1
|
Xu R, Yu Y, Chen T. Exploring the dark side of probiotics to pursue light: Intrinsic and extrinsic risks to be opportunistic pathogens. Curr Res Food Sci 2025; 10:101044. [PMID: 40235735 PMCID: PMC11999689 DOI: 10.1016/j.crfs.2025.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Probiotics, live microorganisms with multiple health benefits, have gained popularity for their roles in maintaining daily health and treating a variety of diseases. However, they have the potential to be opportunistic pathogens in some conditions. This review delves into the intrinsic and extrinsic risks associated with probiotics. Intrinsic risks involve the production of harmful substances, such as toxins and invasive factors, biofilm formation, bacteria emboli, antibiotic resistance with relevant genetic materials, genetic plasticity, and metabolic issues, while extrinsic risks include problems in regulatory oversight and public awareness, host health status and appropriately administration. It emphasizes the need for a balanced view of their therapeutic benefits and potential hazards, advocating for further research to understand the complex interactions between probiotics and the human microbiome, to optimize the safety and efficacy of probiotics.
Collapse
Affiliation(s)
- Ruiyan Xu
- Ophthalmologic Centre, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yifeng Yu
- Ophthalmologic Centre, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingtao Chen
- Ophthalmologic Centre, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- National Engineering Research Centre for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Tian R, Tian Y, Mi Q, Huang L. Histocytological analysis reveals the biocontrol activity of a rhizospheric bacterium Pseudomonas rhizophila Z98 against kiwifruit bacterial canker. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106251. [PMID: 40015847 DOI: 10.1016/j.pestbp.2024.106251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 03/01/2025]
Abstract
Kiwifruit bacterial canker (KBC), caused by Pseudomonas syringae pv. actinidiae (Psa), poses a significant threat to the global kiwifruit industry. Currently, there is a scarcity of highly efficient biocontrol agents for the prevention and control of KBC, which limits the comprehensive management of the disease. This study investigates the biocontrol potential of P. rhizophila Z98, isolated from kiwifruit rhizosphere, which exhibits significant inhibitory effects on Psa. The in vitro leaf disc and vein assays demonstrated Z98's potent preventive effect, achieving a 98.89 % reduction in KBC and its ability to limit Psa's vascular spread. Microscopic analysis showed that Psa cells exposed to Z98 underwent significant morphological changes, including cell wall depressions, wrinkling, tumorous protrusions, and intracellular disruptions like cytoplasmic disintegration and vacuolization, culminating in cell death. These effects were were mirrored with Z98's fermentation broth crude extract, suggesting that Z98 combats Psa through the secretion of bioactive substances. Additionally, Z98 successfully colonizes kiwifruit tissues, achieving a biomass of 3.78 × 105 CFU·g-1 without compromising tissue integrity. Moreover, Z98 induces the upregulation of defense-related genes and callose deposition in kiwifruit, thereby activating plant immune responses. These findings elucidate the cellular mechanisms underlying the biocontrol effects of rhizosphere bacteria and offer a novel biological resource for managing bacterial canker in woody plants.
Collapse
Affiliation(s)
- Runze Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yujie Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Qianqian Mi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2025; 17:292-314. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Swanson KS, Allenspach K, Amos G, Auchtung TA, Bassett SA, Bjørnvad CR, Everaert N, Martín-Orúe SM, Ricke SC, Ryan EP, Fahey GC. Use of biotics in animals: impact on nutrition, health, and food production. J Anim Sci 2025; 103:skaf061. [PMID: 40036559 PMCID: PMC12010704 DOI: 10.1093/jas/skaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
Probiotics, prebiotics, and other biotic substances are not only effective ways to promote a healthy gastrointestinal tract, an effective immune system, and the overall health of humans, but also in agricultural and companion animals. Because key differences exist in regard to gastrointestinal tract anatomy and physiology, dietary management and feeding strategy, and disease susceptibility, however, biotic types and amounts often differ according to host species and life stage. Despite these differences, the literature demonstrates the value of biotics in agricultural and companion animal species. While high variability in responsiveness and efficacy has been reported, biotic substances may be effectively used to improve digestion, reduce morbidity, increase growth rate and/or efficiency in agricultural animals and promote gastrointestinal health and immune response in companion animals. As the oversight of antibiotic use intensifies, the population density of animals and humans increases, and production strategies of agricultural animals are more heavily scrutinized, the importance of biotics and other health promotors will continue to increase in the future. To date, the effects of animal biotic use have focused primarily on the farm, home, or veterinary clinic. In the future, their impact must be viewed on a larger scale. As global "One Health" approaches seek to reduce antimicrobial use and resistance and there are increasing demands for sustainable and safe food production, biotics will continue to be an important part of the solution. As knowledge of gastrointestinal microbiomes grows and the biotic field develops, more targeted and effective strategies for health promotion in these species are expected. At the 2023 International Scientific Association for Probiotics and Prebiotics meeting, experts were invited to participate in a discussion group focused on "The Use of Probiotics and Prebiotics in Agricultural and Companion Animals". This review reports the outcomes of that discussion, including the documented use of probiotics, prebiotics, and other biotic substances to promote health or treat disease in agricultural and companion animals, provide implications of animal biotic use on human health, and provide perspective on how scientific advances may impact the development and improvement of biotics in the future.
Collapse
Affiliation(s)
- Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Karin Allenspach
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Gregory Amos
- Waltham Petcare Science Institute, Melton Mowbray LE13, UK
| | | | - Shalome A Bassett
- Fonterra Limited, Fonterra Research & Development Centre, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Charlotte R Bjørnvad
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Susana M Martín-Orúe
- Department of Animal and Food Science, Animal Nutrition and Welfare Service, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80524, USA
| | - George C Fahey
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Ma H, Ding Y, Peng J, Li Y, Pan R, Long Y, Zhao Y, Guo R, Ma Y. Identification and characterization of a novel bacteriocin PCM7-4 and its antimicrobial activity against Listeria monocytogenes. Microbiol Res 2025; 290:127980. [PMID: 39581173 DOI: 10.1016/j.micres.2024.127980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Listeria monocytogenes, a pathogenic bacterium causing zoonotic diseases, necessitates the urgent search for novel anti-Listeria monocytogenes drugs due to the continuous emergence of drug-resistant bacteria. In this study, we isolated and identified a bacteriocin-producing strain CM7-4 from seawater as Bacillus velezensis through 16S rRNA sequence analysis. Moreover, we successfully purified a novel bacteriocin named PCM7-4 from Bacillus velezensis CM7-4. The molecular weight of PCM7-4 was determined to be 40,228.99 Da. Notably, PCM7-4 exhibited broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria with a minimum inhibitory concentration (MIC) of 5.625 μg/mL against Listeria monocytogenes specifically. It demonstrated heat resistance and high stability within the pH range of 2-12 while being sensitive to proteinase K degradation without any observed hemolytic activity. Furthermore, SEM analysis revealed that PCM7-4 effectively inhibited biofilm formation and disrupted cell membranes in Listeria monocytogenes cells. Transcriptome analysis revealed that PCM7-4 exerts an impact on genes associated with crucial metabolic pathways, encompassing the biosynthesis of secondary metabolites, phosphotransferase systems (PTS), and starch/sucrose metabolism. These findings highlight the significant potential of bacteriocin PCM7-4 for the development of effective antimicrobial interventions targeting food-borne pathogenic bacteria.
Collapse
Affiliation(s)
- Haotian Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuexia Ding
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jinju Peng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruixue Pan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuner Long
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yining Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rongxian Guo
- Laboratory of Functional Microbiology and Animal Health, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | - Yi Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
6
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Consortium of Lactobacillus crispatus 2029 and Ligilactobacillus salivarius 7247 Strains Shows In Vitro Bactericidal Effect on Campylobacter jejuni and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction. Antibiotics (Basel) 2024; 13:1143. [PMID: 39766533 PMCID: PMC11672454 DOI: 10.3390/antibiotics13121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives:Campylobacter jejuni (CJ) is the etiological agent of the world's most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of Lactobacillus crispatus 2029 (LC2029), Ligilactobacillus salivarius 7247 (LS7247), and a mannan-rich prebiotic (Actigen®). The purpose of this work was to study the in vitro anti-adhesive and antagonistic activities of the created synbiotic against MDR CJ strains, along with its role in preventing intestinal barrier dysfunction, which disrupts intestinal homeostasis. Methods: A complex of microbiological, immunological, and molecular biological methods was used. The ability of the LC2029 and LS7247 consortium to promote intestinal homeostasis in vitro was assessed by the effectiveness of controlling CJ-induced TLR4 activation, secretion of pro-inflammatory cytokines, development of intestinal barrier dysfunction, and production of intestinal alkaline phosphatase (IAP). Results: All MDR CJ strains showed marked adhesion to human Caco-2, pig IPEC-J2, chicken CPCE, and bovine BPCE enterocytes. For the first time, we found that the prebiotic and cell-free culture supernatant (CFS) from the consortium of LC2029 and LS7247 strains exhibit an additive effect in inhibiting the adhesion of MDR strains of CJ to human and animal enterocytes. CFS from the LC2029 and LS7247 consortium increased the permeability of the outer and inner membranes of CJ cells, which led to extracellular leakage of ATP and provided access to the peptidoglycan of the pathogen for the peptidoglycan-degrading bacteriocins nisin and enterolysin A produced by LS7247. The LC2029 and LS7247 consortium showed a bactericidal effect on CJ strains. Co-cultivation of the consortium with CJ strains resulted in a decrease in the viability of the pathogen by 6 log. CFS from the LC2029 and LS7247 consortium prevented the growth of CJ-induced TLR4 mRNA expression in enterocytes. The LC2029 and LS7247 consortium inhibited a CJ-induced increase in IL-8 and TNF-α production in enterocytes, prevented CJ-induced intestinal barrier dysfunction, maintained the transepithelial electrical resistance of the enterocyte monolayers, and prevented an increase in intestinal paracellular permeability and zonulin secretion. CFS from the consortium stimulated IAP mRNA expression in enterocytes. The LC2029 and LS7247 consortium and the prebiotic Actigen represent a new synergistic synbiotic with anti-CJ properties that prevents intestinal barrier dysfunction and preserves intestinal homeostasis. Conclusions: These data highlight the potential of using a synergistic synbiotic as a preventive strategy for creating feed additives and functional nutrition products based on it to combat the prevalence of campylobacteriosis caused by MDR strains in animals and humans.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia;
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State University of Veterinary Medicine, 196084 Saint Petersburg, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
7
|
Abdel-Nasser M, Abdel-Maksoud G, Eid AM, Abdel-Rahman MA, Hassan SED, Abdel-Nasser A, Fouda A. Evaluating the efficacy of probiotic bacterial strain Lactobacillus plantarum for inhibition of fungal strains associated with historical manuscript deterioration: An experimental study. Fungal Biol 2024; 128:1992-2006. [PMID: 39174235 DOI: 10.1016/j.funbio.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
The aim of this study is to develop safe biological methods for controlling fungal deterioration of historical manuscripts. Therefore, fifteen fungal isolates were obtained from paper sheets and leather skins of a deteriorated historical manuscript (dated back to the 13th century). Those isolates were identified using both traditional methods and ITS-sequencing analysis. Aspergillus niger accounted for seven strains, Penicillium citrinum for one strain, Aspergillus flavus for three, Aspergillus fumigatus for one, Aspergillus nidulans for one, and Penicillium chrysogenum for two of the fungal strains that were obtained. The ability of fungal strains for the secretion of cellulase, amylase, gelatinase, and pectinase as hydrolytic enzymes was evaluated. The capability of the probiotic-bacterial strain Lactobacillus plantarum DSM 20174 for inhibition of fungal strains that cause severe deterioration was studied using ethyl acetate-extract. The metabolic profile of the ethyl acetate-extract showed the presence of both high- and low-molecular-weight active compounds as revealed by GC-MS analysis. The safe dose to prevent fungal growth was determined by testing the ethyl acetate extract's biocompatibility against Wi38 and HFB4 as normal cell lines. The extract was found to have a concentration-dependent cytotoxic impact on Wi38 and HFB4, with IC50 values of 416 ± 4.5 and 349.7 ± 5.9 μg mL-1, respectively. It was suggested that 100 μg mL-1 as a safe concentration could be used for paper preservation. Whatman filter paper treated with ethyl acetate extract was used to cultivate the fungal strain Penicillium citrinum AX2. According to data analysis, fungal inhibition measurement, SEM, ATR-FT-IR, XRD, color change measurement, and mechanical property assessment, the recommended concentration of ethyl acetate extract was adequate to protect paper inoculated with the highest enzymatic producer fungi, P. citrinum AX2.
