1
|
Ballon A, Queiroz LS, de Lamo-Castellví S, Güell C, Ferrando M, Jacobsen C, Yesiltas B. Physical and oxidative stability of 5 % fish oil-in-water emulsions stabilized with lesser mealworm (Alphitobius diaperinus larva) protein hydrolysates pretreated with ultrasound and pulsed electric fields. Food Chem 2025; 476:143339. [PMID: 39977981 DOI: 10.1016/j.foodchem.2025.143339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Lesser mealworm (Alphitobius diaperinus larva) meal was pretreated with ultrasound (US) or pulsed electric fields (PEF) and hydrolyzed using Alcalase or Trypsin enzymes. The resulting hydrolysates were evaluated for their ability to maintain physical and oxidative stability of 5 % fish oil-in-water emulsions. The effects of the pretreatment on enzymatic hydrolysis were assessed by measuring the degree of hydrolysis (DH), protein yield, and molecular weight distribution. Hydrolysates with 19-28 % DH were produced. Physical stability was evaluated in terms of creaming index, Turbiscan stability index, ζ-potential, and droplet size. Emulsions stabilized with US-pretreated Trypsin hydrolysates presented the smallest droplet sizes (0.626 μm). Primary and volatile secondary oxidation products were measured during storage. However, none of the hydrolysate-stabilized emulsions exhibited greater oxidative stability than sodium caseinate, the reference protein. These results suggest that although US-pretreated Trypsin hydrolysates exhibit potential as emulsifiers, additional antioxidants are needed to effectively control lipid oxidation.
Collapse
Affiliation(s)
- Aurélie Ballon
- Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Lucas Sales Queiroz
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Sílvia de Lamo-Castellví
- Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain; Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, United States
| | - Carme Güell
- Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Montse Ferrando
- Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Fan W, Shi Y, Hu Y, Wang S, Zhang J, Liu W. Construction of W/O/W microcapsules based on the combination of polyglycerol polyricinoleate/protein for the co-encapsulation of crocin and quercetin: Physical properties, stability and in vitro digestion. Food Chem 2025; 473:142985. [PMID: 39869991 DOI: 10.1016/j.foodchem.2025.142985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/31/2024] [Accepted: 01/18/2025] [Indexed: 01/29/2025]
Abstract
Due to health reasons of polyglycerol polyricinoleate (PGPR), there has been a growing interest in reducing it. To address this, this study developed the PGPR/Protein (whey, pea, and chickpea protein isolates) emulsifier combinations. The effects of these combinations on the preparation, structure, physicochemical and in vitro digestive properties of W/O/W microcapsules were evaluated. The FTIR and XRD analyses revealed hydrogen bonding interactions between the protein and PGPR (or bioactive compounds), which may contribute to the enhanced encapsulation efficiency (EE) and stability of microcapsules. PGPR/pea protein isolate (PP) microcapsules exhibited more uniform size, better rehydration, and higher EE than other microcapsules. PP combinations prolonged shelf-life of microcapsules by 1.35 to 1.73-fold, as predicted by oxidation kinetic models. Furthermore, PP microcapsules improved the bioavailability of crocin (≥ 11.08 %) and quercetin (≥ 8.47 %). Overall, this study hoped to provide a promising strategy for preparing W/O/W microcapsules with low PGPR content.
Collapse
Affiliation(s)
- Wei Fan
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yan Shi
- Department of Food Science and Engineering, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Shu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| |
Collapse
|
3
|
Can Karaca A, Tan C, Assadpour E, Jafari SM. Recent advances in the plant protein-polyphenol interactions for the stabilization of emulsions. Adv Colloid Interface Sci 2025; 335:103339. [PMID: 39571482 DOI: 10.1016/j.cis.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Proteins from plant sources including legumes, cereals and oilseeds are gaining attention due to their suitability for sustainable production, functionality, and positive consumer perception. On the other hand, polyphenols (PPs) are receiving considerable attention as natural ingredients in the human diet due to their potent antioxidant and anti-inflammatory properties. Recent studies indicate that the emulsifying properties of plant proteins (PLPs) can be improved after modification through covalent and/or non-covalent interactions with PPs due to the changes in the conformation and/or the surface chemistry of the proteins. Complexes formed between PLPs-PPs can serve as innovative ingredients for developing novel food products with modified textural properties. Also, Pickering emulsions, multiple emulsions, multilayer emulsions, nanoemulsions, and high internal phase emulsions can be stabilized by such systems to deliver bioactive compounds. This paper reviews the most recent research on the PLP-PP interactions and their role in the stabilization of various emulsion-based systems. A special emphasis is given to modifying the structure and functionality of PLPs and PPs. The challenges and opportunities of applying PLP-PP interactions in emulsion-based systems are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
4
|
Tao H, Ding W, Fang MJ, Qian H, Cai WH, Wang HL. Dynamics and Stability Mechanism of Lactoferrin-EPA During Emulsification Process: Insights from Macroscopic and Molecular Perspectives. Foods 2025; 14:82. [PMID: 39796372 PMCID: PMC11719685 DOI: 10.3390/foods14010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Although eicosapentaenoic acid (EPA) as a functional fatty acid has shown significant benefits for human health, its susceptibility to oxidation significantly limits its application. In this study, we developed a nanoemulsion of the lactoferrin (LTF)-EPA complex and conducted a thorough investigation of its macro- and molecular properties. By characterizing the emulsion with different LTF concentrations, we found that 1.0% LTF formed the most stable complex with EPA, which benefited the formation and stability of the emulsion against storage and freezing/thawing treatment. As the foundation block of the emulsion structure, the binding mechanism and the entire dynamic reaction process of the complex have been fully revealed through various molecular simulations and theoretical calculations. This study establishes a comprehensive picture of the LTF-EPA complex across multiple length scales, providing new insights for further applications and productions of its emulsion.
Collapse
Affiliation(s)
- Han Tao
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Ding
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Meng-Jia Fang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Qian
- Xinjiang Shihezi Garden Dairy Co., Ltd., Shihezi 832199, China
| | - Wan-Hao Cai
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
5
|
Semwal J, Meera MS. Novel mode of kafirin modification using combination of enzyme and thermal treatment to expand its food application. Food Chem 2024; 460:140489. [PMID: 39047474 DOI: 10.1016/j.foodchem.2024.140489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/31/2023] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Kafirin in sorghum inhibits starch digestion and exhibits antioxidant properties, however its potential in food industry remains unexplored. Therefore, the study was aimed to explore and improve the potential of kafirin as natural carbohydrate blocker using papain (6 NFU/mL) and/or infrared treatment (220 °C/3 min). Results indicated that the combined treatment, PIR (infrared + papain) is the most efficient treatment to modify kafirin. PIR generated a new ∼37 kDa high molecular weight moiety in kafirin with a crystal size of 157.44 Å. All samples showed superior antioxidant activity post-treatments, with PIR exhibiting highest scavenging activity from 31.09 to 82.97%, 15.09 to 42.82%, and 25.92 to 38.58% for DPPH, FRAP, and ABTS, respectively. PIR-modified kafirin limited malondialdehyde production, and increased α-amylase and α-glucosidase inhibition. Incorporation of 7.5% kafirin in corn starch increased resistant starch from 5.09 to 21.04% after cooking, which suggests potential of kafirin in development of diabetic-friendly food formulations.
Collapse
Affiliation(s)
- Jyoti Semwal
- Department of Grain Science and Technology, CSIR- Central Food Technological Research Institute, Mysore 570020, Karnataka, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - M S Meera
- Department of Grain Science and Technology, CSIR- Central Food Technological Research Institute, Mysore 570020, Karnataka, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
6
|
Chen J, Xia P. Health effects of synthetic additives and the substitution potential of plant-based additives. Food Res Int 2024; 197:115177. [PMID: 39593388 DOI: 10.1016/j.foodres.2024.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
The growth of the world population and the rapid industrialization of food have led to food producers' increased reliance on food additives. While food additives offer numerous conveniences and advantages in food applications, the potential risks associated with synthetic additives remain a significant concern. This report examines the current status of safety assessment and toxicity studies of common synthetic additives, including flavorings (sweeteners and flavor enhancers), colorants, preservatives (antimicrobials and antioxidants), and emulsifiers. The report also examines recent advances in promising plant-based alternative additives in terms of active ingredients, sensory properties, potential health benefits, food application challenges, and their related technologies (edible coatings/films and nanoencapsulation technologies), providing valuable references and insights for the sustainable development of food additives.
