1
|
Anyanwu GO, Anzaku D, Bulus YJ, Girgi JN, Donwell CC, Ihuma JO, Onyeneke EC, Bermano G, Steenkamp V. An Ethnobotanical Survey and Pharmacological and Toxicity Review of Medicinal Plants Used in the Management of Obesity in the North Central Zone of Nigeria. J Obes 2025; 2025:5568216. [PMID: 40026359 PMCID: PMC11870763 DOI: 10.1155/jobe/5568216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 03/05/2025] Open
Abstract
Introduction: Obesity is increasing worldwide. Due to the unavailability of affordable obesity drugs in most parts of Nigeria, many overweight and obese people rely on medicinal plants to manage obesity. Thus, the aim of this study is to document medicinal plants traditionally used in the treatment and management of obesity in the North Central Zone of Nigeria, determine the plants to which pharmacological assessment of their use in obesity management has not been reported, and assess their toxicity based on the literature. Methods: Semistructured questionnaires and interviews were used to assess sociodemographic information of the 700 herb sellers/practitioners (100 for each state) who consented to participate in the study. Information gathered on plants that are traditionally used in the management of obesity included administration/dosage, method of preparation, plant part used, method of growth, and plant type. The field study was conducted over a one-year period, from March 2018 to March 2019. Reports of pharmacological activity pertaining to obesity as well as toxicity of the plants were obtained from the literature via scientific databases (Scopus, Web of Science, PubMed, Google Scholar, SciFinder, AJOL, PubChem, and other web sources) after the field survey. Results: A total of 39 families and 70 plant species were used to treat or manage obesity. The majority of plant species used resulted in the family Leguminosae. The relative frequency of citation (RFC) and percentage values for the five most frequently used plants were as follows: Citrus aurantifolia (0.0500; 3.56%), Citrus limon (0.0457; 3.26%), Garcinia kola (0.0429; 3.05%), Zingiber officinale (0.0429; 3.05%), and Allium sativum (0.0414; 2.95%). The majority of the medications were prepared as decoctions (50.5%), and cultivated plants (62.86%) were in the majority of plants used. Results showed that 23 plants have no pharmacological report for antiobesity activities while among the five frequently used plants, only Garcinia kola was reported toxic in preclinical models. Conclusions: This paper provides a valuable compilation of the plants used in obesity treatment in the study area by indigenous healers, highlights plants with no reported pharmacological activity pertaining to obesity, and indicates the toxicity profile of used plants. However, further studies on the mechanism of action are warranted, especially where no reports were obtained.
Collapse
Affiliation(s)
| | - Dorathy Anzaku
- Department of Biochemistry, Bingham University, Karu, Nasarawa, Nigeria
| | - Yanga J. Bulus
- Department of Biochemistry, Bingham University, Karu, Nasarawa, Nigeria
| | - Jemimah N. Girgi
- Department of Biochemistry, Bingham University, Karu, Nasarawa, Nigeria
| | - Chinda C. Donwell
- Department of Biochemistry, Bingham University, Karu, Nasarawa, Nigeria
| | - Jerome O. Ihuma
- Department of Biological Sciences, Bingham University, Karu, Nasarawa, Nigeria
| | | | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy, Applied Sciences and Public Health, Robert Gordon University, Aberdeen, UK
| | - Vanessa Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Yousaf AA, Zeng H, Abbasi KS, Bergholz T, Siddiq M, Dolan K. Development and biochemical characterization of freeze-dried guava powder fortified with Lactobacillus plantarum. J Food Sci 2024; 89:8644-8657. [PMID: 39592245 DOI: 10.1111/1750-3841.17537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Guava (Psidium guajava L.) is one of the most nutrient-dense fruits, which is native to tropical and subtropical regions of the world. The processing of value-added products from guava has not been carried out on a scale similar to some other fruits, which offers an opportunity to fully exploit the potential of this fruit, such as guava-based nutraceutical food products. The objectives of the present study were to develop freeze-dried guava powders (FDGPs) from two guava varieties (white and pink) and characterize their physico-chemical and nutritional properties. FDGP was also incorporated with probiotic strains of Lactobacillus plantarum, to develop a healthy nutraceutical probiotic supplement. Functional groups assessed by Fourier transform infrared (FTIR) spectroscopy exhibited the existence of strong C-Br stretch, O-H stretch, and C = C stretch vibrations; however, scanning electron micrograms (SEMs) showed the flaky structure indicating the presence of starch, dietary fibers, and esterified groups of pectin. Significant mineral concentrations (mg/100 g) of potassi-um (323-362), magnesium (26.2-28.8), zinc (0.43-0.51), and iron (0.52-0.63) were observed in FDGPs. The FDGP samples from both guava varieties had high levels of crude fiber (43.94-46.29%), vitamin C (2.27-2.49 mg/g), and phenolic compounds (57.50-61.86 mg GAE/g) as well as significant antioxidant properties. Fortification of FDGP with L. plantarum strains produced significant results in terms of probiotic viability that was nearly maintained at 108 CFU/g up to 60 days in the final product. The viability of probiotics proved that FDGP is a good carrier of prebiotics and can be utilized as a potent probiotic supplement.