Collapse
Affiliation(s)
- Mahmoud Abdel-Nasser
- Department of Manuscripts Conservation, Al-Azhar Al-Sharif Library, Cairo, 11511, Egypt
| | - Gomaa Abdel-Maksoud
- Organic Materials Conservation Department, Faculty of Archaeology, Cairo University, 12613, Giza, Egypt.
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed Ali Abdel-Rahman
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Aya Abdel-Nasser
- Food Toxicology and Contaminants Department, National Research Centre, Cairo, 12622, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt; School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| |
Collapse
|
8
|
Li R, Miao Z, Liu Y, Chen X, Wang H, Su J, Chen J. The Brain-Gut-Bone Axis in Neurodegenerative Diseases: Insights, Challenges, and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307971. [PMID: 39120490 PMCID: PMC11481201 DOI: 10.1002/advs.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases are global health challenges characterized by the progressive degeneration of nerve cells, leading to cognitive and motor impairments. The brain-gut-bone axis, a complex network that modulates multiple physiological systems, has gained increasing attention owing to its profound effects on the occurrence and development of neurodegenerative diseases. No comprehensive review has been conducted to clarify the triangular relationship involving the brain-gut-bone axis and its potential for innovative therapies for neurodegenerative disorders. In light of this, a new perspective is aimed to propose on the interplay between the brain, gut, and bone systems, highlighting the potential of their dynamic communication in neurodegenerative diseases, as they modulate multiple physiological systems, including the nervous, immune, endocrine, and metabolic systems. Therapeutic strategies for maintaining the balance of the axis, including brain health regulation, intestinal microbiota regulation, and improving skeletal health, are also explored. The intricate physiological interactions within the brain-gut-bone axis pose a challenge in the development of effective treatments that can comprehensively target this system. Furthermore, the safety of these treatments requires further evaluation. This review offers a novel insights and strategies for the prevention and treatment of neurodegenerative diseases, which have important implications for clinical practice and patient well-being.
Collapse
Affiliation(s)
- Rong Li
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Zong Miao
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Yu'e Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xiao Chen
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Hongxiang Wang
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Jiacan Su
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Juxiang Chen
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
9
|
Capri FC, Gaglio R, Botta L, Settanni L, Alduina R. Selection of starter lactic acid bacteria capable of forming biofilms on wooden vat prototypes for their future application in traditional Sicilian goat's milk cheese making. Int J Food Microbiol 2024; 419:110752. [PMID: 38781647 DOI: 10.1016/j.ijfoodmicro.2024.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
In this study, 327 presumptive lactic acid bacteria (LAB) were isolated from goats' milk acid curds produced at a Sicilian dairy farm with the aim to identify potential starter cultures for traditional cheeses. All isolates were first processed by randomly amplified polymorphic DNA (RAPD)-PCR analysis. This approach identified 63 distinct strains which were evaluated for their acidifying capacity. Only 15 strains specifically stood out for their acidification capacity and were identified through 16S rRNA gene sequencing as Lactococcus lactis (11 strains) Enterococcus faecalis (three strains), and Ligilactobacillus animalis (one strain). Notably, all 15 LAB isolates produced bacteriocin-like inhibitory substances and anti-biofilm compounds, against both planktonic and biofilm forms of Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli, and Staphylococcus aureus, albeit at varying levels. Among these 15 LAB, En. faecalis RGM25 and Lc. lactis RGM55, susceptible to five antibiotics tested, were put in contact with wooden vat prototypes, because all equipment used in traditional cheese production in Sicily are made of wood. Scanning electron microscopy and bacterial plate counts of the wooden vat prototypes showed the development of biofilms at levels of approximately 6.0 log CFU/cm2. Overall, this study contributes to establishing a custom-made LAB starter cultures with bio-preservatives properties for Sicilian cheese productions.
Collapse
Affiliation(s)
- Fanny Claire Capri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Bldg. 16-17, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy.
| | - Luigi Botta
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Bldg. 6, 90128 Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Bldg. 16-17, 90128 Palermo, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, 90133 Palermo, Italy
| |
Collapse
|
10
|
Li J, Tian C, Feng S, Cheng W, Tao S, Li C, Xiao Y, Wei H. Modulation of Gut Microbial Community and Metabolism by Bacillus licheniformis HD173 Promotes the Growth of Nursery Piglets Model. Nutrients 2024; 16:1497. [PMID: 38794735 PMCID: PMC11124511 DOI: 10.3390/nu16101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Maintaining the balance and stability of the gut microbiota is crucial for the gut health and growth development of humans and animals. Bacillus licheniformis (B. licheniformis) has been reported to be beneficial to the gut health of humans and animals, whereas the probiotic effects of a new strain, B. licheniformis HD173, remain uncertain. In this study, nursery piglets were utilized as animal models to investigate the extensive impact of B. licheniformis HD173 on gut microbiota, metabolites, and host health. The major findings were that this probiotic enhanced the growth performance and improved the health status of the nursery piglets. Specifically, it reduced the level of pro-inflammatory cytokines IL-1β and TNF-α in the serum while increasing the level of IL-10 and SOD. In the gut, B. licheniformis HD173 reduced the abundance of pathogenic bacteria such as Mycoplasma, Vibrio, and Vibrio metschnikovii, while it increased the abundance of butyrate-producing bacteria, including Oscillospira, Coprococcus, and Roseburia faecis, leading to an enhanced production of butyric acid. Furthermore, B. licheniformis HD173 effectively improved the gut metabolic status, enabling the gut microbiota to provide the host with stronger metabolic abilities for nutrients. In summary, these findings provide scientific evidence for the utilization of B. licheniformis HD173 in the development and production of probiotic products for maintaining gut health in humans and animals.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (C.T.); (S.F.)
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Cheng Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (C.T.); (S.F.)
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Shuaifei Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (C.T.); (S.F.)
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (C.T.); (S.F.)
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| | - Yuncai Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.C.); (S.T.)
| |
Collapse
|
11
|
Li XL, Lian JM, Chen XL, Fan QY, Yan Y, Cui FJ. A Novel Bacillus amyloliquefaciens Specifically Improving the Solubility and Antioxidant Activities of Edible Bird's Nest. Curr Microbiol 2024; 81:164. [PMID: 38710854 DOI: 10.1007/s00284-024-03675-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/20/2024] [Indexed: 05/08/2024]
Abstract
Edible bird's nest (EBN), a most highly priced and valuable foodstuff, contains high percentage of proteins and carbohydrates. However, proteins adhering to these carbohydrates make the EBN hard and tough, which need to be boiled as the bird's nest soup to make the Chinese cuisine. To overcome the hard and tough texture of EBN and improve the digestion degrees, the present study screened and identified a probiotic strain Bacillus amyloliquefaciens YZW02 from 5-year stored EBN sample completely solubilizing EBN for the first time. The 24-h B. amyloliquefaciens fermented EBN contained 20.30-21.48 mg/mL of the soluble protein contents with a recovery rate of 98-100%, DPPH radical scavenging rate of 84.76% and ABTS radical scavenging capacity of 41.05%. The mixed fermentation of B. amyloliquefaciens YZW02 and Bacillus natto BN1 were further applied to improve the low-MW peptide percentages and antioxidant activities. The mixed-fermentation of B. natto BN1 with 4-h cultured B. amyloliquefaciens YZW02 had the lowest percentage (82.23%) of >12-kDa proteins/peptides and highest percentages of 3-12 kDa, 1-3 kDa and 0.1-1 kDa peptides of 8.6% ± 0.08, 7.57% ± 0.09, 1.77% ± 0.05 and 0.73% ± 0.05, with the highest DPPH, ABTS and •OH scavenging capacity of 90.23%, 46.45% and 49.12%, respectively. These findings would provide an efficient strategy for improving the solubility and antioxidant activities of EBNs.
Collapse
Affiliation(s)
- Xin-Lin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jian-Mei Lian
- Xiamen Yan Palace Seelong Food Co, Ltd, Bird's Nest Research Institute, Xiamen, 361100, Fujian, China
| | - Xiao-Ling Chen
- Xiamen Yan Palace Seelong Food Co, Ltd, Bird's Nest Research Institute, Xiamen, 361100, Fujian, China
| | - Qun-Yan Fan
- Xiamen Yan Palace Seelong Food Co, Ltd, Bird's Nest Research Institute, Xiamen, 361100, Fujian, China.
| | - Ying Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
12
|
Hu K, Guo K, Wang X, Wang S, Li J, Li Q, Zhao N, Liu A, He L, Hu X, Yang Y, Zou L, Chen S, Liu S. Occurrence of ochratoxin A in Sichuan bacon from different geographical regions and characterization and biocontrol of ochratoxigenic Aspergillus westerdijkiae strain 21G2-1A. Food Res Int 2024; 184:114272. [PMID: 38609249 DOI: 10.1016/j.foodres.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Sichuan bacon represents the most prevalent dry-cured meat product across Southwest China, but it is vulnerable to fungal spoilage. In the present study, a total of 47 Sichuan bacons were obtained from different regions of the Sichuan Province and analyzed for the presence of ochratoxin A (OTA), yielding a positive rate of 23.4 % (11/47). All the observed OTA concentrations exceeded the maximum admissible dose in meat products (1 μg/kg) established by some EU countries, with the highest OTA concentration being 250.75 μg/kg, which raises a food safety concern and reveals the need for a standardized scientific processing protocol. Then, an OTA-producing fungus named 21G2-1A was isolated from positive samples and found to be Aspergillus westerdijkiae. Further characterization suggested a positive correlation between fungal growth and OTA production. The optimal temperature for the former was 25 °C, while it was 20 °C for the latter. Although the A. westerdijkiae strain 21G2-1A demonstrated greater mycelium growth in the presence of NaCl, OTA production was significantly dismissed when the salinity was greater than 5 %. Four lactic acid bacteria (LAB) were screened out as antagonists against the ochratoxigenic fungus. In vitro evaluation of the antagonists revealed that live cells inhibited fungal growth, and adsorption also contributed to OTA removal at different levels. This study sheds some light on OTA control in Sichuan bacon through a biological approach.
