1
|
Alijani S, Hahn A, Harris WS, Schuchardt JP. Bioavailability of EPA and DHA in humans - A comprehensive review. Prog Lipid Res 2025; 97:101318. [PMID: 39736417 DOI: 10.1016/j.plipres.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
The bioavailability of long-chain omega-3 fatty acids is a critical yet often overlooked factor influencing their efficacy. This review evaluates the bioavailability of EPA/DHA from acute (single-dose) and chronic human studies, focusing on (a) chemical forms such as triacylglycerols (TAG, natural and re-esterified, rTAG), non-esterified fatty acids (NEFA), and phospholipids (PL) from sources like fish, krill, and microalgae, and (b) delivery methods like microencapsulation and emulsification. Bioavailability for isolated chemically forms followed the order: NEFA > PL > rTAG > unmodified TAG > ethyl esters (EE). However, varying oil compositions complicate conclusions about source-specific bioavailability. Significant differences observed in acute bioavailability studies (e.g., faster absorption) often did not translate into long-term impacts in chronic supplementation studies. This raises questions about the clinical relevance of acute findings, especially given that n-3 PUFA supplements are typically consumed long-term. Methodological limitations, such as inappropriate biomarkers, short sampling windows, and inadequate product characterization, hinder the reliability and comparability of studies. The review emphasizes the need for standardized protocols and robust chronic studies to clarify the clinical implications of bioavailability differences. Future research should prioritize biomarkers that reflect sustained n-3 PUFA status to better understand the health benefits of various EPA and DHA formulations.
Collapse
Affiliation(s)
- Sepideh Alijani
- Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany; Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Andreas Hahn
- Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - William S Harris
- The Fatty Acid Research Institute, 5009 W. 12th St. Ste 5, Sioux Falls, SD 57106, United States; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, United States
| | - Jan Philipp Schuchardt
- Institute of Food Science and Human Nutrition, Foundation Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany; The Fatty Acid Research Institute, 5009 W. 12th St. Ste 5, Sioux Falls, SD 57106, United States.
| |
Collapse
|
2
|
Jiang Q, Sun Y, Zhang H. O1/W/O2 double emulsion gels based on nanoemulsions and Pickering particles for co-encapsulating quercetin and cyanidin: A functional fat substitute. Food Res Int 2024; 184:114269. [PMID: 38609247 DOI: 10.1016/j.foodres.2024.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
An O1/W/O2 double emulsion gel, as a functional fat substitute and based on nanoemulsions and hydrophobic Pickering particles, is prepared by two-step emulsification to co-encapsulate hydrophilic cyanidin and hydrophobic quercetin. Nanoemulsions loading quercetin are fabricated by Tween-80 and combining high-speed and high-pressure emulsification. Phytosterol nanoparticles stabilize the W-O2 interface of the secondary emulsion to load cyanidin in the W phase. The concentration of Tween-80 is optimized as 0.3% by the droplet size and viscosity of nanoemulsions. The structural stability of double emulsion gels will be weakened along with the increase of nanoemulsions, showing lower modulus and encapsulation efficiency (EE) and bigger droplets. In double emulsion gels, the EE of quercetin and cyanidin reaches 93% and 85.6%, respectively. Analysis of molecular interaction indicates that Tween-80 would decrease the in-situ hydrophobicity of phytosterol nanoparticles by hydrogen bonding adsorption, thereby weakening the emulsification. The pH-chromic 3D printing of double emulsion gels is designed according to the pH sensitivity of cyanidin. Texture profile analysis is performed to test the textural properties of 3D-printed objects. The simulated digestion is conducted on double emulsion gels. The double emulsion gel with fewer nanoemulsions is beneficial for protecting quercetin and improving the delivery due to the higher structural stability, while that with more nanoemulsions is conducive to the digestion of cyanidin and camellia oil due to weakened semi-solid properties. This double emulsion gel further simulates fat tissues by co-encapsulating hydrophilic and hydrophobic substances, promoting the application of fat substitutes in the food industry.
Collapse
Affiliation(s)
- Qinbo Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yifeng Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Couëdelo L, Lennon S, Abrous H, Chamekh I, Bouju C, Griffon H, Vaysse C, Larvol L, Breton G. In Vivo Absorption and Lymphatic Bioavailability of Docosahexaenoic Acid from Microalgal Oil According to Its Physical and Chemical Form of Vectorization. Nutrients 2024; 16:1014. [PMID: 38613047 PMCID: PMC11013230 DOI: 10.3390/nu16071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Docosahexaenoic acid (DHA) is an essential fatty acid (FA) with proven pro-health effects, but improving its bioavailability is becoming a public health issue. The bioavailability of DHA from microalgal (A) oil has been comprehensively assessed, particularly in terms of the molecular structuring capabilities offered by A-oil. Here, we explored the impact of five DHA-rich formulas differing in terms of (i) molecular structure, i.e., ethyl ester (EE), monoglyceride (MG), or triglyceride (TG), and (ii) supramolecular form, i.e., emulsified TG or TG + phospholipids (PL blend) on the lymphatic kinetics of DHA absorption and the lipid characteristics of the resulting lipoproteins. We demonstrated in rats that the conventional A-DHA TG structure afforded more effective DHA absorption than the EE structure (+23%). Furthermore, the A-DHA MG and A-DHA emulsions were the better DHA vectors (AUC: 89% and +42%, respectively) due to improved lipolysis. The A-DHA MG and A-DHA emulsion presented the richest DHA content in TG (+40%) and PL (+50%) of lymphatic chylomicrons, which could affect the metabolic fate of DHA. We concluded that structuring A-DHA in TG or EE form would better serve for tissue and hepatic metabolism whereas A-DHA in MG and emulsion form could better target nerve tissues.
Collapse
Affiliation(s)
- Leslie Couëdelo
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | | | - Hélène Abrous
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Ikram Chamekh
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Corentin Bouju
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Hugues Griffon
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Carole Vaysse
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | | | | |
Collapse
|
4
|
Wang Y, Rehman A, Jafari SM, Shehzad Q, Yu L, Su Y, Wu G, Jin Q, Zhang H, Suleria HAR, Wang X. Micro/nano-encapsulation of marine dietary oils: A review on biomacromolecule-based delivery systems and their role in preventing cardiovascular diseases. Int J Biol Macromol 2024; 261:129820. [PMID: 38286385 DOI: 10.1016/j.ijbiomac.2024.129820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Marine-based dietary oils (MDOs), which are naturally obtained from different sources, have been scientifically recommended as potent functional bioactives owing to their therapeutic biological activities; however, they have exhibited plenty of health benefits. Though they are very sensitive to light, temperature, moisture, and oxygen, as well as being chemically unstable and merely oxidized, this may limit their utilization in food and pharmaceutical products. Miro- and nanoencapsulation techniques are considered to be the most promising tactics for enhancing the original characteristics, physiochemical properties, and therapeutic effects of entrapped MDOs. This review focuses on the biomacromolecule-stabilized micro/nanocarriers encompassing a wide range of MDOs. The novel-equipped polysaccharides and protein-based micro/nanocarriers cover microemulsions, microcapsules, nanoemulsions, and nanoliposomes, which have been proven to be encouraging candidates for the entrapment of diverse kinds of MDOs. In addition, the current state-of-the-art loading of various MDOs through polysaccharide and protein-based micro/nanocarriers has been comprehensively discussed and tabulated in detail. Biomacromolecule-stabilized nanocarriers, particularly nanoemulsions and nanoliposomes, are addressed as propitious nanocargos for protection of MDOs in response to thought-provoking features as well as delivering the successful, meticulous release to the desired sites. Gastrointestinal fate (GF) of biopolymeric micro/nanocarriers is fundamentally based on their centrifugation, dimension, interfacial, and physical properties. The external surface of epithelial cells in the lumen is the main site where the absorption of lipid-based nanoparticles takes place. MDO-loaded micro- and nanocarriers with biological origins or structural modifications have shown some novel applications that could be used as future therapies for cardiovascular disorders, thanks to today's cutting-edge medical technology. In the future, further investigations are highly needed to open new horizons regarding the application of polysaccharide and protein-based micro/nanocarriers in food and beverage products with the possibility of commercialization in the near future for industrial use.