Collapse
Affiliation(s)
- Ali Asad Yousaf
- Institute of Food & Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Hui Zeng
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Kashif Sarfraz Abbasi
- Institute of Food & Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Teresa Bergholz
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Muhammad Siddiq
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Kirk Dolan
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Li Y, Li W, Zhou D, Zeng Z, Han Y, Chen Q, Wang Z, Wang G, Feng S, Cao W. Microcin Y utilizes its stable structure and biological activity to regulate the metabolism of intestinal probiotics and effectively clear gut Salmonella. Int J Biol Macromol 2024; 274:133290. [PMID: 38908631 DOI: 10.1016/j.ijbiomac.2024.133290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
MccY is a novel, structurally stable microcin with antibacterial activity against Enterobacteriaceae. However, the bioavailability of orally administrated MccY is unknown. This study evaluated the effects of MccY as a antimicrobial on pre-digestion in vitro and its intake, digestion and gut metabolism in vivo. The result of pre-digestion results that MccY maintained its biological activity and was resistant to decomposition. The study established a safe threshold of 4.46-9.92 mg/kg for the MccY dosage-body weight relationship in BALB/c mice. Mice fed with MccY demonstrated improved body weight and intestinal barrier function, accompanied with increased IgM immunogenicity and decreased levels of TNF-α, IL-6, and IL-10 in the intestine. MccY significantly facilitates the growth and activity of probiotics including Lactobacillus, Prevotella, and Bacteroides, and leading to the production of SCFAs and MCFAs during bacterial interactions. Furthermore, MccY effectively protects against the inflammatory response caused by Salmonella Typhimurium infection and effectively clears the Salmonella bacteria from the gut. In conclusion, MccY is seen as a promising new therapeutic target drug for enhancing the intestinal microbe-barrier axis and preventing enteritis.
Collapse
Affiliation(s)
- Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenjing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Di Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiwei Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qinxi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zepeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guyao Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China; Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China.
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China; Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, China.
| |
Collapse
|
4
|
Demaman Arend G, Verruck S, Zanchett Schneider NF, Oliveira Simões CM, Tres MV, Prudêncio ES, Cunha Petrus JC, Rezzadori K. Can Storage Stability and Simulated Gastrointestinal Behavior Change the Cytotoxic Effects of Concentrated Guava Leaves Extract against Human Lung Cancer Cells? MEMBRANES 2024; 14:113. [PMID: 38786947 PMCID: PMC11123244 DOI: 10.3390/membranes14050113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The influence of storage stability and simulated gastrointestinal behavior of different extracts of guava leaves extracts (NC: not concentrated, and C10 and C20: concentrated by nanofiltration) was evaluated based on their total phenolic compound (TPC) contents and antioxidant activity as well as on their cytotoxic effects on A549 and Vero cells. The results showed that C10 and C20 presented high stability for 125 days probably due to their high TPC contents and antioxidant activity. The simulated gastrointestinal behavior modified their TPC contents; however, after all digestion steps, the TPC values were higher than 70%, which means that they were still available to exert their bioactivities. Additionally, the cytotoxic effects of these extracts were evaluated before and after the simulated gastrointestinal behavior or under different storage conditions. C10 presented the best selectivity indices (SI) values (IC50 Vero cells/IC50 A549 cells) at both conditions suggesting that it can be considered a potential extract to be developed as a functional food due to its resistance to the gastrointestinal digestion and storage conditions tested.
Collapse
Affiliation(s)
- Giordana Demaman Arend
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (G.D.A.); (J.C.C.P.)
| | - Silvani Verruck
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Ademar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, SC, Brazil; (S.V.); (E.S.P.)
| | - Naira Fernanda Zanchett Schneider
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88035-972, SC, Brazil; (N.F.Z.S.); (C.M.O.S.)
| | - Cláudia Maria Oliveira Simões
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis 88035-972, SC, Brazil; (N.F.Z.S.); (C.M.O.S.)
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering—LAPE, Federal University of Santa Maria, Cachoeira do Sul 96503-205, RS, Brazil
| | - Elane Schwinden Prudêncio
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Ademar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, SC, Brazil; (S.V.); (E.S.P.)
| | - José Carlos Cunha Petrus
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (G.D.A.); (J.C.C.P.)
| | - Katia Rezzadori
- Department of Food Science and Technology, Federal University of Santa Catarina, Av. Ademar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, SC, Brazil; (S.V.); (E.S.P.)