Collapse
Affiliation(s)
- Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Keyu Guo
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Song Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Ning Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| |
Collapse
|
13
|
Saeed M, Khanam R, Hafeez H, Ahmad Z, Saleem S, Tariq MR, Safdar W, Waseem M, Ali U, Azam M, Rehman MA, Shah FUH. Viability of Free and Alginate-Carrageenan Gum Coated Lactobacillus acidophilus and Lacticaseibacillus casei in Functional Cottage Cheese. ACS OMEGA 2024; 9:13840-13851. [PMID: 38559922 PMCID: PMC10976411 DOI: 10.1021/acsomega.3c08588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The survivability of encapsulated and nonencapsulated probiotics consisting of Lactobacillus acidophilus and Lacticaseibacillus casei and the nutritional, physicochemical, and sensorial features of cottage cheese were investigated under refrigeration storage at 4 °C for 28 days. Microbeads of L. acidophilus and L. casei were developed using 2% sodium alginate, 1.5% sodium alginate and 0.5% carrageenan, and 1% sodium alginate and 1% carrageenan using an encapsulation technique to assess the probiotic viability in cottage cheese under different gastrointestinal conditions (SGF (simulated gastric juice), SIF (simulated intestinal fluid)), and bile salt) and storage conditions. Scanning electron microscopy (SEM) elucidated the stable structure of microbeads, Fourier transform infrared spectroscopy (FTIR) confirmed the presence probiotics in the microcapsules, and X-ray diffraction (XRD) demonstrated the amorphous state of microbeads. Furthermore, the highest encapsulation efficiency was observed for alginate 1% and carrageenan 1% microbeads (T3), i.e., 95%. Likewise, viability was recorded in T3 against SGF, SIF, and bile salt solution, i.e., 8.5, 8.8, and 8.9 log CFU/g at 80 min of exposure, compared to the control. The results of pH showed a significant (p < 0.05) decline that ultimately increased the titratable acidity. Nutritional analysis of cottage cheese revealed the highest levels of ash, protein, and total solids in T3, exhibiting mean values of 3.2, 22, and 43.2 g/100 g, respectively, after 28 days of storage. The sensory evaluation of cottage cheese demonstrated better color, flavor, and textural attributes in T3. Conclusively, synergistic addition of L. acidophilus and L. casei encapsulated with alginate-carrageenan gums was found to be more effective in improving the viability of probiotics in cottage cheese than noncapsulated cells while carrying better magnitudes of ash and protein, lower acidity, and pleasant taste.
Collapse
Affiliation(s)
- Muhammad Saeed
- National
Institute of Food Science and Technology, University of Agriculture, Faisalabad 9200, Pakistan
| | - Rehana Khanam
- National
Institute of Food Science and Technology, University of Agriculture, Faisalabad 9200, Pakistan
| | - Hammad Hafeez
- Department
of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zulfiqar Ahmad
- Department
of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shahzad Saleem
- Department
of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan
| | - Muhammad Rizwan Tariq
- Department
of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Waseem Safdar
- Department
of Biological Sciences, National University
of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhammad Waseem
- Department
of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Umair Ali
- Department
of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Azam
- National
Institute of Food Science and Technology, University of Agriculture, Faisalabad 9200, Pakistan
| | - Muhammad Adil Rehman
- Department
of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Faiz-ul-Hassan Shah
- Department
of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
14
|
Zhang J, Shi B, Lu S, Wang S, Ren X, Liu R, Dong H, Li K, Fouad D, Ataya FS, Mansoor MK, Qamar H, Wu Q. Metagenomic analysis for exploring the potential of Lactobacillus yoelii FYL1 to mitigate bacterial diarrhea and changes in the gut microbiota of juvenile yaks. Microb Pathog 2024; 186:106496. [PMID: 38072228 DOI: 10.1016/j.micpath.2023.106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Diarrhea in calves is a common disease that results in poor nutrient absorption, poor growth and early death which leads to productivity and economic losses. Therefore, it is important to explore the methods to reduce diarrhea in yak's calves. Efficacy of lactic acid bacteria (LAB) for improvement of bacterial diarrhea is well recognized. For this purpose, two different doses (107 CFU, 1011 CFU) of Lactobacillus yoelii FYL1 isolated from yaks were fed to juvenile yaks exposed to E. coli O78. After a trial period of ten days fresh feces and intestinal contents of the experimental yaks were collected and metagenomics sequencing was performed. It was found that feeding a high dose of Lactobacillus yoelii FYL1 decreased abundance of phylum Firmicutes in the E. coli O78 infected group whereas, it was high in animals fed low dose of Lactobacillu yoelii FYL1. Results also revealed that counts of bacteria from the family Oscillospiraceae, genus Synergistes and Megasphaera were higher in control group whereas, order Bifidobacteriales and family Bifidobacteriaceae were higher in infected group. It was observed that bacterial counts for Pseudoruminococcus were significantly (P < 0.05) higher in animals of group that were given high dose of Lactobacillus yoelii FYL1 (HLAB). Compared to infected group multiple beneficial bacterial genera such as Deinococus and Clostridium were found higher in the animals that were given a low dose of Lactobacillus yoelii FYL1 (LLAB). The abundance of pathogenic bacterial genera that included Parascardovia, Bacteroides and Methanobrevibacter was decreased (P < 0.05) in the lower dose treated group. The results of functional analysis revealed that animals of LLAB had a higher metabolism of terpenoids and polyketides compared to animals of infected group. Virus annotation also presented a significant inhibitory effect of LLAB on some viruses (P < 0.05). It was concluded that L. yoelii FYL1 had an improved effect on gut microbiota of young yaks infected with E. coli O78. This experiment contributes to establish the positive effects of LAB supplementation while treating diarrhea.
Collapse
Affiliation(s)
- Jingbo Zhang
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Bin Shi
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China; Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa, 850009, China
| | - Sijia Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuo Wang
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Xiaoli Ren
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Ruidong Liu
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Hailong Dong
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh, 11495, Saudi Arabia
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Khalid Mansoor
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hammad Qamar
- Institute of Animal Sciences, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Qingxia Wu
- Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
15
|
Cirillo V, Romano I, Woo SL, Di Stasio E, Lombardi N, Comite E, Pepe O, Ventorino V, Maggio A. Inoculation with a microbial consortium increases soil microbial diversity and improves agronomic traits of tomato under water and nitrogen deficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1304627. [PMID: 38126011 PMCID: PMC10731302 DOI: 10.3389/fpls.2023.1304627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Microbial-based biostimulants, functioning as biotic and abiotic stress protectants and growth enhancers, are becoming increasingly important in agriculture also in the context of climate change. The search for new products that can help reduce chemical inputs under a variety of field conditions is the new challenge. In this study, we tested whether the combination of two microbial growth enhancers with complementary modes of action, Azotobacter chroococcum 76A and Trichoderma afroharzianum T22, could facilitate tomato adaptation to a 30% reduction of optimal water and nitrogen requirements. The microbial inoculum increased tomato yield (+48.5%) under optimal water and nutrient conditions. In addition, the microbial application improved leaf water potential under stress conditions (+9.5%), decreased the overall leaf temperature (-4.6%), and increased shoot fresh weight (+15%), indicating that this consortium could act as a positive regulator of plant water relations under limited water and nitrogen availability. A significant increase in microbial populations in the rhizosphere with applications of A. chroococcum 76A and T. afroharzianum T22 under stress conditions, suggested that these inoculants could enhance soil microbial abundance, including the abundance of native beneficial microorganisms. Sampling time, limited water and nitrogen regimes and microbial inoculations all affected bacterial and fungal populations in the rhizospheric soil. Overall, these results indicated that the selected microbial consortium could function as plant growth enhancer and stress protectant, possibly by triggering adaptation mechanisms via functional changes in the soil microbial diversity and relative abundance.
Collapse
Affiliation(s)
- Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ida Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Sheridan L. Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ernesto Comite
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
16
|
Agirman B, Carsanba E, Settanni L, Erten H. Exploring yeast-based microbial interactions: The next frontier in postharvest biocontrol. Yeast 2023; 40:457-475. [PMID: 37653692 DOI: 10.1002/yea.3895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Fresh fruits and vegetables are susceptible to a large variety of spoilage agents before and after harvest. Among these, fungi are mostly responsible for the microbiological deteriorations that lead to economically significant losses of fresh produce. Today, synthetic fungicides represent the first approach for controlling postharvest spoilage in fruits and vegetables worldwide. However, the emergence of fungicide-resistant pathogen biotypes and the increasing awareness of consumers toward the health implications of hazardous chemicals imposed an urgent need to reduce the use of synthetic fungicides in the food supply; this phenomenon strengthened the search for alternative biocontrol strategies that are more effective, safer, nontoxic, low-residue, environment friendly, and cost-effective. In the last decade, biocontrol with antagonistic yeasts became a promising strategy to reduce chemical compounds during fruit and vegetable postharvest, and several yeast-based biocontrol products have been commercialized. Biocontrol is a multipartite system that includes different microbial groups (spoilage mold, yeast, bacteria, and nonspoilage resident microorganisms), host fruit, vegetables, or plants, and the environment. The majority of biocontrol studies focused on yeast-mold mechanisms, with little consideration for yeast-bacteria and yeast-yeast interactions. The current review focused mainly on the unexplored yeast-based interactions and the mechanisms of actions in biocontrol systems as well as on the importance and advantages of using yeasts as biocontrol agents, improving antagonist efficiency, the commercialization process and associated challenges, and future perspectives.
