp-Pro (DP), Asp-Arg (DR), and Arg-Glu (RE) were identified from bovine bone hydrolysates. The salt reduction rates were 76.85 %, 77.28 %, and 73.72 % by the three peptides (2 mg/mL) in a NaCl concentration of 0.203 g/100 mL, respectively. According to Stevens' law, a non-linear relationship between saltiness intensity and concentration was quantified, showing a slower increase in the sensory intensity perception compared with the changes in physical concentration (β < 1). In molecular detail, electrostatic energy and van der Waals energy were the main energetic contributions to forming stable complexes. The binding of salty peptides to TMC4 was driven by hydrogen bonding and salt bridge, and the main binding sites were Glu319, Ala579, and Thr581. These results could provide new insight into the salt-enhancing property and interaction mechanism of salty peptides as novel sodium substitutes.
Collapse
Affiliation(s)
- Haiyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Wenjing Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Di Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Xuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Zhejiang Dingwei Food Co. Ltd., Wenzhou 325207, China
| | - Zhongjun Gou
- Juhui Food Technology Co. Ltd., Chongqing 400713, China
| | - Yongjun Wang
- Zhejiang Yanzhoufu Food Co. Ltd., Hangzhou 311600, China
| | - Cen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Chaogeng Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
13
|
Yang YQ, Gao Q, Yue SQ, Peng X, Wang N, Xin JL, Yu M, Rao JJ, Xue YL. Investigating the interaction mechanisms between arachin and resveratrol: Utilizing multi-spectroscopy and computational chemistry. Food Chem 2025; 463:141435. [PMID: 39378718 DOI: 10.1016/j.foodchem.2024.141435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Arachin (ARA) and resveratrol (RES) are the primary protein and bioactive compound in peanuts and their processed products. However, the mechanism of interaction between these two substances remained unclear. To investigate protein structural changes, conformational variations, and molecular mechanisms in the interaction between them, multispectral analysis and computational chemistry methods were employed. Experimental results confirmed that RES quenched ARA's intrinsic fluorescence through static quenching, indicating their interaction. Thermodynamic analysis revealed the interaction between them was endothermic, spontaneous, and primarily hydrophobic. Molecular dynamics (MD) simulations highlighted strong affinity between RES and ARA, with key amino acids (His425, Val426, Phe405, and Phe464) facilitating their interaction. RES binding increased stability without significant protein conformational changes. The independent gradient model based on Hirshfeld partition (IGMH) validated their interaction, emphasizing van der Waals (VDW) interactions and hydrogen bonds (H-bonds) as crucial for stable binding. This research lays a theoretical foundation for potential applications of ARA-RES complex products in the food industry.
Collapse
Affiliation(s)
- Yu-Qi Yang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Qi Gao
- College of Light Industry, Liaoning University, Shenyang 110036, China; Department of Regional Economic Development, Party School of Liaoning Provincial Party Committee, Shenyang 110161, China
| | - Shi-Qi Yue
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xue Peng
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Ning Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Jing-Li Xin
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Miao Yu
- Institute of Food and Processing, Liaoning, Academy of Agricultural Sciences, Shenyang 110161, China
| | - Jia-Jia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - You-Lin Xue
- College of Light Industry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
14
|
Huang S, Zhang Y, Wang T, Li X. Molecular weight-mediated interaction changes for enhancing structural stability, release behavior and M cells-targeting transport efficacy of starch-based nanoparticles. Carbohydr Polym 2024; 346:122639. [PMID: 39245530 DOI: 10.1016/j.carbpol.2024.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024]
Abstract
Molecular weight (Mw) of ligand-mediated nanocarriers plays a pivotal role in their architecture and properties. In this study, self-assembled ovalbumin (OVA)-loaded nanoparticles were meticulously engineered by starch polyelectrolytes with different Mw. Results unveiled that, tailoring Mw of GRGDS pentapeptides-grafted carboxymethyl starch (G-CMS) displayed strong binding-affinity and transport efficiency through microfold cells (M cells) pathway in the simulated intestinal epithelial cell monolayer in which M cells were randomly located in the Caco-2 cells monolayer. Notably, nanoparticles assembled from G-CMS with relatively higher Mw exhibited more compact structures due to the stronger interactions between layers compared to that with relatively lower Mw, which rendered remarkably stable and only 19.01 % in vitro OVA leakage under conditions of the upper gastrointestinal tract. Subsequently, more intact nanoparticles reached M cells after in vitro digestion and exhibited higher transport efficiency through the M cells pathways (apparent permeability: 9.38 × 10-5 cm/s) than Caco-2 cells, attributing to specific- and non-specific binding affinity towards M cells. Therefore, optimal Mw tailoring of starch polyelectrolytes can mediate the molecular interactions among their assembled layers and the interactions with M cells to balance the structural compactness, release and transport efficacy of nanoparticles, holding promise for advancing M cells-targeting oral delivery technologies.
Collapse
Affiliation(s)
- Shuangxia Huang
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yiping Zhang
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Tianxing Wang
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoxi Li
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
15
|
Tao J, Zhu L, Zhu L, Lei L, Zhao G. Colloidal lignin particle reinforces the stability of Pickering emulsions prepared with zein nanoparticle. Food Chem 2024; 460:140581. [PMID: 39067384 DOI: 10.1016/j.foodchem.2024.140581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Zein nanoparticle (ZNP) is at the forefront of research on Pickering emulsions, valued for its self-assembling and surfactant-free nature. Nevertheless, its emulsion stability is undermined by inadequate amphiphilicity. Colloidal lignin particle (CLP), characterized by its antithetical charge and amphiphilic nature, appears the promising for augmenting the stability of ZNP-based emulsion. This study meticulously investigated the impact of CLP on the colloidal properties and emulsifying performance of ZNP. The results revealed that electrostatic interactions between ZNP and CLP significantly mitigated the charge of ZNP and improved its hydrophilic/lipophilic balance. Under optimized conditions (1.0 wt% particle concentration, pH 4.0, 50% oil content), CLP notably reduced droplet sizes (41-225 μm) and enhanced the stability of ZNP-based Pickering emulsion, particularly at ZNP/CLP ratios of 6:4 and 5:5. In nature, CLP improved the stability ZNP-based Pickering emulsions via increased interfacial adsorption, enhanced steric hindrance, and reinforced viscous structure.
Collapse
Affiliation(s)
- Jianming Tao
- College of Food Science, Southwest University, Chongqing 400715, PR China.
| | - Lijun Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Luyi Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
16
|
Chen Y, Chen J, Zhang W, Li M, Wu X, Liu C. Effect of low degree succinylation on properties of enzyme-induced casein hydrogel. Int J Biol Macromol 2024; 282:136808. [PMID: 39447787 DOI: 10.1016/j.ijbiomac.2024.136808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
This study examines the impact of succinic anhydride (SA) modification (0-9 %) on the gel properties of casein. Upon succinylation, the surface hydrophobicity (H0) of casein initially increased before decreasing, achieving its peak at a degree of succinylation of 5.22 ± 0.16 %. The α-helix content rose to 14.13 ± 2.60 %, and the -OH peak shifted towards lower wavenumbers, suggesting enhanced hydrogen bonding within intra/intermolecular structures. The storage modulus in the rheological test escalated from 2160.11 Pa to 5047.60 Pa, and SEM analysis revealed that the optimally succinylated casein gel formed a denser and more stable gel network structure. Moreover, succinylated casein hydrogels demonstrated superior texture properties, swelling ability, and thermal stability. Molecular dynamics simulation (MD) results suggest that SA preferentially binds to LYS27 and LYS28 of β-casein via hydrogen bonds and amide bonds, respectively. The interaction between modified proteins is primarily governed by hydrogen bonds, aligning with FT-IR findings. PCA analysis identified a positive correlation between the ordered structure and gel performance. This research offers theoretical insights and reference data for modulating casein hydrogel properties through succinylation.
