1
|
López-Bascón MA, Moscoso-Ruiz I, Quirantes-Piné R, del Pino-García R, López-Gámez G, Justicia-Rueda A, Verardo V, Quiles JL. Characterization of Phenolic Compounds in Extra Virgin Olive Oil from Granada (Spain) and Evaluation of Its Neuroprotective Action. Int J Mol Sci 2024; 25:4878. [PMID: 38732097 PMCID: PMC11084348 DOI: 10.3390/ijms25094878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The olive oil sector is a fundamental food in the Mediterranean diet. It has been demonstrated that the consumption of extra virgin olive oil (EVOO) with a high content of phenolic compounds is beneficial in the prevention and/or treatment of many diseases. The main objective of this work was to study the relationship between the content of phenolic compounds and the in vitro neuroprotective and anti-inflammatory activity of EVOOs from two PDOs in the province of Granada. To this purpose, the amounts of phenolic compounds were determined by liquid chromatography coupled to mass spectrometry (HPLC-MS) and the inhibitory activity of acetylcholinesterase (AChE) and cyclooxygenase-2 (COX-2) enzymes by spectrophotometric and fluorimetric assays. The main families identified were phenolic alcohols, secoiridoids, lignans, flavonoids, and phenolic acids. The EVOO samples with the highest total concentration of compounds and the highest inhibitory activity belonged to the Picual and Manzanillo varieties. Statistical analysis showed a positive correlation between identified compounds and AChE and COX-2 inhibitory activity, except for lignans. These results confirm EVOO's compounds possess neuroprotective potential.
Collapse
Affiliation(s)
- María Asunción López-Bascón
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Inmaculada Moscoso-Ruiz
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Rosa Quirantes-Piné
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva S/N, 18071 Granada, Spain;
| | - Raquel del Pino-García
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Gloria López-Gámez
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Andrea Justicia-Rueda
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
| | - Vito Verardo
- Centro de Investigación y Desarrollo del Alimento Funcional (CIDAF), Avda. Del Conocimiento, 37, 18016 Granada, Spain; (M.A.L.-B.)
- Department of Nutrition and Food Science, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18071 Granada, Spain
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
2
|
Ansari P, Samia JF, Khan JT, Rafi MR, Rahman MS, Rahman AB, Abdel-Wahab YHA, Seidel V. Protective Effects of Medicinal Plant-Based Foods against Diabetes: A Review on Pharmacology, Phytochemistry, and Molecular Mechanisms. Nutrients 2023; 15:3266. [PMID: 37513684 PMCID: PMC10383178 DOI: 10.3390/nu15143266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus (DM) comprises a range of metabolic disorders characterized by high blood glucose levels caused by defects in insulin release, insulin action, or both. DM is a widespread condition that affects a substantial portion of the global population, causing high morbidity and mortality rates. The prevalence of this major public health crisis is predicted to increase in the forthcoming years. Although several drugs are available to manage DM, these are associated with adverse side effects, which limits their use. In underdeveloped countries, where such drugs are often costly and not widely available, many people continue to rely on alternative traditional medicine, including medicinal plants. The latter serves as a source of primary healthcare and plant-based foods in many low- and middle-income countries. Interestingly, many of the phytochemicals they contain have been demonstrated to possess antidiabetic activity such as lowering blood glucose levels, stimulating insulin secretion, and alleviating diabetic complications. Therefore, such plants may provide protective effects that could be used in the management of DM. The purpose of this article was to review the medicinal plant-based foods traditionally used for the management of DM, including their therapeutic effects, pharmacologically active phytoconstituents, and antidiabetic mode of action at the molecular level. It also presents future avenues for research in this field.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Jannatul F Samia
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Joyeeta T Khan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Musfiqur R Rafi
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Md Sifat Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Akib B Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | | | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
3
|
Baysal G, Olcay HS, Günneç Ç. Encapsulation and antibacterial studies of goji berry and garlic extract in the biodegradable chitosan. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115231157097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
As known, the chitosan is a biodegradable biopolymer with antibacterial properties, therefore it is used in the fields of pharmacy, medical, wastewater treatment, biotechnology, cosmetics, textiles, and agriculture. Apart from these, the chitosan has an important place in the food industry with its widespread use. In this research article, the chitosan were encapsulated with the taurine and garlic extracts by the spray dryer. The CSA and CSB compounds synthesized as final products were analyzed by Fourier transformed infrared spectroscopy (FTIR) and High Performance Liquid Chromatography (HPLC). The effect of the encapsulation process on the molecular weight of the polymer structure was investigated using the cryoscopy method. The compound CSA represents 1/2 encapsulation of chitosan with taurine and increased garlic extracts, respectively, while CSB represents 1/1 encapsulation of chitosan with increased taurine and fixed garlic extracts. The % antioxidant activity of the final products was determined by DDPH method. The inhibition zone and surface activity proporties of the CSA and CSB were carried out against Listeria monocytogenes, Staphylococcus aureus, E. coli, and Salmonella bacteria. The results obtained as a result of the analyzes were evaluated, and optimum values were determined for use in food packaging.