Collapse
Affiliation(s)
- Bilal Agirman
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| | - Erdem Carsanba
- Centro de Biotecnologia e Química Fina (CBQF), Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Luca Settanni
- Department of Agricultural, Food and Forestry Science, University of Palermo, Palermo, Italy
| | - Huseyin Erten
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| |
Collapse
|
17
|
Cheriet S, Lengliz S, Romdhani A, Hynds P, Abbassi MS, Ghrairi T. Selection and Characterization of Bacteriocinogenic Lactic Acid Bacteria from the Intestine of Gilthead Seabream ( Sparus aurata) and Whiting Fish ( Merlangius merlangus): Promising Strains for Aquaculture Probiotic and Food Bio-Preservation. Life (Basel) 2023; 13:1833. [PMID: 37763237 PMCID: PMC10532712 DOI: 10.3390/life13091833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
This study sought to evaluate the probiotic properties and the food preservation ability of lactic acid bacteria isolates collected from the intestines of wild marine fishes (gilthead seabream (Sparus aurata) (n = 60) and whiting fish (Merlangius merlangus) (n = 40)) from the Mediterranean sea in the area of Mostaganem city, Algeria. Forty-two isolates were identified as: Enterococcus durans (n = 19), Enterococcus faecium (n = 15), Enterococcus faecalis (n = 4), Lactococcus lactis subp. lactis (n = 3), and Lactobacillus plantarum (n = 1). All isolates showed inhibition to at least one indicator strain, especially against Listeria monocytogenes, Staphylococcus aureus, Paenibacillus larvae, Vibrio alginolyticus, Enterococcus faecalis, Bacillus cereus, and Bacillus subtilis. In all collected isolates, PCR analysis of enterocin-encoding genes showed the following genes: entP (n = 21), ent1071A/B (n = 11), entB (n = 8), entL50A/B (n = 7), entAS48 (n = 5), and entX (n = 1). Interestingly, 15 isolates harbored more than one ent gene. Antimicrobial susceptibility, phenotypic virulence, and genes encoding virulence factors were investigated by PCR. Resistance to tetracycline (n = 8: tetL + tetK), erythromycin (n = 7: 5 ermA, 2 msrA, and 1 mef(A/E)), ciprofloxacin (n = 1), gentamicin (n = 1: aac(6')-aph(2″)), and linezolid (n = 1) were observed. Three isolates were gelatinase producers and eight were α-hemolytic. Three E. durans and one E. faecium harbored the hyl gene. Eight isolates showing safety properties (susceptible to clinically relevant antibiotics, free of genes encoding virulence factors) were tested to select probiotic candidates. They showed high tolerance to low pH and bile salt, hydrophobicity power, and co-culture ability. The eight isolates showed important phenotypic and genotypic traits enabling them to be promising probiotic candidates or food bio-conservers and starter cultures.
Collapse
Affiliation(s)
- Sarah Cheriet
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia; (S.C.); (S.L.); (A.R.)
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 2092, Tunisia;
| | - Sana Lengliz
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia; (S.C.); (S.L.); (A.R.)
- Laboratory of Materials, Molecules and Application LR11ES22, Preparatory Institute for Scientific and Technical Studies, University of Carthage, Tunis 1054, Tunisia
| | - Amel Romdhani
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia; (S.C.); (S.L.); (A.R.)
| | - Paul Hynds
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, Grangegorman, Dublin 7, D07 H6K8 Dublin, Ireland;
| | - Mohamed Salah Abbassi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia; (S.C.); (S.L.); (A.R.)
- Research Laboratory «Antimicrobial Resistance» LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 2092, Tunisia;
| |
Collapse
|
18
|
Akhtar M, Nosheen A, Keyani R, Yasmin H, Naz R, Mumtaz S, Hassan MN. Biocontrol of Rhizoctonia solani in basmati rice by the application of Lactobacillus and Weissella spp. Sci Rep 2023; 13:13855. [PMID: 37620521 PMCID: PMC10449839 DOI: 10.1038/s41598-023-41058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Rice is a staple food crop and is a major source of employment and income in the world. However, the attack of fungal disease poses a serious threat to the crop growth and productivity and leads toward yield loses. Therefore, current study was performed to evaluate the biocontrol potential of Lactobacillus and Weissella spp. on basmati rice against Rhizoctonia solani. Agar disc method was performed to evaluate the antifungal activity of both bacteria against R. solani. Petri plate and pot experiments were conducted to evaluate the growth promotion and biocontrol potential of both bacteria in Basmati rice under R. solani stress. Results indicated that maximum antifungal activity (82%) was recorded by Lactobacillus sp. Maximum phosphate solubilization and siderophore production was recorded by Weissella sp. In petri plate experiment, maximum root length, root fresh and dry weight (36%, 40% and 13%) was recorded by Weissella sp. and maximum shoot length and shoot fresh weight (99% and 107%) by Lactobacillus sp. In pot experiment, both bacteria enhanced the growth parameters of Basmati rice including root and shoot length, fresh and dry weight as well as no. of lateral roots. Application of Weissella sp. resulted in maximum increase (332% and 134%) in chlorophyll a and b content while Lactobacillus sp. + R. solani showed maximum (42%) carotenoid contents. Lactobacillus sp. + R. solani showed maximum increase in the proline (54%) and sugar contents (100%) while Lactobacillus sp. alone showed maximum (35%) soluble protein contents. Plant defense enzymes i-e SOD (400%), POD (25%), CAT (650%), PPO (14%) and PAL (124%) were notably increased by Weissella sp. + R. solani and Lactobacillus sp + R. solani. The Lactobacillus sp showed the best results in antifungal activity against R. solani and Weissella sp. showed the best results in production of defense enzymes in basmati rice against R. solani stress and can be suggested as the potent biocontrol agents for the rice crop.
Collapse
Affiliation(s)
- Maira Akhtar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan.
| | - Rumana Keyani
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan
| | - Saqib Mumtaz
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan
| | - Muhammad Nadeem Hassan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan
| |
Collapse
|
19
|
Mihailovskaya VS, Sutormin DA, Karipova MO, Trofimova AB, Mamontov VA, Severinov K, Kuznetsova MV. Bacteriocin-Producing Escherichia coli Q5 and C41 with Potential Probiotic Properties: In Silico, In Vitro, and In Vivo Studies. Int J Mol Sci 2023; 24:12636. [PMID: 37628817 PMCID: PMC10454217 DOI: 10.3390/ijms241612636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Commensal bacteriocin-producing Escherichia coli are of interest for possible use as probiotics to selectively control the spread of pathogenic bacteria. Here, we evaluated the biosafety and efficacy of two new bacteriocin-producing E. coli strains, Q5 (VKM B-3706D) and C41 (VKM B-3707D), isolated from healthy farm animals. The genomes of both strains were sequenced, and genes responsible for the antagonistic and colonization abilities of each strain were identified. In vitro studies have shown that both strains were medium-adhesive and demonstrated antagonistic activity against most enteropathogens tested. Oral administration of 5 × 108 to 5 × 1010 colony-forming units of both strains to rats with drinking water did not cause any disease symptoms or side effects. Short-term (5 days) oral administration of both strains protected rats from colonization and pathogenic effects of a toxigenic beta-lactam-resistant strain of E. coli C55 and helped preserve intestinal homeostasis. Taken together, these in silico, in vitro, and in vivo data indicate that both strains (and especially E. coli Q5) can be potentially used for the prevention of colibacillosis in farm animals.
Collapse
Affiliation(s)
- Veronika S. Mihailovskaya
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva Street 13, 614081 Perm, Russia;
| | - Dmitry A. Sutormin
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (D.A.S.); (V.A.M.)
| | - Marina O. Karipova
- Department of Microbiology and Virology, Perm State Medical University Named after Academician E. A. Wagner, 614000 Perm, Russia;
| | - Anna B. Trofimova
- Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Victor A. Mamontov
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (D.A.S.); (V.A.M.)
| | - Konstantin Severinov
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Marina V. Kuznetsova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva Street 13, 614081 Perm, Russia;
- Department of Microbiology and Virology, Perm State Medical University Named after Academician E. A. Wagner, 614000 Perm, Russia;
| |
Collapse
|
20
|
Abou Elez RMM, Elsohaby I, Al-Mohammadi AR, Seliem M, Tahoun ABMB, Abousaty AI, Algendy RM, Mohamed EAA, El-Gazzar N. Antibacterial and anti-biofilm activities of probiotic Lactobacillus plantarum against Listeria monocytogenes isolated from milk, chicken and pregnant women. Front Microbiol 2023; 14:1201201. [PMID: 37538844 PMCID: PMC10394229 DOI: 10.3389/fmicb.2023.1201201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that poses significant risks to public health and food safety. The present study aimed to identify the presence of Listeria spp. in various samples, including pasteurized milk, chicken fillets, and stool samples from pregnant women in Sharkia Governorate, Egypt. Additionally, the study identified the serotypes, virulence-associated genes, antimicrobial resistance patterns, and biofilm formation in L. monocytogenes isolates. Moreover, the antibacterial and anti-biofilm activity of Lactobacillus plantarum ATCC 14917 (L. plantarum) against L. monocytogenes isolates was investigated. A cross-sectional study was conducted from August 2021 to January 2022 to collect 300 samples of pasteurized milk, chicken fillets, and stool from pregnant women admitted to outpatient clinics of hospitals. The results showed that 32.7% of the samples were positive for Listeria spp., including L. innocua (48.9%), L. monocytogenes (26.5%), L. ivanovii (14.3%), L. grayi (5.1%), and L. welshimeri (5.1%). Among all L. monocytogenes isolates, hlyA, actA, inlC, and inlJ virulence-associated genes were detected. However, the virulence genes plcB, iap, and inlA were found in 10 (38.5%), 8 (30.8%), and 25 (96.2%) isolates, respectively. The L. monocytogenes isolates classified into four serotypes (1/2a, 1/2b, 1/2c, and 4b), with 1/2a and 4b each identified in 30.8% of the isolates, while 1/2b and 1/2c were identified in 19.2% of the isolates. All L. monocytogenes isolates showed 100% resistance to streptomycin, kanamycin, and nalidix acid, and 92.3% of isolates showed gentamicin resistance. However, all isolates were susceptible to ampicillin and ampicillin/sulbactam. Multidrug resistance (MDR) was observed in 20 (76.9%) L. monocytogenes isolates. The biofilm formation ability of 26 L. monocytogenes isolates was evaluated at different incubation temperatures. At 4°C, 25°C, and 37°C, 53.8, 69.2, and 80.8% of the isolates, respectively, were biofilm producers. Furthermore, 23.1% were strong biofilm producers at both 4°C and 25°C, while 34.6% were strong biofilm formers at 37°C. Treating L. monocytogenes isolates with L. plantarum cell-free supernatant (CFS) reduced the number of biofilm-producing isolates to 15.4, 42.3, and 53.8% at 4°C, 25°C, and 37°C, respectively. L. plantarum's CFS antibacterial activity was tested against six virulent, MDR, and biofilm-forming L. monocytogenes isolates. At a concentration of 5 μg/mL of L. plantarum CFS, none of the L. monocytogenes isolates exhibited an inhibition zone. However, an inhibition zone was observed against L. monocytogenes strains isolated from pasteurized milk and pregnant women's stools when using a concentration of 10 μg/mL. Transmission electron microscopy (TEM) revealed that L. plantarum CFS induced morphological and intracellular structural changes in L. monocytogenes. In conclusion, this study identified virulent MDR L. monocytogenes isolates with strong biofilm-forming abilities in food products in Egypt, posing significant risks to food safety. Monitoring the prevalence and antimicrobial resistance profile of L. monocytogenes in dairy and meat products is crucial to enhance their safety. Although L. plantarum CFS showed potential antibacterial and anti-biofilm effects against L. monocytogenes isolates, further research is needed to explore its full probiotic potential.