Collapse
Affiliation(s)
- Yongjin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Abdur Rehman
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Qayyum Shehzad
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Le Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yijia Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Fu JY, Meganathan P, Gunasegaran N, Tan DMY. Effect of nano-delivery systems on the bioavailability and tissue biodistribution of vitamin E tocotrienols. Food Res Int 2023; 171:113048. [PMID: 37330852 DOI: 10.1016/j.foodres.2023.113048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
Vitamin E is one of the most important essential vitamins to support the regulation of oxidative stress in human body. Tocotrienols are part of the vitamin E family. The potentials of tocotrienols as nutraceutical ingredient are largely understated due to low oral bioavailability, which is a common problem associated with fat-soluble bioactive compounds. Nanoencapsulation technology offers innovative solutions to enhance the delivery mechanisms of these compounds. In this study, the effect of nanoencapsulation on the oral bioavailability and tissue distribution of tocotrienols were investigated using two types of formulations, i.e. nanovesicles (NV-T3) and solid lipid nanoparticles (NP-T3). At least 5-fold increment in maximum plasma concentrations, evident with dual-peak pharmacokinetic profiles, were observed after oral administration of nano-encapsulated tocotrienols. Plasma tocotrienol composition showed a shift from α-tocotrienol dominant in control group (Control-T3) to γ-tocotrienol dominant after nanoencapsulation. Tissue distribution of tocotrienols was found to be strongly influenced by the type of nanoformulation. Both nanovesicles (NV-T3) and nanoparticles (NP-T3) showed elevated accumulation in the kidneys and liver (5-fold) compared to control group while selectivity for α-tocotrienol was evident for NP-T3. In brain and liver of rats given NP-T3, α-tocotrienol emerged as the dominant congener (>80%). Acute oral administration of nanoencapsulated tocotrienols did not show signs of toxicity. The study concluded enhanced bioavailability and selective tissue accumulation of tocotrienol congeners when delivered via nanoencapsulation.
Collapse
Affiliation(s)
- Ju-Yen Fu
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - Puvaneswari Meganathan
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nisanthei Gunasegaran
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Doryn Meam Yee Tan
- Product Development and Advisory Department, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia; School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| |
Collapse
|
6
|
Řepka D, Kurillová A, Murtaja Y, Lapčík L. Application of Physical-Chemical Approaches for Encapsulation of Active Substances in Pharmaceutical and Food Industries. Foods 2023; 12:foods12112189. [PMID: 37297434 DOI: 10.3390/foods12112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Encapsulation is a valuable method used to protect active substances and enhance their physico-chemical properties. It can also be used as protection from unpleasant scents and flavors or adverse environmental conditions. METHODS In this comprehensive review, we highlight the methods commonly utilized in the food and pharmaceutical industries, along with recent applications of these methods. RESULTS Through an analysis of numerous articles published in the last decade, we summarize the key methods and physico-chemical properties that are frequently considered with encapsulation techniques. CONCLUSION Encapsulation has demonstrated effectiveness and versatility in multiple industries, such as food, nutraceutical, and pharmaceuticals. Moreover, the selection of appropriate encapsulation methods is critical for the effective encapsulation of specific active compounds. Therefore, constant efforts are being made to develop novel encapsulation methods and coating materials for better encapsulation efficiency and to improve properties for specific use.
Collapse
Affiliation(s)
- David Řepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Antónia Kurillová
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Yousef Murtaja
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Lubomír Lapčík
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
- Department of Foodstuff Technology, Faculty of Technology, Tomas Bata University in Zlin, Nam. T.G. Masaryka 275, 762 72 Zlin, Czech Republic
| |
Collapse
|
7
|
Lin Y, McClements DJ, Xiao J, Cao Y, Liu X. In Vitro-In Vivo Study of the Impact of Excipient Emulsions on the Bioavailability and Antioxidant Activity of Flavonoids: Influence of the Carrier Oil Type. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1488-1498. [PMID: 36580279 DOI: 10.1021/acs.jafc.2c05836] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The influence of the carrier oil type on the bioavailability and bioactivity of flavonoids (quercetin, kaempferol, and apigenin) was examined using in vitro digestion, in situ intestinal perfusion, and pharmacokinetic studies. Here, medium-chain triglycerides (MCTs), long-chain triglycerides (LCTs), or MCT/LCT mixtures (1:1, w/w) served as the oil phase of excipient emulsions. Overall, the bioavailability and antioxidant activity of flavonoids increased when they were coingested with excipient emulsions. The in vitro bioaccessibility of flavonoids was affected by the carrier oil: LCT (17.9-22.8%) > MCT/LCT (12.1-13.7%) > MCT (9.2-12.6%). These differences were mainly attributed to the fact that the mixed micelles formed after the digestion of LCTs had larger hydrophobic domains to solubilize more flavonoids. However, in vivo pharmacokinetic experiments showed that the flavonoid concentrations in rat serum were comparable for all carrier oils (p > 0.05). Our results assist in formulating excipient emulsions to enhance the efficacy of flavonoids.