Collapse
Affiliation(s)
- Jiaqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Dursun Capar T, Yalcin H. Conjugation prepared by wet-Maillard reactions improves the stability and properties of lutein and lycopene loaded nanoparticles. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2008-2019. [PMID: 39285990 PMCID: PMC11401807 DOI: 10.1007/s13197-024-05976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 09/19/2024]
Abstract
In this study, lutein and lycopene were encapsulated in plant protein (faba bean protein concentrate, (FPC))-carrageenan (Car) conjugates prepared by Maillard reaction in an aqueous media. The conjugation improved encapsulation yield that reached to 82.69% and 93.07%, for lycopene and lutein, respectively. The mean particle diameters for lutein loaded nanoparticles observed smaller in FPC-Car conjugates (66.60 nm) than FPC (71.49 nm). Scanning electron microscopy images showed that FPC-Car conjugates were more spherical and no fractures or fissures on the surface, revealing that wall materials provided better protection and retention for core materials. The diameter of lycopene nanoparticles coated with FPC remained constant between pH 3-4 and 7-9 but increased to 220 nm at pH 4-6. Even though the diameter of lutein nanoparticles coated with FPC remains steady between pH 5 and 9, increased to 953 nm at pH 3. The bioaccessibility of the lutein or lycopene samples encapsulated by FPC were found as higher than FPC-Car conjugates. These findings suggest that protein-polysaccharide conjugates could be used as a wall material to encapsulate lipophilic lutein and lycopene in order to improve their stability, property and bioaccessibility. As a result, FPC-Car conjugates may be an alternative for the formation of functional beverages as well as other nutraceutical products. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05976-4.
Collapse
Affiliation(s)
- Tugba Dursun Capar
- Food Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Hasan Yalcin
- Food Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
8
|
Brüls-Gill M, Boerkamp VJ, Hohlbein J, van Duynhoven JP. Spatiotemporal assessment of protein and lipid oxidation in concentrated oil-in-water emulsions stabilized with legume protein isolates. Curr Res Food Sci 2024; 9:100817. [PMID: 39228684 PMCID: PMC11369386 DOI: 10.1016/j.crfs.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
The growing trend of substituting animal-based proteins with plant-based proteins requires more understanding of the functionality and stability of vegan mayonnaises, especially regarding their susceptibility to lipid and protein oxidation. Here, we investigate the spatial and temporal dynamics of lipid and protein oxidation in emulsions stabilized with legume ((hydrolyzed) soy, pea, and faba bean) protein isolates (hSPI, SPI, PPI, FPI). We assessed lipid oxidation globally by NMR and locally by confocal laser scanning microscopy using the oxidation-sensitive fluorescent dye BODIPY 665/676. Further, we assessed local protein oxidation by employing protein autofluorescence and the fluorescently labeled radical spin-trap CAMPO-AFDye 647. Oxidation of oil in droplets was governed by the presence of tocopherols in the oil phase and pro-oxidant transition metals that were introduced via the protein isolates. Non-stripped oil emulsions stabilized with PPI and hSPI displayed higher levels of lipid hydroperoxides as compared to emulsions prepared with SPI and FPI. We attribute this finding to higher availability of catalytically active transition metals in PPI and hSPI. For stripped oil emulsions stabilized with SPI and FPI, lipid hydroperoxide concentrations were negligible in the presence of ascorbic acid, indicating that this agent acted as antioxidant. For the emulsions prepared with PPI and hSPI, lipid hydroperoxide formation was only partly inhibited by ascorbic acid, indicating a role as prooxidant. Interestingly, we observed protein-lipid aggregates in all emulsions. The aggregates underwent fast and extensive co-oxidation, which was also modulated by transition metals and tocopherols originating from the oil phase. Our study demonstrates the potential of spatiotemporal imaging techniques to enhance our understanding of the oxidation processes in emulsions stabilized with plant proteins.
Collapse
Affiliation(s)
- Mariska Brüls-Gill
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Vincent J.P. Boerkamp
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
- Microspectroscopy Research Facility, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - John P.M. van Duynhoven
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
- Unilever Global Foods Innovation Centre, Plantage 14, 6708 WJ Wageningen, the Netherlands
| |
Collapse
|
9
|
Gong T, Song Z, Zhang S, Meng Y, Guo Y. Young apple polyphenols confer excellent physical and oxidative stabilities to soy protein emulsions for effective β-carotene encapsulation and delivery. Int J Biol Macromol 2024; 275:133607. [PMID: 38960241 DOI: 10.1016/j.ijbiomac.2024.133607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Protein emulsions' poor physical and oxidative stabilities restrict their use in functional foods. Soy protein isolate (SPI) emulsions' physical stability was enhanced by adding young apple polyphenols (YAP) in this study, but decreased when YAP was 0.12%. YAP binding prefolded SPI's structure, which promotes efficient SPI stacking at the interface. YAP also improved SPI emulsions' oxidation resistance in a dose-dependent manner. SPI-YAP interaction promoted more YAP adsorption (>80%) at the interface, which increased emulsions' antioxidant capacities twofold. Furthermore, over 90% of unsaturated fatty acids were preserved, and the oxidation of lipid-SPI-β-carotene appeared to be reduced as YAP increased. In addition, SPI-YAP emulsions were effective in encapsulating and safeguarding β-carotene during emulsion storage and in vitro digestion, leading to a delayed and maximum release of β-carotene. This study improves the understanding of polyphenols inhibition on lipid-protein oxidation through interface strengthening and broadens the potential applications of YAP and SPI in functional foods.
Collapse
Affiliation(s)
- Tian Gong
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China; The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhichao Song
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Shuai Zhang
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Yonghong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China
| | - Yurong Guo
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research & Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian 710119, PR China.
| |
Collapse
|
10
|
Cantele C, Potenziani G, Bonciolini A, Bertolino M, Cardenia V. Effect of Alkylresorcinols Isolated from Wheat Bran on the Oxidative Stability of Minced-Meat Models as Related to Storage. Antioxidants (Basel) 2024; 13:930. [PMID: 39199176 PMCID: PMC11351659 DOI: 10.3390/antiox13080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Due to their antioxidant activity, alkylresorcinols (ARs) extracted from by-products could represent promising natural and innovative antioxidants for the food industry. This study tested the ability of ARs isolated from wheat bran to increase the shelf-life of minced-meat models stored at 4 °C for 9 days. Fifteen alk(en)ylresorcinols (C17-C25) were recognized by GC/MS, showing good radical-scavenging (200.70 ± 1.33 μmolTE/g extract) and metal-chelating (1.38 ± 0.30 mgEDTAE/g extract) activities. Two ARs concentrations (0.01% and 0.02%) were compared to sodium ascorbate (0.01% and 0.10%) on color (CIELAB values L*, a*, b*, chroma, and hue) and oxidative stability (lipid hydroperoxides, thiobarbituric acid reactive substances (TBARS), and volatile organic compounds (VOCs)) of minced-beef samples. ARs-treated samples were oxidatively more stable than those formulated with sodium ascorbate and the negative control, with significantly lower contents of hydroperoxides and VOCs (hexanal, 1-hexanol, and 1-octen-3-ol) throughout the experiment (p < 0.001). However, no effect on color stability was observed (p > 0.05). Since 0.01% of ARs was equally or more effective than 0.10% sodium ascorbate, those results carry important implications for the food industry, which could reduce antioxidant amounts by ten times and replace synthetic antioxidants with natural ones.
Collapse
Affiliation(s)
- Carolina Cantele
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy; (C.C.); (G.P.); (A.B.); (M.B.)
| | - Giulia Potenziani
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy; (C.C.); (G.P.); (A.B.); (M.B.)
| | - Ambra Bonciolini
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy; (C.C.); (G.P.); (A.B.); (M.B.)
| | - Marta Bertolino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy; (C.C.); (G.P.); (A.B.); (M.B.)
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, TO, Italy; (C.C.); (G.P.); (A.B.); (M.B.)