Collapse
Affiliation(s)
- Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Marwa Seliem
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa B. M. B. Tahoun
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira I. Abousaty
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Reem M. Algendy
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Eman A. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Bose I, Roy S, Pandey VK, Singh R. A Comprehensive Review on Significance and Advancements of Antimicrobial Agents in Biodegradable Food Packaging. Antibiotics (Basel) 2023; 12:968. [PMID: 37370286 DOI: 10.3390/antibiotics12060968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Food waste is key global problem and more than 90% of the leftover waste produced by food packaging factories is dumped in landfills. Foods packaged using eco-friendly materials have a longer shelf life as a result of the increased need for high-quality and secure packaging materials. For packaging purposes, natural foundation materials are required, as well as active substances that can prolong the freshness of the food items. Antimicrobial packaging is one such advancement in the area of active packaging. Biodegradable packaging is a basic form of packaging that will naturally degrade and disintegrate in due course of time. A developing trend in the active and smart food packaging sector is the use of natural antioxidant chemicals and inorganic nanoparticles (NPs). The potential for active food packaging applications has been highlighted by the incorporation of these materials, such as polysaccharides and proteins, in biobased and degradable matrices, because of their stronger antibacterial and antioxidant properties, UV-light obstruction, water vapor permeability, oxygen scavenging, and low environmental impact. The present review highlights the use of antimicrobial agents and nanoparticles in food packaging, which helps to prevent undesirable changes in the food, such as off flavors, colour changes, or the occurrence of any foodborne outcomes. This review attempts to cover the most recent advancements in antimicrobial packaging, whether edible or not, employing both conventional and novel polymers as support, with a focus on natural and biodegradable ingredients.
Collapse
Affiliation(s)
- Ipsheta Bose
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow 226026, India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur 209402, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow 226026, India
| |
Collapse
|
22
|
Neidhöfer C, Rathore K, Parčina M, Sieber MA. ESKAPEE Pathogen Biofilm Control on Surfaces with Probiotic Lactobacillaceae and Bacillus species. Antibiotics (Basel) 2023; 12:871. [PMID: 37237774 PMCID: PMC10215598 DOI: 10.3390/antibiotics12050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Combatting the rapidly growing threat of antimicrobial resistance and reducing prevalence and transmission of ESKAPEE pathogens in healthcare settings requires innovative strategies, one of which is displacing these pathogens using beneficial microorganisms. Our review comprehensively examines the evidence of probiotic bacteria displacing ESKAPEE pathogens, with a focus on inanimate surfaces. A systematic search was conducted using the PubMed and Web of Science databases on 21 December 2021, and 143 studies were identified examining the effects of Lactobacillaceae and Bacillus spp. cells and products on the growth, colonization, and survival of ESKAPEE pathogens. While the diversity of study methods limits evidence analysis, results presented by narrative synthesis demonstrate that several species have the potential as cells or their products or supernatants to displace nosocomial infection-causing organisms in a variety of in vitro and in vivo settings. Our review aims to aid the development of new promising approaches to control pathogen biofilms in medical settings by informing researchers and policymakers about the potential of probiotics to combat nosocomial infections. More targeted studies are needed to assess safety and efficacy of different probiotic formulations, followed by large-scale studies to assess utility in infection control and medical practice.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Kamni Rathore
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| |
Collapse
|
23
|
El Far MS, Zakaria AS, Kassem MA, Wedn A, Guimei M, Edward EA. Promising biotherapeutic prospects of different probiotics and their derived postbiotic metabolites: in-vitro and histopathological investigation. BMC Microbiol 2023; 23:122. [PMID: 37138240 PMCID: PMC10155454 DOI: 10.1186/s12866-023-02866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Probiotics and their derived postbiotics, as cell-free supernatants (CFS), are gaining a solid reputation owing to their prodigious health-promoting effects. Probiotics play a valuable role in the alleviation of various diseases among which are infectious diseases and inflammatory disorders. In this study, three probiotic strains, Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and Pediococcus acidilactici, were isolated from marketed dietary supplements. The antimicrobial activity of the isolated probiotic strains as well as their CFS was investigated. The neutralized CFS of the isolated probiotics were tested for their antibiofilm potential. The anti-inflammatory activity of the isolated Lactobacillus spp., together with their CFS, was studied in the carrageenan-induced rat paw edema model in male Wistar rats. To the best of our knowledge, such a model was not previously experimented to evaluate the anti-inflammatory activity of the CFS of probiotics. The histopathological investigation was implemented to assess the anti-inflammatory prospect of the isolated L. plantarum and L. rhamnosus strains as well as their CFS. RESULTS The whole viable probiotics and their CFS showed variable growth inhibition of the tested indicator strains using the agar overlay method and the microtiter plate assay, respectively. When tested for virulence factors, the probiotic strains were non-hemolytic lacking both deoxyribonuclease and gelatinase enzymes. However, five antibiotic resistance genes, blaZ, ermB, aac(6')- aph(2"), aph(3'')-III, and vanX, were detected in all isolates. The neutralized CFS of the isolated probiotics exhibited an antibiofilm effect as assessed by the crystal violet assay. This effect was manifested by hindering the biofilm formation of the tested Staphylococcus aureus and Pseudomonas aeruginosa clinical isolates in addition to P. aeruginosa PAO1 strain. Generally, the cell cultures of the two tested probiotics moderately suppressed the acute inflammation induced by carrageenan compared to indomethacin. Additionally, the studied CFS relatively reduced the inflammatory changes compared to the inflammation control group but less than that observed in the case of the probiotic cultures treated groups. CONCLUSIONS The tested probiotics, along with their CFS, showed promising antimicrobial and anti-inflammatory activities. Thus, their safety and their potential use as biotherapeutics for bacterial infections and inflammatory conditions are worthy of further investigation.
Collapse
Affiliation(s)
- Mona S El Far
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Azza S Zakaria
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mervat A Kassem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Abdalla Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maha Guimei
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eva A Edward
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
24
|
Abdel-Nasser M, Abdel-Maksoud G, Eid AM, Hassan SED, Abdel-Nasser A, Alharbi M, Elkelish A, Fouda A. Antifungal Activity of Cell-Free Filtrate of Probiotic Bacteria Lactobacillus rhamnosus ATCC-7469 against Fungal Strains Isolated from a Historical Manuscript. Microorganisms 2023; 11:1104. [PMID: 37317078 DOI: 10.3390/microorganisms11051104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 06/16/2023] Open
Abstract
Herein, twelve fungal strains were isolated from a deteriorated historical manuscript dated back to the 18th century. The obtained fungal strains were identified, using the traditional method and ITS sequence analysis, as Cladosporium herbarum (two strains), Aspergillus fumigatus (five strains), A. ustus (one strain), A. flavus (two strains), A. niger (one strain), and Penicillium chrysogenum (one strain). The ability of these fungal strains to degrade the main components of the paper was investigated by their activity to secrete extracellular enzymes including cellulase, amylase, gelatinase, and pectinase. The cell-free filtrate (CFF) ability of the probiotic bacterial strain Lactobacillus rhamnosus ATCC-7469 to inhibit fungal growth was investigated. The metabolic profile of CFF was detected by GC-MS analysis, which confirmed the low and high molecular weight of various active chemical compounds. The safe dose to be used for the biocontrol of fungal growth was selected by investigating the biocompatibility of CFF and two normal cell lines, Wi38 (normal lung tissue) and HFB4 (normal human skin melanocyte). Data showed that the CFF has a cytotoxic effect against the two normal cell lines at high concentrations, with IC50 values of 525.2 ± 9.8 and 329.1 ± 4.2 µg mL-1 for Wi38 and HFB4, respectively. The antifungal activity showed that the CFF has promising activity against all fungal strains in a concentration-dependent manner. The highest antifungal activity (100%) was recorded for a concentration of 300 µg mL-1 with a zone of inhibition (ZOI) in the ranges of 21.3 ± 0.6 to 17.7 ± 0.5 mm. At a concentration of 100 µg mL-1, the activity of CFF remained effective against all fungal strains (100%), but its effectiveness decreased to only inhibit the growth of eight strains (66%) out of the total at 50 µg mL-1. In general, probiotic bacterial strains containing CFF are safe and can be considered as a potential option for inhibiting the growth of various fungal strains. It is recommended that they be used in the preservation of degraded historical papers.
Collapse
Affiliation(s)
- Mahmoud Abdel-Nasser
- Department of Manuscripts Conservation, Al-Azhar Al-Sharif Library, Cairo 11511, Egypt
| | - Gomaa Abdel-Maksoud
- Conservation Department, Faculty of Archaeology, Cairo University, Giza 12613, Egypt
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Aya Abdel-Nasser
- Food Toxicology and Contaminants Department, National Research Centre, Giza 12622, Egypt
| | - Maha Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amr Elkelish
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
25
|
Chaney WE, McBride H, Girgis G. Effect of a Saccharomyces cerevisiae Postbiotic Feed Additive on Salmonella Enteritidis Colonization of Cecal and Ovarian Tissues in Directly Challenged and Horizontally Exposed Layer Pullets. Animals (Basel) 2023; 13:ani13071186. [PMID: 37048442 PMCID: PMC10093213 DOI: 10.3390/ani13071186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Determining the efficacy of feed-additive technologies utilized as pre-harvest food-safety interventions against Salmonella enterica may be influenced by factors including, but not limited to, mechanism of action, experimental design variables, Salmonella serovar(s), exposure dose, route, or duration in both controlled research and real-world field observations. The purpose of this study was to evaluate the dietary inclusion of a Saccharomyces cerevisiae fermentation-derived postbiotic (SCFP) additive (Diamond V, Original XPC®) on the colonization of cecal and ovarian tissues of commercial pullets directly and indirectly exposed to Salmonella Enteritidis (SE). Four hundred and eighty commercial, day-of-age W-36 chicks were randomly allotted to 60 cages per treatment in two identical BSL-2 isolation rooms (Iowa State University) with four birds per cage and fed control (CON) or treatment (TRT) diets for the duration of study. At 16 weeks, two birds per cage were directly challenged via oral gavage with 1.1 × 109 CFU of a nalidixic-acid-resistant SE strain. The remaining two birds in each cage were thus horizontally exposed to the SE challenge. At 3, 7, and 14 days post-challenge (DPC), 20 cages per group were harvested and sampled for SE prevalence and load. No significant differences were observed between groups for SE prevalence in the ceca or ovary tissues of directly challenged birds. For the indirectly exposed cohort, SE cecal prevalence at 7 DPC was significantly lower for TRT (50.0%) vs. CON (72.5%) (p = 0.037) and, likewise, demonstrated significantly lower mean SE cecal load (1.69 Log10) vs. CON (2.83 Log10) (p = 0.005). At 14 DPC, no significant differences were detected but ~10% fewer birds remained positive in the TRT group vs. CON (p > 0.05). These findings suggest that diets supplemented with SCFP postbiotic may be a useful tool for mitigating SE colonization in horizontally exposed pullets and may support pre-harvest food-safety strategies.