Collapse
Affiliation(s)
- Yanping Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| |
Collapse
|
8
|
Machado M, Sousa S, Morais P, Miranda A, Rodriguez-Alcalá LM, Gomes AM, Pintado M. Novel avocado oil-functionalized yogurt with anti-obesity potential: Technological and nutraceutical perspectives. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Kim YM, Jang GH, Seok CH, Kim BH, Bae JW, Kim BH, Yoon MS. A self-emulsifying omega-3 fatty acids delivery system for enhanced gastro-intestinal absorption in rats. Food Sci Biotechnol 2022; 31:1631-1638. [PMID: 36312998 PMCID: PMC9596634 DOI: 10.1007/s10068-022-01151-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Omega-3 fatty acids have many health benefits as they help to prevent and treat coronary artery disease, hypertension, diabetes mellitus, arthritis, and autoimmune disorders. Omega-3 fatty acids miscible in lecithin were found to spontaneously form microemulsions in water. The particle sizes of emulsions ranged from 300 to 800 nm and their morphologies were observed by optical microscopy. In vitro testing showed that the amounts of omega-3 fatty acids released by self-emulsifying delivery (SED) formulations containing lecithin, were higher than that released by a commercial formulation without lecithin. The Cmax values of docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) were approximately 1.38-1.40-fold for the optimized SED formulation than for the control group (P < 0.01). Similarly, the mean AUC0 - 48 values of DHA or EPA in the SED group were 1.27-1.29-fold higher than in the control group (P < 0.05). Phospholipids and lecithin were found to have considerable potentials as bioavailability enhancing excipients for SED systems.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Binotec Co., Ltd, 155 Deulan-ro, Suseong-gu, 42151 Daegu, Korea
| | - Gi-Hyun Jang
- Binotec Co., Ltd, 155 Deulan-ro, Suseong-gu, 42151 Daegu, Korea
| | - Chang-Hwan Seok
- Binotec Co., Ltd, 155 Deulan-ro, Suseong-gu, 42151 Daegu, Korea
| | - Bo Hyeon Kim
- Department of Pharmaceutical Engineering, Hoseo University, 31499 Asan, Chungnam, Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, 42601 Daegu, Korea
| | - Bae-Hwan Kim
- Department of Public Health, Keimyung University, 42601 Daegu, Korea
| | - Myeong Sik Yoon
- Department of Pharmaceutical Engineering, Hoseo University, 31499 Asan, Chungnam, Korea
- The Research Institute for Basic Sciences, Hoseo University, Asan, Chungnam, Korea
| |
Collapse
|
10
|
Han J, Jiang J, Wang Q, Li P, Zhu B, Gu Q. Current Research on the Extraction, Functional Properties, Interaction with Polyphenols, and Application Evaluation in Delivery Systems of Aquatic-Based Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11844-11859. [PMID: 36112349 DOI: 10.1021/acs.jafc.2c04325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Globally, aquatic processing industries pay great attention to the production of aquatic proteins for the fulfillment of the nutritive requirements of human beings. Aquatic protein can replace terrestrial animal protein due to its high protein content, complete amino acids, unique flavor, high quality and nutritional value, and requirements of religious preferences. Due to the superior functional properties, an aquatic protein based delivery system has been proposed as a novel candidate for improving the absorption and bioavailability of bioactive substances, which might have potential applications in the food industry. This review outlines the extraction techniques for and functional properties of aquatic proteins, summarizes the potential modification technologies for interaction with polyphenols, and focuses on the application of aquatic-derived protein in delivery systems as well as their interaction with the gastrointestinal tract (GIT). The extraction techniques for aquatic proteins include water, salt, alkali/acid, enzyme, organic solvent, and ultrasound-assisted extraction. The quality and functionality of the aquatic proteins could be improved after modification with polyphenols via covalent or noncovalent interactions. Furthermore, some aquatic protein based delivery systems, such as emulsions, gels, films, and microcapsules, have been reported to enhance the absorption and bioavailability of bioactive substances by in vitro GIT, cell, and in vivo animal models. By promoting comprehensive understanding, this review is expected to provide a real-time reference for developing functional foods and potential food delivery systems based on aquatic-derived proteins.
Collapse
Affiliation(s)
- Jiarun Han
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jialan Jiang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ping Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Beiwei Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qing Gu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
11
|
Chen Y, Sun Y, Ding Y, Ding Y, Liu S, Zhou X, Wu H, Xiao J, Lu B. Recent progress in fish oil-based emulsions by various food-grade stabilizers: Fabrication strategy, interfacial stability mechanism and potential application. Crit Rev Food Sci Nutr 2022; 64:1677-1700. [PMID: 36062818 DOI: 10.1080/10408398.2022.2118658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fish oil, rich in a variety of long-chain ω-3 PUFAs, is widely used in fortified foods due to its broad-spectrum health benefits. However, its undesired characteristics include oxidation sensitivity, poor water solubility, and fishy off-flavor greatly hinder its exploitation in food field. Over the past two decades, constructing fish oil emulsions to encapsulate ω-3 PUFAs for improving their physicochemical and functional properties has undergone great progress. This review mainly focuses on understanding the fabrication strategies, stabilization mechanism, and potential applications of fish oil emulsions, including fish oil microemulsions, nanoemulsions, double emulsions, Pickering emulsions and emulsion gels. Furthermore, the role of oil-water interfacial stabilizers in the fish oil emulsions stability will be discussed with a highlight on food-grade single emulsifiers and natural complex systems for achieving this purpose. Additionally, its roles and applications in food industry and nutrition field are delineated. Finally, possible innovative food trends and applications are highlighted, such as novel fish oil-based delivery systems construction (e.g., Janus emulsions and nutraceutical co-delivery systems), exploring digestion and absorption mechanisms and enhancing functional evaluation (e.g., nutritional supplement enhancer, and novel fortified/functional foods). This review provides a reference for the application of fish oil-based emulsion systems in future precision diet intervention implementations.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Yi Sun
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huawei Wu
- Ningbo Today Food Co Ltd, Ningbo, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Wang J, Ossemond J, Le Gouar Y, Boissel F, Dupont D, Pédrono F. Encapsulation of Docosahexaenoic Acid Oil Substantially Improves the Oxylipin Profile of Rat Tissues. Front Nutr 2022; 8:812119. [PMID: 35118110 PMCID: PMC8805515 DOI: 10.3389/fnut.2021.812119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a major n-3 polyunsaturated fatty acid (PUFA) particularly involved in cognitive and cardiovascular functions. Due to the high unsaturation index, its dietary intake form has been considered to improve oxidation status and to favor bioaccessibility and bioavailability as well. This study aimed at investigating the effect of DHA encapsulated with natural whey protein. DHA was dietary provided as triacylglycerols to achieve 2.3% over total fatty acids. It was daily supplied to weanling rats for four weeks in omelet as food matrix, consecutively to a 6-hour fasting. First, when DHA oil was encapsulated, consumption of chow diet was enhanced leading to promote animal growth. Second, the brain exhibited a high accretion of 22.8% DHA, which was not improved by dietary supplementation of DHA. Encapsulation of DHA oil did not greatly affect the fatty acid proportions in tissues, but remarkably modified the profile of oxidized metabolites of fatty acids in plasma, heart, and even brain. Specific oxylipins derived from DHA were upgraded, such as Protectin Dx in heart and 14-HDoHE in brain, whereas those generated from n-6 PUFAs were mainly mitigated. This effect did not result from oxylipins measured in DHA oil since DHA and EPA derivatives were undetected after food processing. Collectively, these data suggested that dietary encapsulation of DHA oil triggered a more efficient absorption of DHA, the metabolism of which was enhanced more than its own accretion in our experimental conditions. Incorporating DHA oil in functional food may finally improve the global health status by generating precursors of protectins and maresins.
Collapse
Affiliation(s)
- Jun Wang
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Jordane Ossemond
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yann Le Gouar
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Françoise Boissel
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Didier Dupont
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Frédérique Pédrono
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
- *Correspondence: Frédérique Pédrono
| |
Collapse
|
14
|
Jeon SW, Jin HS, Park YJ. Formation of Self-Assembled Liquid Crystalline Nanoparticles and Absorption Enhancement of Ω-3s by Phospholipids and Oleic Acids. Pharmaceutics 2021; 14:68. [PMID: 35056964 PMCID: PMC8781607 DOI: 10.3390/pharmaceutics14010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to optimize and evaluate self-assembled liquid crystalline nanoparticles (SALCs) prepared from phospholipids and oleic acid for enhancing the absorption of Ω-3s. We explored the structure and optimal formulation of SALCs, which are composed of Ω-3 ethyl ester (Ω-3 EE), phospholipids, and oleic acid, using a ternary diagram and evaluated the improvement in Ω-3 dissolution, permeation, and oral bioavailability. The in vitro dissolution and pharmacokinetics of Ω-3 SALCs were compared with those of Omacor soft capsules (as the reference). The shape of the liquid crystal was determined according to the composition of phospholipids, oleic acids, and Ω-3s and was found to be in cubic, lamellar, and hexagonal forms. The dissolution rates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) obtained from Ω-3 SALCs were 1.7 to 2.3-fold higher than those of the Omacor soft capsules. Furthermore, a pharmacokinetic study in male beagle dogs revealed that Ω-3 SALCs increased the oral bioavailability of Ω-3 EE by 2.5-fold for EPA and 3.1-fold for DHA compared with the reference. We found an optimal formulation that spontaneously forms liquid crystal-based nanoparticles, improving the bioavailability of EPA and DHA, not found in the existing literature. Our findings offer insight into the impact of nanoparticle phase on the oral delivery of oil-soluble drugs and provide a novel Ω-3 EE formulation that improves the bioavailability of EPA and DHA.