Collapse
Affiliation(s)
- Gülay Baysal
- Nutrition and Dietetics, Faculty of Healthy Sciences, İstanbul Aydin University, İstanbul, Turkey
- Food Engineering, Engineering Faculty, Istanbul Aydin University, Istanbul, Turkey
| | - Hatice Sena Olcay
- Food Engineering, Engineering Faculty, Istanbul Aydin University, Istanbul, Turkey
| | - Çağatay Günneç
- Food Engineering, Engineering Faculty, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
4
|
Zhu Z, Li X, Zhang Y, Wang J, Dai F, Wang W. Profiling of phenolic compounds in domestic and imported extra virgin olive oils in China by high performance liquid chromatography-electrochemical detection. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Seed Phytochemical Profiling of Three Olive Cultivars, Antioxidant Capacity, Enzymatic Inhibition, and Effects on Human Neuroblastoma Cells (SH-SY5Y). Molecules 2022; 27:molecules27165057. [PMID: 36014295 PMCID: PMC9412495 DOI: 10.3390/molecules27165057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
This work evaluated the phytochemical composition of olive seed extracts from different cultivars (‘Cobrançosa’, ‘Galega’, and ’Picual’) and their antioxidant capacity. In addition, it also appraised their potential antineurodegenerative properties on the basis of their ability to inhibit enzymes associated with neurodegenerative diseases: acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase (TYR). To achieve this goal, the phenolic composition of the extracts was determined through high-performance liquid chromatography coupled with photodiode-array detection and electrospray ionization/ion trap mass spectrometry (HPLC-DAD-ESI/MSn). The antioxidant capacity was assessed by two different methods (ABTS•+ and DPPH•), and the antineurodegenerative potential by the capacity of these extracts to inhibit the aforementioned related enzymes. The results showed that seed extracts presented a high content of phenolic compounds and a remarkable ability to scavenge ABTS•+ and DPPH•. Tyrosol, rutin, luteolin-7-glucoside, nüzhenide, oleuropein, and ligstroside were the main phenolic compounds identified in the extracts. ‘Galega’ was the most promising cultivar due to its high concentration of phenolic compounds, high antioxidant capacity, and remarkable inhibition of AChE, BChE, and TYR. It can be concluded that olive seed extracts may provide a sustainable source of bioactive compounds for medical and industrial applications.
Collapse
|
6
|
Singular Olive Oils from a Recently Discovered Spanish North-Western Cultivar: An Exhaustive 3-Year Study of Their Chemical Composition and In-Vitro Antidiabetic Potential. Antioxidants (Basel) 2022; 11:antiox11071233. [PMID: 35883723 PMCID: PMC9311737 DOI: 10.3390/antiox11071233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
In this work, the quality and physicochemical parameters, phenolic composition, and antidiabetic potential of olive oils obtained from olives belonging to centenarian olive trees of the so-called ‘Mansa de Figueiredo’ cultivar were evaluated during three consecutive crop seasons (2017–2019). The oils produced during the three crop years were classified as extra virgin based on the quality-related indices, sensory analysis, and the genuineness-related parameters. In addition, LC-ESI-TOF MS was used to get a comprehensive characterisation of the phenolic fraction while LC-ESI-IT MS was applied for quantitation purposes. The content of phenolic compounds (ranging from 1837 to 2434 mg/kg) was significantly affected by the harvest year due to the environmental conditions and ripening index. Furthermore, although significant differences in the inhibitory effects against the α-glucosidase enzyme for the EVOOs extracted throughout the three successive years were detected, all the studied EVOOs exhibited a stronger inhibitor effect than that found for acarbose.
Collapse
|
7
|
Baysal G, Olcay HS, Keresteci B, Özpinar H. The antioxidant and antibacterial properties of chitosan encapsulated with the bee pollen and the apple cider vinegar. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:995-1011. [PMID: 35044283 DOI: 10.1080/09205063.2022.2031463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
In this study, the chitosan, a polysaccharide, was encapsulated with the bee pollen and the apple cider vinegar. The freeze-drying method was used in the encapsulation process. The freeze cooling temperature was determined as -80 °C. The obtained encapsulated chitosan compounds were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and their molecular weights were determined by the cryoscopy method. The total amount of the phenol compounds and % the antioxidant activity of the synthesized compounds were measured by UV spectrophotometer and, the loading capacity of the polyphenol compounds in encapsulation was determined. The success of encapsulation was calculated based on the % encapsulation efficiency (%EE) calculation. The antibacterial and the surface activity properties of the obtained CSx and CSy compounds were analyzed against Listeria monocytogenes, Staphylococcus aureus, E. coli and Salmonella bacteria using the well diffusion method and the Zeiss microscope.