- AgriForFood Chromatography and Mass Spectrometry Open Access Laboratory, University of Turin, 10095 Grugliasco, TO, Italy
| |
Collapse
|
11
|
Geng T, Pan L, Liu X, Dong D, Cui B, Guo L, Yuan C, Zhao M, Zhao H. Novel a-linolenic acid emulsions stabilized by octenyl succinylated starch -soy protein-epigallocatechin-3-gallate complexes: Characterization and antioxidant analysis. Food Chem 2024; 446:138878. [PMID: 38432138 DOI: 10.1016/j.foodchem.2024.138878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
In this study, octenyl succinylated starch (OSAS)-soy protein (SP)-epigallocatechin-3-gallate (EGCG) complexes were designed to enhance the physical and oxidative stability of α-linolenic acid emulsions. Formations of OSAS-SP-EGCG complexes were confirmed via particle size, ξ-potential, together with fourier transform infrared (FTIR). A mixing ratio of 1:2 for OSAS to SP-EGCG resulted in ternary complexes with the highest contact angle (59.69°), indicating the hydrophobicity. Furthermore, the characteristics of α-linolenic acid emulsions (oil phase volume fractions (φ) of 10% and 20%) stabilized by OSAS-SP-EGCG complexes were investigated, including particle size, ξ-potential, emulsion stability, oxidative stability, and microstructure. These results revealed exceptional physical stability together with enhanced oxidative stability for these emulsions. Particularly, emulsions utilizing complexes having a 1:2 OSAS to SP-EGCG ratio exhibited superior emulsion stability. These findings provide theoretical support to the development of emulsions containing high levels of α-linolenic acid and for the broader application of α-linolenic acid in food products.
Collapse
Affiliation(s)
- Tenglong Geng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Lidan Pan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaorui Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Die Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
12
|
Lee KY, Han CY, Rahman WU, Harinarayanan NC, Park CE, Choi SG. Quality Characteristics of Vegan Mayonnaise Produced Using Supercritical Carbon Dioxide-Processed Defatted Soybean Flour. Foods 2024; 13:1170. [PMID: 38672843 PMCID: PMC11048837 DOI: 10.3390/foods13081170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Emulsifiers, like egg yolk (EY), are necessary for the formation of mayonnaise, which is an oil-in-water type of colloid. This study aimed to assess the potential of defatted soybean powder treated with supercritical carbon dioxide (DSF) to enhance the quality of plant-based mayonnaise as plant-based alternatives gain popularity. This study involved the production of DSF and the comparison of its quality attributes to those of mayonnaise made with varying amounts of control soy flour (CSF), DSF, and EY. It was found that mayonnaise made with an increased quantity of DSF showed better emulsion stability, viscosity, and a smaller, more uniform particle size when compared with CSF mayonnaise. Additionally, DSF mayonnaise was generally rated higher in sensory evaluation. The addition of approximately 2% DSF positively influenced the emulsion and sensory properties of the vegan mayonnaise, indicating that DSF is a promising plant-based alternative emulsifier for the replacement of animal ingredients.
Collapse
Affiliation(s)
- Kyo-Yeon Lee
- Department of Food Science and Technology, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Chae-Yeon Han
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea;
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea; (W.U.R.); (N.C.H.); (C.-E.P.)
| | - Wasif Ur Rahman
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea; (W.U.R.); (N.C.H.); (C.-E.P.)
| | - Nair Chithra Harinarayanan
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea; (W.U.R.); (N.C.H.); (C.-E.P.)
| | - Chae-Eun Park
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea; (W.U.R.); (N.C.H.); (C.-E.P.)
| | - Sung-Gil Choi
- Department of Food Science and Technology, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea; (W.U.R.); (N.C.H.); (C.-E.P.)
| |
Collapse
|
13
|
Hennebelle M, Villeneuve P, Durand E, Lecomte J, van Duynhoven J, Meynier A, Yesiltas B, Jacobsen C, Berton-Carabin C. Lipid oxidation in emulsions: New insights from the past two decades. Prog Lipid Res 2024; 94:101275. [PMID: 38280491 DOI: 10.1016/j.plipres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Lipid oxidation constitutes the main source of degradation of lipid-rich foods, including food emulsions. The complexity of the reactions at play combined with the increased demand from consumers for less processed and more natural foods result in additional challenges in controlling this phenomenon. This review provides an overview of the insights acquired over the past two decades on the understanding of lipid oxidation in oil-in-water (O/W) emulsions. After introducing the general structure of O/W emulsions and the classical mechanisms of lipid oxidation, the contribution of less studied oxidation products and the spatiotemporal resolution of these reactions will be discussed. We then highlight the impact of emulsion formulation on the mechanisms, taking into consideration the new trends in terms of emulsifiers as well as their own sensitivity to oxidation. Finally, novel antioxidant strategies that have emerged to meet the recent consumer's demand will be detailed. In an era defined by the pursuit of healthier, more natural, and sustainable food choices, a comprehensive understanding of lipid oxidation in emulsions is not only an academic quest, but also a crucial step towards meeting the evolving expectations of consumers and ensuring the quality and stability of lipid-rich food products.
Collapse
Affiliation(s)
- Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands.
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Erwann Durand
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jérôme Lecomte
- CIRAD, UMR Qualisud, Montpellier F34398, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - John van Duynhoven
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, the Netherlands; Unilever Food Innovation Centre, Wageningen, the Netherlands
| | | | - Betül Yesiltas
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Charlotte Jacobsen
- Research group for Bioactives - Analysis and Application, Technical University of Denmark, National Food Institute, Kgs. Lyngby DK-2800, Denmark
| | - Claire Berton-Carabin
- INRAE, UR BIA, Nantes 44300, France; Laboratory of Food Process Engineering, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
14
|
Huang M, Lu H, Ahmad M, Ying R. WPI-coated liposomes as a delivery vehicle for enhancing the thermal stability and antioxidant activity of luteolin. Food Chem 2024; 437:137786. [PMID: 37871431 DOI: 10.1016/j.foodchem.2023.137786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The practical application of luteolin in food systems faces challenges due to its inherent instability. This study aimed to develop luteolin-loaded liposomes coated with whey protein isolate (WPI) to enhance the thermal stability and antioxidant activity of luteolin. The physical characteristics of both luteolin-loaded liposomes (LUT-Lips) and WPI-coated luteolin-loaded liposomes (WPI-LUT-Lips) were assessed. At a 5% WPI concentration, WPI-LUT-Lips demonstrated excellent dispersibility and improved encapsulation efficiency. WPI interacted with the liposome membrane via hydrophobic forces, hydrogen bonding, and electrostatic contact force, resulting in an efficient coating. Differential scanning calorimetry confirmed that WPI-LUT-Lips exhibited greater thermal stability compared to LUT-Lips, attributed to the protective effect of the WPI. Furthermore, WPI-LUT-Lips displayed superior antioxidant activity, as evidenced by their DPPH scavenging activity (86.36 ± 1.95%), TBARS reduction (25.33 ± 1.90%), and reducing power (82.86 ± 1.42%). Therefore, WPI-coated luteolin-loaded liposomes offer a promising way to enhance luteolin's integration into food systems.
Collapse
Affiliation(s)
- Meigui Huang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| | - Hui Lu
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
15
|
Ballon A, Romero MP, Rodriguez-Saona LE, de Lamo-Castellví S, Güell C, Ferrando M. Conjugation of lesser mealworm (Alphitobius diaperinus) larvae protein with polyphenols for the development of innovative antioxidant emulsifiers. Food Chem 2024; 434:137494. [PMID: 37742546 DOI: 10.1016/j.foodchem.2023.137494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Lesser mealworm protein concentrate (LMPC) was conjugated with chlorogenic acid (CA) or tannic acid (TA) using an alkaline method. The impact of polyphenol type and concentration on the physicochemical and structural characteristics, antioxidant, interfacial, and emulsifying properties of the LMPC-polyphenol conjugates were investigated. Under the conditions tested, TA demonstrated higher affinity for LMPC compared to CA. The conjugation of LMPC induced conformational changes as showed by intrinsic fluorescence and FT-MIR raw spectra analysis. The surface hydrophobicity of the conjugates was reduced, leading to increased interfacial tension values for LMPC-TA conjugates without impairment of the emulsifying activity. The antioxidant properties were significantly improved by the conjugation. Flaxseed oil-in-water (O/W) emulsions stabilized by the conjugates and LMPC remained physically stable for 12 days at 50 °C with a notable reduction of secondary oxidation products when conjugates were used. LMPC-TA and LMPC-CA exhibited potential to be used as novel antioxidant emulsifiers in O/W emulsions.