Collapse
Affiliation(s)
- Yiming Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China.
| | - Jinjing Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China.
| | - Wanting Zhang
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China.
| | - Meng Li
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China.
| | - Xiuli Wu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China.
| | - Chang Liu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin 130022, China.
| |
Collapse
|
17
|
Li J, Jiang Q, Xu H, Li M, Hussain MA, Jiang Z, Hou J. Exploring the role of γ-Oryzanol on stabilization mechanism of Pickering emulsion gels loaded by α-Lactalbumin or β-Lactoglobulin via multiscale approaches. Food Chem 2024; 457:140096. [PMID: 38905830 DOI: 10.1016/j.foodchem.2024.140096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
The research explored the role of γ-oryzanol (γs) on stabilization behavior of Pickering emulsion gels (PEGs) loaded by α-lactalbumin (α-LA) or β-lactoglobulin (β-LG), being analyzed by experimental and computer methods (molecular dynamic simulation, MD). Primarily, the average particle size of β-LG-γS was expressed 100.07% decrease over that of α-LA-γS. In addition, γs decreased the dynamic interfacial tension of two proteins with the order of β-LG < α-LA. Meanwhile, quartz crystal microbalance with dissipation proved that β-LG-γS exhibited higher adsorption mass and denser rigid interface layer than α-LA-γS. Moreover, the hydrophobic group of γS had electrostatic repulsion with polar water molecules in the aqueous phase, which spread to the oil phase. β-LG-γS had lower RMSD/Rg value and narrower fluctuation compared with α-LA-γS. This work strength the exploration of interfacial stabilization mechanism of whey protein-based PEGs, which enriched its theoretical research for industrial-scale production as the replacement of trans fat and cholesterol.
Collapse
Affiliation(s)
- Jinzhe Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China; College of Food Science and Engineering, Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, Guiyang University, Guiyang 550005, PR China; Heilongjiang Green Food Science Research Institute, Harbin 150028, PR China
| | - Qiuwan Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Heyang Xu
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meng Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Muhammad Altaf Hussain
- Faculty of veterinary and Animal science Lasbela university of Agriculture water and Marine sciences uthal, 90159, Balochistan, Pakistan
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Juncai Hou
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China; College of Food Science and Engineering, Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, Guiyang University, Guiyang 550005, PR China; Heilongjiang Green Food Science Research Institute, Harbin 150028, PR China.
| |
Collapse
|
18
|
Huang Q, Mu Z, Xu H, Bilawal A, Jiang Z, Han L. Comparison in structure, physicochemical and emulsifying properties of alpha lactoglobulin and beta lactalbumin exposed to prior γ-oryzanol by the multi-spectroscopic and silico methods. Int J Biol Macromol 2024; 282:136771. [PMID: 39442849 DOI: 10.1016/j.ijbiomac.2024.136771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
In this work, effects of γ-oryzanol (GO) on structure, physicochemical and emulsifying properties of α-lactalbumin (α-La) and β-lactoglobulin (β-Lg) were compared by using multi-spectroscopic analysis and computer simulation. Specifically, the intrinsic fluorescence of both whey proteins was quenched by GO, with GO being a stronger quenching for β-Lg than for α-La. The addition of GO caused the backbone of α-La to become denser, whereas for β-Lg, its spatial structure shifted from ordered to disordered after the addition of GO. Additionally, the surface hydrophobicity, emulsifying properties, and DPPH free radical scavenging capacity of β-Lg were higher than α-La after the addition of GO. Molecular docking indicated that the primary driving force in the whey protein-GO system was hydrophobic force. The hydrophobic pocket at the cleft between two structural domains in β-Lg and α-La was the binding area for GO, and GO had greater binding affinity for β-Lg than α-La. Furthermore, molecular dynamics simulations demonstrated that β-Lg-GO system was more stabilized than α-La-GO system. This research contributed to a deeper understanding of the mechanisms by which α-La and β-Lg interact with GO, offering the potential to develop whey protein-GO complexes as novel emulsifiers.
Collapse
Affiliation(s)
- Qiang Huang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhishen Mu
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Heyang Xu
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Akhunzada Bilawal
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liying Han
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Vocational College for Nationalities, Harbin 150066, China.
| |
Collapse
|
19
|
Pan Q, Xie L, Zhu H, Zong Z, Wu D, Liu R, He B, Pu Y. Curcumin-incorporated EGCG-based nano-antioxidants alleviate colon and kidney inflammation via antioxidant and anti-inflammatory therapy. Regen Biomater 2024; 11:rbae122. [PMID: 39539979 PMCID: PMC11558062 DOI: 10.1093/rb/rbae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
Natural remedies are gaining attention as promising approaches to alleviating inflammation, yet their full potential is often limited by challenges such as poor bioavailability and suboptimal therapeutic effects. To overcome these limitations, we have developed a novel nano-antioxidant (EK) based on epigallocatechin gallate (EGCG) aimed at enhancing the oral and systemic bioavailability, as well as the anti-inflammatory efficacy, of curcumin (Cur) in conditions such as acute colon and kidney inflammation. EK is synthesized using a straightforward Mannich reaction between EGCG and L-lysine (K), resulting in the formation of EGCG oligomers. These oligomers spontaneously self-assemble into nanoparticles with a spherical morphology and an average diameter of approximately 160 nm. In vitro studies reveal that EK nanoparticles exhibit remarkable radical-scavenging capabilities and effectively regulate redox processes within macrophages, a key component in the body's inflammatory response. By efficiently encapsulating curcumin within these EK nanoparticles, we create Cur@EK, a formulation that demonstrates a synergistic anti-inflammatory effect. Specifically, Cur@EK significantly reduces the levels of pro-inflammatory cytokines TNF-α and IL-6 while increasing the anti-inflammatory cytokine IL-10 in lipopolysaccharide-stimulated macrophages, highlighting its potent anti-inflammatory properties. When administered either orally or intravenously, Cur@EK shows superior bioavailability compared to free curcumin and exhibits pronounced anti-inflammatory effects in mouse models of ulcerative colitis and acute kidney injury. These findings suggest that the EK nano-antioxidant platform not only enhances the bioavailability of curcumin but also amplifies its therapeutic impact, offering a promising new avenue for the treatment and management of inflammation in both oral and systemic contexts.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Huang Zhu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Zhihui Zong
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Xie J, Wen H, Shi Y, Wei F, Jiang J, Luo L, Zeng L. Exploration of the mechanism of temperature influence on bitter taste of theacrine by activating human bitter taste receptor hTAS2R14. Food Res Int 2024; 193:114857. [PMID: 39160053 DOI: 10.1016/j.foodres.2024.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Theacrine, a purine alkaloid derived from Camellia assamica var. kucha, has a distinct bitter taste. Our previous study found the lower recognition threshold of theacrine at 25 °C than 45 °C. This study aims to investigate the bitterness characterizations of theacrine at aforementioned temperatures and its taste perception mechanism. Sensory analysis exhibited higher bitterness intensity for theacrine at 25 °C than 45 °C. Subsequently, flow cytometry was performed to verify the above characterization at the cellular level. It revealed that theacrine could activated the bitter receptor hTAS2R14 and the calcium signal at 25 °C was higher than 45 °C. Ultimately, the interaction mechanism was studied by molecular dynamics simulations, indicating that the conformation of theacrine-hTAS2R14 had a higher binding capacity and better stability at 25 °C. Overall, temperature affected the binding of theacrine to the bitter receptor hTAS2R14, resulting in the stronger bitterness intensity of theacrine at 25 °C than 45 °C.
Collapse
Affiliation(s)
- Jizhou Xie
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, China
| | - Haitao Wen
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yu Shi
- Modern Logistics of China Railway No.8 Engineering Group CO., LTD, Chengdu 610306, Sichuan, China
| | - Fang Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, China
| | - Jielin Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; Dayi Tea Group Menghai Tea Factory Co., Yunnan 666100, China
| | - Liyong Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, China.
| | - Liang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, China.
| |
Collapse
|
21
|
Xue Z, Zhang M, Wang M, Wang S, Wang S, Wang P, Li J, Liu H. Development and characterization of adhesives constructed by soy protein isolate and tea polyphenols for enhanced tensile strength in plant-protein meat applications. Food Chem 2024; 453:139643. [PMID: 38761734 DOI: 10.1016/j.foodchem.2024.139643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
The study aimed to evaluate a food adhesive developed using tea polyphenols (TPs) with soybean protein isolate (SPI) to create a cohesive bond between soy protein gel and simulated fat. Upon the addition of 5.0 % TPs, significant increases in viscosity, thermal stability, and crystallinity were noted in adhesives, suggesting the formation of a cohesive network. Furthermore, TPs effectively enhanced adhesion strength, with the optimal addition being 5.0 %. This enhancement can be attributed to hydrogen bonding, hydrophobic and electrostatic interactions between TPs and SPI molecules. TPs induced a greater expansion of the protein structure, exposing numerous buried hydrophobic groups to a more hydrophilic and polar environment. However, excessive TPs were found to diminish adhesion strength. This can be attributed to enhanced reactions between TPs and SPI, where high molecular weight SPI-TPs cooperatively aggregate to form agglomerates that eventually precipitated, rendering the adhesive network inhomogeneous, less stable, and more prone to disruption.