Collapse
Affiliation(s)
- Gülay Baysal
- Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Aydin University, Istanbul, Turkey
- Food Engineering, Engineering Faculty, Istanbul Aydin University, Istanbul, Turkey
| | - Hatice Sena Olcay
- Food Engineering, Engineering Faculty, Istanbul Aydin University, Istanbul, Turkey
| | - Buse Keresteci
- Food Engineering, Engineering Faculty, Istanbul Aydin University, Istanbul, Turkey
| | - Haydar Özpinar
- Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
8
|
Melakhessou MA, Marref SE, Benkiki N, Marref C, Becheker I, Khattabi L. In vitro, acute and subchronic evaluation of the antidiabetic activity of Atractylis flava Desf n-butanol extract in alloxan-diabetic rats. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diabetes mellitus is a serious complex multifactorial disorder that imposes huge health and economic burden on societies. Because the currently available medications have many drawbacks, it's important to look for alternative therapies. Medicinal plants utilized in folk medicine are ideal candidates. Therefore, this work assessed the antidiabetic action of n-butanol extract from the whole plant Atractylis flava Desf (BEAF). These ethnomedicinal properties of BEAF were scientifically validated using in vitro and in vivo assays. In vitro antidiabetic effect of the BEAF was conducted using α-Glucosidase and α-Amylase assays. While the antihyperglycemic activity was assessed using two rat models: Alloxan-induced diabetic rats and oral glucose challenged rats. Experimental diabetes was induced by a single intraperitoneal injection of alloxan at a dose of 150 mg/kg and animals with fasting blood glucose levels (BGL) > 200 mg/dL were considered diabetic. Glibenclamide (5 mg/kg) was used as a typical drug.
Results
The BEAF at all tested dose levels (100, 250, and 500 mg/kg) showed a significant decrease in blood glucose level in all the two animal models. Besides, the plant extract exhibited a potent inhibitory effect on α-Amylase and α-Glucosidase activity at a concentration of 1000 µg/mL with 76.17% and 89.37%, respectively.
Conclusion
BEAF exerts in vitro and in vivo antidiabetic effects, these results suggest that the plant extract can be a therapeutic resource in the treatment of diabetes and hyperlipidemia.
Collapse
|
9
|
Li Q, Lan T, He S, Chen W, Li X, Zhang W, Liu Y, Zhang Q, Chen X, Han Y, Su Z, Zhu D, Guo H. A network pharmacology-based approach to explore the active ingredients and molecular mechanism of Lei-gong-gen formula granule on a spontaneously hypertensive rat model. Chin Med 2021; 16:99. [PMID: 34627325 PMCID: PMC8501634 DOI: 10.1186/s13020-021-00507-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022] Open
Abstract
Background Lei-gong-gen formula granule (LFG) is a folk prescription derived from Zhuang nationality, the largest ethnic minority among 56 nationalities in China. It consists of three herbs, namely Eclipta prostrata (L.) L., Smilax glabra Roxb, and Centella asiatica (L.) Urb. It has been widely used as health protection tea for hundreds of years to prevent hypertension in Guangxi Zhuang Autonomous Region. The purpose of this study is to validate the antihypertensive effect of LFG on the spontaneously hypertensive rat (SHR) model, and to further identify the effective components and anti-hypertension mechanism of LFG. Methods The effects of LFG on blood pressure, body weight, and heart rate were investigated in vivo using the SHR model. The levels of NO, ANG II, and ET-1 in the serum were measured, and pathological changes in the heart were examined by H&E staining. The main active components of LFG, their corresponding targets, and hypertension associated pathways were discerned through network pharmacology analysis based on the Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Then the predicted results were further verified by molecular biology experiments such as RT-qPCR and western blot. Additionally, the potential active compounds were predicted by molecular docking technology, and the chemical constituents of LFG were analyzed and identified by UPLC-QTOF/MS technology. Finally, an in vitro assay was performed to investigate the protective effects of potential active compounds against hydrogen peroxide (H2O2) induced oxidative damage in human umbilical vein endothelial cells (HUVEC). Results LFG could effectively reduce blood pressure and increase serum NO content in SHR model. Histological results showed that LFG could ameliorate pathological changes such as cardiac hypertrophy and interstitial inflammation. From network pharmacology analysis, 53 candidate active compounds of LFG were collected, which linked to 765 potential targets, and 828 hypertension associated targets were retrieved, from which 12 overlapped targets both related to candidate active compounds from LFG and hypertension were screened and used as the potential targets of LFG on antihypertensive effect. The molecular biology experiments of the 12 overlapped targets showed that LFG could upregulate the mRNA and protein expressions of NOS3 and proto-oncogene tyrosine-protein kinase SRC (SRC) in the thoracic aorta. Pathway enrichment analysis showed that the PI3K-AKT signaling pathway was closely related to the expression of NOS3 and SRC. Moreover, western blot results showed that LFG significantly increased the protein expression levels of PI3K and phosphorylated AKT in SHR model, suggesting that LFG may active the PI3K-AKT signaling pathway to decrease hypertension. Molecular docking study further supported that p-hydroxybenzoic acid, cedar acid, shikimic acid, salicylic acid, nicotinic acid, linalool, and histidine can be well binding with NOS3, SRC, PI3K, and AKT. UPLC-QTOF/MS analysis confirmed that p-hydroxybenzoic acid, shikimic acid, salicylic acid, and nicotinic acid existed in LFG. Pre-treatment of HUVEC with nicotinic acid could alleviate the effect on cell viability induced by H2O2 and increase the NO level in cell supernatants. Conclusions LFG can reduce the blood pressure in SHR model, which might be attributed to increasing the NO level in serum for promoting vasodilation via upregulating SRC expression level and activating the PI3K-AKT-NOS3 signaling pathway. Nicotinic acid might be the potential compound for LFG antihypertensive effect. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00507-1.
