1
|
Liu C, Wei X, Zhang Z, Miao Q, Prejanò M, Marino T, Tao Y, Li Y. Color protection, aroma enhancement and sensory improvement of red wines: Comparison of pre-fermentation additions of cyclodextrins and polysaccharides. Food Chem 2025; 477:143432. [PMID: 40031134 DOI: 10.1016/j.foodchem.2025.143432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
The effect of pre-fermentation single additions of four cyclodextrins (CDs) as stabilizing factors on the color, aroma, and sensory characteristics of red wines was systematically investigated for the first time and compared with control and single polysaccharide treatments. The results showed that α-cyclodextrin (α-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) increased red-green color channel (a⁎) by 41.85 % and 28.84 %, respectively, compared to the control group, exhibiting a stronger copigmentation effect than the three polysaccharides. Mantel test and heatmap analyses revealed that α-CD enhanced color stability by promoting copigmentation between phenolics and monomeric anthocyanins, whereas HP-β-CD enhanced color through direct copigmentation with anthocyanins. Furthermore, volatile compound content and principal component analysis demonstrated that α-CD and HP-β-CD effectively protected esters and selectively protected alcohols, compared to the control and polysaccharide treatments. Sensory evaluation confirmed that HP-β-CD and α-CD improved the sensory profile by enhancing color appeal, rich floral and fruity aromas, and harmonious taste.
Collapse
Affiliation(s)
- Caiyun Liu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xibu Wei
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Zengshuai Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Qianqian Miao
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, CS, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, CS, Italy
| | - Yongsheng Tao
- College of Enology, Northwest A&F University, Yangling 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Minning 750104, China
| | - Yunkui Li
- College of Enology, Northwest A&F University, Yangling 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Minning 750104, China.
| |
Collapse
|
2
|
Peng X, Wei Y, Liao Y, Hu X, Gong D, Zhang G. Effect of polysaccharides on the inhibition and binding ability of hesperetin-copper(II) complex on α-glucosidase. Colloids Surf B Biointerfaces 2025; 250:114564. [PMID: 39965483 DOI: 10.1016/j.colsurfb.2025.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
The study aimed to investigate the inhibitory effect of hesperetin-copper (II) [Hsp-Cu(II)] on α-glucosidase in the presence of polysaccharides (xylan, β-glucan, low-, medium- and high-viscosity chitosan). The results showed that all the polysaccharides significantly reduced the inhibitory activity of α-glucosidase by Hsp-Cu(II), and the reduction effect of high-viscosity chitosan was the most significant. The polysaccharides significantly decreased the binding constant of Hsp-Cu(II)α-glucosidase, changed the binding sites of Hsp-Cu(II) to α-glucosidase and reduced the hydrogen bonds of Hsp-Cu(II) bound with α-glucosidase. Circular dichroism showed that the reduction of α-helix content in α-glucosidase caused by Hsp-Cu(II) was raised from 27.2 % to 29.5 %, 31.3 % and 32.7 % in the presence of xylan, β-glucan and high-viscosity chitosan, respectively, suggesting that the polysaccharides could restore the secondary structure of α-glucosidase. Fourier transforms infrared spectra showed that xylan and β-glucan formed hydrogen bonds with Hsp-Cu(II). The mechanism of the decreasing effect might be that the polysaccharides with the low viscosity compete with α-glucosidase to bind Hsp-Cu(II) through hydrogen bonds, restoring the catalytic center and active amino acid residues of Hsp-Cu(II) bound with α-glucosidase and the adsorption of high-viscosity chitosan decreases the binding affinity of Hsp-Cu(II) on α-glucosidase. The study may offer a reference for the development of Hsp-Cu(II)-based nutritional and healthy food for patients with hyperglycemia.
Collapse
Affiliation(s)
- Xi Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Yushi Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yijing Liao
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Xing Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China.
| |
Collapse
|
3
|
Fu Q, Wang F, Tang T, Liu Z, Wang L, Wang Q, Shi X, Wang B. A Snapshot of Microbial Succession and Volatile Component Dynamics of Marselan Wine in Xinjiang During Spontaneous Fermentation. Foods 2025; 14:994. [PMID: 40232002 PMCID: PMC11941887 DOI: 10.3390/foods14060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Marselan wine is characterized by distinctive flavors of blackcurrant, cranberry, and spice, which are significantly influenced by environmental factors such as region and climate. In this study, we analyzed the dynamic changes in the microbial community, physicochemical indices, and flavor compounds during the spontaneous fermentation of Marselan wine in Xinjiang using high-throughput sequencing (HTS), high-performance liquid chromatography (HPLC), and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results indicated that the sugar content decreased from 259.12 g/L to 22.45 g/L, while the ethanol content increased to 13.63 ± 0.15% vol after 12 days of fermentation. The predominant aromatic components identified in Marselan grapes include isophorone, 2,3-pentanedione, 2-hexenal, and melonal. After fermentation, ethanol, phenethyl alcohol, isoamyl acetate, ethyl acetate, and ethyl hexanoate were produced, imparting rose, cream, and fruit flavors to wine. The key microorganisms involved in the spontaneous fermentation of Marselan wine include Saccharomyces, Starmerella, Pichia, Pseudomonas, Sphingomonas, and Aspergillus. These microorganisms contributed substantially to the main physicochemical indices and flavor profiles. Saccharomyces and Pichia enhanced the formation of most alcohols and esters, whereas Aspergillus, Acremonium, and Fusarium inhibited the synthesis of numerous volatile compounds. These findings provide valuable theoretical references for improving the quality of Marselan wines in Xinjiang.
Collapse
Affiliation(s)
- Qingquan Fu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Fangfang Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Tiantian Tang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zimen Liu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Lilin Wang
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, College of Food Science and Engineering, Tarim University, Alar 843300, China;
| | - Qingling Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
4
|
Zhang R, Liu J, Zheng Z, Cao S, Yan Z, Zhang Y, Zhang T, Liu X. Double network emulsion gel prepared with different polyphenol modified egg white protein: A promising fat substitute for oral processing and fatty taste supplement. Food Chem 2025; 465:142082. [PMID: 39571440 DOI: 10.1016/j.foodchem.2024.142082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
This study investigated the effects of differential modification of the structural flexibility of egg white protein (EWP) by different polyphenols, which in turn enhanced the oral processing properties and fat perception of EWP-based double network emulsion gel (DNEG). After modification with polyphenols, the skeleton of gel became more delicate, which improved the hardness and cohesion of DNEG. This transformation was attributed to the shift from hydrophobic interactions to hydrogen and covalent bonds. Notably, proanthocyanidins (PC) effect was better, which resulted in a 58.5 % increase in oral wettability and a more appropriate oral tribological performance (0.53). Besides, DNEG increased fatty taste perception via the "ball bearing" effect as a fat substitute in sausage. In summary, this study could enhance the refined design of gels and provide ideas for improving the fatty taste of low-fat, healthy foods.