Collapse
Affiliation(s)
- Aurélie Ballon
- Department d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Maria-Paz Romero
- Food Technology Department, Escuela Técnica Superior de Ingeniería Agraria, Universidad de Lleida, Avda. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Luis E Rodriguez-Saona
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, United States
| | - Sílvia de Lamo-Castellví
- Department d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Carme Güell
- Department d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Montserrat Ferrando
- Department d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| |
Collapse
|
16
|
Zhao W, Wei Z, Xue C. Foam-templated oleogels constructed by whey protein isolate and xanthan gum: Multiple-effect delivery vehicle for Antarctic krill oil. Int J Biol Macromol 2024; 256:128391. [PMID: 38029892 DOI: 10.1016/j.ijbiomac.2023.128391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
To address the limitations of Antarctic krill oil (AKO) such as easy oxidation, unacceptable fishy flavor and low bioaccessibility of astaxanthin in it, a multiple-effect delivery vehicle for AKO is needed. In this study, whey protein isolate (WPI) and xanthan gum (XG) were utilized to construct AKO into oleogels by generating foam-templates. The effects of the concentration of XG on the properties of foam, cryogel and the corresponding oleogels were investigated, and the formation mechanism of oleogel was discussed from the perspective of the correlation between foam-cryogel-oleogel. The results demonstrated that with the increase of the concentration of XG, the foam stability was improved, the cryogel after freeze drying had a more uniform network structure and superior oil absorption ability, and the corresponding oleogel had excellent oil holding ability after oil absorption. The AKO oleogels showed superior oxidative stability compared with AKO. The in vitro digestion experiments demonstrated that the bioaccessibility of the astaxanthin in this oleogel was also considerably higher than that in AKO. In addition, this oleogel had masking effect on the odor-presenting substances in AKO, while retaining other flavors of AKO. The foam-templated oleogel can be considered as a multiple-effect vehicle for AKO to facilitate its application in food products. This study provides theoretical basis and data support for the development and utilization of novel vehicle for AKO, broadening the application of AKO in the field of food science.
Collapse
Affiliation(s)
- Wanjun Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory of Marine Drugs and Biological Products, The Laoshan Laboratory, Qingdao 266235, China
| |
Collapse
|
17
|
Li D, Wang R, Ma Y, Yu D. Covalent modification of (+)-catechin to improve the physicochemical, rheological, and oxidative stability properties of rice bran protein emulsion. Int J Biol Macromol 2023; 249:126003. [PMID: 37517762 DOI: 10.1016/j.ijbiomac.2023.126003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The aim of this study is the effects of (+)-catechin (CC) covalent cross-linking (CCCI) (0.05-0.25 %, w/v) on the physicochemical properties, rheological properties, and oxidative stability of rice bran protein (RBP) emulsion. Analysis of particle size, ζ-potential, circular dichroism, fluorescence spectroscopy, surface hydrophobicity, and emulsifying properties demonstrated that a concentration of 0.15 % (w/v) CCCI facilitated protein structure unfolding, resulting in reduced particle size, enhanced electrostatic repulsion, and improved emulsion stability. Moreover, the covalent complexes of RBP-0.15 %CC (w/v) exhibited increased viscosity and shear stress, reflected by the highest G' and G″ values, ultimately enhancing the oxidative stability. Furthermore, analysis using atomic force microscopy and confocal laser scanning microscopy revealed that the RBP-0.15 %CC complexes exhibited the smallest particle size (164 nm) and displayed greater homogeneity. An increase in CC concentration to 0.25 % (w/v) resulted in a higher emulsion aggregation. The emulsions stabilized by CCCI exhibited superior rheological properties and enhanced oxidation stability compared to the control. In conclusion, an appropriate amount of CC can enhance the rheology and oxidation stability of the RBP emulsion, while CCCI treatment holds potential for expanding the utility of RBP in various applications.
Collapse
Affiliation(s)
- Dan Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
18
|
Lima Nascimento LG, Odelli D, Fernandes de Carvalho A, Martins E, Delaplace G, Peres de Sá Peixoto Júnior P, Nogueira Silva NF, Casanova F. Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits? Foods 2023; 12:2385. [PMID: 37372596 DOI: 10.3390/foods12122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the context of a diet transition from animal protein to plant protein, both for sustainable and healthy scopes, innovative plant-based foods are being developing. A combination with milk proteins has been proposed as a strategy to overcome the scarce functional and sensorial properties of plant proteins. Based on this mixture were designed several colloidal systems such as suspensions, gels, emulsions, and foams which can be found in many food products. This review aims to give profound scientific insights on the challenges and opportunities of developing such binary systems which could soon open a new market category in the food industry. The recent trends in the formulation of each colloidal system, as well as their limits and advantages are here considered. Lastly, new approaches to improve the coexistence of both milk and plant proteins and how they affect the sensorial profile of food products are discussed.
Collapse
Affiliation(s)
- Luis Gustavo Lima Nascimento
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, 59009 Lille, France
| | - Davide Odelli
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | | | - Evandro Martins
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Guillaume Delaplace
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, 59009 Lille, France
| | | | | | - Federico Casanova
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Can Karaca A, Assadpour E, Jafari SM. Plant protein-based emulsions for the delivery of bioactive compounds. Adv Colloid Interface Sci 2023; 316:102918. [PMID: 37172542 DOI: 10.1016/j.cis.2023.102918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Emulsion-based delivery systems (EBDSs) can be used as effective carriers for bioactive compounds (bioactives). Recent studies have shown that plant proteins (PLPs) have the potential to be utilized as stabilizers of emulsions for loading, protection and delivery of bioactives. Different strategies combining physical, chemical and biological techniques can be applied for alteration of the structural characteristics and improving the emulsification and encapsulation performance of PLPs. The stability, release, and bioavailability of the encapsulated bioactives can be tailored via optimizing the processing conditions and formulation of the emulsions. This paper presents cutting-edge information on PLP-based emulsions carrying bioactives in terms of their preparation methods, physicochemical characteristics, stability, encapsulation efficiency and release behavior of bioactives. Strategies applied for improvement of emulsifying and encapsulation properties of PLPs used in EBDSs are also reviewed. Special emphasis is given to the use of PLP-carbohydrate complexes for stabilizing bioactive-loaded emulsions.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
20
|
Islam F, Amer Ali Y, Imran A, Afzaal M, Zahra SM, Fatima M, Saeed F, Usman I, Shehzadi U, Mehta S, Shah MA. Vegetable proteins as encapsulating agents: Recent updates and future perspectives. Food Sci Nutr 2023; 11:1705-1717. [PMID: 37051354 PMCID: PMC10084973 DOI: 10.1002/fsn3.3234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/29/2023] Open
Abstract
The use of proteinaceous material is desired as it forms a protective gelation around the active core, making it safe through temperature, pH, and O2 in the stomach and intestinal environment. During the boom of functional food utilization in this era of advancement in drug delivery systems, there is a dire need to find more protein sources that could be explored for the potential of being used as encapsulation materials, especially vegetable proteins. This review covers certain examples which need to be explored to form an encapsulation coating material, including soybeans (conglycinin and glycinin), peas (vicilin and convicilin), sunflower (helianthins and albumins), legumes (glutenins and albumins), and proteins from oats, rice, and wheat. This review covers recent interventions exploring the mentioned vegetable protein encapsulation and imminent projections in the shifting paradigm from conventional process to environmentally friendly green process technologies and the sensitivity of methods used for encapsulation. Vegetable proteins are easily biodegradable and so are the procedures of spray drying and coacervation, which have been discussed to prepare the desired encapsulated functional food. Coacervation processes are yet more promising in the case of particle size formation ranging from nano to several hundred microns. The present review emphasizes the significance of using vegetable proteins as capsule material, as well as the specificity of encapsulation methods in relation to vegetable protein sensitivity and the purpose of encapsulation accompanying recent interventions.