Collapse
Affiliation(s)
- Qiaofeng Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Taijin Lan
- School of preclinical medicine, Guangxi University of Chinese Medicine, 179 Mingxiu Dong Road, Nanning, 530001, China
| | - Songhua He
- Guangxi Institute for Food and Drug Control, 9 Qinghu Road, Nanning, 530021, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China.,International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Medical University, Guangxi, 530021, China
| | - Xiaolan Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Weiquan Zhang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ying Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.,College of Pharmacy, Guangxi University of Chinese Medicine, 179 Mingxiu Dong Road, Nanning, 530001, China
| | - Qiuping Zhang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.,The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Xin Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yaoyao Han
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Dan Zhu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China. .,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
10
|
Reboredo-Rodríguez P, Olmo-García L, Figueiredo-González M, González-Barreiro C, Carrasco-Pancorbo A, Cancho-Grande B. Application of the INFOGEST Standardized Method to Assess the Digestive Stability and Bioaccessibility of Phenolic Compounds from Galician Extra-Virgin Olive Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11592-11605. [PMID: 34550684 PMCID: PMC8929668 DOI: 10.1021/acs.jafc.1c04592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The INFOGEST standardized method was applied to assess the potential bioaccessibility and bioaccessibility of the phenolic compounds from a Galician extra-virgin olive oil (EVOO). The in vitro digestion model involves three steps and generates two fractions after each one: an aqueous fraction (namely, water phase (Wp)) and an oily fraction (namely, oily phase (Op)). The results showed that secoiridoids were the most abundant family in the Galician EVOO polar fraction, representing 98% of the total phenolic compounds. After oral digestion, phenolic acids and simple phenols were mainly detected in Wp, while lignans and flavonoids were mostly found in Op. After gastric digestion, extensive hydrolysis of secoiridoids was observed to generate free tyrosol, hydroxytyrosol, and hydroxytyrosol acetate. The instability of secoiridoids after intestinal digestion was again responsible for the release of simple phenols, which were mainly recovered in Wp together with flavonoids. In contrast, lignans were stable to duodenal conditions and remained in Op.
Collapse
Affiliation(s)
- P. Reboredo-Rodríguez
- Food
and Health Omics, Department of Analytical and Food Chemistry, Faculty
of Science, University of Vigo, 32004 Ourense, Spain
| | - L. Olmo-García
- Department
of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| | - M. Figueiredo-González
- Food
and Health Omics, Department of Analytical and Food Chemistry, Faculty
of Science, University of Vigo, 32004 Ourense, Spain
| | - C. González-Barreiro
- Food
and Health Omics, Department of Analytical and Food Chemistry, Faculty
of Science, University of Vigo, 32004 Ourense, Spain
| | - A. Carrasco-Pancorbo
- Department
of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| | - B. Cancho-Grande
- Food
and Health Omics, Department of Analytical and Food Chemistry, Faculty
of Science, University of Vigo, 32004 Ourense, Spain
| |
Collapse
|
11
|
Leow SS, Fairus S, Sambanthamurthi R. Water-soluble palm fruit extract: composition, biological properties, and molecular mechanisms for health and non-health applications. Crit Rev Food Sci Nutr 2021; 62:9076-9092. [PMID: 34156318 DOI: 10.1080/10408398.2021.1939648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The oil palm (Elaeis guineensis) fruit is a source of vegetable oil and various phytonutrients. Phytochemical compounds present in palm oil include tocotrienols, carotenoids, phytosterols, squalene, coenzyme Q10, and phospholipids. Being a fruit, the oil palm is also a rich source of water-soluble phytonutrients, including phenolic compounds. Extraction of phytonutrients from the oil palm vegetation liquor of palm oil milling results in a phenolic acid-rich fraction termed Water-Soluble Palm Fruit Extract (WSPFE). Pre-clinical in vitro, ex vivo, and in vivo studies carried out using various biological models have shown that WSPFE has beneficial bioactive properties, while clinical studies in healthy volunteers showed that it is safe for human consumption and confers antioxidant and anti-inflammatory effects. The composition, biological properties, and relevant molecular mechanisms of WSPFE discovered thus far are discussed in the present review, with a view to offer future research perspectives on WSPFE for health and non-health applications.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Syed Fairus
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | | |
Collapse
|
12
|
Fabiana Saul C, Rosa da Mata I, Kruger Peres K, Joana Kuyven C, Rocha Menezes RC, Faccioli LS, Schumacher JC, Cristofoli Bertoletti AC, Boeira Freitas J, Morelo Dal Bosco S. The benefits of extra virgin olive oil polyphenols for possible prevention of parkinson’s disease: an integrative mini literature review. INTERNATIONAL PHYSICAL MEDICINE & REHABILITATION JOURNAL 2021; 6. [DOI: 10.15406/ipmrj.2021.06.00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2024]
|
13
|
Determination of theoretical calculations by DFT method and investigation of antioxidant, antimicrobial properties of olive leaf extracts from different regions. Journal of Food Science and Technology 2021; 58:1909-1917. [PMID: 33897027 DOI: 10.1007/s13197-020-04702-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
In this study, we studied samples of mature olive leaves from the districts of Incirli Ova within the province of Aydın and the district of Fethiye in Mugla/Turkey. Several processes were carried out on the olive leaves to use them in this study, including drying under different conditions, determination of moisture, extract output, overall determination of phenols, antioxidant activity determination and anti-microbial assays. The chemicals that were used in the study were Folin's reagent and gallic acid for total phenolic assays, DPPH (1,1-diphenyl-2-picrylhydrazyl) and Trolox for antioxidant activity assays and nutrient broth and nutrient agar for antimicrobial testing. In the theoretical part of the study, the structures of oleuropein and Trolox molecules were examined, and their oxidation properties were aimed to be determined and compared to experimental results. According to the results of total phenolic assays, the phenol contents in the olive leaves from Aydın and Mugla were observed to be very close to each other. In the anti-microbial assay, it was observed that the samples of olive leaves from Mugla were more antioxidant than those from Aydın.