| |
Collapse
|
5
|
Arruda HS, Angolini CFF, Eberlin MN, Pastore GM, Marostica Junior MR. UHPLC-ESI-QTOF-MS/MS Profiling of Phytochemicals from Araticum Fruit ( Annona crassiflora Mart.) and Its Antioxidant Activity. Foods 2023; 12:3456. [PMID: 37761165 PMCID: PMC10528599 DOI: 10.3390/foods12183456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Araticum is a native species of the Brazilian Cerrado with a high potential for exploitation. Several studies have stated that araticum is a rich source of phytochemicals with multifaceted biological actions. However, little information is available regarding the characterization of phytochemicals found in the pulp of this fruit. In this context, this study aimed to carry out a comprehensive characterization of phytochemicals present in the araticum pulp using ultra-high-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer (UHPLC-ESI-QTOF-MS/MS). The antioxidant potential of araticum pulp was also evaluated. UHPLC-ESI-QTOF-MS/MS profiling of the phytochemicals allowed for the identification and annotation of 139 phytochemicals, including organic acids, jasmonates, iridoids, phenolic compounds, alkaloids, annonaceous acetogenins, fatty acid derivatives, and other compounds. Among them, 116 compounds have been found for the first time in araticum pulp. Phenolic compounds and their derivatives represented about 59% of the phytochemicals identified in the extract. Moreover, araticum pulp showed high total phenolic compound content and antioxidant activity. The majority of identified phytochemicals have been associated with key roles in the plant's defense mechanisms against biotic and abiotic stress factors in the Cerrado environment. Furthermore, many of these phytochemicals found in the araticum pulp are already widely recognized for their beneficial effects on human health. Our findings showed that the araticum fruit contains different classes of phytochemicals that exert various biological activities, both in the plant itself and in humans.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas 13083-862, São Paulo, Brazil; (G.M.P.); (M.R.M.J.)
| | - Célio Fernando Figueiredo Angolini
- Institute of Chemistry, University of Campinas, Rua Josué de Castro s/n, Campinas 13083-970, São Paulo, Brazil; (C.F.F.A.); (M.N.E.)
- Center for Natural and Human Sciences, Federal University of ABC, Avenida dos Estados 5001, Santo André 09210-580, São Paulo, Brazil
| | - Marcos Nogueira Eberlin
- Institute of Chemistry, University of Campinas, Rua Josué de Castro s/n, Campinas 13083-970, São Paulo, Brazil; (C.F.F.A.); (M.N.E.)
- MackMass Laboratory for Mass Spectrometry, School of Engineering, PPGEMN & Mackenzie Institute of Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, Rua da Consolação 896, São Paulo 01302-907, São Paulo, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas 13083-862, São Paulo, Brazil; (G.M.P.); (M.R.M.J.)
| | - Mario Roberto Marostica Junior
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas 13083-862, São Paulo, Brazil; (G.M.P.); (M.R.M.J.)
| |
Collapse
|
6
|
Liu H, Wei S, Shi L, Tan H. Preparation, structural characterization, and bioactivities of polysaccharides from Psidium guajava: A review. Food Chem 2023; 411:135423. [PMID: 36652884 DOI: 10.1016/j.foodchem.2023.135423] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Psidium guajava L. is one of the most pivotal members belong to the Myrtaceae family, and it is an important tropical fruit with highly nutritional, healthy, and pharmacological values prevailing in worldwide for decades. The polysaccharides of P. guajava (PGPs) are served as one of the most active constituents, which possess a variety of biofunctionalities including anti-inflammatory, antidiarrheic, antihypertension, and antidiabetic properties. Hence, a systematic review aimed to comprehensively summarize the recent research advances of PGPs is necessary for facilitating their better understanding. The present review discussed current research progress on the PGPs, including extraction and purification methods, structural features, biological activities, and potential pharmacological mechanism. In addition, this review may also provide some valuable insights for further development and potential value in affording functionally useful agents in food industry or therapeutically effective medicine in the fields of P. guajava polysaccharides.
Collapse
Affiliation(s)
- Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shanshan Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Shi
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
7
|
Sharma P, Nair J, Sinh A, Shivangi, Velpandian T, Tripathi R, Mathur R. Guava Leaf Extract Suppresses Fructose Mediated Non-Alcoholic Fatty Liver Disease in Growing Rats. Diabetes Metab Syndr Obes 2022; 15:2827-2845. [PMID: 36134391 PMCID: PMC9484835 DOI: 10.2147/dmso.s381102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022]
Abstract
Purpose Fructose is highly lipogenic, and its unhindered ingestion by children and adolescents is understood to induce hypertriglyceridemia and non-alcoholic fatty liver disease (ped-NAFLD) that is till date managed symptomatically or surgically. The aim of the present study was to investigate the potential of hydroethanolic extract of leaves of Guava (PG-HM) to suppress the alterations in the hepatic molecular signals due to unrestricted fructose (15%) drinking by growing rats. Methods Weaned rats (4 weeks old) in control groups had ad libitum access to fructose drinking solution (15%) for four (4FDR) or eight (8FDR) weeks, ie, till puberty or early adulthood, respectively, while treatment groups (4PGR, 8PGR) additionally received PG-HM (500 mg/kg, po). Results The PG-HM suppressed ped-NAFLD through hepatic signalling pathways of 1) leptin-insulin (Akt/FOX-O1/SREBP-1c), 2) hypoxia-inflammation (HIF-1ɑ/VEGF, TNF-ɑ), 3) mitochondrial function (complexes I–V), 4) oxidative stress (MDA, GSH, SOD) and 5) glycolysis/gluconeogenesis/de novo lipogenesis (hexokinase, phosphofructokinase, ketohexokinase, aldehyde dehydrogenase). Parri passu, the insulin sensitizing effect of PG-HM and its ethyl acetate fraction (PG-EA) was elucidated using HepG2 cells grown in media enhanced with fructose. Further, in murine hepatocytes cultured in fructose-rich media, PG-HM (35 µg mL-1) outperformed Pioglitazone (15 µM) and Metformin (5 mM), to suppress hepatic insulin resistance. Conclusion This study established that hydroethanolic extract of leaves of Guava (PG-HM) has potential to suppress hepatic metabolic alteration for the management of the pediatric NAFLD.