Collapse
Affiliation(s)
- Renzhao Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyuan Zheng
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Cao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhaohui Yan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yudan Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Gao B, Rao C, Lei X, Li S, Huang X, Liu Y, Ye D. Comprehensive insights into yeast mannoproteins:structural heterogeneity, winemaking, food processing, and medicine food homology. Food Res Int 2025; 202:115719. [PMID: 39967099 DOI: 10.1016/j.foodres.2025.115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
Mannoproteins (MPs) are primary constituents of yeast cell walls, which are extensively utilized in the winemaking process, in finished wines, and during wine aging to enhance aroma, stabilize pigments, improve wine body, and reduce astringency. However, existing research has mainly focused on the extraction of MPs and certain oenological properties. A review of the literature indicates that our understanding of the targets and mechanisms influenced by MPs related to winemaking characteristics remains limited. Furthermore, as further research on MPs progresses, it also has beneficial effects in other food processing and food healthcare. Therefore, this evaluation examines MPs from three aspects: extraction methods, corresponding structures, and performances, providing a more comprehensive and critical insight into the structure-activity relationship of MPs. In a word, it outlines the primary applications of MPs in food and aims to provide data support for more precise control over the use of MPs from a structural perspective.
Collapse
Affiliation(s)
- Binghong Gao
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Chuanyan Rao
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xingmeng Lei
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Siqi Li
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xiaochuan Huang
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Dongqing Ye
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
6
|
Gazaloğlu M, Camarasa C, Nevoigt E. Exploring pectinolytic yeast diversity: toward effective polygalacturonase producers for applications in wine-making. FEMS Yeast Res 2025; 25:foae033. [PMID: 39694689 PMCID: PMC11781195 DOI: 10.1093/femsyr/foae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024] Open
Abstract
Pectinolytic enzymes secreted by yeasts have an untapped potential in industry, particularly in wine-making. This study addresses the limitations of the current screening methods in reliably predicting the capacity of pectinolytic yeast strains to secrete polygalacturonase (PGase) under industrial conditions, suggesting a novel screening approach. Using the context of wine-making as an example, a diverse collection of 512 yeast strains from 17 species was analysed for PGase secretion, a key enzyme in pectinolysis. The traditional halo assay on solid yeast-pepton-dextrose (YPD) medium revealed 118 strains from nine genera being PGase positive. Screening these strains by incubating them at 20°C on a solid synthetic grape juice medium containing polygalacturonic acid (PG) significantly reduced the number of promising strains to 35. They belong to five genera: Kluyveromyces sp., Cryptococcus, Pichia, Torulaspora, and Rhodotorula. Afterward, a newly developed pectin-iodine assay was used to precisely quantify the PGase activity of the best-performing strains in a liquid medium. Strains from Kluyveromyces and Cryptococcus sp. stood out regarding high pectinolytic activity. Our methodological advancements tailored to identify highly promising pectinolytic yeasts for industrial use open new avenues for wine-making and other industrial processes encompassing media rich in pectin and sugars.
Collapse
Affiliation(s)
- Mehmet Gazaloğlu
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
- UMR SPO, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France
| | - Carole Camarasa
- UMR SPO, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France
| | - Elke Nevoigt
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
7
|
Bai C, Fan B, Hao J, Yao Y, Ran S, Wang H, Li H, Wei R. Changes in Microbial Community Diversity and the Formation Mechanism of Flavor Metabolites in Industrial-Scale Spontaneous Fermentation of Cabernet Sauvignon Wines. Foods 2025; 14:235. [PMID: 39856901 PMCID: PMC11764576 DOI: 10.3390/foods14020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The key flavor compound formation pathways resulting from indigenous microorganisms during the spontaneous fermentation of wine have not been thoroughly described. In this study, high-throughput metagenomic sequencing and untargeted metabolomics were utilized to investigate the evolution of microbial and metabolite profiles during spontaneous fermentation in industrial-scale wine production and to elucidate the formation mechanisms of key flavor compounds. Metabolome analysis showed that the total amount of esters, fatty acids, organic acids, aldehydes, terpenes, flavonoids, and non-flavonoids increased gradually during fermentation. Enrichment analysis indicated that metabolic pathways related to the synthesis, decomposition, transformation, and utilization of sugars, amino acids, and fatty acids were involved in the formation of key flavor compounds in wine. Metagenomic analysis revealed that Saccharomyces, Hanseniaspora, Zygosaccharomyces, Wickerhamiella, Lactobacillus, and Fructobacillus were the dominant taxa during spontaneous fermentation. They were significantly positively correlated with organic acids, fatty acids, esters, phenols, aldehydes, terpenes, and phenols. In conclusion, this research provides new insights into the metabolic pathways of key flavor compounds formed by indigenous microorganisms during wine fermentation.
Collapse
Affiliation(s)
- Chunyan Bai
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
- Beijing Hongxing Liuquxiang Co., Ltd., Liuquxiang Branch Company, Industrial Zone, Qixian, Jinzhong 030900, China
| | - Boyuan Fan
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
| | - Jinmei Hao
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
| | - Yuan Yao
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
| | - Shiming Ran
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
- Xinjiang Deyun Xingtai Agriculture Co., Ltd., No. 32, Dingxin Road, Fuhai, Altay 836400, China
| | - Hua Wang
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling, Xianyang 712100, China; (H.W.); (H.L.)
| | - Hua Li
- College of Enology, Northwest A&F University, No. 22, Xinong Road, Yangling, Xianyang 712100, China; (H.W.); (H.L.)
| | - Ruteng Wei
- College of Food Science and Engineering, Shanxi Agricultural University, No. 1, Mingxian South Road, Taigu District, Jinzhong 030801, China; (C.B.); (B.F.); (J.H.); (Y.Y.); (S.R.)
| |
Collapse
|
8
|
Guo Z, Dong H, Lin J, Hu Y, Ren D, Yi L, Li S. Mannoproteins modulate olfactrory perception and copigmentation of organoleptic-active-components in wines: Effects and potential molecular mechanisms. Food Res Int 2024; 194:114883. [PMID: 39232555 DOI: 10.1016/j.foodres.2024.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
In this research, accelerated aroma release experiments and malvidin-3-O-glucoside copigmentation experiments in model red wine solutions were designed to investigate the abilities and molecular mechanisms of mannoproteins in modulating olfactory/chromatic properties of red wines. Results indicate that under orthonasal condition, mannoprotein MP2 was promising aroma modulator due to its predictable behaviors in expelling and retaining the aroma compounds during different periods. Low field nuclear magnetic resonance and molecular dynamic simulation proved that the modulation ability of MP2 should be explained by its transitionary interacting preferences with water/aroma compound molecules. Retronasal results show that the release of aroma compounds and olfactory perceptions were irregular and difficult to predict, probably due to the complexity of the retronasal condition. All mannoproteins protected malvidin-3-O-glucoside and quercetin via the formation of binary/ternary complexes, and quercetin was found prior to be protected than malvidin-3-O-glucoside. Principal mannoprotein A0A6C1DV26 might be the critical malvidin-3-O-glucoside protector. With the presence of quercetin, principal mannoproteins B3LQU1/B5VL26 in mannoprotein MP1 might exhibit intramolecular and/or intermolecular mechanisms that strengthened the hyperchromic effect, thus enhanced the copigmentation.