Collapse
Affiliation(s)
- Sang-Won Jeon
- College of Pharmacy, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon-si 16499, Korea;
- Research Center, IMDpharm Inc., 17 Daehak 4-ro, Yeongtong-gu, Suwon-si 16226, Korea;
| | - Han-Sol Jin
- Research Center, IMDpharm Inc., 17 Daehak 4-ro, Yeongtong-gu, Suwon-si 16226, Korea;
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon-si 16499, Korea;
- Research Center, IMDpharm Inc., 17 Daehak 4-ro, Yeongtong-gu, Suwon-si 16226, Korea;
| |
Collapse
|
15
|
Rahimi P, Hosseini E, Rousta E, Bostar H. Digestibility and stability of ultrasound-treated fish oil emulsions prepared by water-soluble bitter almond gum glycated with caseinate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Li G, Zhang Z, Liu H, Hu L. Nanoemulsion-based delivery approaches for nutraceuticals: fabrication, application, characterization, biological fate, potential toxicity and future trends. Food Funct 2021; 12:1933-1953. [PMID: 33596279 DOI: 10.1039/d0fo02686g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the modern food industry, people are paying more and more attention to the use of edible nanoemulsions to encapsulate, protect and deliver lipophilic functional ingredients, such as volatile additives, polyphenols, aromas, pigments, proteins, vitamins, oil-soluble flavors, preservatives, etc., which are the current global needs. Nanoemulsions are constructed with droplets of nano range size and they offer many potential advantages over conventional emulsions including the delivery of both hydrophilic and hydrophobic compounds, higher stability, better antibacterial properties, good taste experience, higher affinity, longer shelf-life and improvement of the bioavailability of components. Moreover, they are highly capable of improving the wettability and/or solubility of poorly water-soluble compounds, which may result in better pharmacokinetic and pharmacodynamic properties of nutraceutical compounds. On the other hand, oral nanoemulsions also have certain risks, such as their ability to change the biological fate of biologically active ingredients in the gastrointestinal tract and the potential toxicity of certain ingredients used in their production. This review article summarizes the manufacturing, application, characterization, biological fate, potential toxicity, and future challenges and trends of nanoemulsions, and focuses on nanoemulsion-based nutraceutical delivery approaches suitable for the food industry.
Collapse
Affiliation(s)
- Guotao Li
- School of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071000, China. and Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Zhengyu Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071000, China. and Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Haofan Liu
- College of Quality and Technical Supervision, Hebei University, Baoding, China and Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Liandong Hu
- School of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071000, China. and College of Quality and Technical Supervision, Hebei University, Baoding, China and Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
17
|
McClements DJ, Öztürk B. Utilization of Nanotechnology to Improve the Handling, Storage and Biocompatibility of Bioactive Lipids in Food Applications. Foods 2021; 10:foods10020365. [PMID: 33567622 PMCID: PMC7915003 DOI: 10.3390/foods10020365] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Bioactive lipids, such as fat-soluble vitamins, omega-3 fatty acids, conjugated linoleic acids, carotenoids and phytosterols play an important role in boosting human health and wellbeing. These lipophilic substances cannot be synthesized within the human body, and so people must include them in their diet. There is increasing interest in incorporating these bioactive lipids into functional foods designed to produce certain health benefits, such as anti-inflammatory, antioxidant, anticancer and cholesterol-lowering properties. However, many of these lipids have poor compatibility with food matrices and low bioavailability because of their extremely low water solubility. Moreover, they may also chemically degrade during food storage or inside the human gut because they are exposed to certain stressors, such as high temperatures, oxygen, light, moisture, pH, and digestive/metabolic enzymes, which again reduces their bioavailability. Nanotechnology is a promising technology that can be used to overcome many of these limitations. The aim of this review is to highlight different kinds of nanoscale delivery systems that have been designed to encapsulate and protect bioactive lipids, thereby facilitating their handling, stability, food matrix compatibility, and bioavailability. These systems include nanoemulsions, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanoliposomes, nanogels, and nano-particle stabilized Pickering emulsions.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence:
| | - Bengü Öztürk
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey;
| |
Collapse
|
18
|
Sharma S, Loach N, Gupta S, Mohan L. Phyto-nanoemulsion: An emerging nano-insecticidal formulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Santos DS, Morais JAV, Vanderlei ÍAC, Santos AS, Azevedo RB, Muehlmann LA, Júnior ORP, Mortari MR, da Silva JR, da Silva SW, Longo JPF. Oral delivery of fish oil in oil-in-water nanoemulsion: development, colloidal stability and modulatory effect on in vivo inflammatory induction in mice. Biomed Pharmacother 2020; 133:110980. [PMID: 33249282 DOI: 10.1016/j.biopha.2020.110980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022] Open
Abstract
To improve the oral absorption of fish oil and test its anti-inflammatory effect, a fish oil nanoemulsion was developed using cis-4,7,10,13,16,19-docosahexaenoic fatty acid as a biomarker for oral administration. The colloidal stability tests of the fish oil nanoemulsion showed an average size of 155.44 nm ± 6.46 (4 °C); 163.04 nm ± 9.97 (25 °C) and polydispersity index 0.22 ± 0.02 (4 °C), 0.21 ± 0.02 (25 °C), indicating systems with low polydispersity and stable droplets. The fish oil nanoemulsion did not alter the cell viability of the RAW 264.7 macrophages and, at a concentration of 0.024 mg/mL, was kinetically incorporated into the cells after 18 h of contact. The nanoemulsion was maintained in the gastrointestinal region for a significantly shorter period of time (p ≤ 0.05) compared to the intake of fish oil in free form. Inflammatory tests demonstrated that nanoemulsion and fish oil showed less (p ≤ 0.05) neutrophil infiltration after 24h of sepsis induction and there was a significant reduction (p ≤ 0.05) in the volume of paw edema in female adult Balb/c mice who received the nanoemulsion diet compared to the other experimental groups (control, formalin, fish oil and sunflower oil). These results indicate that the fish oil nanoemulsion was significantly effective in the dietary conditions tested here, presenting satisfactory responses in the modulation of inflammatory disorders, demonstrating interesting and beneficial nutraceutical effects.