Collapse
|
26
|
Meloni MP, Piras F, Siddi G, Cabras D, Comassi E, Lai R, McAuliffe O, De Santis EPL, Scarano C. Comparison of Activity of Commercial Protective Cultures and Thermophilic Lactic Acid Bacteria against Listeria monocytogenes: A New Perspective to Improve the Safety of Sardinian PDO Cheeses. Foods 2023; 12:1182. [PMID: 36981109 PMCID: PMC10048147 DOI: 10.3390/foods12061182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Listeria monocytogenes contamination that occurs during and post-processing of dairy products is a serious concern for consumers, and bioprotective cultures can be applied to control the growth of the pathogen in sheep milk cheeses. However, to respect specifications provided for protected designation of origin (PDO) cheeses, only autochthonous microorganisms can be used as bioprotective cultures in these products. This in vitro study aimed to evaluate thermophilic lactic acid bacteria (LAB) isolated from sheep milk as bio-preservative agents to control L. monocytogenes growth in PDO cheese. Results were compared with those obtained with a commercial protective culture (cPC) composed of a Lactiplantibacillus plantarum bacteriocin producer designed to inhibit L. monocytogenes growth in cheese. The in vitro antilisterial activities of n.74 autochthonous LAB and a cPC were tested against 51 L. monocytogenes strains using an agar well diffusion assay. In addition, 16S rRNA sequencing of LAB isolates with antilisterial activity was conducted and strains of Lactobacillus helveticus, Lactobacillus delbrueckii subsp. indicus, Lactobacillus delbrueckii subsp. sunkii, Lactobacillus delbrueckii subsp. lactis and Enterococcus faecalis were identified. In this study, 33.6% (74/220) bacterial strains isolated from milk had characteristics compatible with thermophilic LAB, of which 17.6% (13/74) had in vitro antilisterial activity. These results demonstrate that raw sheep milk can be considered an important source of autochthonous thermophilic LAB that can be employed as protective cultures during the manufacturing of Sardinian PDO cheeses to improve their food safety. The use of bioprotective cultures should be seen as an additional procedure useful to improve cheese safety along with the correct application of good hygienic practices during manufacturing and the post-processing stages.
Collapse
Affiliation(s)
- Maria Pina Meloni
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Francesca Piras
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Giuliana Siddi
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Daniela Cabras
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Eleonora Comassi
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Roberta Lai
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | | | - Christian Scarano
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, 07100 Sassari, Italy
| |
Collapse
|
27
|
Mansilla FI, Miranda MH, Uezen JD, Maldonado NC, D'Urso Villar MA, Merino LA, Vignolo GM, Nader-Macias MEF. Effect of probiotic lactobacilli supplementation on growth parameters, blood profile, productive performance, and fecal microbiology in feedlot cattle. Res Vet Sci 2023; 155:76-87. [PMID: 36652843 DOI: 10.1016/j.rvsc.2023.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Lactic acid bacteria (LAB) selected on the basis of probiotic characteristics were administered to beef feedlot catlle and the effect on body condition/growth and nutritional-metabolic status as well as on E. coli O157:H7 fecal shedding, were investigated. A feeding trials involving 126 steers were used to evaluate the effects of Lactobacillus acidophilus CRL2074, Limosilactobacillus fermentum CRL2085 and Limosilactobacillus mucosae CRL2069 and their combinations (5 different probiotic groups and control) when 107-108 CFU/animal of each probiotic group were in-feed supplemented. Cattle were fed a high energy corn-based diet (16 to 88%) and samples from each animal were taken at 0, 40, 104 and 163 days. In general, animals body condition and sensorium state showed optimal muscle-skeletal development and behavioral adaption to confinement; no nasal/eye discharges and diarrheic feces were observed. The nutritional performance of the steers revealed a steady increase of biometric parameters and weight. Animals supplied with L. mucosae CRL2069 for 104 days reached the maximum mean live weight (343.2 kg), whereas the greatest weight daily gain (1.27 ± 0.16 Kg/day) was obtained when CRL2069 and its combination with L. fermentum CRL2085 (1.26 ± 0.11 kg/day) were administered during the complete fattening cycle. With several exceptions, bovine cattle blood and serum parameters showed values within referential ranges. As a preharvest strategy to reduce Escherichia coli O157:H7 in cattle feces, CRL2085 administered during 40 days decreased pathogen shedding with a reduction of 43% during the feeding period. L. fermentum CRL2085 and L. mucosae CRL2069 show promise for feedlot cattle feeding supplementation to improve metabolic-nutritional status, overall productive performance and to reduce E. coli O157:H7 shedding, thus decreasing contamination chances of meat food products.
Collapse
Affiliation(s)
- Flavia I Mansilla
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (4000), Tucumán, Argentina
| | - Maria H Miranda
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (4000), Tucumán, Argentina
| | - José D Uezen
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (4000), Tucumán, Argentina
| | - Natalia C Maldonado
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (4000), Tucumán, Argentina
| | | | - Luis A Merino
- Institute of Regional Medicine, Universidad Nacional del Nordeste, Argentina
| | - Graciela M Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (4000), Tucumán, Argentina
| | | |
Collapse
|
28
|
Lactic acid bacteria with anti-hyperuricemia ability: Screening in vitro and evaluating in mice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Toushik SH, Roy A, Alam M, Rahman UH, Nath NK, Nahar S, Matubber B, Uddin MJ, Roy PK. Pernicious Attitude of Microbial Biofilms in Agri-Farm Industries: Acquisitions and Challenges of Existing Antibiofilm Approaches. Microorganisms 2022; 10:microorganisms10122348. [PMID: 36557600 PMCID: PMC9781080 DOI: 10.3390/microorganisms10122348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Biofilm is a complex matrix made up of extracellular polysaccharides, DNA, and proteins that protect bacteria against physical, chemical, and biological stresses and allow them to survive in harsh environments. Safe and healthy foods are mandatory for saving lives. However, foods can be contaminated by pathogenic microorganisms at any stage from farm to fork. The contaminated foods allow pathogenic microorganisms to form biofilms and convert the foods into stigmatized poison for consumers. Biofilm formation by pathogenic microorganisms in agri-farm industries is still poorly understood and intricate to control. In biofilms, pathogenic bacteria are dwelling in a complex manner and share their genetic and physicochemical properties making them resistant to common antimicrobial agents. Therefore, finding the appropriate antibiofilm approaches is necessary to inhibit and eradicate the mature biofilms from foods and food processing surfaces. Advanced studies have already established several emerging antibiofilm approaches including plant- and microbe-derived biological agents, and they proved their efficacy against a broad-spectrum of foodborne pathogens. This review investigates the pathogenic biofilm-associated problems in agri-farm industries, potential remedies, and finding the solution to overcome the current challenges of antibiofilm approaches.
Collapse
Affiliation(s)
- Sazzad Hossen Toushik
- Institute for Smart Farm, Department of Food Hygiene and Safety, Gyeongsang National University, Jinju 52828, Republic of Korea
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Anamika Roy
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Mohaimanul Alam
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Umma Habiba Rahman
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Nikash Kanti Nath
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhasani Science and Technology University, Tangail 1902, Bangladesh
| | - Shamsun Nahar
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Bidyut Matubber
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Microbiology and Public Health, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Pantu Kumar Roy
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Correspondence: ; Tel.: +82-10-4649-9816; Fax: +82-0504-449-9816
| |
Collapse
|
30
|
Wu J, Wang J, Lin Z, Liu C, Zhang Y, Zhang S, Zhou M, Zhao J, Liu H, Ma X. Clostridium butyricum alleviates weaned stress of piglets by improving intestinal immune function and gut microbiota. Food Chem 2022; 405:135014. [DOI: 10.1016/j.foodchem.2022.135014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
|
31
|
Leistikow KR, Beattie RE, Hristova KR. Probiotics beyond the farm: Benefits, costs, and considerations of using antibiotic alternatives in livestock. FRONTIERS IN ANTIBIOTICS 2022; 1:1003912. [PMID: 39816405 PMCID: PMC11732145 DOI: 10.3389/frabi.2022.1003912] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2025]
Abstract
The increasing global expansion of antimicrobial resistant infections warrants the development of effective antibiotic alternative therapies, particularly for use in livestock production, an agricultural sector that is perceived to disproportionately contribute to the antimicrobial resistance (AMR) crisis by consuming nearly two-thirds of the global antibiotic supply. Probiotics and probiotic derived compounds are promising alternative therapies, and their successful use in disease prevention, treatment, and animal performance commands attention. However, insufficient or outdated probiotic screening techniques may unintentionally contribute to this crisis, and few longitudinal studies have been conducted to determine what role probiotics play in AMR dissemination in animal hosts and the surrounding environment. In this review, we briefly summarize the current literature regarding the efficacy, feasibility, and limitations of probiotics, including an evaluation of their impact on the animal microbiome and resistome and their potential to influence AMR in the environment. Probiotic application for livestock is often touted as an ideal alternative therapy that might reduce the need for antibiotic use in agriculture and the negative downstream impacts. However, as detailed in this review, limited research has been conducted linking probiotic usage with reductions in AMR in agricultural or natural environments. Additionally, we discuss the methods, including limitations, of current probiotic screening techniques across the globe, highlighting approaches aimed at reducing antibiotic usage and ensuring safe and effective probiotic mediated health outcomes. Based on this information, we propose economic and logistical considerations for bringing probiotic therapies to market including regulatory roadblocks, future innovations, and the significant gaps in knowledge requiring additional research to ensure probiotics are suitable long-term options for livestock producers as an antibiotic alternative therapy.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Rachelle E. Beattie
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States
| | | |
Collapse
|
32
|
Wu M, Dong Q, Ma Y, Yang S, Zohaib Aslam M, Liu Y, Li Z. Potential antimicrobial activities of probiotics and their derivatives against Listeria monocytogenes in food field: A review. Food Res Int 2022; 160:111733. [DOI: 10.1016/j.foodres.2022.111733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
|
33
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyse the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance was not clearly defined. Further, viable but non-culturable form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat to the food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
34
|
Rezaei Z, Khanzadi S, Salari A. A survey on biofilm formation of
Lactobacillus rhamnosus
(PTCC 1637) and
Lactobacillus plantarum
(PTCC 1745) as a survival strategy of probiotics against antibiotic in vitro and yogurt. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Zeinab Rezaei
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine Ferdowsi University of Mashhad Mashhad Iran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine Ferdowsi University of Mashhad Mashhad Iran
| | - Amir Salari
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
35
|
Mansilla FI, Ficoseco CA, Miranda MH, Puglisi E, Nader-Macías MEF, Vignolo GM, Fontana CA. Administration of probiotic lactic acid bacteria to modulate fecal microbiome in feedlot cattle. Sci Rep 2022; 12:12957. [PMID: 35902668 PMCID: PMC9334624 DOI: 10.1038/s41598-022-16786-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Modulation of animal gut microbiota is a prominent function of probiotics to improve the health and performance of livestock. In this study, a large-scale survey to evaluate the effect of lactic acid bacteria probiotics on shaping the fecal bacterial community structure of feedlot cattle during three experimental periods of the fattening cycle (163 days) was performed. A commercial feedlot located in northwestern Argentina was enrolled with cattle fed mixed rations (forage and increasing grain diet) and a convenience-experimental design was conducted. A pen (n = 21 animals) was assigned to each experimental group that received probiotics during three different periods. Groups of n = 7 animals were sampled at 40, 104 and 163 days and these samples were then pooled to one, thus giving a total of 34 samples that were subjected to high-throughput sequencing. The microbial diversity of fecal samples was significantly affected (p < 0.05) by the administration period compared with probiotic group supplementation. Even though, the three experimental periods of probiotic administration induced changes in the relative abundance of the most representative bacterial communities, the fecal microbiome of samples was dominated by the Firmicutes (72-98%) and Actinobacteria (0.8-27%) phyla, while a lower abundance of Bacteroidetes (0.08-4.2%) was present. Probiotics were able to modulate the fecal microbiota with a convergence of Clostridiaceae, Lachnospiraceae, Ruminococcaceae and Bifidobacteriaceae associated with health and growth benefits as core microbiome members. Metabolic functional prediction comparing three experimental administration periods (40, 104 and 163 days) showed an enrichment of metabolic pathways related to complex plant-derived polysaccharide digestion as well as amino acids and derivatives during the first 40 days of probiotic supplementation. Genomic-based knowledge on the benefits of autochthonous probiotics on cattle gastrointestinal tract (GIT) microbiota composition and functions will contribute to their selection as antibiotic alternatives for commercial feedlot.