Collapse
Affiliation(s)
- Fakhar Islam
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Yuosra Amer Ali
- Department of Food Sciences, College of Agriculture and ForestryUniversity of MosulMosulIraq
| | - Ali Imran
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Syeda Mahvish Zahra
- Department of Environmental Design, Health and Nutritional SciencesAllama Iqbal Open UniversityIslamabadPakistan
- Institute of Food Science and Nutrition, University of SargodhaSargodhaPakistan
| | - Maleeha Fatima
- Department of Home EconomicsGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Ifrah Usman
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Umber Shehzadi
- Department of Food Sciences, College of Agriculture and ForestryUniversity of MosulMosulIraq
| | - Shilpa Mehta
- Department of Electrical and Electronic EngineeringAuckland University of TechnologyAucklandNew Zealand
| | - Mohd Asif Shah
- Adjunct FacultyUniversity Center for Research & Development, Chandigarh UniversityMohaliIndia
| |
Collapse
|
21
|
Berton-Carabin C, Villeneuve P. Targeting Interfacial Location of Phenolic Antioxidants in Emulsions: Strategies and Benefits. Annu Rev Food Sci Technol 2023; 14:63-83. [PMID: 36972155 DOI: 10.1146/annurev-food-060721-021636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
It is important to have larger proportions of health-beneficial polyunsaturated lipids in foods, but these nutrients are particularly sensitive to oxidation, and dedicated strategies must be developed to prevent this deleterious reaction. In food oil-in-water emulsions, the oil-water interface is a crucial area when it comes to the initiation of lipid oxidation. Unfortunately, most available natural antioxidants, such as phenolic antioxidants, do not spontaneously position at this specific locus. Achieving such a strategic positioning has therefore been an active research area, and various routes have been proposed: lipophilizing phenolic acids to confer them with an amphiphilic character; functionalizing biopolymer emulsifiers through covalent or noncovalent interactions with phenolics; or loading Pickering particles with natural phenolic compounds to yield interfacial antioxidant reservoirs. We herein review the principles and efficiency of these approaches to counteract lipid oxidation in emulsions as well as their advantages and limitations.
Collapse
Affiliation(s)
- Claire Berton-Carabin
- INRAE, UR BIA, Nantes, France;
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, Netherlands
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier, France;
- Qualisud, University of Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
22
|
Keramat M, Ehsandoost E, Golmakani MT. Recent Trends in Improving the Oxidative Stability of Oil-Based Food Products by Inhibiting Oxidation at the Interfacial Region. Foods 2023; 12:foods12061191. [PMID: 36981117 PMCID: PMC10048451 DOI: 10.3390/foods12061191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, new approaches have been developed to limit the oxidation of oil-based food products by inhibiting peroxidation at the interfacial region. This review article describes and discusses these particular approaches. In bulk oils, modifying the polarity of antioxidants by chemical methods (e.g., esterifying antioxidants with fatty alcohol or fatty acids) and combining antioxidants with surfactants with low hydrophilic–lipophilic balance value (e.g., lecithin and polyglycerol polyricinoleate) can be effective strategies for inhibiting peroxidation. Compared to monolayer emulsions, a thick interfacial layer in multilayer emulsions and Pickering emulsions can act as a physical barrier. Meanwhile, high viscosity of the water phase in emulsion gels tends to hinder the diffusion of pro-oxidants into the interfacial region. Furthermore, applying surface-active substances with antioxidant properties (such as proteins, peptides, polysaccharides, and complexes of protein-polysaccharide, protein-polyphenol, protein-saponin, and protein-polysaccharide-polyphenol) that adsorb at the interfacial area is another novel method for enhancing oil-in-water emulsion oxidative stability. Furthermore, localizing antioxidants at the interfacial region through lipophilization of hydrophilic antioxidants, conjugating antioxidants with surfactants, or entrapping antioxidants into Pickering particles can be considered new strategies for reducing the emulsion peroxidation.
Collapse
|
23
|
Ghelichi S, Hajfathalian M, Yesiltas B, Sørensen ADM, García-Moreno PJ, Jacobsen C. Oxidation and oxidative stability in emulsions. Compr Rev Food Sci Food Saf 2023; 22:1864-1901. [PMID: 36880585 DOI: 10.1111/1541-4337.13134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
Emulsions are implemented in the fabrication of a wide array of foods and therefore are of great importance in food science. However, the application of emulsions in food production is restricted by two main obstacles, that is, physical and oxidative stability. The former has been comprehensively reviewed somewhere else, but our literature review indicated that there is a prominent ground for reviewing the latter across all kinds of emulsions. Therefore, the present study was formulated in order to review oxidation and oxidative stability in emulsions. In doing so, different measures to render oxidative stability to emulsions are reviewed after introducing lipid oxidation reactions and methods to measure lipid oxidation. These strategies are scrutinized in four main categories, namely storage conditions, emulsifiers, optimization of production methods, and antioxidants. Afterward, oxidation in all types of emulsions, including conventional ones (oil-in-water and water-in-oil) and uncommon emulsions in food production (oil-in-oil), is reviewed. Furthermore, the oxidation and oxidative stability of multiple emulsions, nanoemulsions, and Pickering emulsions are taken into account. Finally, oxidative processes across different parent and food emulsions were explained taking a comparative approach.
Collapse
Affiliation(s)
- Sakhi Ghelichi
- Department of Chemistry and Biochemistry Research, Daneshafzayan-e-Fardaye Giti Research and Education Co., Gorgan, Iran
| | - Mona Hajfathalian
- Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
24
|
Amiri H, Shabanpour B, Pourashouri P, kashiri M. Encapsulation of marine bioactive compounds using liposome technique: evaluation of physicochemical properties and oxidative stability during storage. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Yan S, Yao Y, Xie X, Zhang S, Huang Y, Zhu H, Li Y, Qi B. Comparison of the physical stabilities and oxidation of lipids and proteins in natural and polyphenol-modified soybean protein isolate-stabilized emulsions. Food Res Int 2022; 162:112066. [DOI: 10.1016/j.foodres.2022.112066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/04/2022]
|
26
|
In Vitro Antioxidant, Antimicrobial, Anticoccidial, and Anti-Inflammatory Study of Essential Oils of Oregano, Thyme, and Sage from Epirus, Greece. Life (Basel) 2022; 12:life12111783. [PMID: 36362938 PMCID: PMC9693314 DOI: 10.3390/life12111783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Origanum vulgare subsp. hirtum, Thymus vulgaris, and Salvia fructicosa are aromatic plants commonly found in Mediterranean countries and are traditionally used in Greece as a remedy for humans, since they are well known as potent antibacterial, antioxidant, and anti-inflammatory agents. Essential oils (EOs) derived from plants cultivated in the mountainous region of Epirus, Greece, were investigated for their inhibitory activity against key microorganisms with relevance to avian health, while also assessing their antioxidant and anti-inflammatory activity. The total phenolic content (TPC) of the EOs was estimated according to the Folin−Ciocalteu method, while the antioxidant capacity was tested through the EOs’ ability to scavenge free radicals by means of the DPPH, ABTS, and FRAP assays. Antibacterial and anti-inflammatory effects were examined by the agar disc diffusion method and the lipoxygenase (LOX) inhibition test, respectively. Furthermore, the EOs’ ability to inhibit the invasion of sporozoites of Eimeria tenella (Wisconsin strain) along with any toxic effects were assayed in Madin−Darby bovine kidney (MDBK) cells. The antioxidant activity of the EOs was observed in descending order: oregano > thyme > sage. The antimicrobial effects of thyme and oregano were equivalent and higher than that of sage, while the anti-inflammatory effect of thyme was higher compared to both sage and oregano. The intracellular invasion of sporozoites was evaluated by the detection of E. tenella DNA by qPCR from cell monolayers harvested at 2 and 24 h post-infection. Parasite invasion was inhibited by the addition of oregano essential oil at the concentration of 100 μg/mL by 83% or 93% after 2 or 24 h, respectively, and was higher compared to the addition of thyme and sage, which had similar effects, but at a less intensive level. The cytotoxic assessment of all three essential oils revealed that they had no effect on MDBK cells compared to dimethyl sulfoxide (DMSO), used as the control substance. The supplementation of oregano, thyme, and sage essential oils had a potent antioxidant, anti-inflammatory, antimicrobial, and anticoccidial in vitro effect that is comparable to synthetic substances or approved drugs, justifying the need for further evaluation by in vivo studies in broilers reared in the absence of antimicrobial and anticoccidial drugs or synthetic antioxidant and/or anti-inflammatory compounds.