Collapse
Affiliation(s)
- Prateek Sharma
- Department of Pharmacology, Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Jayachandran Nair
- Department of Pharmacology, Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anurag Sinh
- Department of Pharmacology, Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Shivangi
- Department of Pharmacology, Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology, Dr. R.P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ruchi Tripathi
- Department of Pharmacology, Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Rajani Mathur
- Department of Pharmacology, Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| |
Collapse
|
8
|
Takeda LN, Laurindo LF, Guiguer EL, Bishayee A, Araújo AC, Ubeda LCC, Goulart RDA, Barbalho SM. Psidium guajava L.: A Systematic Review of the Multifaceted Health Benefits and Economic Importance. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Larissa Naomi Takeda
- Department of Biochemistry, School of Food and Technology of Marília, University of Marília, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry, School of Food and Technology of Marília, University of Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil
| | | | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry, School of Food and Technology of Marília, University of Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, São Paulo, Brazil
| |
Collapse
|
9
|
Rezzadori K, Arend GD, Jaster H, Díaz‐de‐Cerio E, Verardo V, Segura‐Carretero A, Verruck S, Prudêncio ES, Petrus JCC. Bioavailability of bioactive compounds of guava leaves (
Psidium guajava
) aqueous extract concentrated by gravitational and microwave‐assisted cryoconcentration. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Katia Rezzadori
- Department of Food Science and Technology Federal University of Santa Catarina Florianopolis Brazil
| | - Giordana Demaman Arend
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianopolis Brazil
| | - Henrique Jaster
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianopolis Brazil
| | | | - Vito Verardo
- Department of Nutrition and Food Science University of Granada Granada Spain
| | - Antonio Segura‐Carretero
- Department of Analytical Chemistry, and Functional Food Research and Development Center (CIDAF) University of Granada Granada Spain
| | - Silvani Verruck
- Department of Food Science and Technology Federal University of Santa Catarina Florianopolis Brazil
| | | | - José Carlos Cunha Petrus
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianopolis Brazil
| |
Collapse
|
10
|
Huang Z, Luo Y, Xia X, Wu A, Wu Z. Bioaccessibility, safety, and antidiabetic effect of phenolic-rich extract from fermented Psidium guajava Linn. leaves. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
de la Luz Cádiz-Gurrea M, Fernández-Ochoa Á, Del Carmen Villegas-Aguilar M, Arráez-Román D, Segura-Carretero A. Therapeutic Targets for Phenolic Compounds from Agro-industrial Byproducts against Obesity. Curr Med Chem 2021; 29:1083-1098. [PMID: 34544333 DOI: 10.2174/0929867328666210920103815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is considered as a global epidemic worldwide. This disorder is associated to several health effects such as metabolic disturbances that need both prevention and treatment actions. In this sense, bioactive secondary metabolites can be obtained from cheap sources such as agro-industrial waste providing a sustainable alternative against obesity. Among these secondary metabolites, phenolic compounds present a common chemical structure core with different substitutions that provides them biological properties such as antioxidant, inflammatory, anti-aging capacities. OBJECTIVE The aim of this review is to compile anti-obesity therapeutic targets for phenolic compounds from agro-industrial byproducts. METHOD Scientific information has been obtained from different databases such as Scopus, PubMed and Google Scholar in order to select the available full text studies in last years. RESULTS This review shows that peel, seed, pomace and other byproducts from agro-industry have different effects inhibiting enzymes related to lipid or glucose metabolism and modulating biomarkers, genes and gut microbiota in animal models. CONCLUSION Revalorizing actions of agro-industrial byproducts in the prevention or treatment of obesity or associated disorders can be considered to develop new high value products that act on lipid, glucose and energy metabolisms, oxidative stress, inflammation, adipose tissue or gut microbiota. However, further human studies are need in order to stablish the optimal administration parameters.
Collapse
Affiliation(s)
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin. Germany
| | | | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Granada. Spain
| | | |
Collapse
|
12
|
Natural Dietary and Medicinal Plants with Anti-Obesity Therapeutics Activities for Treatment and Prevention of Obesity during Lock Down and in Post-COVID-19 Era. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Overweight and obesity have become global epidemics, especially during the lockdown due to the COVID-19 pandemic. The potential of medicinal plants as a better and safe option in treating obesity and overweight has gained attention in recent years. Obesity and overweight has become a major public health concern, and its incidence rising at an alarming rate. Obesity is one of the major types of metabolic syndrome, resulting in various types of problems such as hypertension, diabetes, dyslipidemia, and excess fat accumulation. The current searching was done by the keywords in main indexing systems including Scopus, PubMed/MEDLINE, the search engine of Google Scholar, and Institute for Scientific Web of Science. The keywords were traditional medicine, health benefits, pharmaceutical science, pomegranate, punicalin, punicalagin, and ellagitannins. Google Scholar was searched manually for possible missing manuscripts, and there was no language restriction in the search. This review was carried out to highlight the importance of medicinal plants which are common in traditional medicinal sciences of different countries, especially Asia to prevent and treatment of obesity and overweight during the global pandemic and the post-COVID-19 era.