Collapse
Affiliation(s)
- Débora S Santos
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasilia, Brasília, 70910-900, Brazil
| | - José Athayde V Morais
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasilia, Brasília, 70910-900, Brazil
| | - Ísis A C Vanderlei
- Neuropharmacology Laboratory, Physiological Sciences Department, Institute of Biological Science, University of Brasilia, Brasília, 70910-900, Brazil
| | - Alexandre S Santos
- Optical Spectroscopy Laboratory, Institute of Physics, University of Brasilia, Brasília, 70910-900, Brazil
| | - Ricardo B Azevedo
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasilia, Brasília, 70910-900, Brazil
| | - Luís A Muehlmann
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasilia, Brasília, 70910-900, Brazil
| | - Osmindo R P Júnior
- Toxinology Laboratory, Physiological Sciences Department, Institute of Biological Science, University of Brasilia, Brasília, 70910-900, Brazil
| | - Márcia R Mortari
- Neuropharmacology Laboratory, Physiological Sciences Department, Institute of Biological Science, University of Brasilia, Brasília, 70910-900, Brazil
| | - Jaqueline R da Silva
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasilia, Brasília, 70910-900, Brazil
| | - Sebastião W da Silva
- Optical Spectroscopy Laboratory, Institute of Physics, University of Brasilia, Brasília, 70910-900, Brazil
| | - João P F Longo
- Nanobiotechnology Laboratory, Genetics & Morphology Department, Institute of Biological Science, University of Brasilia, Brasília, 70910-900, Brazil.
| |
Collapse
|
20
|
Singh H, Thakur S, Sahajpal NS, Singh H, Singh A, Sohal HS, Jain SK. Recent Advances in the Novel Formulation of Docosahexaenoic Acid for Effective Delivery, Associated Challenges and Its Clinical Importance. Curr Drug Deliv 2020; 17:483-504. [DOI: 10.2174/1567201817666200512103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/03/2020] [Accepted: 02/02/2020] [Indexed: 11/22/2022]
Abstract
Docosahexaenoic Acid (DHA) is an essential polyunsaturated omega-3 fatty acid, and a fundamental structural component of the phospholipid membranes, especially of neural and retinal cells. DHA is found to be critical for the normal development and functioning of neurons and synaptogenesis in the brain, and is required during pre- and post-natal stages of life. DHA has also been observed to exhibit neuroprotective, cardioprotective, and anti-inflammatory properties. However, geographical dietary variations and poor economic conditions lead to insufficient DHA levels resulting in various health deficits like improper brain development, cognitive disorders, and other clinical complications. Thus, to prevent its deficiency-induced derangements, several authorities recommend DHA as a supplement during pregnancy, infancy, and throughout adulthood. In past decades, the soft gelatin capsule was only feasible resolute of DHA, but due to their limitations and invention of new technologies; it led to the development of new dosage forms with improved physicochemical characteristics of DHA. This article will discuss in detail about the role of DHA in brain development, microalgae oil as an emerging source of DHA, clinical- and pharmacological-activities of DHA, issues related to DHA oil, current formulation of DHA along with their application, limitations, and strategies used for improvement and future prospectives.
Collapse
Affiliation(s)
- Harmanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Harjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Harminder Singh Sohal
- Department of Orthopaedics, Government Medical College, Amritsar 143001, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| |
Collapse
|
21
|
Das AK, Nanda PK, Bandyopadhyay S, Banerjee R, Biswas S, McClements DJ. Application of nanoemulsion-based approaches for improving the quality and safety of muscle foods: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2677-2700. [PMID: 33336977 DOI: 10.1111/1541-4337.12604] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Recently, there has been growing interest in implementing innovative nanoscience-based technologies to improve the health, safety, and quality of food products. A major thrust in this area has been to use nanoemulsions because they can easily be formulated with existing food ingredients and technologies. In particular, oil-in-water nanoemulsions, which consist of small oil droplets (<200 nm) dispersed in water, are being utilized as delivery systems for various hydrophobic substances in foods, including nutrients, nutraceuticals, antioxidants, antimicrobials, colors, and flavors. In this article, we focus on the application of nanoemulsion-based delivery systems for improving the quality, safety, nutritional profile, and sensory attributes of muscle foods, such as meat and fish. The article also critically reviews the formulation and fabrication of food-grade nanoemulsions, their potential benefits and limitations in muscle food systems.
Collapse
Affiliation(s)
- Arun K Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Samiran Bandyopadhyay
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Rituparna Banerjee
- Department of Livestock Products Technology, West Bengal University of Animal & Fishery Sciences, 37 & 68 K B Sarani, Kolkata, West Bengal, 700 037, India
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal & Fishery Sciences, 37 & 68 K B Sarani, Kolkata, West Bengal, 700 037, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts, MA 01003, USA
| |
Collapse
|
22
|
Nouri Z, Hajialyani M, Izadi Z, Bahramsoltani R, Farzaei MH, Abdollahi M. Nanophytomedicines for the Prevention of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front Bioeng Biotechnol 2020; 8:425. [PMID: 32478050 PMCID: PMC7240035 DOI: 10.3389/fbioe.2020.00425] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome includes a series of metabolic abnormalities that leads to diabetes mellitus and cardiovascular diseases. Plant extracts, due to their unique advantages like anti-inflammatory, antioxidant, and insulin sensitizing properties, are interesting therapeutic options to manage MetS; however, the poor solubility and low bioavailability of lipophilic bioactive components in the herbal extracts are two critical challenges. Nano-scale delivery systems are suitable to improve delivery of herbal extracts. This review, for the first time, focuses on nanoformulations of herbal extracts in MetS and related complications. Included studies showed that several forms of nano drug delivery systems such as nanoemulsions, solid lipid nanoparticles, nanobiocomposites, and green-synthesized silver, gold, and zinc oxide nanoparticles have been developed using herbal extracts. It was shown that the method of preparation and related parameters such as temperature and type of polymer are important factors affecting physicochemical stability and therapeutic activity of the final product. Many of these formulations could successfully decrease the lipid profile, inflammation, oxidative damage, and insulin resistance in in vitro and in vivo models of MetS-related complications. Further studies are still needed to confirm the safety and efficacy of these novel herbal formulations for clinical application.
Collapse
Affiliation(s)
- Zeinab Nouri
- Students Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Effect of surfactant type and droplet size on lipid oxidation in oil-in-water nano-emulsions. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2020. [DOI: 10.15586/qas.v12i2.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Omega-3 fatty acids as adjunctive therapeutics: prospective of nanoparticles in its formulation development. Ther Deliv 2020; 11:851-868. [DOI: 10.4155/tde-2019-0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3-PUFAs) are dietary components that have been extensively recognized for their therapeutic value and have shown diverse therapeutic effects including anti-inflammatory, antiarrhythmic, antithrombotic, immunomodulatory and antineoplastic activities. Most of the ω-3-PUFAs are obtained through diet or supplements because the body does not synthesize them. The high instability of ω-3-PUFAs to oxidative deterioration, lower bioavailability at the target tissues and reduced bioactivity of ω-3-PUFAs is an impediment for achieving their therapeutic potential. The present review provides an overview of potential therapeutic activities of ω-3-PUFAs and different novel technical approaches based on nanotechnology, which have been emphasized to overcome instability problems as well as enhance the bioactivity of ω-3-PUFAs. Future prospects related to this area of research are also provided.