Collapse
|
27
|
Wang C, Zhang X, Zhao R, Freeman K, McHenry MA, Wang C, Guo M. Impact of carrier oil on interfacial properties, CBD partition and stability of emulsions formulated by whey protein or whey protein-maltodextrin conjugate. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Chen Y, Sun Y, Ding Y, Ding Y, Liu S, Zhou X, Wu H, Xiao J, Lu B. Recent progress in fish oil-based emulsions by various food-grade stabilizers: Fabrication strategy, interfacial stability mechanism and potential application. Crit Rev Food Sci Nutr 2022; 64:1677-1700. [PMID: 36062818 DOI: 10.1080/10408398.2022.2118658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fish oil, rich in a variety of long-chain ω-3 PUFAs, is widely used in fortified foods due to its broad-spectrum health benefits. However, its undesired characteristics include oxidation sensitivity, poor water solubility, and fishy off-flavor greatly hinder its exploitation in food field. Over the past two decades, constructing fish oil emulsions to encapsulate ω-3 PUFAs for improving their physicochemical and functional properties has undergone great progress. This review mainly focuses on understanding the fabrication strategies, stabilization mechanism, and potential applications of fish oil emulsions, including fish oil microemulsions, nanoemulsions, double emulsions, Pickering emulsions and emulsion gels. Furthermore, the role of oil-water interfacial stabilizers in the fish oil emulsions stability will be discussed with a highlight on food-grade single emulsifiers and natural complex systems for achieving this purpose. Additionally, its roles and applications in food industry and nutrition field are delineated. Finally, possible innovative food trends and applications are highlighted, such as novel fish oil-based delivery systems construction (e.g., Janus emulsions and nutraceutical co-delivery systems), exploring digestion and absorption mechanisms and enhancing functional evaluation (e.g., nutritional supplement enhancer, and novel fortified/functional foods). This review provides a reference for the application of fish oil-based emulsion systems in future precision diet intervention implementations.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Yi Sun
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Huawei Wu
- Ningbo Today Food Co Ltd, Ningbo, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Yan S, Xu J, Zhang S, Zhu H, Qi B, Li Y. Effect of interfacial composition on the physical stability and co-oxidation of proteins and lipids in a soy protein isolate-(−)-epigallocatechin gallate conjugate emulsion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Zhang M, Fan L, Liu Y, Huang S, Li J. Effects of proteins on emulsion stability: The role of proteins at the oil-water interface. Food Chem 2022; 397:133726. [PMID: 35908463 DOI: 10.1016/j.foodchem.2022.133726] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
To obtain a stable protein-added emulsion system, researchers have focused on the design of the oil-water interface. This review discussed the updated details of protein adsorption behavior at the oil-water interface. We evaluated methods of monitoring interfacial proteins as well as their strengths and limitations. Based on the effects of structure on protein adsorption, we summarized the contribution of pre-changing methods to adsorption. In addition, the interaction of proteins and other surface-active molecules at the interface had been emphasized. Results showed that protein adsorption is affected by conformation, oil polarity and aqueous environments. The monitoring of interfacial proteins through spectroscopic properties in actual emulsion systems is an emerging trend. Pre-changing could improve the protein adsorption and the purpose of pre-changing of proteins is similar. In the interaction with other surface-active molecules, co-adsorption is desirable. By co-adsorption, the respective advantages can be exploited to obtain a more stable emulsion system.
Collapse
Affiliation(s)
- Mi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengquan Huang
- Nuspower Greatsun (Guangdong) Biotechnology Co., Ltd., Guangzhou 510931, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
31
|
Zhang M, Fan L, Liu Y, Li J. A mechanistic investigation of the effect of dispersion phase protein type on the physicochemical stability of water–in–oil emulsions. Food Res Int 2022; 157:111293. [DOI: 10.1016/j.foodres.2022.111293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
|
32
|
Sani MA, Tavassoli M, Azizi-Lalabadi M, Mohammadi K, McClements DJ. Nano-enabled plant-based colloidal delivery systems for bioactive agents in foods: Design, formulation, and application. Adv Colloid Interface Sci 2022; 305:102709. [PMID: 35640316 DOI: 10.1016/j.cis.2022.102709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/21/2022]
Abstract
Consumers are becoming increasingly aware of the impact of their dietary choices on the environment, animal welfare, and health, which is causing many of them to adopt more plant-based diets. For this reason, many sectors of the food industry are reformulating their products to contain more plant-based ingredients. This article describes recent research on the formation and application of nano-enabled colloidal delivery systems formulated from plant-based ingredients, such as polysaccharides, proteins, lipids, and phospholipids. These delivery systems include nanoemulsions, solid lipid nanoparticles, nanoliposomes, nanophytosomes, and biopolymer nanoparticles. The composition, size, structure, and charge of the particles in these delivery systems can be manipulated to create novel or improved functionalities, such as improved robustness, higher optical clarity, controlled release, and increased bioavailability. There have been major advances in the design, assembly, and application of plant-based edible nanoparticles within the food industry over the past decade or so. As a result, there are now a wide range of different options available for creating delivery systems for specific applications. In the future, it will be important to establish whether these formulations can be produced using economically viable methods and provide the desired functionality in real-life applications.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student's Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
33
|
Keramat M, Kheynoor N, Golmakani MT. Oxidative stability of Pickering emulsions. Food Chem X 2022; 14:100279. [PMID: 35284815 PMCID: PMC8914557 DOI: 10.1016/j.fochx.2022.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Oxidative stability of O/W Pickering emulsions depends on their interfacial layer. Solid particles can reduce Pickering emulsion oxidation by creating a thick interface. Manipulating the charge of the interface can control Pickering emulsion oxidation. Adding antioxidants to solid particles can reduce oxidation in Pickering emulsions.
In recent years, Pickering emulsions have been the focus of growing interest because of their possible role as alternatives to conventional emulsions. Some reviews have investigated the physical stability of Pickering emulsions, but the oxidative stability of these emulsions remains largely unexplored. In this review, the oxidation mechanism and factors affecting lipid oxidation rates in Pickering emulsions are discussed. Then, different food-grade solid particles are evaluated for their ability to stabilize Pickering emulsions. Finally, several strategies are reviewed for improving the oxidative stability of Pickering emulsions. These strategies are based on efforts to manipulate the physical and chemical properties of the interfacial layer, increase the concentration of antioxidants at the interfacial layer through incorporating them into solid particles, cause oil droplets to crowd at high packing fractions, trap oil droplets in a gel network and increase the viscosity of the continuous phase.
Collapse
|
34
|
Effect of pectin on the properties of nanoemulsions stabilized by sodium caseinate at neutral pH. Int J Biol Macromol 2022; 209:1858-1866. [PMID: 35489623 DOI: 10.1016/j.ijbiomac.2022.04.160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 12/25/2022]
Abstract
The effect of different concentrations of low methoxyl pectin (LMP) on lipid oxidation and physical stability of sodium caseinate (CAS) stabilized nanoemulsions under neutral pH was investigated. The addition of pectin at low concentration (≤ 0.10 wt%) had no significant effect on the average size of nanoemulsions, but a slight size increase and phase separation were observed at higher concentrations of pectin (≥ 0.25 wt%). This result suggests that LMP can not adsorb at the oil/water interfacial CAS membrane at neutral pH. However, in the presence of LMP, the physical stability of nanoemulsions against high salt concentrations and freeze-thaw cycles was significantly enhanced. Moreover, nanoemulsions containing pectin have a better ability to inhibit lipid and protein oxidation than nanoemulsions without pectin after 3 weeks, and the lowest lipid hydroperoxide content was observed for nanoemulsions containing 0.25 wt% pectin.