Collapse
Affiliation(s)
- Zhengbo Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hanyue Dong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Junxia Lin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongyuerun Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Siyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
9
|
Burken O, Sommer S. Evaluation of protein-polysaccharide interactions through ζ-potential and particle size measurements to assess their functionality in wine. J Food Sci 2024; 89:6413-6424. [PMID: 39269268 DOI: 10.1111/1750-3841.17350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Protein-polysaccharide-tannin interactions are important in every aspect of red wine production from physical stability to color, astringency, and body. For this model study, bovine serum albumin (BSA) was selected as the protein, while carboxymethyl cellulose (CMC), mannoproteins, and pectin were the model polysaccharides. Each protein-polysaccharide combination was analyzed for zeta (ζ) potential and particle size at neutral pH and within the wine-like solution. Mixtures were assessed regarding their protective, affinitive, and aggregative behaviors. Based on their individual ζ-potentials, pectin and mannoprotein were most stable at lower concentrations. At higher concentrations, they reduced the suspension's stability and increased the aggregate sizes. CMC consistently increased the stability of any solution under neutral pH conditions. However, with increasing concentrations, these large aggregates are expected to precipitate. Fruit pectin (FP) and BSA interactions seemed to be the main factors in the formation of visible precipitates at neutral pH. FP and the mannoprotein decreased stability enough to cause precipitation without haze formation. The mannoprotein decreased particle sizes, in both the suspension and precipitation, which may indicate greater selectivity toward proteins. FP also decreased the suspended particle sizes under wine conditions. These findings demonstrate the use of ζ-potential and particle size values to characterize macromolecular interactions in model systems and can also be used to indicate effective fining agents. PRACTICAL APPLICATION: This work demonstrates the capabilities of ζ-potential analysis paired with size particle measurements to predict and characterize the interactions between macromolecules in complex systems. The interactions between model wine macromolecules can be evaluated with this technology at a level that cannot be reached with any other analytical technique.
Collapse
Affiliation(s)
- Olivia Burken
- Grape and Wine Institute, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Stephan Sommer
- Grape and Wine Institute, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
10
|
Dong H, Guo Z, Ma Y, Lin J, Zhai H, Ren D, Li S, Yi L. Organoleptic modulation functions and physiochemical characteristics of mannoproteins: Possible correlations and precise applications in modulating color evolution and orthonasal perception of wines. Food Res Int 2024; 192:114803. [PMID: 39147502 DOI: 10.1016/j.foodres.2024.114803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Mannoproteins have traditionally been recognized as effective wine organoleptic modulators, however, ambiguous understanding of the relationship between their organoleptic functions and physiochemical characteristics often lead to inappropriate application in winemaking. To reveal the possible role the physiochemical characteristics of mannoproteins play in modulating wine color and aroma properties, three water-soluble mannoproteins (MP1, MP2, MP3) with different physiochemical characteristics have been prepared, and accelerated red wine aging, malvidin pigments formation experiments, accelerated aroma release experiments have been designed to observe their organoleptic modulating functions in this research. Results suggest that the phenolic/chromatic stability of red wines could be enhanced by MP3, probably due to its low steric hindrance potential, high reactivity, and good hydro-alcoholic stability conferred by its high Mannan/Glucan ratio (8.68), abundant hydrophobic/hydrophilic amino acids (65.29 % of total protein), and low/medium molecular weight level (30.71-57.77 kDa), respectively, which protected the phenolic compounds and promoted the formation of pyranoanthocyanins. Mannoproteins could modulate the volatility of aroma compounds by expelling or retention effects, which depended on the duration of mannoprotein application (the expelling effect was firstly observed possibly because of the significant adsorption of free H2O by MPs) and the types of mannoproteins. MP1 and MP2 were prone to retain and expel aroma compounds, respectively, probably due to their medium/high molecular weight levels (60.48-135.39 kDa) that conferred abundant interacting sites, and the high proportion of hydrophobic and hydrophilic components in MP1 (97.71 % polysaccharides of total mannoprotein, 34.58 % hydrophobic amino acids of total protein) and MP2 (97.96 % polysaccharides of total mannoprotein, 28.36 % hydrophobic amino acids of total protein) guaranteed a relatively higher interacting frequency with aroma compounds and free H2O molecules, respectively.
Collapse
Affiliation(s)
- Hanyue Dong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhengbo Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanhong Ma
- Kunming Institute for Food and Drug Control, Kunming 650032, China
| | - Junxia Lin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongyue Zhai
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Siyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
11
|
Marangon M, Marassi V, Roda B, Zattoni A, Reschiglian P, Mattivi F, Moio L, Ricci A, Piombino P, Segade SR, Giacosa S, Slaghenaufi D, Versari A, Vrhovsek U, Ugliano M, De Iseppi A, Mayr Marangon C, Curioni A. Comprehensive analysis of colloid formation, distribution, and properties of monovarietal red wines using asymmetrical flow field-flow fractionation with online multidetection. Food Res Int 2024; 187:114414. [PMID: 38763663 DOI: 10.1016/j.foodres.2024.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Red wine colloids, crucial in determining wine quality and stability, are understudied due to inadequate techniques for studying them effectively in the natural wine environment. Recently, Asymmetrical Flow Field-flow Fractionation (AF4) with online multidetection has emerged as a novel analytical tool for quantifying, fractionating, and characterizing red wine colloids in their native state. This study aimed to characterize the colloidal composition of 24 monovarietal Italian wines produced without filtration, oak contact, fining treatments, malolactic fermentation, macerating enzymes or ageing on yeast lees. AF4 analysis allowed quantification and characterization of wine colloids based on light scattering signal (MALS; gyration radius - Rg), size (hydrodynamic radius - Rh) and absorbance (A280 & A520 nm). The results showed that each wine contained up to five distinct colloids' populations, varying in size and gyration radii. Despite possessing very similar Rh, most colloids exhibited great differences in compactness, as indicated by their varying Rg values. Comparing the A280 signal of whole wines to those of wines containing only species larger than 5 kDa (considered colloids) allowed to calculate the percentage of molecules involved in colloidal particles assembly, ranging from 1 to 44 % of the total A280 absorbing compounds, reflecting the diversity among wines. The A520 signal indicated the presence of polymeric pigments in the colloidal fraction. Notably, colored colloids all had Rg > 20 nm, indicating their association with other colloidal-forming compounds. This observation led to the conclusion that, apart from free anthocyanins and polymeric pigments, the color of red wines is also due to colloidal particles formed by the latter bound to proteins, with their quantity being highly variable across wines of different origin. These findings, which highlight the fundamental role of proteins in shaping the colloidal status of red wines, were utilized to propose an updated hypothetical model for colloidal aggregation in red wine.
Collapse
Affiliation(s)
- Matteo Marangon
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, 31015 Conegliano, Italy.
| | - Valentina Marassi
- Department of Chemistry "G. Ciamician", University of Bologna, Italy; byFlow srl, Via dell'Arcoveggio 74, 40129 Bologna, Italy.