Collapse
|
13
|
Feriani A, Tir M, Arafah M, Gómez-Caravaca AM, Contreras MDM, Nahdi S, Taamalli A, Allagui MS, Alwasel S, Segura-Carretero A, Harrath AH, Tlili N. Schinus terebinthifolius fruits intake ameliorates metabolic disorders, inflammation, oxidative stress, and related vascular dysfunction, in atherogenic diet-induced obese rats. Insight of their chemical characterization using HPLC-ESI-QTOF-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113701. [PMID: 33346028 DOI: 10.1016/j.jep.2020.113701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Schinus terebinthifolius is traditionally used for its anti inflammatory capacity, and indicated as a cardioprotective agent, whereas, its preventive effect against atherogenic diet fed (AD) induced metabolic disorders and the underlying mechanisms has not yet been explored. AIM OF THE STUDY This study was undertaken to investigate the ameliorative role of Schinus terebinthifolius fruits extract (STFE) against cardiovascular problem, oxidative and inflammatory status related to obesity in rats fed an atherogenic diet. MATERIALS AND METHODS The metabolites profile in STFE was evaluated using HPLC-DAD-ESI-QTOF-MS/MS analysis. In Wistar rats, atherogenic diet was added for 9 weeks to induce lipid accumulation simultaneously with STFE (50 mg/kg b. w) or saline treatment. Biochemical, oxidant, and inflammatory criteria together with hepatic and arterial integrity examination were assessed. RESULTS A total of thirty three metabolites were identified using HPLC-DAD-ESI-QTOF-MS, among them masazino-flavanone was the major compound (2645.50 μg/g DW). The results indicated that STFE supplementation during 9 weeks (50 mg/kg b. w.) significantly attenuated the altered lipid profile by decreasing the levels of TC, TG, LDL-C and increasing the HDL-C content both in plasma and liver, when compared with the AD-group. The histological analysis using ORO staining revealed a decrease in the lipid droplet deposit in the cytoplasm of hepatocytes of STFE + AD group. The addition of STFE could improve the glycemic status of AD-treated rats by decreasing the glucose and insulin secretion, and ameliorating the hepatic glycogen synthesis. The harmful effects of atherogenic diet on hepatic oxidative stress indicators (MDA, PC, GSH, SOD, CAT, and GPx), biochemical markers (AST, ALT, LDH and ALP), and liver function, were found to be decreased by the addition of STFE. Moreover, the reduction of inflammatory markers (CRP, IL-6 and TNF-α), associated to alleviating of aortic oxidative stress and integrity, highlighted the positive anti-atherogenic effect of STFE. CONCLUSION Overall, the pleiotropic protective effect observed with S. terebinthifolius fruits might be related to the presence of various bioactive compounds.
Collapse
Affiliation(s)
- Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Gafsa, Tunisia.
| | - Meriam Tir
- Laboratoire d'Ecologie, de Biologie et de Physiologie des Organismes Aquatiques, LR18ES41, Faculté des Sciences de Tunis, Université Tunis EL Manar, 2092, Tunis, Tunisia
| | - Maria Arafah
- King Saud University, Department of Pathology, College of Medicine, Riyadh, 11451, Saudi Arabia
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, Edificio Bioregión, 18016, Granada, Spain
| | - María Del Mar Contreras
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Saber Nahdi
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | - Amani Taamalli
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cédria, BP, 901, 2050, Hammam-Lif, Tunisia
| | - Mohamed Salah Allagui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 95, Sfax, 3052, Tunisia
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, Edificio Bioregión, 18016, Granada, Spain
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l'Environnement, Université de Carthage, Tunisia.
| |
Collapse
|
14
|
Kumar M, Tomar M, Amarowicz R, Saurabh V, Nair MS, Maheshwari C, Sasi M, Prajapati U, Hasan M, Singh S, Changan S, Prajapat RK, Berwal MK, Satankar V. Guava ( Psidium guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Foods 2021; 10:752. [PMID: 33916183 PMCID: PMC8066327 DOI: 10.3390/foods10040752] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Psidium guajava (L.) belongs to the Myrtaceae family and it is an important fruit in tropical areas like India, Indonesia, Pakistan, Bangladesh, and South America. The leaves of the guava plant have been studied for their health benefits which are attributed to their plethora of phytochemicals, such as quercetin, avicularin, apigenin, guaijaverin, kaempferol, hyperin, myricetin, gallic acid, catechin, epicatechin, chlorogenic acid, epigallocatechin gallate, and caffeic acid. Extracts from guava leaves (GLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antidiarrheal, antimicrobial, lipid-lowering, and hepatoprotection activities. In the present review, we comprehensively present the nutritional profile and phytochemical profile of GLs. Further, various bioactivities of the GL extracts are also discussed critically. Considering the phytochemical profile and beneficial effects of GLs, they can potentially be used as an ingredient in the development of functional foods and pharmaceuticals. More detailed clinical trials need to be conducted to establish the efficacy of the GL extracts.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India;
| | - Maharishi Tomar
- ICAR—Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (U.P.)