Collapse
|
14
|
Abstract
Edible flowers have been widely consumed for ages until now. The attractive colors and shapes, exotic aroma, and delightful taste make edible flowers very easy to attain. Moreover, they also provide health benefits for consumers due to the unique composition and concentration of antioxidant compounds in the matrices. Knowing the bioactive compounds and their functional properties from edible flowers is necessary to diversify the usage and reach broader consumers. Therefore, this reported review could be useful for functional product development, engaging the discussed edible flowers. We present a comprehensive review of edible flower composition and the functional properties of their antioxidant compounds, mainly phenolics.
Collapse
|
15
|
Nutritional Properties and In Vitro Antidiabetic Activities of Blue and Yellow Corn Extracts: A Comparative Study. J FOOD QUALITY 2021. [DOI: 10.1155/2021/8813613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The objective of this research was to designate and identify the profile of fatty acids, sterols, and polyphenol compounds and to demonstrate the antidiabetic activity, in blue corn extracts (BCE) in comparison with the yellow variant of this raw material. All of the maize lines, including the blue corn, were grown in Europe (southwestern part of Poland) and not in the place of origin (South America). In the extracts of the blue corn variety, eight anthocyanin compounds were isolated. The compound found in the largest amount was pelargonidin, followed by cyanidin-3-glucoside and other glycoside derivatives. Unsaturated fatty acids were the main ones found in the lipid fraction of blue and yellow corn, including linoleic acid and oleic acid. Saturated fatty acids, such as stearic and palmitic acid, were present in smaller amounts. The blue corn’s sterol profile was similar to other varieties of this corn, with β-sitosterol and campesterol occurring in the largest amount, alongside smaller amounts of stigmastanol and stigmasterol. The blue corn variety was characterized by a high content of polyphenolic compounds, which show several biological activities, including antidiabetic activity. The strongest in vitro antidiabetic effect was found in the blue corn lines. Among the polyphenolic compounds in both the blue and yellow corn varieties, in the largest amounts, were caffeic acid, procyanidin B2, and gallic acid. Despite the known and proven biological activity of polyphenolic compounds, the fat fraction showed the highest in vitro antidiabetic activity in the BCE studied.
Collapse
|
16
|
Ribeiro TB, Oliveira A, Campos D, Nunes J, Vicente AA, Pintado M. Simulated digestion of an olive pomace water-soluble ingredient: relationship between the bioaccessibility of compounds and their potential health benefits. Food Funct 2020; 11:2238-2254. [PMID: 32101211 DOI: 10.1039/c9fo03000j] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olive pomace is a semisolid by-product with great potential as a source of bioactive compounds. Using its soluble fraction, a liquid-enriched powder (LOPP) was obtained, exhibiting a rich composition in sugars, polyphenols and minerals, with potential antioxidant, antihypertensive and antidiabetic health benefits. To validate the potential of LOPP as a functional ingredient the effect of the gastrointestinal tract on its bioactive composition and bioactivities was examined. Polyphenols and minerals were the most affected compounds; however, a significant bioaccessibility of potassium and hydroxytyrosol was verified (≥57%). As a consequence, the LOPP bioactivities were only moderately affected (losses around 50%). For example, 57.82 ± 1.27% of the recovered antioxidant activity by ORAC was serum-available. From an initial α-glucosidase inhibition activity of 87.11 ± 1.04%, at least 50% of the initial potential was retained (43.82 ± 1.14%). Regarding the initial ACE inhibitory activity (91.98 ± 3.24%), after gastrointestinal tract losses, significant antihypertensive activity was retained in the serum-available fraction (43.4 ± 3.65%). The colon-available fraction also exhibited an abundant composition in phenolics and minerals. LOPP showed to be a potential functional ingredient not only with potential benefits in preventing cardiovascular diseases but also in gut health.