| | - Barbara Roda
- Department of Chemistry "G. Ciamician", University of Bologna, Italy; byFlow srl, Via dell'Arcoveggio 74, 40129 Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry "G. Ciamician", University of Bologna, Italy; byFlow srl, Via dell'Arcoveggio 74, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry "G. Ciamician", University of Bologna, Italy; byFlow srl, Via dell'Arcoveggio 74, 40129 Bologna, Italy
| | - Fulvio Mattivi
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Italy; Metabolomic Unit, Research Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Luigi Moio
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, Italy
| | - Arianna Ricci
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| | - Paola Piombino
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, Italy
| | - Susana Río Segade
- Department of Agricultural, Forest and Food Sciences, University of Torino, Italy
| | - Simone Giacosa
- Department of Agricultural, Forest and Food Sciences, University of Torino, Italy
| | | | - Andrea Versari
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| | - Urska Vrhovsek
- Metabolomic Unit, Research Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Alberto De Iseppi
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Christine Mayr Marangon
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Andrea Curioni
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, 31015 Conegliano, Italy
| |
Collapse
|
12
|
Zhai H, Ling M, Li S, Chen B, Zhao X, Tong W, Cheng C, Li J, Shi Y, Duan C, Lan Y. The characteristics of polysaccharide composition of red wines in China: Effects of grape varieties, origins and winemaking techniques. Food Chem X 2024; 22:101283. [PMID: 38524777 PMCID: PMC10957457 DOI: 10.1016/j.fochx.2024.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
In this work, the polysaccharide profile of different grapes and red wines in China was studied and the influences of two common winemaking techniques on the components of wine were analyzed. The soluble polysaccharide content in the skins of native grape species in China (non-Vitis vinifera grapes) was significantly higher than that of Vitis vinifera species, while the terroir effect on V. vinifera varieties was limited. The combination of the enzyme preparation and the addition of mannoproteins (MPs) at the beginning of alcoholic fermentation (MP1 + E) could increase the contents of MPs and acid polysaccharides (APS) compared to the control wines. Meanwhile, better color characteristics and higher level of anthocyanin derivatives were observed. However, MP1 + E treatment reduced the content of polysaccharides rich in arabinose and galactose (PRAGs) due to enzymatic hydrolysis. The study will provide useful information for winemakers to regulate the wine polysaccharide profile.
Collapse
Affiliation(s)
- Hongyue Zhai
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Mengqi Ling
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Siyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bainian Chen
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xu Zhao
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Wenzhe Tong
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chifang Cheng
- Xinjiang CITIC Guoan Wine Co. Ltd., Manasi, Changji 832200, China
| | - Jin Li
- Shandong Technology Innovation Center of Wine Grape and Wine, Yantai 264000, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
13
|
Kong C, Zhang Q, Wang Y, Huang J, Li A, Tao Y. Decoding Polysaccharides from Two Pichia Yeasts and Their Molecular Interaction with Wine Fruity Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12707-12718. [PMID: 38757388 DOI: 10.1021/acs.jafc.4c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This study extensively characterized yeast polysaccharides (YPs) from Pichia fermentans (PF) and Pichia kluyveri (PK), with a specific focus on their structural attributes and their interaction with wine fruity esters in a model wine system. By finely tuning enzymatic reactions based on temperature, pH, and enzyme dosage, an optimal YP yield of 77.37% was achieved, with a specific mass ratio of cellulase, pectinase, and protease set at 3:5:2. There were four YP fractions (YPPF-W, YPPF-N, YPPK-W, and YPPK-N) isolated from the two yeasts. YPPF-N and YPPK-N were identified as glucans based on monosaccharide analysis and Fourier-transform infrared spectroscopy analysis. "Specific degradation-methylation-nuclear magnetic" elucidated YPPF-W's backbone structure as 1,3-linked α-l-Man and 1,6-linked α-d-Glc residues, while YPPK-W displayed a backbone structure of 1,3-linked α-Man residues, indicative of a mannoprotein nature. Isothermal titration calorimetry revealed spontaneous interactions between YPPK-W/YPPF-W and fruity esters across temperatures (25-45 °C), with the strongest interaction observed at 30 °C. However, distinct esters exhibited varying interactions with YPPK-W and YPPF-W, attributed to differences in molecular weights and hydrophobic characteristics. While shedding light on these intricate interactions, further experimental data is essential for a comprehensive understanding of yeast polysaccharides' or mannoproteins' impact on fruity esters. This research significantly contributes to advancing our knowledge of yeast polysaccharides' role in shaping the nuanced sensory attributes of wine.
Collapse
Affiliation(s)
- Cailin Kong
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Qi Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Yiqing Wang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Jie Huang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Aihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yongsheng Tao
- College of Enology, Northwest A&F University, Yangling 712100, China
- Shaanxi Engineering Research Center for Viti-viniculture, Yangling 712100, China
| |
Collapse
|
14
|
Zhang Y, Zhu L, Zhao M, Jia Y, Li K, Li C. The effects of inulin on solubilizing and improving anti-obesity activity of high polymerization persimmon tannin. Int J Biol Macromol 2024; 270:132232. [PMID: 38734349 DOI: 10.1016/j.ijbiomac.2024.132232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Lin Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Mengyao Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
15
|
Wang X, Liu H, Qiao C, Ma Y, Luo H, Hou C, Huo D. A dual-functional single-atom Fe nanozyme-based sensitive colorimetric sensor for tannins quantification in brandy. Food Chem 2024; 434:137523. [PMID: 37742553 DOI: 10.1016/j.foodchem.2023.137523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Traditional methods of tannins detection suffer from complex pretreatment, long detection time, and limited sensitivity. Modern techniques like liquid chromatography require expertise, involve tedious result processing, and lack effective data visualization. Therefore, there is a need for an alternative detection method that simplifies pretreatment and detection steps, reduces analysis time, and provides visualized results. In this study, a novel colorimetric sensor based on single-atom Fe nanozyme (Fe@CN-20) was developed for tannins detection. Fe@CN-20 exhibited laccase-like and oxidase-like activities, enabling simultaneous oxidation of tannins and a substrate called TMB. Tannins competed with TMB, allowing quantification of tannins content. The Fe@CN-20/TMB system provided a detection range of 5-100 mg/L tannic acid, with a detection limit of 0.13 mg/L (S/N = 3). Analysis time was approximately 30 min. The platform successfully quantified tannins in brandy, showing less than 5% deviation compared to the standard method. The sensor was simple, sensitive, rapid, and provided strong visualization.
Collapse
Affiliation(s)
- Xinrou Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Cailin Qiao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
16
|
Martínez-Lapuente L, Guadalupe Z, Higueras M, Ayestarán B, Pérez-Porras P, Bautista-Ortín AB, Gómez-Plaza E. Effect of Pre-fermentative Treatments on Polysaccharide Composition of White and Rosé Musts and Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1928-1937. [PMID: 36840676 PMCID: PMC10835724 DOI: 10.1021/acs.jafc.2c08976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This paper studied the effect of conventional pre-fermentative techniques (direct pressing "CP" and cold maceration "CM") and an innovate technique (high power ultrasounds "S"), applied to Viogner and Monastrell grapes on the polysaccharide content of the musts, white and rosé wines, and after six months of bottle aging. The results showed that the longer pre-fermentation maceration time applied with the CM technique compared to the short ultrasonic maceration was key in the extraction of polysaccharides from the grape to the must. CP treatment produced wines with the lowest content of total soluble polysaccharide families since it was the least intense pretreatment for the disruption of the grape berry cell wall polysaccharides. Ultrasonic pretreatment could be used as a new tool to increase the solubilization of polysaccharides in wines, positively affecting the wine colloidal properties. During bottle aging, there wasn't a clear effect of pretreatments on the evolution of polysaccharides.