| | - M. Sneha Nair
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad 121004, Haryana, India;
| | - Chirag Maheshwari
- Department of Agriculture Energy and Power, ICAR—Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Minnu Sasi
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Uma Prajapati
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.S.); (U.P.)
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR—Central Institute of Agricultural Engineering, Bhopal 462038, India;
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR—Central Potato Research Institute, Shimla 171001, India;
| | - Rakesh Kumar Prajapat
- School of Agriculture, Suresh Gyan Vihar University, Jaipur 302017, Rajasthan, India;
| | - Mukesh K. Berwal
- Division of Crop improvement, ICAR—Central Institute for Arid Horticulture, Bikaner 334006, India;
| | - Varsha Satankar
- Ginning Training Centre, ICAR—Central Institute for Research on Cotton Technology, Nagpur 440023, India;
| |
Collapse
|
15
|
Xie Y, Wang H, He Z. Recent advances in polyphenols improving vascular endothelial dysfunction induced by endogenous toxicity. J Appl Toxicol 2020; 41:701-712. [PMID: 33251608 DOI: 10.1002/jat.4123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Yixi Xie
- Department of Burns and Reconstructive Surgery, Xiangya Hospital Central South University Changsha China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan China
| | - Hui Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan China
| | - Zhiyou He
- Department of Burns and Reconstructive Surgery, Xiangya Hospital Central South University Changsha China
| |
Collapse
|
16
|
Anti-hyperglycemic and liver protective effects of flavonoids from Psidium guajava L. (guava) leaf in diabetic mice. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Ismail Iid I, Kumar S, Shukla S, Kumar V, Sharma R. Putative antidiabetic herbal food ingredients: Nutra/functional properties, bioavailability and effect on metabolic pathways. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Villacís-Chiriboga J, Elst K, Van Camp J, Vera E, Ruales J. Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications). Compr Rev Food Sci Food Saf 2020; 19:405-447. [PMID: 33325169 DOI: 10.1111/1541-4337.12542] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
Tropical fruits represent one of the most important crops in the world. The continuously growing global market for the main tropical fruits is currently estimated at 84 million tons, of which approximately half is lost or wasted throughout the whole processing chain. Developing novel processes for the conversion of these byproducts into value-added products could provide a viable way to manage this waste problem, aiming at the same time to create a sustainable economic growth within a bio-economy perspective. Given the ever-increasing concern about sustainability, complete valorization through a bio-refinery approach, that is, zero waste concept, as well as the use of green techniques is therefore of utmost importance. This paper aims to report the status on the valorization of tropical fruit byproducts within a bio-refinery frame, via the application of traditional methodologies, and with specific attention to the extraction of phenolics and carotenoids as bioactive compounds. The different types of byproducts, and their content of bioactives is reviewed, with a special emphasis on the lesser-known tropical fruits. Moreover, the bioactivity of the different types of extracts and their possible application as a resource for different sectors (food, pharmaceutical, and environmental sciences) is discussed. Consequently, this review presents the concepts of tropical fruit biorefineries, and the potential applications of the isolated fractions.