Collapse
Affiliation(s)
- Tânia B Ribeiro
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal. and Association BLC3 - Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 2, Lagares, 3045-155 Oliveira do Hospital, Portugal
| | - Ana Oliveira
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Débora Campos
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - João Nunes
- Association BLC3 - Technology and Innovation Campus, Centre Bio R&D Unit, Senhora da Conceição, 2, Lagares, 3045-155 Oliveira do Hospital, Portugal
| | - António A Vicente
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associada, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
17
|
Reboredo-Rodríguez P, Olmo-García L, Figueiredo-González M, González-Barreiro C, Carrasco-Pancorbo A, Cancho-Grande B. Effect of olive ripening degree on the antidiabetic potential of biophenols-rich extracts of Brava Gallega virgin olive oils. Food Res Int 2020; 137:109427. [PMID: 33233109 DOI: 10.1016/j.foodres.2020.109427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/28/2020] [Accepted: 06/06/2020] [Indexed: 11/16/2022]
Abstract
The diet management is imperative to anticipate risk factors that favour the development of diseases; indeed, the intake of virgin olive oil could be an alternative natural source of α-glucosidase enzyme inhibitors, which delay the digestion rate of carbohydrates. Consequently, the impact of diabetes mellitus (DM) could be diminished. Extra Virgin Olive Oils (EVOO) were elaborated from Galician autochthonous variety 'Brava Gallega' with olives selected at three different degree of ripeness (ripening index, RI: 1.4, 3.0, 5.5) in order to assess the effect of maturation on overall chemical composition, sensory quality, and enzyme inhibition. The phenolic profile of the EVOOs determined by LC-ESI-IT-MS exhibited quantitative differences as ripening advanced; for example oleocanthal, tyrosol, luteolin and apigenin concentrations were higher in the overripe olive oil (RI 5.5). Anyway, the phenolic extracts (from every tested RI) were more active than acarbose. In particular, those obtained from the most mature olives displayed the most powerful inhibitory activity (IC50 value of 143 µg of dry extract/mL). In addition, the significant effect of these compounds (i.e. luteolin, apigenin, tyrosol and oleocanthal) on the inhibitory activity of the olive oil extracts was demonstrated. Our results suggest that, regardless of RI, the inhibitory activity of 'Brava Gallega' olive oils could represent a valuable strategy for reinforcing the health claim of olive oil for phenolic compounds.
Collapse
Affiliation(s)
- P Reboredo-Rodríguez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA, Faculty of Science, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| | - L Olmo-García
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain.
| | - M Figueiredo-González
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA, Faculty of Science, University of Vigo - Ourense Campus, E32004 Ourense, Spain.
| | - C González-Barreiro
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA, Faculty of Science, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| | - A Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| | - B Cancho-Grande
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, CITACA, Faculty of Science, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
18
|
Diep TT, Rush EC, Yoo MJY. Tamarillo (Solanum betaceum Cav.): A Review of Physicochemical and Bioactive Properties and Potential Applications. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1804931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tung Thanh Diep
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Auckland, New Zealand
- The Riddet Institute, Centre of Research Excellence, Palmerston North, New Zealand
| | - Elaine C. Rush
- The Riddet Institute, Centre of Research Excellence, Palmerston North, New Zealand
- School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Michelle Ji Yeon Yoo
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Auckland, New Zealand
- The Riddet Institute, Centre of Research Excellence, Palmerston North, New Zealand
| |
Collapse
|
19
|
Rocha L, Neves D, Valentão P, Andrade PB, Videira RA. Adding value to polyvinylpolypyrrolidone winery residue: A resource of polyphenols with neuroprotective effects and ability to modulate type 2 diabetes-relevant enzymes. Food Chem 2020; 329:127168. [PMID: 32512395 DOI: 10.1016/j.foodchem.2020.127168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/06/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
A polyphenols-rich extract was obtained from polyvinylpolypyrrolidone (PVPP) winery residue, and its neuroprotective effects and ability to modulate the kinetics of type 2 diabetes-relevant enzymes were characterized. The PVPP-white wine extract is a mixture of polyphenols (840.08 ± 161.25 µg/mg, dry weight) dominated by proanthocyanidins and hydroxycinnamic acids, affording strong antioxidant activity, as detected by the protection of membrane lipids against oxidation and superoxide radical anion scavenging activity. Regarding type 2 diabetes framework, the extract inhibits α-glucosidase (Ki = 166.9 µg/mL) and aldose reductase (Ki = 127.5 µg/mL) through non-competitive mechanisms. Despite the modest ability to inhibit rat brain acetylcholinesterase, it protects neuronal SH-SY5Y cells against oxidative damage promoted by glutamate, decreasing reactive oxygen species generation and preserving cell redox state. Thus, PVPP-white wine extract has potential to support the development of functional foods and/or nutraceuticals aiming neuroprotection and glucose homeostasis regulation, with high relevance in Alzheimeŕs disease and type 2 diabetes interlink.