Collapse
Affiliation(s)
- Zixi Xue
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Minghao Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Meiquan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Shumin Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Jun Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| |
Collapse
|
22
|
Chen X, Xiong J, Li HJ. A Review on the Driving Forces in the Formation of Bioactive Molecules-Loaded Prolamin-Based Particles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19549-19565. [PMID: 39186464 DOI: 10.1021/acs.jafc.4c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Prolamin-based particles loaded with bioactive molecules have attracted widespread attention from scientists due to their novel properties in chemistry, physics, and biology. In the self-assembly process of biopolymer-based nanocapsules, noncovalent interactions are the main driving forces for reducing bulk materials to the nanoscale and controlling the release of bioactive molecules. This article reviews the types of interaction forces, binding strength, binding active sites, molecular orientation, and binding affinity that affect the release profile of bioactive molecules during the preparation of protein stabilizer particles. Different preparation formulations, the use of different biopolymers, the inherent nature of the loaded bioactive molecules, and external factors (including pH, biopolymer concentration, temperature, salt, ultrasonication, and atmospheric cold plasma treatment) lead to different types and strengths of intra- and intermolecular interactions. Strategies, such as pH, ultrasonication, and atmospheric cold plasma, to change the protein conformation are key to improving the binding strength between proteins and bioactive substances or stabilizers. This review provides some guidance for scientists and technicians dedicated to improving loading efficiency, delaying release, enhancing colloidal stability, and exploring the binding behavior among proteins, stabilizers, and bioactive molecules.
Collapse
Affiliation(s)
- Xiao Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China
| | - Jia Xiong
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081, United States
| | - Hui-Jing Li
- Weihai Marine Organism and Medical Technology Research Institute, School of Chemistry and Chemical Engineering,, Harbin Institute of Technology, Harbin 150006, PR China
| |
Collapse
|
23
|
Wang H, Jiang M, Ma S, Hu Y, Zhang X, Zhu H, Zhang J, Wang Y. Formation mechanism, prevention of malignant ascites effusion and reduction of intestinal mucosal irritation of natural microemulsion from Euphorbia lathyris Pulveratum. Biomed Pharmacother 2024; 178:117253. [PMID: 39111084 DOI: 10.1016/j.biopha.2024.117253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/25/2024] Open
Abstract
Malignant ascites effusion (MAE) is a common complication of advanced malignant tumors with limited treatments. Euphorbia lathyris (EL) has a long history of application in patients with edema and ascites. Herein, we reported for the first time a mode in which EL and EL Pulveratum (PEL) spontaneously formed natural microemulsions (ELM and PELM) without the addition of any carriers and excipients, and found that the protein and phospholipid contained in them encapsulated fatty oil and diterpenoid esters through non-covalent interactions. The denaturation and degradation of protein in PELM resulted in stronger binding of diterpenoid esters to the hydrophobic region of protein, which facilitated the sustained and slow release of diterpenoid esters and improved their bioavailability in vivo, thereby retaining the efficacy of preventing MAE while alleviating the irritation of intestinal mucosa. The mechanism by which PELM retained efficacy might be related to increased feces moisture and urine volume, and decreased expression of AVPR2, cAMP, PKA and AQP3 in MAE mice. And its mechanism of reducing intestinal mucosal irritation was related to decreased cell apoptosis, amelioration of oxidative stress, elevation of mitochondrial membrane potential, and up-regulation of Occludin and Claudin-1 expression in IEC-6 cells. This nano-adjuvant-free natural microemulsions may be a promising therapeutic strategy in the field of phytochemistry for promoting the application of natural and efficient nano-aggregates spontaneously formed by medicinal plants in MAE, and provide a new perspective for advancing the development of the fusion of Chinese herbal medicine and nanomedicine and its clinical translation.
Collapse
Affiliation(s)
- Huinan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Mingrui Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Siyuan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yufeng Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xinning Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Haiting Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Junli Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yingzi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
24
|
Hu D, Xu R, Jin Y, Sun S, Ye J, Wu J, Dai Z, Shen JW, Lu Y. Green and sustainable extraction of phycocyanin from Spirulina platensis by temperature-sensitive polymer-based aqueous two-phase system and mechanism study. BIORESOURCE TECHNOLOGY 2024; 407:131142. [PMID: 39043277 DOI: 10.1016/j.biortech.2024.131142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
In this study, a sustainable and environmentally friendly method was developed for the enrichment and purification of phycocyanin from Spirulina platensis. This was achieved by utilizing a temperature-sensitive polymer, Pluronic F68, in an aqueous two-phase solvent system. The phase behavior of the temperature-sensitive polymer-based biphasic system was evaluated. The extraction conditions were optimized by both single-factor experiments and response surface methodology. Under the optimal conditions, the upper polymer-rich phase was recycled for sustainable phycocyanin extraction, resulting in a grade of 3.23 during the third extraction cycle. Pluronic F68 could be efficiently recovered and reused during the extraction process. The interaction mechanism between Pluronic F68 and phycocyanin was systematically studied using FT-IR and fluorescence analysis. This was further complemented by static and dynamic calculation of molecular motion through molecular docking and molecular dynamics simulation, indicating that hydrophobic segment of Pluronic F68 played a key role in the binding process with phycocyanin.
Collapse
Affiliation(s)
- Di Hu
- Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ruru Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yating Jin
- Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shuqing Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jing Ye
- Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiajia Wu
- Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhiyuan Dai
- Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yanbin Lu
- Key Laboratory of Aquatic Products Processing of Zhejiang Province, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
25
|
Zhou Y, Zheng F, Zuo J, Xu Y, Li Y, Zhang K. Toward a Sustainable Approach for Durably Hydrophilic and UV Protective PET Fabric through Surface Activation and Immobilization Integrating Epigallocatechin Gallate and Citric Acid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38576-38585. [PMID: 38986140 DOI: 10.1021/acsami.4c07898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Enhancing the hydrophilicity and UV protective property of poly(ethylene terephthalate) (PET) fabric are two significant ways to upgrade its quality and enlarge the applicable area. Biobased finishes are greatly welcomed for the fabrication of sustainable textiles; however, their application on PET fabric is still challenging compared with the case of natural fabric. This study presents a strategy that immobilizes epigallocatechin gallate (EGCG) onto PET fabric using citric acid (CA) for durably hydrophilic and UV-proof properties with negligible color change. A controllable surface-activating method integrating alkaline and deep eutectic solvent (DES) is customized for the PET fabric to promote the reactions among PET, CA, and EGCG. The hydrophilic, antistatic, and UV protective properties of functionalized PET fabric were explored. Results show that the hydrophilicity of the PET fabric after direct EGCG treatment increases but drops sharply after first-round washing due to weak interactions. The combined alkaline/DES pretreatment increases the number of hydrophilic groups and the roughness of PET fibers. After EGCG modification, the moisture regain (MR) of PET fabric increases from 0.41 to 0.64%. The contact angle and electrostatic charge half-life (T1/2) decreases from >120 to 23°, and from >60 to 0.13 s, respectively. The MR and T1/2 are well retained after a 10-cycle washing. In addition, the UV protective factor of the PET fabric increases from 18 to 36. A very slight yellowing phenomenon occurs on the PET fabric after the treatment. In all, this research attempts to integrate a biobased finishing agent and an eco-friendly cross-linker on synthetic fiber for durable functions, which is transferrable to the sustainable fabrication of other polymeric materials such as fibers or films.