Collapse
Affiliation(s)
- José Villacís-Chiriboga
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400, Mol, Belgium.,Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| | - Kathy Elst
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400, Mol, Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Edwin Vera
- Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| |
Collapse
|
19
|
Vezza T, Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Romero M, Sánchez M, Toral M, Martín-García B, Gómez-Caravaca AM, Arráez-Román D, Segura-Carretero A, Micol V, García F, Utrilla MP, Duarte J, Rodríguez-Cabezas ME, Gálvez J. The metabolic and vascular protective effects of olive (Olea europaea L.) leaf extract in diet-induced obesity in mice are related to the amelioration of gut microbiota dysbiosis and to its immunomodulatory properties. Pharmacol Res 2019; 150:104487. [PMID: 31610229 DOI: 10.1016/j.phrs.2019.104487] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/30/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Many studies have showed the beneficial effects of the olive (Olea europaea) leaf extract (OLE) in experimental models of metabolic syndrome, which have been ascribed to the presence of phenolic compounds, like oleuropeoside. This study evaluated the effects of a chemically characterized OLE in high fat diet (HFD)-induced obesity in mice, describing the underlying mechanisms involved in the beneficial effects, with special attention to vascular dysfunction and gut microbiota composition. METHODS C57BL/6J mice were distributed in different groups: control, control-treated, obese and obese-treated with OLE (1, 10 and 25 mg/kg/day). Control mice received a standard diet, whereas obese mice were fed HFD. The treatment was followed for 5 weeks, and animal body weight periodically assessed. At the end of the treatment, metabolic plasma analysis (including lipid profile) as well as glucose and insulin levels were performed. The HFD-induced inflammatory status was studied in liver and fat, by determining the RNA expression of different inflammatory mediators by qPCR; also, different markers of intestinal epithelial barrier function were determined in colonic tissue by qPCR. Additionally, flow cytometry of immune cells from adipose tissue, endothelial dysfunction in aortic rings as well as gut microbiota composition were evaluated. Faecal microbiota transplantation (FMT) to antibiotic-treated mice fed with HFD was performed. RESULTS OLE administration reduced body weight gain, basal glycaemia and insulin resistance, and showed improvement in plasma lipid profile when compared with HFD-fed mice. The extract significantly ameliorated the HFD-induced altered expression of key adipogenic genes, like PPARs, adiponectin and leptin receptor, in adipose tissue. Furthermore, the extract reduced the RNA expression of Tnf-α, Il-1β, Il-6 in liver and adipose tissue, thus improving the tissue inflammatory status associated to obesity. The flow cytometry analysis in adipose tissue corroborated these observations. Additionally, the characterization of the colonic microbiota by sequencing showed that OLE administration was able to counteract the dysbiosis associated to obesity. The extract reversed the endothelial dysfunction observed in the aortic rings of obese mice. FMT from donors HFD-OLE to recipient mice fed an HFD prevented the development of obesity, glucose intolerance, insulin resistance and endothelial dysfunction. CONCLUSION OLE exerts beneficial effects in HFD-induced obesity in mice, which was associated to an improvement in plasma and tissue metabolic profile, inflammatory status, gut microbiota composition and vascular dysfunction.
Collapse
Affiliation(s)
- Teresa Vezza
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Alba Rodríguez-Nogales
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - José Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - Miguel Romero
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER-Enfermedades Cardiovasculares, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - Manuel Sánchez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER-Enfermedades Cardiovasculares, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz Martín-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain; Research and Development Centre for Functional Food (CIDAF), PTS Granada, 18016, Granada, Spain
| | - Ana M Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain; Research and Development Centre for Functional Food (CIDAF), PTS Granada, 18016, Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain; Research and Development Centre for Functional Food (CIDAF), PTS Granada, 18016, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain; Research and Development Centre for Functional Food (CIDAF), PTS Granada, 18016, Granada, Spain
| | - Vicente Micol
- CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Institute of Molecular and Cell Biology (IMCB), Miguel Hernández University (UMH), 03202, Elche, Alicante, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - María Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Duarte
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER-Enfermedades Cardiovasculares, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - María Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
20
|
Antioxidant and Anti-Diabetic Activities of Polysaccharides from Guava Leaves. Molecules 2019; 24:molecules24071343. [PMID: 30959759 PMCID: PMC6479919 DOI: 10.3390/molecules24071343] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
Guava (Psidium guajava L., Myrtaceae) leaves have been used as a folk herbal tea to treat diabetes for a long time in Asia and North America. In this study, we isolated polysaccharides from guava leaves (GLP), and evaluated its antioxidant activity in vitro and anti-diabetic effects on diabetic mice induced by streptozotocin combined with high-fat diet. The results indicated that GLP exhibited good DPPH, OH, and ABTS free-radical scavenging abilities, and significantly lowered fasting blood sugar, total cholesterol, total triglycerides, glycated serum protein, creatinine, and malonaldehyde. Meanwhile, it significantly increased the total antioxidant activity and superoxide dismutase (SOD) enzyme activity in diabetic mice, as well as ameliorated the damage of liver, kidney, and pancreas. Thus, polysaccharides from guava leaves could be explored as a potential antioxidant or anti-diabetic agents for functional foods or complementary medicine.