Collapse
Affiliation(s)
| | | | | | - Edoardo Puglisi
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, Cremona-Piacenza, Italy
| | | | | | - Cecilia Alejandra Fontana
- Instituto Nacional de Tecnología Agropecuaria INTA EEA-Famaillá, Tucumán, Argentina.
- Dipartimento di Scienze e Tecnologie Alimentari per una Filiera Agro-alimentare Sostenibile (DISTAS), Università Cattolica del Sacro Cuore, Cremona-Piacenza, Italy.
| |
Collapse
|
36
|
Apiwatsiri P, Pupa P, Sirichokchatchawan W, Sawaswong V, Nimsamer P, Payungporn S, Hampson DJ, Prapasarakul N. Metagenomic analysis of the gut microbiota in piglets either challenged or not with enterotoxigenic Escherichia coli reveals beneficial effects of probiotics on microbiome composition, resistome, digestive function and oxidative stress responses. PLoS One 2022; 17:e0269959. [PMID: 35749527 PMCID: PMC9231746 DOI: 10.1371/journal.pone.0269959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/01/2022] [Indexed: 01/12/2023] Open
Abstract
This study used metagenomic analysis to investigate the gut microbiota and resistome in piglets that were or were not challenged with enterotoxigenic Escherichia coli (ETEC) and had or had not received dietary supplementation with microencapsulated probiotics. The 72 piglets belonged to six groups that were either non-ETEC challenged (groups 1–3) or ETEC challenged (receiving 5ml of 109 CFU/ml pathogenic ETEC strain L3.2 one week following weaning at three weeks of age: groups 4–6). On five occasions at 2, 5, 8, 11, and 14 days of piglet age, groups 2 and 5 were supplemented with 109 CFU/ml of multi-strain probiotics (Lactiplantibacillus plantarum strains 22F and 25F, and Pediococcus acidilactici 72N) while group 4 received 109 CFU/ml of P. acidilactici 72N. Group 3 received 300mg/kg chlortetracycline in the weaner diet to mimic commercial conditions. Rectal faecal samples were obtained for metagenomic and resistome analysis at 2 days of age, and at 12 hours and 14 days after the timing of post-weaning challenge with ETEC. The piglets were all euthanized at 42 days of age. The piglets in groups 2 and 5 were enriched with several desirable microbial families, including Lactobacillaceae, Lachnospiraceae and Ruminococcaceae, while piglets in group 3 had increases in members of the Bacteroidaceae family and exhibited an increase in tetW and tetQ genes. Group 5 had less copper and multi-biocide resistance. Mobile genetic elements IncQ1 and IncX4 were the most prevalent replicons in antibiotic-fed piglets. Only groups 6 and 3 had the integrase gene (intl) class 2 and 3 detected, respectively. The insertion sequence (IS) 1380 was prevalent in group 3. IS3 and IS30, which are connected to dietary intake, were overrepresented in group 5. Furthermore, only group 5 showed genes associated with detoxification, with enrichment of genes associated with oxidative stress, glucose metabolism, and amino acid metabolism compared to the other groups. Overall, metagenomic analysis showed that employing a multi-strain probiotic could transform the gut microbiota, reduce the resistome, and boost genes associated with food metabolism.
Collapse
Affiliation(s)
- Prasert Apiwatsiri
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pawiya Pupa
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - David J. Hampson
- School of Veterinary Medicine, Murdoch University, Perth, Western Australia, Australia
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
37
|
Microbial Diversity of the Chinese Tiger Frog (Hoplobatrachus rugulosus) on Healthy versus Ulcerated Skin. Animals (Basel) 2022; 12:ani12101241. [PMID: 35625087 PMCID: PMC9137582 DOI: 10.3390/ani12101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary As amphibians’ skin is highly sensitive to the environment, skin defects such as ulceration may pose a particular threat to them. Our study has found a stark difference in the microbial communities between healthy and ulcerated Hoplobatrachus rugulosus skin. The proportion and type of bacteria differed between the two groups, and we suggest that ulceration on the skin may lead to changes in skin microbial communities. The functional pathways of skin microbes may be influenced by ulceration on the skin surface of H. rugulosus. We also found that Vogesella is more abundant in healthy H. rugulosus, which may be a potential probiotic candidate for the reduction or removal of pathogens. Abstract The Chinese tiger frog (Hoplobatrachus rugulosus) is extensively farmed in southern China. Due to cramped living conditions, skin diseases are prevalent among unhealthy tiger frogs which thereby affects their welfare. In this study, the differences in microbiota present on healthy versus ulcerated H. rugulosus skin were examined using 16S rRNA sequences. Proteobacteria were the dominant phylum on H. rugulosus skin, but their abundance was greater on the healthy skin than on the ulcerated skin. Rhodocyclaceae and Comamonadaceae were the most dominant families on the healthy skin, whereas Moraxellaceae was the most dominant family on the ulcerated skin. The abundance of these three families was different between the groups. Acidovorax was the most dominant genus on the healthy skin, whereas Acinetobacter was the most dominant genus on the ulcerated skin, and its abundance was greater on the ulcerated skin than on the healthy skin. Moreover, the genes related to the Kyoto Encyclopedia of Genes and Genomes pathways of levels 2–3, especially those genes that are involved in cell motility, flagellar assembly, and bacterial chemotaxis in the skin microbiota, were found to be greater on the healthy skin than on the ulcerated skin, indicating that the function of skin microbiota was affected by ulceration. Overall, the composition, abundance, and function of skin microbial communities differed between the healthy and ulcerated H. rugulosus skin. Our results may assist in developing measures to combat diseases in H. rugulosus.
Collapse
|
38
|
In situ production of vitamin B12 and dextran in soya flour and rice bran: A tool to improve flavour and texture of B12-fortified bread. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Dietary Inclusion of a Saccharomyces cerevisiae-Derived Postbiotic Is Associated with Lower Salmonella enterica Burden in Broiler Chickens on a Commercial Farm in Honduras. Microorganisms 2022; 10:microorganisms10030544. [PMID: 35336119 PMCID: PMC8952340 DOI: 10.3390/microorganisms10030544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/31/2023] Open
Abstract
Postbiotic feed additives may aid foodborne pathogen reduction during poultry rearing. The study objective was to evaluate a postbiotic additive in parallel to an industry control diet and the subsequent associated burden of Salmonella enterica on a single, commercial broiler farm in Honduras. Twelve houses were matched and assigned the standard diet (CON) or standard diet plus postbiotic (SCFP). New litter was placed in each house and retained across flock cycles with sampling prior to each chick placement and three consecutive rearing cycles. At ~33–34 days, 25 ceca were collected on-farm from each house, treatment, and cycle. Salmonella prevalence in litter for CON (30.6%) and SCFP (27.8%) were equivalent; however, Salmonella load within positive samples was lower (p = 0.04) for SCFP (3.81 log10 MPN/swab) compared to CON (5.53 log10 MPN/swab). Cecal prevalence of Salmonella was lower (p = 0.0006) in broilers fed SCFP (3.4%) compared to CON (12.2%). Salmonella load within positive ceca were numerically reduced (p = 0.121) by 1.45 log10 MPN/g for SCFP (2.41 log10 MPN/g) over CON (3.86 log10 MPN/g). Estimated burden was lower (p = 0.003) for SCFP flocks (3.80 log10 MPN) compared to CON (7.31 log10 MPN). These data demonstrate the preharvest intervention potential of postbiotics to reduce Salmonella enterica in broiler chickens.