Collapse
Affiliation(s)
- Yuyang Zhou
- National Engineering Laboratory for Modern Silk, China National Textile and Apparel Council Key Laboratory of Natural Dyes, College of Textile and Clothing Engineering, Soochow University, Ren'ai Road, Suzhou 215123, China
- PPM Institute of Functional Materials, Poly Plastic Masterbatch (Suzhou) Co., Ltd., Xujiaguan Road, Beiqiao Street, Xiangcheng, Suzhou 215144, China
| | - Feiyang Zheng
- National Engineering Laboratory for Modern Silk, China National Textile and Apparel Council Key Laboratory of Natural Dyes, College of Textile and Clothing Engineering, Soochow University, Ren'ai Road, Suzhou 215123, China
| | - Jiahong Zuo
- National Engineering Laboratory for Modern Silk, China National Textile and Apparel Council Key Laboratory of Natural Dyes, College of Textile and Clothing Engineering, Soochow University, Ren'ai Road, Suzhou 215123, China
| | - Yiming Xu
- PPM Institute of Functional Materials, Poly Plastic Masterbatch (Suzhou) Co., Ltd., Xujiaguan Road, Beiqiao Street, Xiangcheng, Suzhou 215144, China
| | - Yening Li
- PPM Institute of Functional Materials, Poly Plastic Masterbatch (Suzhou) Co., Ltd., Xujiaguan Road, Beiqiao Street, Xiangcheng, Suzhou 215144, China
| | - Keqin Zhang
- National Engineering Laboratory for Modern Silk, China National Textile and Apparel Council Key Laboratory of Natural Dyes, College of Textile and Clothing Engineering, Soochow University, Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
26
|
Zhu PY, Ma CM, Yang Y, Bian X, Ren LK, Wang B, Liu XF, Chen FL, Zhang G, Zhang N. Elucidating the interaction mechanism of rice glutelin and soybean 11S globulin using multi-spectroscopy and molecular dynamics simulation methods. Food Chem 2024; 442:138615. [PMID: 38309242 DOI: 10.1016/j.foodchem.2024.138615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Rice gluten, as the hydrophobic protein, exhibits restricted application value in hydrophilic food, which may be enhanced through interaction with soybean 11S globulin, characterized by favorable functional properties. This study aims at revealing their interaction mechanism via multi-spectroscopy and molecular dynamics simulation. The formation and structural change of rice glutelin-soybean 11S globulin complexes were detected using fluorescence, ultra-violet and circular dichroism spectra. The addition of 11S globulin increased the contents of α-helix, β-turn and random coil, but decreased β-sheet content, and the change in secondary structure was correlated with particle size. Moreover, exposure of hydrophobic groups and formation of disulfide bonds occurred in the complexes. Molecular dynamics simulation verified these experimental results through analyses of root mean square deviation and fluctuation, hydrogen bond, secondary structure, and binding free energy analysis. This study contributes to expounding the interaction mechanism of protein and protein from the molecular level.
Collapse
Affiliation(s)
- Peng-Yu Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Li-Kun Ren
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Fei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Feng-Lian Chen
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
27
|
Christensen NJ. Conformations of a highly expressed Z19 α-zein studied with AlphaFold2 and MD simulations. PLoS One 2024; 19:e0293786. [PMID: 38718010 PMCID: PMC11078433 DOI: 10.1371/journal.pone.0293786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
α-zeins are amphiphilic maize seed storage proteins with material properties suitable for a multitude of applications e.g., in renewable plastics, foods, therapeutics and additive manufacturing (3D-printing). To exploit their full potential, molecular-level insights are essential. The difficulties in experimental atomic-resolution characterization of α-zeins have resulted in a diversity of published molecular models. However, deep-learning α-zein models are largely unexplored. Therefore, this work studies an AlphaFold2 (AF2) model of a highly expressed α-zein using molecular dynamics (MD) simulations. The sequence of the α-zein cZ19C2 gave a loosely packed AF2 model with 7 α-helical segments connected by turns/loops. Compact tertiary structure was limited to a C-terminal bundle of three α-helices, each showing notable agreement with a published consensus sequence. Aiming to chart possible α-zein conformations in practically relevant solvents, rather than the native solid-state, the AF2 model was subjected to MD simulations in water/ethanol mixtures with varying ethanol concentrations. Despite giving structurally diverse endpoints, the simulations showed several patterns: In water and low ethanol concentrations, the model rapidly formed compact globular structures, largely preserving the C-terminal bundle. At ≥ 50 mol% ethanol, extended conformations prevailed, consistent with previous SAXS studies. Tertiary structure was partially stabilized in water and low ethanol concentrations, but was disrupted in ≥ 50 mol% ethanol. Aggregated results indicated minor increases in helicity with ethanol concentration. β-sheet content was consistently low (∼1%) across all conditions. Beyond structural dynamics, the rapid formation of branched α-zein aggregates in aqueous environments was highlighted. Furthermore, aqueous simulations revealed favorable interactions between the protein and the crosslinking agent glycidyl methacrylate (GMA). The proximity of GMA epoxide carbons and side chain hydroxyl oxygens simultaneously suggested accessible reactive sites in compact α-zein conformations and pre-reaction geometries for methacrylation. The findings may assist in expanding the applications of these technologically significant proteins, e.g., by guiding chemical modifications.
Collapse
|
28
|
Bai Y, Wang Y, Li X, Jin J, Lu Y, Jiang S, Dong X, Qi H. Interaction mechanism and binding mode of phycocyanin to lysozyme: Molecular docking and molecular dynamics simulation. Food Chem 2024; 438:138001. [PMID: 37980873 DOI: 10.1016/j.foodchem.2023.138001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
In this study, multispectral analysis and molecular simulations were performed to investigate the interaction mechanism between phycocyanin (PC) and lysozyme (Lys). The interaction was examined using surface plasmon resonance (SPR), and the structural changes were analyzed using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results suggest that the interaction between PC and Lys was primarily driven by electrostatic, hydrophobic, and hydrogen bonding forces. Molecular dynamics (MD) simulation revealed that Lys preferentially binds between the two subunits, alpha (α) and beta (β), of PC, with residues ASP-13, GLU-106, and GLU-115 on PC and ARG-119, ARG-107, and ARG-98 on Lys being the main contributors to the binding interaction. Additionally, the formation of the PC-Lys complex resulted in increased kinetic and improved thermal stability of PC, which have important implications for PC applications.
Collapse
Affiliation(s)
- Ying Bai
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Yingzhen Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Xiang Li
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Jiarui Jin
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Yujing Lu
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Shan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, Dalian 116034, PR China.
| |
Collapse
|
29
|
Zhang X, Liu L, Wang Y, Yu Y, Cheng W, Xu B, Xiao F. Insight into the binding characteristics of epigallocatechin-3-O-gallate and alcohol dehydrogenase: Based on the spectroscopic and molecular docking analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123943. [PMID: 38277788 DOI: 10.1016/j.saa.2024.123943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Alcohol dehydrogenase (ADH) is one of the pivotal enzymes for alcohol metabolism, which plays an important role in many physiological processes. In this study, the activation effects of epigallocatechin-3-O-gallate (EGCG) on ADH and the characteristics of the interaction were investigated via biochemical method, spectroscopy methods, and molecular docking. The results demonstrated that EGCG significantly increased the catalytic activity of ADH with a 33.33% activation rate and that EGCG blending slightly altered the microenvironment surrounding ADH aromatic amino acids, with an increase in the quantity of β-sheet and a decrease in the α-helix. Through the thermal stability analysis, it is further shown that the interaction of the two affects the intra-molecular hydrogen bond formation of the protein, and the conformation is partially extended. Besides, a total of 8 residues in ADH participated in the docking with EGCG, among which Asp-227, Lys-231, Glu-234, Gly-365 and Glu-366 participated in the formation of hydrogen bonds. At the same time, EGCG and amino group of Lys-231 form a noncovalent bond through cation-π interaction. In particular, hydrogen bonding was beneficial to keep the stability of EGCG-ADH, which was the primary driver of ADH activity activation. The results supply a new way for EGCG to activate ADH and a theoretical basis for the development of anti-alcoholism products.
Collapse
Affiliation(s)
- Xiaodan Zhang
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Lili Liu
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Yuantu Wang
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Ying Yu
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Weiwei Cheng
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Baocheng Xu
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Feng Xiao
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security, Henan Engineering Technology Research Center of Food Raw Materials, International Joint Laboratory of Food Processing and Quality Safety Control of Henan Province, Henan Engineering Technology Research Center of Food Microbiology, Henan University of Science and Technology, Luoyang 471023, PR China
| |
Collapse
|
30
|
Yue XJ, Xu PW, Luo XC, Zhao B. Multi-spectroscopies and molecular docking insights into the interaction mechanism and antioxidant activity of isoquercetin and zein nanoparticles. Int J Biol Macromol 2024; 263:130412. [PMID: 38401577 DOI: 10.1016/j.ijbiomac.2024.130412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
The purpose of this study was to compare and characterize the theoretical properties and interaction mechanisms of zein and isoquercetin (ISO) from experimental and theoretical perspectives. Zein nanoparticles with different ISO concentrations (ZINPs) were prepared by the antisolvent precipitation method. The experimental results indicated all particles appeared spherical. When the mass ratio of zein to ISO was 10:1, the encapsulation efficiency of ZINPs reached 88.19 % with an average diameter of 126.67 nm. The multispectral method and molecular docking results confirmed that hydrogen bonding and van der Waals force played a dominant role for the binding of ISO to zein, and the primary fluorescence quenching mechanism for zein by ISO was static quenching. Furthermore, ZINPs had greater solubility and antioxidant activity, as well as inhibited the release of ISO during simulated gastrointestinal digestion processes. This research contributes to the understanding of the non-covalent binding mechanism between zein and ISO, providing a theoretical basis for the construction of ISO active carriers.