Collapse
Affiliation(s)
- Leticia Martínez-Lapuente
- Institute
of Vine and Wine Sciences, ICVV (University
of La Rioja, Government of La Rioja and CSIC), Finca La Grajera, 26007 Logroño, Spain
| | - Zenaida Guadalupe
- Institute
of Vine and Wine Sciences, ICVV (University
of La Rioja, Government of La Rioja and CSIC), Finca La Grajera, 26007 Logroño, Spain
| | - Manuel Higueras
- Scientific
Computation & Technological Innovation Center (SCoTIC), Universidad de La Rioja, 26006 Logroño, Spain
| | - Belén Ayestarán
- Institute
of Vine and Wine Sciences, ICVV (University
of La Rioja, Government of La Rioja and CSIC), Finca La Grajera, 26007 Logroño, Spain
| | - Paula Pérez-Porras
- Department
of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain
| | - Ana Belén Bautista-Ortín
- Department
of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain
| | - Encarna Gómez-Plaza
- Department
of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain
| |
Collapse
|
17
|
Canalejo D, Martínez-Lapuente L, Ayestarán B, Pérez-Magariño S, Guadalupe Z. Potential use of grape and wine polysaccharide extracts as fining agents to modulate the volatile composition of Viura wines. Food Chem 2024; 430:137047. [PMID: 37544155 DOI: 10.1016/j.foodchem.2023.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
This paper describes for the first time the use of grape derived polysaccharide extracts as potential fining agents to modulate the volatile composition of Viura white wines. Polysaccharide extracts were obtained from white grape pomace, red wine pomace, white must, red must, white wine, and lees from white wine. Except for higher alcohols, the extracts from white pomace, red pomace and white lees increased the content of most volatile compounds after one and twelve months of bottle aging. They could be used to enhance fruity and floral aromas and reduce unpleasant aromas, showing as good modulators of white wine aroma. The presence of mannoproteins, glucans, non-pectic polysaccharides, and low molecular weight polysaccharides increased the content of most volatile families. Polysaccharides of medium molecular weight showed negative correlations with volatile contents. Our results support the use of winemaking by-products to obtain valuable polysaccharides, contributing to the circular economy.
Collapse
Affiliation(s)
- Diego Canalejo
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, Ctra. De Burgos Km 6, 26007 Logroño, La Rioja, Spain
| | - Leticia Martínez-Lapuente
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, Ctra. De Burgos Km 6, 26007 Logroño, La Rioja, Spain
| | - Belén Ayestarán
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, Ctra. De Burgos Km 6, 26007 Logroño, La Rioja, Spain
| | - Silvia Pérez-Magariño
- Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Ctra. Burgos Km 119, 47071 Valladolid, Spain
| | - Zenaida Guadalupe
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Finca La Grajera, Ctra. De Burgos Km 6, 26007 Logroño, La Rioja, Spain.
| |
Collapse
|
18
|
Koch TB, Gabler AM, Biener F, Kreißl J, Frank O, Dawid C, Briesen H. Investigating the Role of Odorant-Polymer Interactions in the Aroma Perception of Red Wine: A Density Functional Theory-Based Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20231-20242. [PMID: 38062740 DOI: 10.1021/acs.jafc.3c03443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The aroma of red wine results from the intricate interplay between aroma compounds (odorants) and complex polymers generated during fermentation. This study combines density functional theory (DFT), human sensory experiments, and nuclear magnetic resonance to investigate the impact of odorant-polymer interactions on wine aroma. Molecular aggregation patterns of odorants with polymer segments are identified, indicating the crucial role of intermolecular noncovalent interactions, such as hydrogen bonds and van der Waals interactions, in stabilizing odorant-polymer conformations. Certain odorants, including 3-isobutyl-2-methoxypyrazine and cis-whisky lactone, exhibit high binding affinity to specific polymer segments, such as (+)-catechin and p-coumaric acid, resulting in substantial changes in the perceived aroma. Their strong binding affinities correlate with changes in sensory experiments for binary mixtures. The results provide insights into the molecular mechanisms of odorant-polymer interactions in red wine with the potential of DFT calculations as a tool for predicting and tailoring red wine aroma.
Collapse
Affiliation(s)
- Tobias B Koch
- Chair of Process Systems Engineering, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, D-85354 Freising, Germany
| | - Anna M Gabler
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Florian Biener
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Johanna Kreißl
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, D-85354 Freising, Germany
- Professorship for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Heiko Briesen
- Chair of Process Systems Engineering, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, D-85354 Freising, Germany
| |
Collapse
|
19
|
Yan S, Regenstein JM, Qi B, Li Y. Construction of protein-, polysaccharide- and polyphenol-based conjugates as delivery systems. Crit Rev Food Sci Nutr 2023; 65:1363-1381. [PMID: 38108638 DOI: 10.1080/10408398.2023.2293253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Natural polymers, such as polysaccharides and proteins, have been used to prepare several delivery systems owing to their abundance, bioactivity, and biodegradability. They are usually modified or combined with small molecules to form the delivery systems needed to meet different needs in food systems. This paper reviews the interactions of proteins, polysaccharides, and polyphenols in the bulk phase and discusses the design strategies, coupling techniques, and their applications as conjugates in emulsion delivery systems, including traditional, Pickering, multilayer, and high internal-phase emulsions. Furthermore, it explores the prospects of the application of conjugates in food preservation, food development, and nanocarrier development. Currently, there are seven methods for composite delivery systems including the Maillard reaction, carbodiimide cross-linking, alkali treatment, enzymatic cross-linking, free radical induction, genipin cross-linking, and Schiff base chemical cross-linking to prepare binary and ternary conjugates of proteins, polysaccharides, and polyphenols. To design an effective target complex and its delivery system, it is helpful to understand the physicochemical properties of these biomolecules and their interactions in the bulk phase. This review summarizes the knowledge on the interaction of biological complexes in the bulk phase, preparation methods, and the preparation of stable emulsion delivery system.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, China
| | | | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
20
|
Zhang D, Wei Z, Han Y, Duan Y, Shi B, Ma W. A Review on Wine Flavour Profiles Altered by Bottle Aging. Molecules 2023; 28:6522. [PMID: 37764298 PMCID: PMC10534415 DOI: 10.3390/molecules28186522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The wine flavour profile directly determines the overall quality of wine and changes significantly during bottle aging. Understanding the mechanism of flavour evolution during wine bottle aging is important for controlling wine quality through cellar management. This literature review summarises the changes in volatile compounds and non-volatile compounds that occur during wine bottle aging, discusses chemical reaction mechanisms, and outlines the factors that may affect this evolution. This review aims to provide a deeper understanding of bottle aging management and to identify the current literature gaps for future research.
Collapse
Affiliation(s)
- Di Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Ziyu Wei
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yufeng Han
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yaru Duan
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Baohui Shi
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| | - Wen Ma
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Win, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
21
|
Canalejo D, Martínez-Lapuente L, Ayestarán B, Pérez-Magariño S, Doco T, Guadalupe Z. Grape-Derived Polysaccharide Extracts Rich in Rhamnogalacturonans-II as Potential Modulators of White Wine Flavor Compounds. Molecules 2023; 28:6477. [PMID: 37764251 PMCID: PMC10536722 DOI: 10.3390/molecules28186477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Many authors have investigated the role of mannoproteins on wine quality, but very few have analyzed the use of grape-derived polysaccharides as they are not commercially available. In this study, purified grape-derived polysaccharides from red wine (WPP) and winemaking by-products (DWRP: Distilled Washing Residues Polysaccharides) were used as potential fining agents to modulate white wine flavor. Phenolics and volatile compounds were analyzed in the control and wines treated with WPP, DWRP, and commercial mannoproteins (CMs) after one and twelve months of bottling, and a sensory analysis was conducted. WPP and DWRP, rich in rhamnogalacturonans-II, showed themselves to be good modulators of wine aroma and astringency. Improvement in wine aroma was related to an increase in all volatile families expect higher alcohols and volatile acids. The modulation of astringency and bitterness was related to a reduction in the proanthocyanidin content and its mean degree of polymerization. Extracts with polysaccharides with higher protein contents presented a higher retention of volatile compounds, and DWRP extract had more positive effects on the overall aroma. Our novel results present the possibility of obtaining valuable polysaccharides from distilled washing residues of wine pomaces, which could promote its valorization as a by-product. This is the first time the potential use of this by-product has been described.