Collapse
|
35
|
Yan S, Xu J, Liu G, Du X, Hu M, Zhang S, Jiang L, Zhu H, Qi B, Li Y. Emulsions co-stabilized by soy protein nanoparticles and tea saponin: Physical stability, rheological properties, oxidative stability, and lipid digestion. Food Chem 2022; 387:132891. [PMID: 35421647 DOI: 10.1016/j.foodchem.2022.132891] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/15/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
Abstract
Herein, the effects of the concentration (0.1%-1.0%, w/v) and addition sequence of tea saponin (TS) on the physical stability, oxidative stability, rheological properties, and in vitro digestion of the emulsions stabilized by heat-induced soy protein isolate nanoparticles (SPs) were investigated. The results revealed that the concentration and addition sequence of TS have significant impact on the microstructure, stability, rheological properties, and in vitro digestion of the emulsions. TS was shown to not only fill the interfacial gaps but also adsorb on the particle surfaces, contributing to interfacial wettability. With increasing TS concentration, interfacial tension decay is clearly observed. Further, TS endows the droplets with electrostatic repulsion and steric resistance, preventing their flocculation, coalescence, and oxidation. Finally, in vitro digestion experiments demonstrated that the presence of TS delayed the lipid digestion of the emulsions.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guannan Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoqian Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Miao Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huaping Zhu
- China Rural Technology Development Center, Beijing 100045, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Research Center of Soybean Engineering and Technology, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
36
|
Proposed Methods for Testing and Comparing the Emulsifying Properties of Proteins from Animal, Plant, and Alternative Sources. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6020019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The food industry is trying to reformulate many of its products to replace functional ingredients that are chemically synthesized or isolated from animal sources (such as meat, fish, eggs, or milk) with ingredients derived from plant or microbial sources. This effort is largely a result of the demand for foods that are better for the environment, human health, and animal welfare. Many new kinds of plant- or microbial-derived proteins are being isolated for potential utilization as functional ingredients by the food industry. A major challenge in this area is the lack of standardized methods to measure and compare the functional performance of proteins under conditions they might be used in food applications. This information is required to select the most appropriate protein for each application. In this article, we discuss the physicochemical principles of emulsifier functionality and then present a series of analytical tests that can be used to quantify the ability of proteins to form and stabilize emulsions. These tests include methods for characterizing the effectiveness of the proteins to promote the formation and stability of the small droplets generated during homogenization, as well as their ability to stabilize the droplets against aggregation under different conditions (e.g., pH, ionic composition, temperature, and shearing). This information should be useful to the food industry when it is trying to identify alternative proteins to replace existing emulsifiers in specific food applications.
Collapse
|
37
|
Liu C, Pei R, Heinonen M. Faba bean protein: A promising plant-based emulsifier for improving physical and oxidative stabilities of oil-in-water emulsions. Food Chem 2022; 369:130879. [PMID: 34455319 DOI: 10.1016/j.foodchem.2021.130879] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/13/2021] [Accepted: 08/15/2021] [Indexed: 01/29/2023]
Abstract
Faba bean is a protein-rich, sustainable, but understudied legume. Faba bean protein isolates (FBPIs) can serve as promising emulsifiers. This review aims to summarize the research on FBPIs as emulsifiers and various modification methods to improve the emulsifying functionalities. The emulsifying activities of FBPIs depend on several physiochemical characteristics (e.g. solubility, surface hydrophobicity, surface charge, interfacial activity). Physical modifications, especially via linking FBPIs electrostatically to polysaccharides can effectively increase the interfacial layer thickness/compactness and maintain the interfacial protein adsorption. Chemical modifications of FBPIs (e.g. acetylation and Maillard reaction) could improve the interfacial activity and affect the droplet-size distribution. Enzymatic modifications, usually either via hydrolysis or cross-linking, help to optimize the molecular size, solubility, and surface hydrophobicity of FBPIs. It is critical to consider the lipid/protein oxidative stability and physical stability when optimizing the emulsifying functionality of FBPIs. With suitable modifications, FBPI can serve as a promising emulsifier in food production.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Ruisong Pei
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Drive, Babcock Hall, Madison, WI 53705, USA
| | - Marina Heinonen
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki 00790, Finland
| |
Collapse
|
38
|
Chen J, Li X, Kong B, Chen Q, Liu Q. Comparative study of protein-lipid co-oxidation in whey protein isolate-stabilised oil-in-water emulsions prepared by different homogenisation methods. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Yang J, Wen C, Duan Y, Deng Q, Peng D, Zhang H, Ma H. The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Tian L, Zhang S, Yi J, Zhu Z, Cui L, Andrew Decker E, Julian McClements D. Antioxidant and prooxidant activities of tea polyphenols in oil-in-water emulsions depend on the level used and the location of proteins. Food Chem 2021; 375:131672. [PMID: 34865927 DOI: 10.1016/j.foodchem.2021.131672] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/01/2021] [Accepted: 11/21/2021] [Indexed: 11/18/2022]
Abstract
We studied the impacts of protein location (interface or aqueous phase) on the antioxidant and prooxidant activities of tea polyphenols (TP) in model oil-in-water emulsions (pH 7) at a low (0.01% w/v) or high (0.04 % w/v) concentration. TP at 0.01% reduced the levels of both lipid and protein oxidation markers in emulsions, independent of the protein location. However, TP were more potent when proteins were located at the interface. At 0.04%, TP were only weakly antioxidant towards lipids but were prooxidant towards proteins in emulsions with proteins at the interface, whereas they were still somewhat antioxidant for aqueous phase proteins. These results indicate that TP may act as either antioxidants or prooxidants depending on their concentration and also on the location of the proteins in emulsions. The level of TP should be optimized for emulsion-based foods or beverages to achieve optimum antioxidant activity.
Collapse
Affiliation(s)
- Li Tian
- College of Biology and Food Engineering, Anyang Institute of Technology, Huanghe Road An yang, Henan 455000, PR China
| | - Shulin Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Huanghe Road An yang, Henan 455000, PR China
| | - Jianhua Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Road, Xi'an, Shaanxi 710021, PR China.
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Road, Xi'an, Shaanxi 710021, PR China
| | - Leqi Cui
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Eric Andrew Decker
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
41
|
Ghavidel N, Fatehi P. Recent Developments in the Formulation and Use of Polymers and Particles of Plant-based Origin for Emulsion Stabilizations. CHEMSUSCHEM 2021; 14:4850-4877. [PMID: 34424605 DOI: 10.1002/cssc.202101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The main scope of this Review was the recent progress in the use of plant-based polymers and particles for the stabilization of Pickering and non-Pickering emulsion systems. Due to their availability and promising performance, it was discussed how the source, modification, and formulation of cellulose, starch, protein, and lignin-based polymers and particles would impact their emulsion stabilization. Special attention was given toward the material synthesis in two forms of polymeric surfactants and particles and the corresponding formulated emulsions. Also, the effects of particle size, degree of aggregation, wettability, degree of substitution, and electrical charge in stabilizing oil/water systems and micro- and macro-structures of oil droplets were discussed. The wide range of applications using such plant-based stabilizers in different technologies as well as their challenge and future perspectives were described.