Collapse
Affiliation(s)
- Xiao-Jie Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Peng-Wei Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Chuan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
31
|
Wan XY, Pan YP, Shu M, Geng JT, Wu GP, Zhong C. Paramyosin from field snail (Bellamya quadrata): Structural characteristics and its contribution to enhanced the gel properties of myofibrillar protein. Int J Biol Macromol 2024; 262:130097. [PMID: 38342265 DOI: 10.1016/j.ijbiomac.2024.130097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
To assess the blending effect of field snails with grass carp muscle, the effects of paramyosin (PM) and actomyosin (AM) with different mixture ratios on the gel properties of the binary blend system were investigated in our work. The purified PM from field snail muscle was about 95 kDa on SDS-PAGE. Its main secondary structure was α-helix, which reached to 97.97 %. When the amount of PM increased in the binary blend system, their rheological indices and gel strength were improved. The water holding capacity (WHC) increased to 86.30 % at a mixture ratio of 2:8. However, the WHC and the area of immobile water (P22) dramatically decreased, and the area of free water (P23) increased when the mixture ratio exceeded 4:6. The low level of PM in binary blend system promoted the formation of a homogenous and dense gel network through non-covalent interactions as observed results of SEM and FTIR. When there were redundant PM molecules, the development of heterostructure via hydrophobic interaction of tail-tail contributed to the reduced gel properties of the binary blend system. These findings provided new insight into the binary blend system of PM and AM with different ratios to change the gel properties of myofibrillar protein.
Collapse
Affiliation(s)
- Xuan-Ying Wan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China
| | - Yu-Ping Pan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China
| | - Mei Shu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China
| | - Jie-Ting Geng
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Guo-Ping Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China.
| | - Chan Zhong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 30045, China.
| |
Collapse
|
32
|
Hu F, Wang Y, Zeng J, Deng X, Xia F, Xu X. Unveiling the State Transition Mechanisms of Ras Proteins through Enhanced Sampling and QM/MM Simulations. J Phys Chem B 2024; 128:1418-1427. [PMID: 38323538 DOI: 10.1021/acs.jpcb.3c07666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
In cells, wild-type RasGTP complexes exist in two distinct states: active State 2 and inactive State 1. These complexes regulate their functions by transitioning between the two states. However, the mechanisms underlying this state transition have not been clearly elucidated. To address this, we conducted a detailed simulation study to characterize the energetics of the stable states involved in the state transitions of the HRasGTP complex, specifically from State 2 to State 1. This was achieved by employing multiscale quantum mechanics/molecular mechanics and enhanced sampling molecular dynamics methods. Based on the simulation results, we constructed the two-dimensional free energy landscapes that provide crucial information about the conformational changes of the HRasGTP complex from State 2 to State 1. Furthermore, we also explored the conformational changes from the intermediate state to the product state during guanosine triphosphate hydrolysis. This study on the conformational changes involved in the HRas state transitions serves as a valuable reference for understanding the corresponding events of both KRas and NRas as well.
Collapse
Affiliation(s)
- Fangchen Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yiqiu Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
33
|
Jia C, Li H, Yang Z, Xu R, Wang L, Li H. From medical strategy to foodborne prophylactic strategy: Stabilizing dental collagen with aloin. Food Sci Nutr 2024; 12:830-842. [PMID: 38370038 PMCID: PMC10867467 DOI: 10.1002/fsn3.3795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 02/20/2024] Open
Abstract
Infectious oral diseases are longstanding global public health concerns. However, traditional medical approaches to address these diseases are costly, traumatic, and prone to relapse. Here, we propose a foodborne prophylactic strategy using aloin to safeguard dental collagen. The effect of aloin on the stability of dental collagen was evaluated by treating dentin with a solution containing aloin (0.1 mg/mL) for 2 min. This concentration is comparable to the natural aloin content of edible aloe. Furthermore, we investigated the mechanisms underlying the interactions between aloin and dentin collagen. Our findings, obtained through fluorescence spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, Gaussian peak fitting, circular dichroism spectroscopy, and X-ray diffraction, revealed that aloin interacts with dental collagen through noncovalent bonding, specifically hydrogen bonding in situ. This interaction leads to a reduction in the distance between molecules and an increase in the proportion of stable α-helical chains in the dental collagen. The ultimate tensile strength and thermogravimetric analysis demonstrated that dental collagen treated with aloin exhibited improved mechanical strength and thermostability. Additionally, the release of hydroxyproline, cross-linked carboxy-terminal telopeptide of type I collagen, and C-terminal cross-linked telopeptide of type I collagen, along with weight loss, indicated an enhancement in the enzymatic stability of dental collagen. These findings suggest that aloin administration could be a daily, nondestructive, and cost-effective strategy for managing infectious oral diseases.
Collapse
Affiliation(s)
- Chongzhi Jia
- Department of Stomatology, The First Medical CenterChinese PLA General HospitalBeijingChina
| | - Hua Li
- Department of Stomatology, The First Medical CenterChinese PLA General HospitalBeijingChina
| | - Zhongliang Yang
- Department of Stomatology, The First Medical CenterChinese PLA General HospitalBeijingChina
| | - Rongchen Xu
- Department of Stomatology, The First Medical CenterChinese PLA General HospitalBeijingChina
- Department of Stomatology, The Third Medical CenterChinese PLA General HospitalBeijingChina
| | - Lijun Wang
- Department of Stomatology, The Third Medical CenterChinese PLA General HospitalBeijingChina
| | - Hongbo Li
- Department of Stomatology, The First Medical CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
34
|
Fu M, Gao J, Mao K, Sun J, Ahmed Sadiq F, Sang Y. Interaction mechanism between surface layer protein and yeast mannan: Insights from multi-spectroscopic and molecular dynamics simulation analyses. Food Chem 2024; 433:137352. [PMID: 37678123 DOI: 10.1016/j.foodchem.2023.137352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Tibet kefir grain (TKG) formation is mainly dependent on the aggregation of lactobacillus and yeasts. The interaction of surface layer protein (SLP) and yeast mannan plays an important role in mediating the co-aggregation of Lactobacillus kefiri with Saccharomyces cerevisiae. The interaction mechanism of the two was researched through multispectral spectroscopy, morphology observation and silico approaches. Fluorescence spectra data revealed that mannan was bound to SLP through a spontaneous binding process. The particle size of the binding complex increased as the mannan concentration increased. Synchronous fluorescence spectroscopy and circular dichroism (CD) spectra showed the conformational and microenvironment alteration of SLP treated with mannan. Molecular docking results indicated that hydrophobic interactions played major roles in the formation of SLP-mannan complexes. These findings provide a deeper insight into the interactions of protein and polysaccharide, and this knowledge is valuable in the application of SLP and mannan in co-fermentation systems.
Collapse
Affiliation(s)
- Mengqi Fu
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jie Gao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Kemin Mao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jilu Sun
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | | | - Yaxin Sang
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
35
|
Feng Y, Wu K, Yu G, Yi F, Zhu G. Ellagic acid-loaded soy protein isolate self-assembled particles: Characterization, stability, and antioxidant activity. J Food Sci 2024; 89:64-80. [PMID: 37983835 DOI: 10.1111/1750-3841.16836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
The limited water solubility and bioactivity of lipophilic phytochemicals may be enhanced by delivery systems. Ellagic acid (EA) has antioxidant and anti-inflammatory properties, but low solubility and instability limit its use in the food industry. In this study, the pH-shift method was applied to encapsulate EA with soy protein isolate (SPI). The interaction, encapsulation, and protective potential of the EA-loaded soy SPI complexes (SPI-EA) were investigated. The fluorescence spectra results suggest that the reaction between SPI and EA is spontaneous, with hydrophobic interactions predominating. Binding of EA molecules quenches the intrinsic fluorescence of SPI, mainly static quenching, with a binding site involved in the binding process. The ultraviolet (UV)-visible spectroscopy of the SPI-EA complexes included the characteristic absorption peaks of both SPI and EA, and the scanning electron microscopy images further indicated that the EA had been successfully embedded in SPI. Fourier transform infrared spectroscopy illustrates that EA has significantly changed the secondary structure of the SPI, primarily in the form of a decreased content of α-helix structures and an increased content of β-sheet and random coil structures. The encapsulation efficiency of EA was concentration-dependent, up to 81.08%. The addition of EA reduces the size of SPI particles (d < 155 nm). In addition, the SPI-EA complex showed up to 81.05% and 96.46% 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity. TGA showed that the degradation temperature of SPI-EA complex could be extended up to 300°C. And by encapsulation of EA, the loss of EA under the action of UV light, heat treatment, and high concentration of salt ion sensitive environment can be reduced. PRACTICAL APPLICATION: Ellagic acid (EA), a natural bioactive with low water solubility and stability, can be enhanced by forming an inclusion complex with soy protein isolate (SPI). SPI-EA complex has broad potential applications in the food, beverage, and pharmaceutical industries. Multiple spectral analyses have contributed to our understanding of the formation and interaction mechanisms of the SPI-EA complex under pH-driven conditions. Stability assays have also aided in the development of dietary resources for EA.