Collapse
Affiliation(s)
- Diego Canalejo
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Ctra. De Burgos Km 6, 26007 Logroño, Spain; (D.C.); (L.M.-L.); (B.A.)
| | - Leticia Martínez-Lapuente
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Ctra. De Burgos Km 6, 26007 Logroño, Spain; (D.C.); (L.M.-L.); (B.A.)
| | - Belén Ayestarán
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Ctra. De Burgos Km 6, 26007 Logroño, Spain; (D.C.); (L.M.-L.); (B.A.)
| | - Silvia Pérez-Magariño
- Instituto Tecnológico Agrario de Castilla y León, Consejería de Agricultura y Ganadería, Ctra. Burgos Km 119, 47071 Valladolid, Spain;
| | - Thierry Doco
- SPO, INRAE, Institut Agro, Univ Montpellier, 2 Place Pierre Viala, F-34060 Montpellier, France;
| | - Zenaida Guadalupe
- Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC), Ctra. De Burgos Km 6, 26007 Logroño, Spain; (D.C.); (L.M.-L.); (B.A.)
| |
Collapse
|
22
|
Pu Y, Chen L, He X, Cao J, Jiang W. Soluble polysaccharides decrease inhibitory activity of banana condensed tannins against porcine pancreatic lipase. Food Chem 2023; 418:136013. [PMID: 36989646 DOI: 10.1016/j.foodchem.2023.136013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
The inhibition of soluble polysaccharides (SPs) (arabic gum, dextran and pectin from citrus) on the binding between banana condensed tannins (BCTs) and pancreatic lipase (PL) was studied from variant aspects. Molecular docking simulations predicted that BCTs strongly bound SPs and PL through non-covalent interactions. The experimental results showed that SPs reduced the inhibition of BCTs on PL, and the IC50 value increased. However, the addition of SPs did not change the inhibitory type of BCTs on PL, which all were non-competitive inhibition. BCTs quenched PL fluorescence through static quenching mechanism and changed the secondary structure of PL. The addition of SPs alleviated the trending. The effect of SPs on the binding of BCTs-PL was mainly due to the strong non-covalent interaction between SPs and BCTs. This study emphasized that attention should be paid to the counteracting effects of polysaccharides and polyphenols in dietary intake to maximize their respective roles.
Collapse
|
23
|
Wei F, Wang J, Luo L, Tayyab Rashid M, Zeng L. The perception and influencing factors of astringency, and health-promoting effects associated with phytochemicals: A comprehensive review. Food Res Int 2023; 170:112994. [PMID: 37316067 DOI: 10.1016/j.foodres.2023.112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
Astringency as the complex sensory of drying or shrinking can be perceived from natural foods, including abundant phenolic compounds. Up to now, there have been two possible astringency perception mechanisms of phenolic compounds. The first possible mechanism involved chemosensors and mechanosensors and took salivary binding proteins as the premise. Although piecemeal reports about chemosensors, friction mechanosensor's perception mechanisms were absent. There might be another perception way because a part of astringent phenolic compounds also triggered astringency although they could not bind with salivary proteins, however, the specific mechanism was unclear. Structures caused the differences in astringency perception mechanisms and intensities. Except for structures, other influencing factors also changed astringency perception intensity and aimed to decrease it, which probably ignored the health-promoting effects of phenolic compounds. Therefore, we roundly summarized the chemosensor's perception processes of the first mechanism. Meanwhile, we speculated that friction mechanosensor's probably activated Piezo2 ion channel on cell membranes. Phenolic compounds directly binds with oral epithelial cells, activating Piezo2 ion channel probably the another astringency perception mechanism. Except for structure, the increase of pH values, ethanol concentrations, and viscosity not only lowered astringency perception but were beneficial to improve the bioaccessibility and bioavailability of astringent phenolic compounds, which contributed to stronger antioxidant, anti-inflammatory, antiaging and anticancer effects.
Collapse
Affiliation(s)
- Fang Wei
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Jie Wang
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Yongchuan, Chongqing 402160, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China; Tea Research Institute, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China.
| |
Collapse
|
24
|
Albuquerque W, Ghezellou P, Seidel L, Burkert J, Will F, Schweiggert R, Spengler B, Zorn H, Gand M. Mass Spectrometry-Based Proteomic Profiling of a Silvaner White Wine. Biomolecules 2023; 13:650. [PMID: 37189397 PMCID: PMC10136162 DOI: 10.3390/biom13040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
The comprehensive identification of the proteome content from a white wine (cv. Silvaner) is described here for the first time. The wine protein composition isolated from a representative wine sample (250 L) was identified via mass spectrometry (MS)-based proteomics following in-solution and in-gel digestion methods after being submitted to size exclusion chromatographic (SEC) fractionation to gain a comprehensive insight into proteins that survive the vinification processes. In total, we identified 154 characterized (with described functional information) or so far uncharacterized proteins, mainly from Vitis vinifera L. and Saccharomyces cerevisiae. With the complementarity of the two-step purification, the digestion techniques and the high-resolution (HR)-MS analyses provided a high-score identification of proteins from low to high abundance. These proteins can be valuable for future authentication of wines by tracing proteins derived from a specific cultivar or winemaking process. The proteomics approach presented herein may also be generally helpful to understand which proteins are important for the organoleptic properties and stability of wines.
Collapse
Affiliation(s)
- Wendell Albuquerque
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Leif Seidel
- Department of Beverage Research, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Johannes Burkert
- Institute for Viticulture and Oenology, Bavarian State Institute for Viticulture and Horticulture (LWG), An der Steige 15, 97209 Veitshöchheim, Germany
| | - Frank Will
- Department of Beverage Research, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Ralf Schweiggert
- Department of Beverage Research, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Martin Gand
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
25
|
Khongkliang P, Khemkhao M, Mahathanabodee S, O-Thong S, Kadier A, Phalakornkule C. Efficient removal of tannins from anaerobically-treated palm oil mill effluent using protein-tannin complexation in conjunction with electrocoagulation. CHEMOSPHERE 2023; 321:138086. [PMID: 36754310 DOI: 10.1016/j.chemosphere.2023.138086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/09/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Despite the significant removal of chemical oxygen demand (COD) by anaerobic digestion, anaerobically-treated palm oil mill effluent (POME) still contains tannins and other phenolic compounds, resulting in residual COD and a brownish color. In this study, we investigated the removal of tannins from anaerobically treated POME using protein-tannin complexation in conjunction with electrocoagulation. The amino acid composition of the protein, aqueous pH, and protein: tannin ratios were found to be important parameters affecting the tannin removal efficiency. Pig blood protein was superior to casein protein in removing tannins, possibly because it had aspartic acid as the major amino acid component. At an optimal condition with a pig blood protein: tannin ratio of 0.33 (w/w), a current density of 30 mA/cm2, pH 5, and an electrolysis time of 10 min, the removals of tannins, COD, and color were 93%, 96%, and 97%, respectively.