Collapse
|
40
|
Dhivya R, Rajakrishnapriya VC, Sruthi K, Chidanand DV, Sunil CK, Rawson A. Biofilm combating in the food industry: Overview, non‐thermal approaches, and mechanisms. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- R. Dhivya
- Industry Academia Cell National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - V. C. Rajakrishnapriya
- Industry Academia Cell National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - K. Sruthi
- Industry Academia Cell National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - D. V. Chidanand
- Industry Academia Cell National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - C. K. Sunil
- Department of Food Engineering National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) ‐ Thanjavur Thanjavur India
| |
Collapse
|
41
|
The extent and mechanism of the effect of protectant material in the production of active lactic acid bacteria powder using spray drying: A review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Ultrasonic modification on fermentation characteristics of Bacillus varieties: Impact on protease activity, peptide content and its correlation coefficient. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Mgomi FC, Yuan L, Chen CW, Zhang YS, Yang ZQ. Bacteriophages: A weapon against mixed-species biofilms in the food processing environment. J Appl Microbiol 2021; 133:2107-2121. [PMID: 34932868 DOI: 10.1111/jam.15421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/18/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
Mixed-species biofilms represent the most frequent actual lifestyles of microorganisms in food processing environments, and they are usually more resistant to control methods than single-species biofilms. The persistence of biofilms formed by foodborne pathogens is believed to cause serious human diseases. These challenges have encouraged researchers to search for novel, natural methods that are more effective towards mixed-species biofilms. Recently, the use of bacteriophages to control mixed-species biofilms have grown significantly in the food industry as an alternative to conventional methods. This review highlights a comprehensive introduction of mixed-species biofilms formed by foodborne pathogens and their enhanced resistance to anti-biofilm removal strategies. Additionally, several methods for controlling mixed-species biofilms briefly focused on applying bacteriophages in the food industry have also been discussed. This article concludes by suggesting that using bacteriophage, combined with other 'green' methods, could effectively control mixed-species biofilms in the food industry.
Collapse
Affiliation(s)
- Fedrick C Mgomi
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Cao-Wei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yuan-Song Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| |
Collapse
|
44
|
Wen Fang Wu Wu J, Redondo-Solano M, Uribe L, WingChing-Jones R, Usaga J, Barboza N. First characterization of the probiotic potential of lactic acid bacteria isolated from Costa Rican pineapple silages. PeerJ 2021; 9:e12437. [PMID: 34909269 PMCID: PMC8641478 DOI: 10.7717/peerj.12437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Background Agro-industrial waste from tropical environments could be an important source of lactic acid bacteria (LAB) with probiotic potential. Methods Twelve LAB isolates were isolated from pineapple silages. The species identification was carried out considering 16S rRNA and pheS genes. Experiments to evaluate the probiotic potential of the isolates included survival under simulated gastrointestinal environment, in vitro antagonistic activity (against Salmonella spp. and Listeria monocytogenes), auto-aggregation assays, antibiotic susceptibility, presence of plasmids, adhesiveness to epithelial cells, and antagonistic activity against Salmonella in HeLa cells. Results Lacticaseibacillus paracasei, Lentilactobacillus parafarraginis, Limosilactobacillus fermentum, and Weissella ghanensis were identified. Survival of one of the isolates was 90% or higher after exposure to acidic conditions (pH: 2), six isolates showed at least 61% survival after exposure to bile salts. The three most promising isolates, based on survivability tests, showed a strong antagonistic effect against Salmonella. However, only L. paracasei_6714 showed a strong Listeria inhibition pattern; this isolate showed a good auto-aggregation ability, was resistant to some of the tested antibiotics but was not found to harbor plasmids; it also showed a high capacity for adhesion to epithelial cells and prevented the invasion of Salmonella in HeLa cells. After further in vivo evaluations, L. paracasei_6714 may be considered a probiotic candidate for food industry applications and may have promising performance in acidic products due to its origin.
Collapse
Affiliation(s)
| | - Mauricio Redondo-Solano
- Research Center for Tropical Diseases (CIET) and Food Microbiology Research and Training Laboratory (LIMA), College of Microbiology, University of Costa Rica (UCR), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Lidieth Uribe
- Agronomic Research Center (CIA), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Rodolfo WingChing-Jones
- Animal Science Department, Animal Nutrition Research Center (CINA), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Jessie Usaga
- National Center for Food Science and Technology (CITA), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Natalia Barboza
- Food Technology Department, National Center for Food Science and Technology (CITA), Center for Research in Cellular and Molecular Biology (CIBCM), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| |
Collapse
|
45
|
Cano-Lozano JA, Villamil Diaz LM, Melo Bolivar JF, Hume ME, Ruiz Pardo RY. Probiotics in tilapia (Oreochromis niloticus) culture: Potential probiotic Lactococcus lactis culture conditions. J Biosci Bioeng 2021; 133:187-194. [PMID: 34920949 DOI: 10.1016/j.jbiosc.2021.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Tilapia is one of the most extensively farmed fish on a global scale. Lately, many studies have been carried out to select and produce probiotics for cultured fish. Bacteria from the genera Bacillus, Lactiplantibacillus (synonym: Lactobacillus), and Lactococcus are the most widely studied with respect to their probiotic potential. Among these microorganisms, Lactococcus lactis has outstanding prospects as a probiotic because it is generally recognized as safe (GRAS) and has previously been shown to exert its probiotic potential in aquaculture through different mechanisms, such as competitively excluding pathogenic bacteria, increasing food nutritional value, and enhancing the host immune response against pathogenic microorganisms. However, it is not sufficient to simply select a microorganism with significant probiotic potential for commercial probiotic development. There are additional challenges related to strategies involving the mass production of bacterial cultures, including the selection of production variables that positively influence microorganism metabolism. Over the last ten years, L. lactis production in batch and fed-batch processes has been studied to evaluate the effects of culture temperature and pH on bacterial growth. However, to gain a deeper understanding of the production processes, the effect of hydrodynamic stress on cells in bioreactor production and its influence on the probiotic potential post-manufacturing also need to be determined. This review explores the trends in tilapia culture, the probiotic mechanisms employed by L. lactis in aquaculture, and the essential parameters for the optimal scale-up of this probiotic.
Collapse
Affiliation(s)
- Juan Andrés Cano-Lozano
- School of Engineering, Maestría en diseño y gestión de procesos, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia.
| | - Luisa Marcela Villamil Diaz
- School of Engineering, Doctoral program in Biosciences, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia; Universidad de La Sabana, Faculty of Engineering, Grupo de Investigación en Procesos Agroindustriales, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, 140 013, Cundinamarca, Colombia.
| | - Javier Fernando Melo Bolivar
- School of Engineering, Doctoral program in Biosciences, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia; Universidad de La Sabana, Faculty of Engineering, Grupo de Investigación en Procesos Agroindustriales, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, 140 013, Cundinamarca, Colombia.
| | - Michael E Hume
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845, USA.
| | - Ruth Yolanda Ruiz Pardo
- School of Engineering, Maestría en diseño y gestión de procesos, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, 140 013, Colombia; Universidad de La Sabana, Faculty of Engineering, Grupo de Investigación en Procesos Agroindustriales, Campus Universitario del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, 140 013, Cundinamarca, Colombia.
| |
Collapse
|
46
|
Rizou E, Kalogiouri N, Bisba M, Papadimitriou A, Kyrila G, Lazou A, Andreadis S, Hatzikamari M, Mourtzinos I, Touraki M. Amelioration of growth, nutritional value, and microbial load of Tenebrio molitor (Coleoptera: Tenebrionidae) through probiotic supplemented feed. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03925-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Pediococcus pentosaceus IM96 Exerts Protective Effects against Enterohemorrhagic Escherichia coli O157:H7 Infection In Vivo. Foods 2021; 10:foods10122945. [PMID: 34945495 PMCID: PMC8700651 DOI: 10.3390/foods10122945] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a notorious and prevalent foodborne pathogen which can cause serious intestinal diseases. The antagonistic activity of probiotics against EHEC is promising, but most of the studies concerning this subject have been carried out in vitro. Specifically, the interaction between Pediococcus pentosaceus and EHEC O157:H7 in vivo has not been reported yet. In this study, we investigated the protective effect of P. pentosaceus IM96 on EHEC O157:H7-infected female mice in vivo. The results demonstrated that P. pentosaceus IM96 reduced the level of pro-inflammatory factors and increased the level of anti-inflammatory factors of EHEC O157:H7-infected mice. Furthermore, P. pentosaceus IM96 alleviated intestinal mucosal damage and increased the level of MUC-2, tight junction (TJ) proteins, and short chain fatty acids (SCFAs). The intestinal microbial community structure and the diversity and richness of the microbiota were also changed by P. pentosaceus IM96 treatment. In summary, P. pentosaceus IM96 exerted protective effects against EHEC O157:H7 via alleviating intestinal inflammation, strengthening the intestinal barrier function, and regulating intestinal microbiota, suggesting that P. pentosaceus IM96 might serve as a potential microbial agent to prevent and treat intestinal diseases caused by EHEC O157:H7 infection in the future.
Collapse
|
48
|
Abstract
Viral infections represent a major health problem worldwide. Due to the wide variety of etiological agents and their increasing resistance to anti-virals and antibiotics treatments, new strategies for effective therapies need to be developed. Scientific evidence suggests that probiotics may have prophylactic and therapeutic effects in viral diseases. Indeed, these microorganisms interact harmoniously with the intestinal microbiota and protect the integrity of the intestinal barrier as well as modulate the host immune system. Currently, clinical trials with probiotics have been documented in respiratory tract infections, infections caused by human immunodeficiency viruses, herpes, human papillomavirus and hepatic encephalopathy. However, the benefits documented so far are difficult to extrapolate, due to the strain-dependent effect. In addition, the dose of the microorganism used as well as host characteristics are other parameters that should be consider when advocating the use of probiotics to treat viral infections. This review addresses the scientific evidence of the efficacy of probiotics in clinical strains perspective in viral infectious diseases in the last 10 years.
Collapse
|
49
|
Toushik SH, Kim K, Ashrafudoulla M, Mizan MFR, Roy PK, Nahar S, Kim Y, Ha SD. Korean kimchi-derived lactic acid bacteria inhibit foodborne pathogenic biofilm growth on seafood and food processing surface materials. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Insights into the relevance between bacterial endophytic communities and resistance of rice cultivars infected by Xanthomonas oryzae pv . oryzicola. 3 Biotech 2021; 11:434. [PMID: 34603912 DOI: 10.1007/s13205-021-02979-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc), impacts the production of rice. However, several rice cultivars displayed resistance to Xoc in the field, but scarce information is available about the role of endophytic microbiota in disease resistance. In the present study, the endophytic bacterial communities of resistant and susceptible rice cultivars "CG2" and "IR24", respectively, were analyzed using high throughput 16S rRNA gene amplified sequencing and culture dependent method was further used for bacterial isolation. A total of 452,716 high-quality sequences representing 132 distinct OTUs (Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes) and 46 isolates of 16 genera were explored from rice leaves infected with Xoc. Community diversity of endophytic bacteria were higher in the leaves of the resistant cultivars compared to susceptible cultivars upon Xoc infection. Strikingly, this diversity might contribute to natural defense of the resistant cultivar against pathogen. Pantoea, which is pathogen antagonist, was frequently detected in two cultivars and higher abundance were recorded in resistant cultivars. Different abundance genus includes endophytic isolates with marked antagonistic activity to Xoc. The increased proportions of antagonistic bacteria, may contribute to resistance of rice cultivar against Xoc and the Pantoea genus was recruited by Xoc infection play a key role in suppressing the development of BLS disease in rice. Taken together, this work reveals the association between endophytic bacteria and BLS resistance in rice and identification of antagonism-Xoc bacterial communities in rice. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02979-2.
Collapse
|