Collapse
Affiliation(s)
- Yujin Feng
- Shanghai Institute of Technology, Shanghai, China
| | - Kaiwen Wu
- Shanghai Institute of Technology, Shanghai, China
| | - Genfa Yu
- Shanghai Institute of Technology, Shanghai, China
| | - Fengping Yi
- Shanghai Institute of Technology, Shanghai, China
| | | |
Collapse
|
36
|
Jin Z, Wei Z. Molecular simulation for food protein-ligand interactions: A comprehensive review on principles, current applications, and emerging trends. Compr Rev Food Sci Food Saf 2024; 23:e13280. [PMID: 38284571 DOI: 10.1111/1541-4337.13280] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 01/30/2024]
Abstract
In recent years, investigations on molecular interaction mechanisms between food proteins and ligands have attracted much interest. The interaction mechanisms can supply much useful information for many fields in the food industry, including nutrient delivery, food processing, auxiliary detection, and others. Molecular simulation has offered extraordinary insights into the interaction mechanisms. It can reflect binding conformation, interaction forces, binding affinity, key residues, and other information that physicochemical experiments cannot reveal in a fast and detailed manner. The simulation results have proven to be consistent with the results of physicochemical experiments. Molecular simulation holds great potential for future applications in the field of food protein-ligand interactions. This review elaborates on the principles of molecular docking and molecular dynamics simulation. Besides, their applications in food protein-ligand interactions are summarized. Furthermore, challenges, perspectives, and trends in molecular simulation of food protein-ligand interactions are proposed. Based on the results of molecular simulation, the mechanisms of interfacial behavior, enzyme-substrate binding, and structural changes during food processing can be reflected, and strategies for hazardous substance detection and food flavor adjustment can be generated. Moreover, molecular simulation can accelerate food development and reduce animal experiments. However, there are still several challenges to applying molecular simulation to food protein-ligand interaction research. The future trends will be a combination of international cooperation and data sharing, quantum mechanics/molecular mechanics, advanced computational techniques, and machine learning, which contribute to promoting food protein-ligand interaction simulation. Overall, the use of molecular simulation to study food protein-ligand interactions has a promising prospect.
Collapse
Affiliation(s)
- Zihan Jin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
37
|
Hu Q, Jin Y, Xiao Y, Shen S, Chen J, Huan C, Fang S. ε-Polylysine and soybean protein isolate form nanoscale to microscale electrostatic complexes in solution: properties, interactions and as antimicrobial edible coatings on citrus. Int J Biol Macromol 2023; 253:126616. [PMID: 37652339 DOI: 10.1016/j.ijbiomac.2023.126616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
A feasible approach to enhance the antimicrobial efficacy of ε-polylysine (PL) in applications is to form delivery complexes with delicate structures and good dispersion properties. This work aims to study the multiscale structures, properties and interactions, and edible coating applications of the electrostatic complex formed by PL and soy protein isolate (SPI). When the mass ratio of SPI to PL (SE) was between 5 and 15, especially 11, microscale solid-liquid phase separation occurred in the system due to the small absolute zeta potential. When the SE was in the range of 15-20, the system formed a stable nanoscale suspension, the average particle size and zeta potential were 191 nm and -20 mV, respectively. The physicochemical properties of the complexes were investigated including the colloidal properties, spectroscopy and interactions analysis, viscosity, contact angle, and antimicrobial activities against Escherichia coli, Staphylococcus aureus, and Penicillium expansum. Finally, the in vivo application on citrus demonstrated that the nanoscale PL/SPI electrostatic complex (SE = 20) as functional coatings has both barrier and antimicrobial activities. The study provides a novel application strategy for PL and nanoscale electrostatic complexes as postharvest coatings.
Collapse
Affiliation(s)
- Qiuyun Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuanyue Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yawen Xiao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shuling Shen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Chen Huan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
38
|
Ren G, Liu J, Shi J, He Y, Zhu Y, Zhan Y, Lv J, Liu L, Huang Y, Huang M, Fang W, Lei Q, Xie H. Improved antioxidant activity and delivery of peppermint oil Pickering emulsion stabilized by resveratrol-grafted zein covalent conjugate/quaternary ammonium chitosan nanoparticles. Int J Biol Macromol 2023; 253:127094. [PMID: 37758103 DOI: 10.1016/j.ijbiomac.2023.127094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Novel nanoparticles (Z-R/H) were successfully fabricated by a resveratrol-grafted zein covalent conjugate (Z-R) combined with quaternary ammonium chitosan (HTCC), which were used as stabilizers to prepare peppermint oil (PO) Pickering emulsions with antioxidant activity. HTCC effectively adjusted wettability of Z-R conjugate, and three-phase contact angle of Z-R/H3:1 was moderate (95.01°). The influencing factors of Pickering emulsion formation, including volume fraction of PO, concentration of Z-R/H, and mass ratio of Z-R to HTCC, were evaluated by droplet size, ζ-potential, microscopic observation, and stability index analysis. Pickering emulsions stabilized by Z-R/H3:1 showed excellent physical stability under heat treatment. Z-R/H nanoparticles adsorbed on the oil-water interface yielded a dense filling layer as a physical barrier to improve the emulsion stability, which was validated by confocal laser-scanning microscopy. After 4 weeks of storage, retention rate of PO in Pickering emulsion stabilized by Z-R/H3:1 remained high (72.1 %). Electronic nose analysis showed that Z-R/H3:1-stabilized emulsion effectively prevented volatilization of PO aroma components. Additionally, PO and Z-R/H nanoparticles provided an additive antioxidant effect of Pickering emulsions against DPPH and ABTS free radicals. In summary, these novel Z-R/H nanoparticle offer promising applications as a stabilizer with great potential in preparing functional Pickering emulsions to improve essential oil delivery.
Collapse
Affiliation(s)
- Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Jiacheng Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Jieyu Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yujing Zhan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Junfei Lv
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Lei Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Qunfang Lei
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
39
|
Zhang Z, Li T, Zhang Y, Shao J, Ye C, Wang H, Zhu B, Zhang Y. Effect of polysaccharides on conformational changes and functional properties of protein-polyphenol binary complexes: A comparative study. Int J Biol Macromol 2023; 253:126890. [PMID: 37716302 DOI: 10.1016/j.ijbiomac.2023.126890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
This study aimed to investigate the effect of different polysaccharides on the binding behavior and functional properties of soybean protein isolate (SPI)-quercetin (Que) complex. The binding behavior was assessed using multi-spectral technique with the Stern-Volmer equation, which confirmed the presence of static fluorescence quenching in Que and SPI. The addition of sodium alginate (SA) resulted in a reduction of the binding affinity between SPI and Que, while dextran (DX) exhibited some promoting effect. A slight blue shift was observed in amide I and amide II bands, indicating the presence of hydrophobic and electrostatic interactions. Circular dichroism spectra revealed the ordered structures transformed into a more disordered state when polysaccharides were added, leading to an increase in random coils (SA: 18.5 %, DX: 15.4 %). Docking and dynamic simulations demonstrated that SA displayed greater stability within the hydrophobic compartments of SPI than DX, increased rigidity and stability of the SPI structure in SPI-Que-SA complexes. Electrostatic forces played a significant role between SPI and SA, while van der Waals forces were the main driving forces in SPI-DX complexes. Overall, the introduction of SA led to a looser and stable structure of SPI-Que complexes, resulting in an improvement of their emulsifying, foaming, and antioxidant properties.