Collapse
Affiliation(s)
- Peerawat Khongkliang
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand; Research Center for Circular Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Maneerat Khemkhao
- Rattanakosin College for Sustainable Energy and Environment, Rajamangala University of Technology Rattanakosin, Nakhon Pathom, 73170, Thailand; Microbial Informatics and Industrial Product of Microbe Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Sithipong Mahathanabodee
- Department of Production Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Sompong O-Thong
- International College, Thaksin University, Songkhla, 90000, Thailand
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences (CAS), Urumqi, 830011, Xinjiang, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chantaraporn Phalakornkule
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand; Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand; Research Center for Circular Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.
| |
Collapse
|
26
|
Leng X, Li J, Miao W, Liu Y, Haider MS, Song M, Fang J, Li Q. Comparison of physicochemical characteristics, antioxidant and immunomodulatory activities of polysaccharides from wine grapes. Int J Biol Macromol 2023; 239:124164. [PMID: 37011744 DOI: 10.1016/j.ijbiomac.2023.124164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
In this study, an efficient ultrasonic-assisted extraction method was used for the extraction and optimization of four wine grape polysaccharides. A three-level, three-factor Box Behnken Design combined with the response surface approach was used to optimize the extraction conditions. Their physicochemical properties, molecular structure, antioxidant activity, immunomodulatory activity and hepatoprotective effects were examined and compared. These findings suggest that the four wine grape polysaccharides share similar basic structural features and monosaccharide composition. Furthermore, four wine grape polysaccharides exhibited antioxidant and immunomodulatory activities in a concentration-dependent manner. Moldova (MD) polysaccharide displayed better antioxidant activity and immunomodulatory ability. Furthermore, MD polysaccharide has a significant therapeutic effect on CCl4-induced rat liver injury by improving the antioxidant defense system and inhibiting oxidative stress, indicating that MD has a hepatoprotective effect. Taken together, the MD wine grape polysaccharide may have potential applications in prevention of liver disease in the functional food and pharmaceutical industries.
Collapse
|
27
|
Manjón E, Li S, Dueñas M, García-Estévez I, Escribano-Bailón MT. Effect of the addition of soluble polysaccharides from red and white grape skins on the polyphenolic composition and sensory properties of Tempranillo red wines. Food Chem 2023; 400:134110. [PMID: 36096051 DOI: 10.1016/j.foodchem.2022.134110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
Soluble polysaccharides from white (PSW) and red (PSR) grape skins were obtained to be evaluated as potential modulators of the unbalanced astringency of a Tempranillo red wine. The modulation of astringency was evaluated by a sensory panel and it seemed to be related to the changes in the polyphenolic profile. Isothermal Titration Calorimetry (ITC) studies, employed to characterize flavan-3-ol-polysaccharide interactions, showed that PSR decreased noticeably wine astringency causing a great flavan-3-ol loss (ca. 40 %), since they interacted more spontaneously with the flavan-3-ols (ca. ΔGtotal = -2.14 × 104 cal/mol) than PSW (ca. ΔGtotal = -1.32 × 104 cal/mol). The strength of these interactions seems to be related to the polysaccharide molecular size and to the presence of arabinogalactans in the structure. On the contrary, PSW showed no relevant effects on wine astringency. Furthermore, potential variations of color were also assessed and no deleterious effect was observed after the addition of any polysaccharide.
Collapse
Affiliation(s)
- Elvira Manjón
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Salamanca E37007, Spain
| | - Siyu Li
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Salamanca E37007, Spain; Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Montserrat Dueñas
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Salamanca E37007, Spain
| | - Ignacio García-Estévez
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Salamanca E37007, Spain.
| | | |
Collapse
|
28
|
Leng X, Miao W, Li J, Liu Y, Zhao W, Mu Q, Li Q. Physicochemical characteristics and biological activities of grape polysaccharides collected from different cultivars. Food Res Int 2023; 163:112161. [PMID: 36596110 DOI: 10.1016/j.foodres.2022.112161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
In this study, four wine grape polysaccharides were extracted and optimized by using an efficient ultrasound-assisted extraction. A three-level, three-factor Box Behnken Design (BBD) combining with response surface methodology (RSM) was employed to optimize the extraction conditions including ultrasonic power, ultrasonic time and liquid-to-solid ratio. Furthermore, their physicochemical structures, antioxidant and liver protective activity were investigated and compared. Results revealed that the functional groups and monosaccharide compositions of these grape polysaccharides collected from different varieties were similar. Nevertheless, their molecular weights, molar ratios of monosaccharide compositions and surface morphological features were different. And the antioxidant activities of these polysaccharides were screened by free radical scavenging test. 'Beichun' (BC) and 'Benni fuji' (BF) polysaccharides possessed better antioxidant function. Further, the in vivo evaluation indicated that the polysaccharides of BC and BF have a protective effect against myocardial I/R injury in mice by inhibiting myocardial necroptosis mediated by mitochondrial ROS generation. Therefore, BC and BF grapes have potential applications in the medical and food industries.
Collapse
Affiliation(s)
- Xiangpeng Leng
- Institute of Grape Science and Engineering, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), MARA, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenjun Miao
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jizhen Li
- Institute of Grape Science and Engineering, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), MARA, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuanxia Liu
- Institute of Grape Science and Engineering, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenwen Zhao
- School of Basic Medical Sciences, Qingdao University, 308 Ningxiafrr Road, Qingdao, Shandong 266021, China
| | - Qian Mu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250110, China
| | - Qiu Li
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
29
|
Isolation, Characterization, and Compositional Analysis of Polysaccharides from Pinot Noir Wines: An Exploratory Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238330. [PMID: 36500422 PMCID: PMC9738191 DOI: 10.3390/molecules27238330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
It has been reported that polysaccharides in wine can interact with tannins and other wine components and modify the sensory properties of the wine. Unfortunately, the contribution of polysaccharides to wine quality is poorly understood, mainly due to their complicated structure and varied composition. In addition, the composition and molecular structure of polysaccharides in different wines can vary greatly. In this study, the polysaccharides were isolated from pinot noir wine, then separated into high-molecular-weight (PNWP-H) and low-molecular-weight (PNWP-L) fractions using membrane-based ultrafiltration. Each polysaccharide fraction was further studied using size exclusion chromatography, UV-Vis, FT-IR, matrix-assisted laser desorption/ionization-high-resolution mass spectrometry, and gas chromatography-mass spectrometry (GC-MS). The results showed that PNWP-L and PNWP-H had different chemical properties and compositions. The FT-IR analysis showed that PNWPs were acidic polysaccharides with α- and β-type glycosidic linkages. PNWP-L and PNWP-H had different α- and β-type glycosidic linkage structures. FT-IR showed stronger antisymmetric and symmetric stretching vibrations of carboxylate anions of uronic acids in PNWP-L, suggesting more uronic acid in PNWP-L. The size exclusion chromatography results showed that over 72% of the PNWP-H fraction had molecular sizes from 25 kDa to 670 kDa. Only a small percentage of smaller molecular polysaccharides was found in the PNWP-H fraction. In comparison, all of the polysaccharides in the PNWP-L fraction were below 25 KDa, with a majority distributed approximately 6 kDa (95.1%). GC-MS sugar composition analysis showed that PNWP-L was mainly composed of galacturonic acid, rhamnose, galactose, and arabinose, while PNWP-H was mainly composed of mannose, arabinose, and galactose. The molecular size distribution and sugar composition analysis suggested that the PNWP-L primarily consisted of rhamnogalacturonans and polysaccharides rich in arabinose and galactose (PRAG). In comparison, PNWP-H were mostly mannoproteins and polysaccharides rich in arabinose and galactose (PRAG). Further research is needed to understand the impacts of these fractions on wine organoleptic properties.