Collapse
|
25
|
Ali A, Ahmad U, Akhtar J, Badruddeen, Khan MM. Engineered nano scale formulation strategies to augment efficiency of nutraceuticals. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103554] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
26
|
Dey TK, Maiti I, Chakraborty S, Ghosh M, Dhar P. Enzymatic synthesis of lipophilic lutein-PUFA esters and assessment of their stabilization potential in EPA-DHA rich fish oil matrix. Journal of Food Science and Technology 2019; 56:2345-2354. [PMID: 31168117 DOI: 10.1007/s13197-019-03588-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/31/2018] [Accepted: 01/14/2019] [Indexed: 11/27/2022]
Abstract
The objective of the present study was to synthesize ω-3 polyunsaturated fatty acid esters of lutein and to evaluate if esterification can stabilize the both bioactive molecules. Both ω-3 polyunsaturated fatty acid and lutein are prone towards auto-oxidation in their free form. Free lutein extracted from the marigold petals was enzymatically esterified using Candida antarctica NS435 Lipase B, with the ω-3 long-chain polyunsaturated fatty acids. The lutein esters were purified, characterized and finally assessed for their protective role against oxidative degradation in bulk fish oil matrix. The antioxidative effect of these esters was compared with commercial antioxidants of natural origin, i.e., α-tocopherol and a synthetic antioxidant, i.e., tert-butylhydroquinone, at a dosage of 200 mg/L. Both free lutein and lutein-polyunsaturated fatty acid ester had significantly promoted the oxidative stability of bulk fish oil. But based on dose-response relationship, lutein-polyunsaturated fatty acid ester was found to be more efficient than free lutein, in protecting fish oil from secondary oxidation, thereby augmenting their shelf life. Given the high nutraceutical value, potent antioxidative potential and organic origin, it is only relevant to incorporate lutein esters as natural preservative and stabilizers in edible oils.
Collapse
Affiliation(s)
- Tanmoy Kumar Dey
- 1Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, West Bengal 700027 India.,2Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata, West Bengal 700098 India
| | - Ipshita Maiti
- 1Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, West Bengal 700027 India
| | - Sriparna Chakraborty
- 3Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal 700009 India
| | - Mahua Ghosh
- 2Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata, West Bengal 700098 India.,3Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal 700009 India
| | - Pubali Dhar
- 1Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata, West Bengal 700027 India.,2Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata, West Bengal 700098 India
| |
Collapse
|
27
|
Esquerdo VM, Monte ML, Pinto LADA. Microstructures containing nanocapsules of unsaturated fatty acids with biopolymers: Characterization and thermodynamic properties. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Dey TK, Koley H, Ghosh M, Dey S, Dhar P. Effects of nano-sizing on lipid bioaccessibility and ex vivo bioavailability from EPA-DHA rich oil in water nanoemulsion. Food Chem 2019; 275:135-142. [DOI: 10.1016/j.foodchem.2018.09.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/02/2018] [Accepted: 09/13/2018] [Indexed: 12/27/2022]
|
29
|
Han J, Du Y, Shang W, Yan J, Wu H, Zhu B, Xiao H. Fabrication of surface-active antioxidant biopolymers by using a grafted scallop (Patinopecten yessoensis) gonad protein isolate–epigallocatechin gallate (EGCG) conjugate: improving the stability of tuna oil-loaded emulsions. Food Funct 2019; 10:6752-6766. [DOI: 10.1039/c9fo01723b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel antioxidant system was developed to improve stability of tuna oil-loaded emulsions.
Collapse
Affiliation(s)
- Jiarun Han
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian Liaoning 116034
- China
| | - Yinan Du
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian Liaoning 116034
- China
| | - Wenhui Shang
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian Liaoning 116034
- China
| | - Jianan Yan
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian Liaoning 116034
- China
| | - Haitao Wu
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian Liaoning 116034
- China
- National Engineering Research Center of Seafood
| | - Beiwei Zhu
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian Liaoning 116034
- China
- National Engineering Research Center of Seafood
| | - Hang Xiao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| |
Collapse
|
30
|
Zeng J, Yu W, Dong X, Zhao S, Wang Z, Liu Y, Wong MS, Wang Y. A nanoencapsulation suspension biomimetic of milk structure for enhanced maternal and fetal absorptions of DHA to improve early brain development. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:119-128. [PMID: 30296487 DOI: 10.1016/j.nano.2018.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/24/2018] [Accepted: 09/20/2018] [Indexed: 01/14/2023]
Abstract
Docosahexaenoic acid (DHA) is one ω-3 fatty acid that is essential for the development and function of the brain. However, a large number of clinical trials found that the DHA supplementation showed no advantage on mental and motor skill development in term infants. A strategy based on DHA nanoencapsulation (nano FO) using an edible plant protein, zein, mimicking the milk structure is applied for enhanced maternal and fetal absorptions of DHA to improve early brain development. The nano FO achieved increased absorption in GI tract, enhanced delivery to the maternal, fetal, and offspring brains, and reduced fatty acid accumulation in the fetal liver. In the behavior assessments, the nano FO diet showed enhanced learning and memory improvement compared to the normal FO diet. It indicated that zein nanoencapsulation is with high potential for drug and nutrient deliveries to brain and through placenta to fetus with no toxicity concern.
Collapse
Affiliation(s)
- Jie Zeng
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen, China
| | - Wenxuan Yu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong
| | - Xiaoli Dong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhe Wang
- Center for Biomedical Materials and Interfaces, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yajie Liu
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong
| | - Yi Wang
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong.
| |
Collapse
|
31
|
Sepeidnameh M, Hosseini SMH, Niakosari M, Mesbahi GR, Yousefi GH, Golmakani MT, Nejadmansouri M. Physicochemical properties of fish oil in water multilayer emulsions prepared by a mixture of whey protein isolate and water-soluble fraction of Farsi gum. Int J Biol Macromol 2018; 118:1639-1647. [DOI: 10.1016/j.ijbiomac.2018.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
32
|
Akhavan S, Assadpour E, Katouzian I, Jafari SM. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Designing of ω-3 PUFA enriched biocompatible nanoemulsion with sesame protein isolate as a natural surfactant: Focus on enhanced shelf-life stability and biocompatibility. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Santander-Ortega M, Plaza-Oliver M, Rodríguez-Robledo V, Castro-Vázquez L, Villaseca-González N, González-Fuentes J, Marcos P, Arroyo-Jiménez M, Lozano M. Colloids for drug delivery to the brain. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Esquerdo VM, Silva PP, Dotto GL, Pinto LA. Nanoemulsions From Unsaturated Fatty Acids Concentrates of Carp Oil Using Chitosan, Gelatin, and Their Blends as Wall Materials. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Vanessa M. Esquerdo
- Industrial Technology Laboratory School of Chemistry and Food Federal University of Rio Grande, FURG; Italia Avenue, km 08 96203-900, Rio Grande RS Brazil
| | - Patrick P. Silva
- Industrial Technology Laboratory School of Chemistry and Food Federal University of Rio Grande, FURG; Italia Avenue, km 08 96203-900, Rio Grande RS Brazil
| | - Guilherme L. Dotto
- Industrial Technology Laboratory School of Chemistry and Food Federal University of Rio Grande, FURG; Italia Avenue, km 08 96203-900, Rio Grande RS Brazil
- Chemical Engineering Department Federal University of Santa Maria, UFSM; Roraima Avenue, 1000 97105-900, Santa Maria RS Brazil
| | - Luiz A.A. Pinto
- Industrial Technology Laboratory School of Chemistry and Food Federal University of Rio Grande, FURG; Italia Avenue, km 08 96203-900, Rio Grande RS Brazil
| |
Collapse
|
36
|
Peng Y, Meng Q, Zhou J, Chen B, Xi J, Long P, Zhang L, Hou R. Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. Food Chem 2017; 242:527-532. [PMID: 29037724 DOI: 10.1016/j.foodchem.2017.09.094] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 12/27/2022]
Abstract
Tea polyphenols (TP) were emulsified with corn oil and polysorbate 80 by high-pressure homogenization. The oil in water (O/W) TP nanoemulsion had droplet sizes of 99.42±1.25nm after preparation. The TP nanoemulsion was stable during storage at 4, 25 or 40°C for 20days. An in vitro simulated digestion assay showed that the bioaccessibility of (-)-epigallocatechin gallate (EGCG) was increased in the nanoemulsion compared to that in aqueous solution, but that the bioaccessibilities of (-)-epigallocatechin (EGC), (-)-epicatechin (EC) and (-)-gallocatechin gallate (GCG) were greatly decreased. Compared with rats fed an aqueous TP solution, rats fed the TP nanoemulsion had significantly lower maximum plasma concentrations (Cmax) of EGCG and EGC, but the area under the plasma concentration-time curve (AUC0-t) was increased. The data show that use of a nanoemulsion system to deliver tea polyphenols may enhance the absorption of EGCG through controlled release.