Collapse
Affiliation(s)
- Lídia Rocha
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313 Porto, Portugal
| | - Dina Neves
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313 Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313 Porto, Portugal
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, N° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
20
|
Franconi F, Campesi I, Romani A. Is Extra Virgin Olive Oil an Ally for Women's and Men's Cardiovascular Health? Cardiovasc Ther 2020; 2020:6719301. [PMID: 32454893 PMCID: PMC7212338 DOI: 10.1155/2020/6719301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Noncommunicable diseases are long-lasting and slowly progressive and are the leading causes of death and disability. They include cardiovascular diseases (CVD) and diabetes mellitus (DM) that are rising worldwide, with CVD being the leading cause of death in developed countries. Thus, there is a need to find new preventive and therapeutic approaches. Polyphenols seem to have cardioprotective properties; among them, polyphenols and/or minor polar compounds of extra virgin olive oil (EVOO) are attracting special interest. In consideration of numerous sex differences present in CVD and DM, in this narrative review, we applied "gender glasses." Globally, it emerges that olive oil and its derivatives exert some anti-inflammatory and antioxidant effects, modulate glucose metabolism, and ameliorate endothelial dysfunction. However, as in prescription drugs, also in this case there is an important gender bias because the majority of the preclinical studies are performed on male animals, and the sex of donors of cells is not often known; thus a sex/gender bias characterizes preclinical research. There are numerous clinical studies that seem to suggest the benefits of EVOO and its derivatives in CVD; however, these studies have numerous limitations, presenting also a considerable heterogeneity across the interventions. Among limitations, one of the most relevant in the era of personalized medicine, is the non-attention versus women that are few and, also when they are enrolled, sex analysis is lacking. Therefore, in our opinion, it is time to perform more long, extensive and lessheterogeneous trials enrolling both women and men.
Collapse
Affiliation(s)
- Flavia Franconi
- Laboratorio Nazionale sulla Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100 Sassari, Italy
| | - Ilaria Campesi
- Laboratorio Nazionale sulla Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, 07100 Sassari, Italy
- Dipartimento di Scienze Biomediche, Università Degli Studi di Sassari, 07100 Sassari, Italy
| | - Annalisa Romani
- Laboratorio PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis), DiSIA Università Degli Studi di Firenze, 50019 Florence, Italy
- Laboratorio di Qualità Delle Merci e Affidabilità di Prodotto, Università Degli Studi di Firenze, 59100 Florence, Italy
| |
Collapse
|
21
|
Pirzadeh M, Caporaso N, Rauf A, Shariati MA, Yessimbekov Z, Khan MU, Imran M, Mubarak MS. Pomegranate as a source of bioactive constituents: a review on their characterization, properties and applications. Crit Rev Food Sci Nutr 2020; 61:982-999. [PMID: 32314615 DOI: 10.1080/10408398.2020.1749825] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing awareness about the use of compounds obtained from natural sources exerting health-beneficial properties, including antimicrobial and antioxidant effects, led to increased number of research papers focusing on the study of functional properties of target compounds to be used as functional foods or in preventive medicine. Pomegranate has shown positive health properties due to the presence of bioactive constituents such as polyphenols, tannins, and anthocyanins. Punicalagin is the major antioxidant, abundantly found in pomegranate's peel. Research has shown that pomegranate polyphenols not only have a strong antioxidant capacity but they also inhibit the growth of pathogenic bacteria like V. cholera, P. aeruginosa and S. aureus, B. cereus, E. coli, and S. virulence factor, and inhibits fungi such as A. Ochraceus, and P. citrinum. Compounds of natural origin inhibit the growth of various pathogens by extending the shelf life of foodstuffs and assuring their safety. Therefore, the need to find compounds to be used in combination with antibiotics or as new antimicrobial sources, such as plant extracts. On the basis of the above discussion, this review focuses on the health benefits of pomegranate, by summarizing the current body of research focusing on pomegranate bioactive constituents and their therapeutic potential against some pathogenic microbes.
Collapse
Affiliation(s)
- Maryam Pirzadeh
- Department of Food Science and Technology, Faculty of Agriculture, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Nicola Caporaso
- Department of Food Science, School of Biosciences, University of Nottingham, Leicestershire, UK
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, NA, Italy
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State, University Named After I.S. Turgenev, Orel, Russia
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
- Kazakh Research Institute of Processing and Food Industry (Semey Branch), Semey, Kazakhstan
| | - Zhanibek Yessimbekov
- Food Engineering Department, Shakarim State University of Semey, Semey, Kazakhstan
| | - Muhammad Usman Khan
- Bioproducts Sciences and Engineering Laboratory (BSEL), Washington State University, Richland, WA, USA
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | | |
Collapse
|
22
|
Mao H, Wang H, Hu X, Zhang P, Xiao Z, Liu J. One-Pot Efficient Catalytic Oxidation for Bio-Vanillin Preparation and Carbon Isotope Analysis. ACS OMEGA 2020; 5:8794-8803. [PMID: 32337441 PMCID: PMC7178775 DOI: 10.1021/acsomega.0c00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Vanillin (4-hydroxy-3-methoxybenzaldehyde) is one of the most widely used food spices. Aimed at bio-vanillin green production, the natural materials were directly catalytically oxidized efficiently in one pot under low O2 pressure (0.035 MPa) in the presence of a non-noble metal oxidation combined catalyst (NiCo2O4/SiO2 nanoparticles), which showed remarkable advantages of a short synthetic route and less industrial waste. The catalytic system showed good universality to many natural substrates with nearly 100% conversion and 86.3% bio-vanillin yield. More importantly, carbon isotope ratio investigations were employed to verify the origin of the organic matter. One hundred percent 14C content of the obtained vanillin was detected, which indicated that it was an efficient method to distinguish the vanillin from biomass or fossil materials. Furthermore, the 13C isotope examination showed effective distinguishing ability for the vanillin from a particular biomass source. The C isotope detection provides an effective method for commercial vanillin identification.