Collapse
|
21
|
Becerra-Verdín EM, Morales Ávila ÚM, García-Galindo HS, Montalvo-González R, Castañeda-Martínez A, Montalvo-González E. Evaluation of biochemical markers in diabetic rats fed diets supplemented with fruit purees. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1578267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Eduardo Mendeleev Becerra-Verdín
- Laboratorio de Investigación Clínica e Histología, Unidad Académica de Ciencias Químico Bilógicas y Farmaceúticas, Universidad Autónoma de Nayarit, Tepic Nayarit, Mexico
| | - Úrsula Mireya Morales Ávila
- Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado e Invesgación, Tecnológico Nacional de México/Campus Instituto Tecnológico de Tepic, Tepic Nayarit, Mexico
| | - Hugo Sergio García-Galindo
- UNIDA, División de estudios de Posgrado e Investigación, Tecnológico Nacional de México/Campus Instituto Tecnológico de Veracruz, Veracruz, Mexico
| | - Rubén Montalvo-González
- Laboratorio de Investigación Clínica e Histología, Unidad Académica de Ciencias Químico Bilógicas y Farmaceúticas, Universidad Autónoma de Nayarit, Tepic Nayarit, Mexico
| | - Alfonso Castañeda-Martínez
- Laboratorio de Investigación Clínica e Histología, Unidad Académica de Ciencias Químico Bilógicas y Farmaceúticas, Universidad Autónoma de Nayarit, Tepic Nayarit, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, División de Estudios de Posgrado e Invesgación, Tecnológico Nacional de México/Campus Instituto Tecnológico de Tepic, Tepic Nayarit, Mexico
| |
Collapse
|
22
|
Abidi J, Ammar S, Ben Brahim S, Skalicka-Woźniak K, Ghrabi-Gammar Z, Bouaziz M. Use of ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry system as valuable tool for an untargeted metabolomic profiling of Rumex tunetanus flowers and stems and contribution to the antioxidant activity. J Pharm Biomed Anal 2019; 162:66-81. [DOI: 10.1016/j.jpba.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 11/27/2022]
|
23
|
Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR. Anal Bioanal Chem 2018; 410:3607-3619. [PMID: 29629503 DOI: 10.1007/s00216-018-1051-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/19/2018] [Accepted: 03/29/2018] [Indexed: 12/26/2022]
Abstract
Annona cherimola Mill. (cherimoya) has widely been used as food crop. The leaves of this tree possess several health benefits, which are, in general, attributed mainly to its bioactive composition. However, literature concerning a comprehensive characterization based on a combined approach, which consists of nuclear magnetic resonance (NMR) and high-performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-TOF-MS), from these leaves is scarce. Thus, the aim of this work was to study the polar profile of full extracts of cherimoya leaves by using these tools. Thus, a total of 77 compounds have been characterized, 12 of which were identified by both techniques. Briefly, 23 compounds were classified as amino acids, organic acids, carbohydrates, cholines, phenolic acid derivatives, and flavonoids by NMR, while 66 metabolites were divided into sugars, amino acids, phenolic acids and derivatives, flavonoids, phenylpropanoids, and other polar compounds by HPLC-TOF-MS. It is worth mentioning that different solvent mixtures were tested and the total phenolic content in the extracts quantified (TPC via HPLC-TOF-MS). The tendency observed was EtOH/water 80/20 (v/v) (17.0 ± 0.2 mg TPC/g leaf dry weight (d.w.)) ≥ acetone/water 70/30 (v/v) (16.1 ± 0.7 mg TPC/g leaf d.w.) > EtOH/water 70/30 (v/v) (14.0 ± 0.3 mg TPC/g leaf d.w.) > acetone/water 80/20 (v/v) (13.5 ± 0.4 mg TPC/g leaf d.w.). Importantly, flavonoids derivatives were between 63 and 76% of the TPC in those extracts. Major compounds were sucrose, glucose (α and β), and proline, and chlorogenic acid and rutin for NMR and HPLC-TOF-MS, respectively. Graphical abstract The combined use of LC-HRMS and NMR is a potential synergic combination for a comprehensive metabolite composition of cherimoya leaves.
Collapse
|
24
|
Medina MFE, Alaba PA, Estrada-Zuñiga ME, Velázquez-Ordoñez V, Barbabosa-Pliego A, Salem MZM, Alonso-Fresán MU, Camacho-Díaz LM, Salem AZM. Anti-staphylococcal properties of four plant extracts against sensitive and multi-resistant bacterial strains isolated from cattle and rabbits. Microb Pathog 2017; 113:286-294. [PMID: 29101063 DOI: 10.1016/j.micpath.2017.10.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/23/2022]
Abstract
The aim of this study is to investigate the biopotency of methanolic extracts of Vitex mollis, Psidium guajava, Dalbergia retusa, and Crescential alata leaves against various staphylococcal strains isolated from cattle and rabbits. Methicillin-resistant S. aureus strains were isolated from cattle, while other strains were isolated from rabbits using standard methodology. The total phytochemical phenolic and saponins contents were obtained being the main groups of the antinutritional factors. The antimicrobial activity of the extracts against the standard culture of S. aureus (control) and S. aureus isolated from cattle and rabbits were investigated comparatively relative to that of oxacillin. It was found that both the control S. aureus and the isolated S. aureus are susceptible to all the four plant extracts, and sensitive to oxacillin. Of all the S. aureus including the control, MRSA2 is the most susceptible to all the extracts at 1000 μg/mL, except that of V. mollis where it is the least susceptible. Among all the plant extracts, P. guajava is the most active against MRSA2 and SOSA2. Therefore, the isolates from cattle (MRSA1 and MRSA2) are more susceptible to all the plant extracts than the isolates from rabbits. Among all the rabbit isolates, CoNS3 is the least susceptible to the extracts. Since all the plant extracts exhibit remarkable inhibitory activities against all the S. aureus strains, they are promising towards the production of therapeutic drugs.
Collapse
Affiliation(s)
| | - Peter Adeniyi Alaba
- Department of Chemical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Valente Velázquez-Ordoñez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Alberto Barbabosa-Pliego
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Mohmaed Z M Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, Egypt
| | - María Uxúa Alonso-Fresán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Luis Miguel Camacho-Díaz
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Km. 3.5 Carretera Cd. Altamirano-Iguala, CP 40660 Cd. Altamirano, Guerrero, Mexico.
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico.
| |
Collapse
|