Collapse
|
30
|
Zhai HY, Li SY, Zhao X, Lan YB, Zhang XK, Shi Y, Duan CQ. The compositional characteristics, influencing factors, effects on wine quality and relevant analytical methods of wine polysaccharides: a review. Food Chem 2022; 403:134467. [DOI: 10.1016/j.foodchem.2022.134467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
|
31
|
Fanzone M, Coronado I, Sari S, Catania A, Gil i Cortiella M, Assof M, Jofré V, Ubeda C, Peña-Neira A. Microwave-assisted maceration and stems addition in Bonarda grapes: Effects on wine chemical composition over two vintages. Food Res Int 2022; 156:111169. [DOI: 10.1016/j.foodres.2022.111169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/04/2022]
|
32
|
Use of Microwave Maceration in Red Winemaking: Effect on Fermentation and Chemical Composition of Red Wines. Molecules 2022; 27:molecules27093018. [PMID: 35566365 PMCID: PMC9099449 DOI: 10.3390/molecules27093018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to evaluate the effect of microwave treatment of crushed grapes on the yeast population of the must and on the development of alcoholic fermentation, as well as on the extraction of different compounds from the grapes such as polysaccharides and amino acids that can affect the organoleptic quality and stability of the wine. This study demonstrated for the first time the effect of the microwave treatment of grapes on native yeast species and their diversity, producing an increase in fermentation kinetics and a decrease in the lag phase. The microwave treatment produced a positive effect on the extraction of amino acids and polysaccharides from the grapes, resulting in significantly higher amounts of the main amino acids of the must and some major volatile compounds in the treated samples. The polysaccharides most affected by the microwave treatment were the PRAGs, the main polysaccharides liberated from grapes during the maceration.
Collapse
|
33
|
Xu N, Luo Z, Ren L. Construction of Unsaturated Collagen Microsphere System Based on Hydrogen/Coordination Bond and Application. ACS APPLIED BIO MATERIALS 2022; 5:2296-2306. [PMID: 35413186 DOI: 10.1021/acsabm.2c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this paper, unsaturated collagen microspheres (CMA-Cr/ST) were constructed from vinyl collagen (CMA, which is from leather solid waste) and chromium/synthetic tannins (Cr/ST) through hydrogen and coordination bonds and grafted on polyamide nonwoven fiber by thiol-ene click chemistry to improve the moisture absorption and permeability of nonwoven. The results showed that when the quality ratio of CMA to Cr/ST was 1:1, the magnetic stirring time was 20 min with 250 rpm at room temperature, the surface and particle size distribution of the obtained microspheres were smooth and relatively uniform, and the average particle size was 2-3 μm. When the concentrations of the microspheres and the initiators were 6 and 0.006 wt %, the irradiation time was 4 h and the grafting rate of CMA-Cr/ST on the surface of polyamide fibers would reach 31.3%. The moisture absorption and permeability of the obtained microsphere-modified polyamide nonwoven fiber (CMA-Cr/ST-S-PA) were increased. It was found that the collagen microspheres were firmly modified on the polyamide fibers by moisture and heat resistance, wash resistance, and solvent resistance studies.
Collapse
Affiliation(s)
- Na Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zijin Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Longfang Ren
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
34
|
Tomar M, Bhardwaj R, Verma R, Singh SP, Dahuja A, Krishnan V, Kansal R, Yadav VK, Praveen S, Sachdev A. Interactome of millet-based food matrices: A review. Food Chem 2022; 385:132636. [PMID: 35339804 DOI: 10.1016/j.foodchem.2022.132636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/28/2022]
Abstract
Millets are recently being recognized as emerging food ingredients with multifaceted applications. Whole grain flours made from millets, exhibit diverse chemical compositions, starch digestibility and physicochemical properties. A food matrix can be viewed as a section of food microstructure, commonly coinciding with a physical spatial domain that interacts or imparts specific functionalities to a particular food constituent. The complex millet-based food matrices can help individuals to attain nutritional benefits due to the intricate and unique digestive properties of these foods. This review helps to fundamentally understand the binary and ternary interactions of millet-based foods. Nutritional bioavailability and bioaccessibility are also discussed based on additive, synergistic, masking, the antagonistic or neutralizing effect of different food matrix components on each other and the surrounding medium. The molecular basis of these interactions and their effect on important functional attributes like starch retrogradation, gelling, pasting, water, and oil holding capacity is also discussed.
Collapse
Affiliation(s)
- Maharishi Tomar
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 284003, India; Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rakesh Bhardwaj
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi 110012, India.
| | - Reetu Verma
- Division of Crop Improvement, ICAR -Indian Grassland and Fodder Research Institute, Jhansi 284003, India
| | - Sumer Pal Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 284003, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Veda Krishnan
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rekha Kansal
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi 110012, India
| | - Vijay Kumar Yadav
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 284003, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Archana Sachdev
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
35
|
Cesprini E, Šket P, Causin V, Zanetti M, Tondi G. Development of Quebracho ( Schinopsis balansae) Tannin-Based Thermoset Resins. Polymers (Basel) 2021; 13:polym13244412. [PMID: 34960963 PMCID: PMC8706668 DOI: 10.3390/polym13244412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
One of the major challenges currently in the field of material science is finding natural alternatives to the high-performing plastics developed in the last century. Consumers trust synthetic products for their excellent properties, but they are becoming aware of their impact on the planet. One of the most attractive precursors for natural polymers is tannin extracts and in particular condensed tannins. Quebracho (Schinopsis balansae) extract is one of the few industrially available flavonoids and can be exploited as a building block for thermoset resins due to its phenol-like reactivity. The aim of this study was to systematically investigate different hardeners and evaluate the water resistance, thermal behavior, and chemical structure of the quebracho tannin-based polymers in order to understand their suitability as adhesives. It was observed that around 80% of the extract is resistant to leaching when 5% of formaldehyde or hexamine or 10% of glyoxal or furfural are added. Additionally, furfuryl alcohol guarantees high leaching resistance, but only at higher proportions (20%). The quebracho-based formulations showed specific thermal behavior during hardening and higher degradation resistance than the extract. Finally, these polymers undergo similar chemistry to those of mimosa, with exclusive reactivity of the A-ring of the flavonoid.
Collapse
Affiliation(s)
- Emanuele Cesprini
- Land Environment Agriculture & Forestry Department, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (E.C.); (M.Z.)
| | - Primož Šket
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia;
| | - Valerio Causin
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy;
| | - Michela Zanetti
- Land Environment Agriculture & Forestry Department, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (E.C.); (M.Z.)
| | - Gianluca Tondi
- Land Environment Agriculture & Forestry Department, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (E.C.); (M.Z.)
- Correspondence: ; Tel.: +39-049-8272776
| |
Collapse
|