Collapse
Affiliation(s)
- Zifan Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Li
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yubo Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Juanjuan Shao
- Department of Science and Technology, Hebei Agricultural University, Hebei 061100, China
| | - Chengxiang Ye
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongwu Wang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Beibei Zhu
- College of Chinese Medicine Pharmaceutical Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China..
| | - Yating Zhang
- College of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
40
|
Song YQ, Zhao Y, Yao G, Dong RS, Chen J. Heat treatment effect on whey protein-epigallocatechin gallate interaction: A fluorescence spectroscopic analysis. Food Chem X 2023; 20:100917. [PMID: 38144742 PMCID: PMC10739916 DOI: 10.1016/j.fochx.2023.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 12/26/2023] Open
Abstract
This study aimed to examine the interaction mechanism of polyphenol protein in a heat-treated aqueous solution system using epigallocatechin gallate (EGCG) and whey protein (WP) as raw materials. Further, we hypothesized the binding characteristics of these two compounds. The results were as follows: The quenching mechanism between WP and EGCG was characterized as static quenching. As the temperature increased, the binding constant and the binding force between EGCG and WP both increased. The number of binding sites (denoted as n) between WP and EGCG was approximately 1. Hence, WP provided a single site to bind to EGCG to form a complex. The main binding modes between WP and EGCG were hydrophobic and electrostatic interactions, and they were spontaneously combined into complexes (ΔG < 0). This study provided a basis for the interaction between WP and EGCG under different heating conditions and their combination mode.
Collapse
Affiliation(s)
- Yu-qi Song
- Department of Grass Research, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, One Health Institute, College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Ying Zhao
- Hainan Key Laboratory of Biology of Tropical Flowers and Trees Resources, Forestry Institute, Hainan University, Haikou 570228, China
| | - Guanglong Yao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, One Health Institute, College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Rong-shu Dong
- Department of Grass Research, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
| | - Jian Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, One Health Institute, College of Food Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
41
|
Wang H, Rao P, Qiu Y, Xiang L. Interaction mechanism between hydroxychloroquine sulfate and collagen: Insights from multi-spectroscopy, molecular docking, and molecular dynamic simulation methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123155. [PMID: 37480720 DOI: 10.1016/j.saa.2023.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Hydroxychloroquine sulfate (HCQ) can be used to treat various connective tissue diseases. Collagen, which is not only an important drug delivery carrier but also the main component in the connective tissue, is the focus of this study. Here, the interaction mechanism of HCQ with collagen was investigated through various spectroscopic and computational methods. It is found that HCQ binds to collagen spontaneously, primarily via hydrophobic interactions and some hydrogen bonds. The findings of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) verified that formation of HCQ-collagen complex and the amorphous structure, secondary structures, and microstructure of collagen were changed after HCQ binding. A decrease in the relaxation time of free water was observed in the collagen system when HCQ was added. Molecular docking demonstrated that HCQ was almost buried in the cavity of collagen via some hydrophobic interactions with one hydrogen bond, which conforms to the findings of the fluorescence and FTIR analyses. Molecular dynamic (MD) simulations further revealed the structural change information in the docking process. Hopefully, the information generated in this study can provide some useful insights for the research on the pharmacological mechanisms of HCQ in the treatment of the connective tissue diseases and the application of collagen as a drug carrier.
Collapse
Affiliation(s)
- Hailin Wang
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China; Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Pingfan Rao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Yunjie Qiu
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Leiwen Xiang
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China.
| |
Collapse
|
42
|
Zhu YA, Sun P, Duan C, Cao Y, Kong B, Wang H, Chen Q. Improving stability and bioavailability of curcumin by quaternized chitosan coated nanoemulsion. Food Res Int 2023; 174:113634. [PMID: 37986538 DOI: 10.1016/j.foodres.2023.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
This study aims to enhance the stability and bioavailability of curcumin (Cur) using nanoemulsion coating technology. The nanoemulsion system was developed by encapsulating Cur with quaternized chitosan (QMNE), and the nanoemulsion containing Cur and medium-chain triglyceride (MCT) oil (MNE) was used as control sample. The microstructure of the nanoemulsion was examined using Dynamic light scattering (DLS), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The storage, thermal, ionic strength, and pH stability of QMNE were also evaluated, respectively. The results indicate that QMNE demonstrates superior stability, in vitro gastric fluid stability, bioavailability compared to MNE. QMNE exhibits excellent emulsification activity and stability. In addition, QMNE shows significant protection against oxidation in both emulsion systems after different heat treatments. The antimicrobial activity results reveal that QMNE exhibits greater efficacy than that of MNE. Consequently, this study provides valuable insights into the formulation of a system to encapsulate Cur and the improvement of its stability and bioavailability.
Collapse
Affiliation(s)
- Ying-Ao Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Pengyuan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengyu Duan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuhang Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
43
|
Yu J, Fu Y, Cao Z. QM/MM and MM MD Simulations on Enzymatic Degradation of the Nerve Agent VR by Phosphotriesterase. J Phys Chem B 2023; 127:7462-7471. [PMID: 37584503 DOI: 10.1021/acs.jpcb.3c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
V-type nerve agents are hardly degraded by phosphotriesterase (PTE). Interestingly, the PTE variant of BHR-73MNW can effectively improve the hydrolytic efficiency of VR, especially for its Sp-enantiomer. Here, the whole enzymatic degradation of both Sp and Rp enantiomers of VR by the wild-type PTE and its variant BHR-73MNW was investigated by quantum mechanics/molecular mechanics (QM/MM) calculations and MM molecular dynamics simulations. Present results indicate that the degradation of VR can be initiated by the nucleophilic attack of the bridging OH- and the zinc-bound water molecule. The QM/MM-predicted energy barriers for the hydrolytic process of Sp-VR are 19.8 kcal mol-1 by the variant with water as a nucleophile and 22.0 kcal mol-1 by the wild-type PTE with OH- as a nucleophile, and corresponding degraded products are bound to the dinuclear metal site in monodentate and bidentate coordination modes, respectively. The variant effectively increases the volume of the large pocket, allowing more water molecules to enter the active pocket and resulting in the improvement of the degradation efficiency of Sp-VR. The hydrolysis of Rp-VR is triggered only by the hydroxide with an energy span of 20.6 kcal mol-1 for the wild-type PTE and 20.7 kcal mol-1 for the variant BHR-73-MNW PTE. Such mechanistic insights into the stereoselective degradation of VR by PTE and the role of water may inspire further studies to improve the catalytic efficiency of PTE toward the detoxification of nerve agents.
Collapse
Affiliation(s)
- Jun Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
44
|
Li M, Zhang X, Han D, Wu S, Gong J. Systematic study on lysozyme-hyaluronan complexes: Multi-spectroscopic characterization and molecular dynamics simulation. Int J Biol Macromol 2023; 246:125642. [PMID: 37394210 DOI: 10.1016/j.ijbiomac.2023.125642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
This study systematically investigated the complexation mechanism of lysozyme (LYS) and hyaluronan (HA) as well as their complex-formation process using multi-spectroscopy combined with molecular dynamics simulation. Overall, the results demonstrated that electrostatic interaction provides the primary self-assembly driving forces for LYS-HA complex formation. Circular dichroism spectroscopy revealed that the LYS-HA complexes formation primarily alters the α-helix and β-sheet structures of LYS. Fluorescence spectroscopy yielded an entropy of 0.12 kJ/mol·K and enthalpy of -44.46 kJ/mol for LYS-HA complexes. Molecular dynamics simulation indicated that the amino acid residues of ARG114 in LYS and 4ZB4 in HA contributed most significantly. HT-29 and HCT-116 cell experiments demonstrated that LYS-HA complexes possess excellent biocompatibility. Furthermore, LYS-HA complexes were found to be potentially useful the efficient encapsulation of several insoluble drugs and bioactives. These findings provide new insight into the binding mechanism between LYS and HA, and prove indispensable to promoting the potential application of LYS-HA complexes as bioactive compound delivery systems, emulsion stabilizers, or foaming agents in the food industry.
Collapse
Affiliation(s)
- Maolin Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xin Zhang
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Dandan Han
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China.
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, PR China
| |
Collapse
|
45
|
Paliya BS, Sharma VK, Sharma M, Diwan D, Nguyen QD, Aminabhavi TM, Rajauria G, Singh BN, Gupta VK. Protein-polysaccharide nanoconjugates: Potential tools for delivery of plant-derived nutraceuticals. Food Chem 2023; 428:136709. [PMID: 37429239 DOI: 10.1016/j.foodchem.2023.136709] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Protein-polysaccharide nanoconjugates are covalently interactive networks that are currently the subject of intense research owing to their emerging applications in the food nanotechnology field. Due to their biocompatibility and biodegradability properties, they have played a significant role as wall materials for the formation of various nanostructures to encapsulate nutraceuticals. The food-grade protein-polysaccharide nanoconjugates would be employed to enhance the delivery and stability of nutraceuticals for their real use in the food industry. The most common edible polysaccharides (cellulose, chitosan, pectin, starch, carrageenan, fucoidan, mannan, glucomannan, and arabic gum) and proteins (silk fibroin, collagen, gelatin, soy protein, corn zein, and wheat gluten) have been used as potential building blocks in nano-encapsulation systems because of their excellent physicochemical properties. This article broadens the discussion of food-grade proteins and polysaccharides as nano-encapsulation biomaterials and their fabrication methods, along with a review of the applications of protein-polysaccharide nanoconjugates in the delivery of plant-derived nutraceuticals.