Collapse
Affiliation(s)
- Yunru Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Blvd West, Hefei 230036, China.
| | - Qilu Meng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Blvd West, Hefei 230036, China.
| | - Jie Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Blvd West, Hefei 230036, China.
| | - Bo Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Blvd West, Hefei 230036, China.
| | - Junjun Xi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Blvd West, Hefei 230036, China.
| | - Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Blvd West, Hefei 230036, China.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Blvd West, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Blvd West, Hefei 230036, China.
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Blvd West, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Blvd West, Hefei 230036, China.
| |
Collapse
|
37
|
Anandan S, Keerthiga M, Vijaya S, Asiri AM, Bogush V, Krasulyaa O. Physicochemical characterization of black seed oil-milk emulsions through ultrasonication. ULTRASONICS SONOCHEMISTRY 2017; 38:766-771. [PMID: 27838219 DOI: 10.1016/j.ultsonch.2016.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 05/28/2023]
Abstract
The ultrasonic formation of stable emulsions of a bioactive material, black seed oil, in skim milk was investigated. The incorporation of 7% of black seed oil in pasteurised homogenized skim milk (PHSM) using 20kHz high intensity ultrasound was successfully achieved. The effect of sonication time and acoustic power on the emulsion stability was studied. A minimum process time of 8min at an applied acoustic power of 100W was sufficient to produce emulsion droplets stable for at least 8days upon storage at 4±2°C, which was confirmed through creaming stability, particle size, rheology and color analysis. Partially denatured whey proteins may provide stability to the emulsion droplets and in addition to the cavitation effects of ultrasound are responsible for the production of smaller sized emulsion droplets.
Collapse
Affiliation(s)
- S Anandan
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015, India.
| | - M Keerthiga
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015, India
| | - S Vijaya
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620 015, India
| | - A M Asiri
- The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21413, Saudi Arabia
| | - V Bogush
- Moscow State University of Technology and Management, Moscow, Russia
| | - O Krasulyaa
- Moscow State University of Technology and Management, Moscow, Russia
| |
Collapse
|
38
|
Lane KE, Derbyshire EJ. Omega-3 fatty acids - A review of existing and innovative delivery methods. Crit Rev Food Sci Nutr 2017; 58:62-69. [PMID: 26066669 DOI: 10.1080/10408398.2014.994699] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Omega-3 fatty acids are generally under-consumed in Western diets; a factor that may largely be attributed to low intake of oily fish. Although supplementation strategies offer one approach in terms of improving blood fatty acid levels, rates of compliance are generally low due to difficulties in swallowing capsules, or unfavorable aftertastes. Consequently, new approaches, including food-based strategies, may be an alternative approach to improving omega-3 status and the health of public sectors. This paper sets out to discuss and review how the use of novel food vehicle and delivery advancements may be used to improve omega-3 status, which may have wider benefits for public health and well-being.
Collapse
Affiliation(s)
- K E Lane
- a Faculty of Education, Health & Community , Liverpool John Moore's University , IM Marsh, Barkhill Road, Aigburth, Liverpool , UK
| | - E J Derbyshire
- b School of Healthcare Science, Manchester Metropolitan University , John Dalton Building, Chester Street, Manchester , UK
| |
Collapse
|
39
|
Karthik P, Ezhilarasi PN, Anandharamakrishnan C. Challenges associated in stability of food grade nanoemulsions. Crit Rev Food Sci Nutr 2017; 57:1435-1450. [DOI: 10.1080/10408398.2015.1006767] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- P. Karthik
- Department of Food Engineering, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, India
- AcSIR-Academy of Scientific and Innovative Research, CSIR-CFTRI Campus, Mysore, India
| | - P. N. Ezhilarasi
- Department of Food Engineering, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, India
- AcSIR-Academy of Scientific and Innovative Research, CSIR-CFTRI Campus, Mysore, India
| | - C. Anandharamakrishnan
- Department of Food Engineering, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, India
- AcSIR-Academy of Scientific and Innovative Research, CSIR-CFTRI Campus, Mysore, India
- Indian Institute of Crop Processing Technology (IICPT), Thanjavur, Tamil Nadu, India
| |
Collapse
|
40
|
Nejadmansouri M, Hosseini SMH, Niakosari M, Yousefi GH, Golmakani MT. Physicochemical properties and storage stability of ultrasound-mediated WPI-stabilized fish oil nanoemulsions. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Physicochemical properties and oxidative stability of fish oil nanoemulsions as affected by hydrophilic lipophilic balance, surfactant to oil ratio and storage temperature. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.075] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Salvia-Trujillo L, Decker EA, McClements DJ. Influence of an anionic polysaccharide on the physical and oxidative stability of omega-3 nanoemulsions: Antioxidant effects of alginate. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.07.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
43
|
Puri R, Mahajan M, Sahajpal NS, Singh H, Singh H, Jain SK. Self-nanoemulsifying drug delivery system of docosahexanoic acid: development, in vitro, in vivo characterization. Drug Dev Ind Pharm 2015; 42:1032-41. [PMID: 26559059 DOI: 10.3109/03639045.2015.1107089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Docosahexanoic acid (DHA) is an essential omega-3 fatty acid for normal brain development and its use has increased considerably in recent years. OBJECTIVE The aim of this study is to develop and evaluate self-nanoemulsifying drug delivery systems (SNEDDS) of DHA for improved palatability, dispersibility and bioavailability. METHODS The SNEDDS were prepared and evaluated for miscibility, employing different combinations of olive oil and soyabean oil as oil phase, Span 80, Span 20, soya phosphatidylcholine, Labrafil M 1944 CS as surfactants while Tween 80, PEG 400, Cremophor RH40 and propylene glycol as cosurfactants. Thermodynamically stable SNEDDS were characterized for dispersibility, self-emulsification time, droplet size, zeta potential along with sensory analysis. The optimized formulation was subjected to ex vivo and in vivo evaluation such as intestinal permeability, memory performance test, brain concentration and histopathology studies. RESULTS The optimized SNEDDS formulation showed emulsification time of 27 ± 4.7 s with droplet size of 17.6 ± 3.5 nm and zeta potential of -37.6 ± 0.5 mV. Intestinal absorption study depicted 18.3%, 21.5%, 41.5%, 98.7% absorption of DHA with SNEDDS-based formulation in comparison to 8.2%, 15.1%, 28.8%, 46.1% absorption of DHA with oil-based marketed formulation after 0.5, 1, 2 and 4 h. DHA concentration in brain homogenate was found to be increased to 2.6-fold in comparison to DHA-marketed formulation. This could be ascribed to enhanced dispersibility and bioavailability of DHA from nanosized formulation. CONCLUSION The developed formulation led to enhanced dispersibility and bioavailability of DHA due to the formation of nanodroplets.