Collapse
Affiliation(s)
- Nasim Ghavidel
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| | - Pedram Fatehi
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| |
Collapse
|
42
|
Tan Y, McClements DJ. Plant-Based Colloidal Delivery Systems for Bioactives. Molecules 2021; 26:molecules26226895. [PMID: 34833987 PMCID: PMC8625429 DOI: 10.3390/molecules26226895] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
The supplementation of plant-based foods and beverages with bioactive agents may be an important strategy for increasing human healthiness. Numerous kinds of colloidal delivery systems have been developed to encapsulate bioactives with the goal of improving their water dispersibility, chemical stability, and bioavailability. In this review, we focus on colloidal delivery systems assembled entirely from plant-based ingredients, such as lipids, proteins, polysaccharides, phospholipids, and surfactants isolated from botanical sources. In particular, the utilization of these ingredients to create plant-based nanoemulsions, nanoliposomes, nanoparticles, and microgels is covered. The utilization of these delivery systems to encapsulate, protect, and release various kinds of bioactives is highlighted, including oil-soluble vitamins (like vitamin D), ω-3 oils, carotenoids (vitamin A precursors), curcuminoids, and polyphenols. The functionality of these delivery systems can be tailored to specific applications by careful selection of ingredients and processing operations, as this enables the composition, size, shape, internal structure, surface chemistry, and electrical characteristics of the colloidal particles to be controlled. The plant-based delivery systems discussed in this article may be useful for introducing active ingredients into the next generation of plant-based foods, meat, seafood, milk, and egg analogs. Nevertheless, there is still a need to systematically compare the functional performance of different delivery systems for specific applications to establish the most appropriate one. In addition, there is a need to test their efficacy at delivering bioavailable forms of bioactives using in vivo studies.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
- Correspondence:
| |
Collapse
|
43
|
Afzaal M, Saeed F, Aamir M, Usman I, Ashfaq I, Ikram A, Hussain M, Anjum FM, Waleed M, Suleria H. ENCAPSULATING PROPERTIES OF LEGUME PROTEINS: RECENT UPDATES & PERSPECTIVES. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1987456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Aamir
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ifrah Usman
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Iqra Ashfaq
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ali Ikram
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | | | - Muhammad Waleed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Hafiz Suleria
- Department of Agriculture and Food Systems, The University of Melbourne, Australia
| |
Collapse
|
44
|
Wei J, Liang Q, Guo Y, Zhang W, Wu L. A Deep Insight in the Antioxidant Property of Carnosic Acid: From Computational Study to Experimental Analysis. Foods 2021; 10:2279. [PMID: 34681327 PMCID: PMC8534978 DOI: 10.3390/foods10102279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Since the deep cause for the anti-oxidation of carnosic acid (CA) against oleic acid (OA) remains unclear, we focused on exploring the CA inhibition mechanism via a combined experimental and computational study. Atomic charge, total molecular energy, phenolic hydroxyl bond dissociation enthalpy (BDE), the highest occupied molecular orbital (HOMO), and the lowest unoccupied orbital (LUMO) energy were first discussed by the B3LYP/6-31G (d,p) level, a density functional method. A one-step hydrogen atom transfer (HAT) was proposed for the anti-oxidation of CA towards OA, and the Rancimat method was carried out for analyzing the thermal oxidation stability. The results indicate that the two phenolic hydroxyl groups located at C7(O15) and C8(O18) of CA exert the highest activity, and the chemical reaction heat is minimal when HAT occurs. Consequently, the activity of C7(O15) (303.27 kJ/mol) is slightly lower than that of C8(O18) (295.63 kJ/mol), while the dissociation enthalpy of phenol hydroxyl groups is much lower than those of α-CH2 bond of OA (C8, 353.92 kJ/mol; C11, 353.72 kJ/mol). Rancimat method and non-isothermal differential scanning calorimetry (DSC) demonstrate that CA outcompetes tertiary butylhydroquinone (TBHQ), a synthetic food grade antioxidant, both in prolonging the oxidation induction period and reducing the reaction rate of OA. The Ea (apparent activation energies of reaction) of OA, TBHQ + OA, and CA + OA were 50.59, 57.32 and 66.29 kJ/mol, revealing that CA could improve the Ea and thermal oxidation stability of OA.
Collapse
Affiliation(s)
- Jing Wei
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, 285 Nanhai Road, Haikou 570314, China
| | - Qian Liang
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
| | - Yuxin Guo
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
| | - Weimin Zhang
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, 285 Nanhai Road, Haikou 570314, China
| | - Long Wu
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources (Ministry of Education), College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.W.); (Q.L.); (Y.G.); (L.W.)
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
45
|
Hinderink EB, Schröder A, Sagis L, Schroën K, Berton-Carabin CC. Physical and oxidative stability of food emulsions prepared with pea protein fractions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Hinderink EB, Berton-Carabin CC, Schroën K, Riaublanc A, Houinsou-Houssou B, Boire A, Genot C. Conformational Changes of Whey and Pea Proteins upon Emulsification Approached by Front-Surface Fluorescence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6601-6612. [PMID: 34087067 PMCID: PMC8213056 DOI: 10.1021/acs.jafc.1c01005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/11/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Proteins are widely used to stabilize emulsions, and plant proteins have raised increasing interest for this purpose. The interfacial and emulsifying properties of proteins depend largely on their molecular properties. We used fluorescence spectroscopy to characterize the conformation of food proteins from different biological origins (dairy or pea) and transformation processes (commercial or lab-made isolates) in solution and at the oil-water interface. The fourth derivative of fluorescence spectra provided insights in the local environment of tryptophan (Trp) residues and thus in the protein structure. In emulsions, whey proteins adsorbed with their Trp-rich region at the oil-water interface. Proteins in the commercial pea isolate were present as soluble aggregates, and no changes in the local environment of the Trp residues were detected upon emulsification, suggesting that these structures adsorb without conformational changes. The lab-purified pea proteins were less aggregated and a Trp-free region of the vicilin adsorbed at the oil-water interface.
Collapse
Affiliation(s)
- Emma B.
A. Hinderink
- TiFN, P.O. Box 557, 6700 AN Wageningen, The Netherlands
- Laboratory
of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Claire C. Berton-Carabin
- Laboratory
of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- INRAE,
UR BIA, F-44316 Nantes, France
| | - Karin Schroën
- Laboratory
of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
McClements DJ, Grossmann L. The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Compr Rev Food Sci Food Saf 2021; 20:4049-4100. [PMID: 34056859 DOI: 10.1111/1541-4337.12771] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Consumers are increasingly demanding foods that are more ethical, sustainable and nutritious to improve the health of themselves and the planet. The food industry is currently undergoing a revolution, as both small and large companies pivot toward the creation of a new generation of plant-based products to meet this consumer demand. In particular, there is an emphasis on the production of plant-based foods that mimic those that omnivores are familiar with, such as meat, fish, egg, milk, and their products. The main challenge in this area is to simulate the desirable appearance, texture, flavor, mouthfeel, and functionality of these products using ingredients that are isolated entirely from botanical sources, such as proteins, carbohydrates, and lipids. The molecular, chemical, and physical properties of plant-derived ingredients are usually very different from those of animal-derived ones. It is therefore critical to understand the fundamental properties of plant-derived ingredients and how they can be assembled into structures resembling those found in animal products. This review article provides an overview of the current status of the scientific understanding of plant-based foods and highlights areas where further research is required. In particular, it focuses on the chemical, physical, and functional properties of plant-derived ingredients; the processing operations that can be used to convert these ingredients into food products; and, the science behind the formulation of vegan meat, fish, eggs, and milk alternatives.
Collapse
Affiliation(s)
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
48
|
Zhang M, Wang L, Liu Y, Li J. Effects of antioxidants, proteins, and their combination on emulsion oxidation. Crit Rev Food Sci Nutr 2021; 62:8137-8160. [PMID: 33998841 DOI: 10.1080/10408398.2021.1925869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipid oxidation largely determines the quality of emulsion systems as well as their final products. Therefore, an increasing number of studies have focused on the control of lipid oxidation, particularly on its mechanism. In this review, we discuss the factors affecting the efficiency of antioxidants in emulsion systems, such as the free radical scavenging ability, specifically emphasizing on the interfacial behavior and the influence of surfactants on the interfacial distribution of antioxidants. To enhance the antioxidant efficiency of antioxidants in emulsion systems, we discussed whether the combination of antioxidants and proteins can improve antioxidant effects. The types, mixing applications, structures, interface behaviors, effects of surfactants on interfacial proteins, and the location of proteins are associated with the antioxidant effects of proteins in emulsion systems. Antioxidants and proteins can be combined in both covalent and non-covalent ways. The fabrication conditions, conjugation methods, interface behaviors, and characterization methods of these two combinations are also discussed. Our review provides useful information to guide better strategies for providing stability and controlling lipid oxidation in emulsions. The main challenges and future trends in controlling lipid oxidation in complex emulsion systems are also discussed.
Collapse
Affiliation(s)
- Mi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lifeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
49
|
Feng J, Schroën K, Fogliano V, Berton-Carabin C. Antioxidant potential of non-modified and glycated soy proteins in the continuous phase of oil-in-water emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Gumus CE, Gharibzahedi SMT. Yogurts supplemented with lipid emulsions rich in omega-3 fatty acids: New insights into the fortification, microencapsulation, quality properties, and health-promoting effects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|