Collapse
Affiliation(s)
- Balwant S Paliya
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | | | - Deepti Diwan
- Washington University School of Medicine, 4590 Children's Place, Ste. 8200, Campus Box 8057, St. Louis MO63110, USA
| | - Quang D Nguyen
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Ḿenesiút 45, Hungary
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, India
| | - Gaurav Rajauria
- Department of Biological & Pharmaceutical Sciences, Munster Technological University, Tralee V92HD4V, Co. Kerry, Ireland
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India.
| | - Vijai Kumar Gupta
- Biorefining and Advance Material Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom; Centre for Safe and Improved Food, SRUC, Kings buildings, West Mains Road, Edinburg EH9 3JG, United Kingdom.
| |
Collapse
|
46
|
Li R, Zhang Z, Chen J, Li H, Tang H. Investigating of zein-gum arabic-tea polyphenols ternary complex nanoparticles for luteolin encapsulation: Fabrication, characterization, and functional performance. Int J Biol Macromol 2023:125059. [PMID: 37244348 DOI: 10.1016/j.ijbiomac.2023.125059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Luteolin has extensive biological effects, but its low water-solubility and oral bioavailability have restricted its application. In this study, we successfully prepared new zein-gum arabic (GA)-tea polyphenols (TP) ternary complex nanoparticles (ZGTL) as a delivery system to encapsulate luteolin using an anti-solvent precipitation method. Consequently, ZGTL nanoparticles showed negatively charged smooth spherical structures with smaller particle size and higher encapsulation ability. X-ray diffraction revealed the amorphous state of luteolin in the nanoparticles. Hydrophobic, electrostatic, and hydrogen bonding interactions contributed to the formation and stability of ZGTL nanoparticles, as indicated by fluorescence and Fourier transform infrared spectra analyses. The inclusion of TP improved the physicochemical stability and luteolin retention rate of ZGTL nanoparticles by forming more compact nanostructures under different environmental conditions, including pH, salt ion concentration, temperature, and storage. Additionally, ZGTL nanoparticles exhibited stronger antioxidant activity and better sustainable release capacity under simulated gastrointestinal conditions due to TP incorporation. These findings demonstrate that ZGT complex nanoparticles have potential applications as an effective delivery system for encapsulating bioactive substances in food and medicine fields.
Collapse
Affiliation(s)
- Renjie Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
47
|
Yang T, Ge J, Wang P, Zhong Y, Zhou Q, Wang X, Cai J, Huang M, Jiang D, Dai T, Cao W. Effect of High-Molecular Weight Glutenin Subunits (HMW-GSs) on Gluten Polymerization during Biscuit Making: Insights from Experimental and Molecular Dynamics Simulation Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8150-8163. [PMID: 37192322 DOI: 10.1021/acs.jafc.2c08277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The effect of high-molecular weight glutenin subunits (HMW-GSs) on gluten polymerization during biscuit making was investigated using a set of HMW-GS deletion lines. Results showed that the deletion of HMW-GSs improved the biscuit quality compared with the wild type (WT), especially in x-type HMW-GS deletion lines. Slight gluten depolymerization was observed during dough mixing, while progressive gluten polymerization occurred during biscuit baking. The deletion of HMW-GSs suppressed the polymerization of glutenin and gliadin compared with the WT during biscuit baking, especially in x-type HMW-GS deletion lines. These actions resulted in less elevation of the intermolecular β-sheet and ordered α-helix and altering the disulfide (SS) conformation to a less stable conformation in HMW-GS deletion lines compared with the WT during baking. Molecular dynamics simulation analysis further demonstrated that x-type HMW-GSs had higher thermal stability compared with y-type HMW-GSs during heating.
Collapse
Affiliation(s)
- Tao Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiakun Ge
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yingxin Zhong
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xiao Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jian Cai
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mei Huang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dong Jiang
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Tingbo Dai
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Weixing Cao
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
48
|
Cui R, Ji S, Xia M, Fu X, Huang X. Mechanistic studies of polyphenols reducing the trypsin inhibitory activity of ovomucoid: Structure, conformation, and interactions. Food Chem 2023; 408:135063. [PMID: 36535182 DOI: 10.1016/j.foodchem.2022.135063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Ovomucoid (OVM) is a critical anti-nutritional factor in egg, which may reduce nutrient utilization. In this study, the effects of polyphenols on the trypsin inhibitory activity (TIA) of OVM were investigated by exploring the structural changes and interaction mechanisms. The results found that TIA decreased to 62.34% and 90.41% as epigallocatechin gallate (EGCG) and gallic acid (GA) were added individually. EGCG and GA interacted with OVM via static quenching and hydrophobic interaction. They induced a transition of OVM conformation from disorder to order. Infrared and fluorescence quenching analysis showed that the interaction between EGCG or GA and OVM was spontaneous, and hydrophobic interaction was the predominant force. The mechanism suggested that polyphenols affect the protein conformation by spontaneously binding to OVM in hydrophobic interactions, and lowering the TIA through reduced hydrophobicity. In summary, EGCG may be a promising OVM trypsin activity inactivator, which could also guarantee safety of egg products.
Collapse
Affiliation(s)
- Rui Cui
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, PR China
| | - Shengnan Ji
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, PR China
| | - Minquan Xia
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, PR China
| | - Xing Fu
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, PR China.
| | - Xi Huang
- College of Food Science and Technology, Huazhong Agricultural University, National Research and Development Centre for Egg Processing, Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
49
|
Jin DL, Wei JL, He FY, Chai TT, Ren ST, Fu JJ, Chen YW. Effect of tea polyphenols on sturgeon myofibrillar protein structure in the in vitro anti-glycation model mediated by low temperature vacuum heating. Food Chem 2023; 407:135133. [PMID: 36493492 DOI: 10.1016/j.foodchem.2022.135133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The binding mechanism between tea polyphenols and sturgeon myofibrillar protein (SMP) in the early stage (0, 2, 4 min), middle stage (6, 10 min) and late stage (15 min) of low temperature vacuum heating (LTVH) in an in vitro anti-glycation model was investigated. The result indicated that the protein cross-linking during LTVH treatment were mainly induced by tea polyphenols. The loss rate of free arginine (Arg) and free lysine (Lys) of SMP at the late stage of LTVH treatment (15 min) was 73.95 % and 83.16 %, respectively. The hydrophobic force and disulfide bond were the main force between tea polyphenols and SMP in the middle and late stage of LTVH treatment. The benzene ring and phenolic hydroxyl group of tea polyphenols can interact with the amino acid residues of SMP, which was exothermic and entropy-increasing. This study provides new insights in the interaction mechanisms between tea polyphenols-protein during heat treatment process.
Collapse
Affiliation(s)
- Dan-Li Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Jian-Ling Wei
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Fan-Yu He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ting-Ting Chai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shao-Tian Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| |
Collapse
|
50
|
Xue H, Luo X, Tu Y, Zhao Y, Zhang G. Amelioration of ovalbumin gel properties by EGCG via protein aggregation, hydrogen, and van der Waals force. Food Chem 2023; 422:136248. [PMID: 37126957 DOI: 10.1016/j.foodchem.2023.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
The mechanism of epigallocatechin gallate (EGCG)-modified ovalbumin gel (EMOG) was investigated. Results indicated that, with the increase of EGCG concentration from 0% to 0.05%, the opacity, hardness, and cohesiveness of EMOG increased significantly from 0.058 to 0.133, 321.0 g to 377.6 g, and 0.879 to 0.951, respectively, while the soluble protein, surface hydrophobicity, and free sulfhydryl decreased significantly by 41.74%, 28.26%, and 39.36%, respectively. Moreover, EGCG promoted the formation of dense and stable microstructures of EMOG, changed the expansion rate, and improved the stability of EMOG. Moreover, the results of silico simulation showed that EGCG would insert into ovalbumin and interact with the amino acids through van der Waals force and hydrogen bonds, leading to a compact and stable protein structure. In this paper, the mechanism of modification of ovalbumin by EGCG was elucidated at the macro and micro levels, providing insights into the action of polyphenols and proteins.
Collapse
Affiliation(s)
- Hui Xue
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoqiao Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|