Collapse
Affiliation(s)
- Ritika Puri
- a Department of Pharmaceutical Sciences , Guru Nanak Dev University , Amritsar , Punjab , India
| | - Mohit Mahajan
- a Department of Pharmaceutical Sciences , Guru Nanak Dev University , Amritsar , Punjab , India
| | - Nikhil Shri Sahajpal
- a Department of Pharmaceutical Sciences , Guru Nanak Dev University , Amritsar , Punjab , India
| | - Harjeet Singh
- a Department of Pharmaceutical Sciences , Guru Nanak Dev University , Amritsar , Punjab , India
| | - Harmanpreet Singh
- a Department of Pharmaceutical Sciences , Guru Nanak Dev University , Amritsar , Punjab , India
| | - Subheet Kumar Jain
- a Department of Pharmaceutical Sciences , Guru Nanak Dev University , Amritsar , Punjab , India
| |
Collapse
|
44
|
Shin GH, Kim JT, Park HJ. Recent developments in nanoformulations of lipophilic functional foods. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Properties of nanocapsules obtained from oil-in-water nanoemulsions. MENDELEEV COMMUNICATIONS 2015. [DOI: 10.1016/j.mencom.2015.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Eratte D, Wang B, Dowling K, Barrow CJ, Adhikari BP. Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil. Food Funct 2015; 5:2743-50. [PMID: 25008146 DOI: 10.1039/c4fo00296b] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tuna oil rich in omega-3 fatty acids was microencapsulated in whey protein isolate (WPI)-gum arabic (GA) complex coacervates, and subsequently dried using spray and freeze drying to produce solid microcapsules. The oxidative stability, oil microencapsulation efficiency, surface oil and morphology of these solid microcapsules were determined. The complex coacervation process between WPI and GA was optimised in terms of pH, and WPI-to-GA ratio, using zeta potential, turbidity, and morphology of the microcapsules. The optimum pH and WPI-to-GA ratio for complex coacervation was found to be 3.75 and 3 : 1, respectively. The spray dried solid microcapsules had better stability against oxidation, higher oil microencapsulation efficiency and lower surface oil content compared to the freeze dried microcapsules. The surface of the spray dried microcapsules did not show microscopic pores while the surface of the freeze dried microcapsules was more porous. This study suggests that solid microcapsules of omega-3 rich oils can be produced using WPI-GA complex coacervates followed by spray drying and these microcapsules can be quite stable against oxidation. These microcapsules can have many potential applications in the functional food and nutraceuticals industry.
Collapse
Affiliation(s)
- Divya Eratte
- School of Health Science, Federation University Australia, Mount Helen, VIC 3353, Australia
| | | | | | | | | |
Collapse
|
47
|
Structuring Food Emulsions to Improve Nutrient Delivery During Digestion. FOOD ENGINEERING REVIEWS 2015. [DOI: 10.1007/s12393-015-9108-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Walker R, Decker EA, McClements DJ. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. Food Funct 2014; 6:42-55. [PMID: 25384961 DOI: 10.1039/c4fo00723a] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Consumption of biologically active amounts of omega-3 fatty acids is linked to improved human health, which has partly been attributed to their important role in brain development and cardiovascular health. Western diets are relatively low in omega-3 fatty acids and many consumers turn to supplements or functional foods to increase their intake of these healthy lipids. Fish oil is one of the most widely used sources of omega-3 fatty acid for supplementation and has greater health benefits than plant sources because of its higher concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The incorporation of omega-3 fatty acids into foods and beverages is often challenging due to their low water-solubility, poor oxidative stability, and variable bioavailability. Nanoemulsions offer a promising way to incorporate omega-3 fatty acids into liquid food systems like beverages, dressing, sauces, and dips. Nanoemulsions are colloidal dispersions that contain small oil droplets (r<100 nm) that may be able to overcome many of the challenges of fortifying foods and beverages with omega-3 fatty acids. The composition and fabrication of nanoemulsions can be optimized to increase the chemical and physical stability of oil droplets, as well as to increase the bioavailability of omega-3 fatty acids.
Collapse
Affiliation(s)
- Rebecca Walker
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
49
|
Comparative prophylactic effects of α-eleostearic acid rich nano and conventional emulsions in induced diabetic rats. Journal of Food Science and Technology 2014; 51:1724-36. [PMID: 25190828 DOI: 10.1007/s13197-014-1257-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/23/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
The present work entailed perspicacious fabrication of Bitter Gourd Seed Oil Nanoemulsion (BGO-NE) for increasing bioavailability of CLnA in oxidative stress induced in vivo system. The BGO-NE was characterized and evaluated for dimensional as well as rheological changes periodically during a 12 week storage period. BGO comprising ∼50 % α-eleostearic acid, was assessed in conventional and NE formulation at different doses, for its ability to stimulate antioxidative enzyme marker paradigm comprising SOD, GPx, CAT and GSH, inherent to the subjects under study. The formulated BGO-NE (d < 100 nm) was found to be stable for 12 weeks compared to BGO-CE as was determined by particle size characterization and associated parameters. Diet supplementation of 0.5 % (w/v) BGO-NE formulation exhibited maximum efficiency in countering oxidative stress as compared to 1 % BGO-NE formulation and equivalent doses of BGO-CE. Higher efficacy at very low dose of the nano-sized formulation was thus, also established. Histopathological data from liver, pancreas and kidney sections corroborated the above findings. The present study with formulated BGO-NE and BGO-CE evaluates and confirms the implications of a NE formulation of a bioactive lipid - conjugated linolenic acid (CLnA), targeting specific in vivo processes to counter the negative influence of excess ROS (Reactive Oxygen Species) in the system. It, thus presents itself as a potent nutraceutical against diabetes mellitus in an optimized delivery system.
Collapse
|
50
|
Lane KE, Li W, Smith C, Derbyshire E. The bioavailability of an omega-3-rich algal oil is improved by nanoemulsion technology using yogurt as a food vehicle. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12455] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Katie E. Lane
- Faculty of Education, Health and Community; School of Education, Leisure and Sport Studies; IM Marsh Campus; Liverpool John Moores University; Barkill Road Aigburth Liverpool L17 6BD UK
| | - Weili Li
- Department of Food and Tourism Management; Hollings Faculty; Manchester Metropolitan University; Cavendish Street Manchester M15 6BG UK
| | - Chris Smith
- Department of Food and Tourism Management; Hollings Faculty; Manchester Metropolitan University; Cavendish Street Manchester M15 6BG UK
| | - Emma Derbyshire
- School of Healthcare Science; Manchester Metropolitan University; John Dalton Building, Chester Street Manchester M1 5GD UK
| |
Collapse
|