Collapse
Affiliation(s)
- Haifang Mao
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Hongzhao Wang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaojun Hu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Pingyi Zhang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School
of Perfume and Aroma Technology, Shanghai
Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Jibo Liu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
23
|
Deligiannidou GE, Philippou E, Vidakovic M, Berghe WV, Heraclides A, Grdovic N, Mihailovic M, Kontogiorgis C. Natural Products Derived from the Mediterranean Diet with Antidiabetic Activity: from Insulin Mimetic Hypoglycemic to Nutriepigenetic Modulator Compounds. Curr Pharm Des 2020; 25:1760-1782. [PMID: 31298162 DOI: 10.2174/1381612825666190705191000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The Mediterranean diet is a healthy eating pattern that protects against the development of Type 2 diabetes mellitus (T2DM), a metabolic disease characterized by elevated blood sugar levels due to pancreatic beta-cell functional impairment and insulin resistance in various tissues. Inspired by the ancient communities, this diet emphasizes eating primarily plant-based foods, including vegetables, legumes, fruits, cereals, and nuts. Importantly, virgin olive oil is used as the principal source of fat. Red meat is consumed in low amounts while wine and fish are consumed moderately. OBJECTIVE Here, we review the most beneficial components of the Mediterranean Diet and tentative mechanisms of action for prevention and/or management of T2DM, based on research conducted within the last decade. METHODS The references over the last five years have been reviewed and they have been selected properly according to inclusion/ exclusion criteria. RESULTS Several bioactive diet components were evaluated to prevent inflammation and cytokine-induced oxidative damage, reduce glucose concentration, carbohydrate absorption and increase insulin sensitivity and related gene expression. CONCLUSION The adherence to a healthy lifestyle, including diet, exercise and habits remains the best approach for the prevention of diabetes as well as frequent check-ups and education. Though diabetes has a strong genetic component, in recent years many reports strongly point to the critical role of lifestyle specific epigenetic modifications in the development of T2DM. It remains to be established how different components of the Mediterranean Diet interact and influence the epigenetic landscape to prevent or treat the disease.
Collapse
Affiliation(s)
- Georgia-Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Elena Philippou
- Department of Life and Health Sciences, University of Nicosia, Makedonitissis, Nicosia 2417, Cyprus.,Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Melita Vidakovic
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Wim V Berghe
- Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Wilrijk, Belgium
| | - Alexandros Heraclides
- Department of Primary Care and Population Health, University of Nicosia Medical School, Ayiou Nikolaou Street, Egkomi, Cyprus
| | - Nevena Grdovic
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Mirjana Mihailovic
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| |
Collapse
|
24
|
Fernandes J, Fialho M, Santos R, Peixoto-Plácido C, Madeira T, Sousa-Santos N, Virgolino A, Santos O, Vaz Carneiro A. Is olive oil good for you? A systematic review and meta-analysis on anti-inflammatory benefits from regular dietary intake. Nutrition 2019; 69:110559. [PMID: 31539817 DOI: 10.1016/j.nut.2019.110559] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/18/2019] [Accepted: 07/05/2019] [Indexed: 12/20/2022]
Abstract
The prevalence of non-communicable diseases is rapidly increasing, and evidence shows that diet and lifestyle are key areas of intervention to decrease their burden. Olive oil is considered one of the key nutritional components responsible for the benefits of the Mediterranean diet, which is characterized by the use of olive oil in meals as the main source of fat; a high consumption of water, fruits, nuts, vegetables, legumes, whole grains, spices, and herbs; a moderate consumption of dairy products (mainly cheese and yogurt), fish, poultry, and red wine; and a reduced consumption of red meat and processed foods. The aim of this review was to summarize evidence from randomized controlled trials on the effect of regular dietary intake of olive oil on three inflammatory markers: C-reactive protein, interleukin-6, and tumor necrosis factor-α. Reviewed RCTs reveal beneficial effects of olive oil by reducing levels of inflammation markers. Olive oil taken on a regular basis can be a good dietary fat alternative, especially to manage IL-6. However, further research is required to clarify the effects of olive oil consumption on inflammation, comparing to other fats. Moreover, olive oil daily dosage, different time-lenght intervention and follow-up periods should be taken into consideration.
Collapse
Affiliation(s)
- João Fernandes
- Universidade de Lisboa, Faculdade de Medicina, Instituto de Saúde Ambiental, Lisboa, Portugal.
| | - Mónica Fialho
- Universidade de Lisboa, Faculdade de Medicina, Instituto de Saúde Ambiental, Lisboa, Portugal
| | - Rodrigo Santos
- Universidade de Lisboa, Faculdade de Medicina, Instituto de Saúde Ambiental, Lisboa, Portugal
| | - Catarina Peixoto-Plácido
- Universidade de Lisboa, Faculdade de Medicina, Instituto de Saúde Ambiental, Lisboa, Portugal; Universidade de Lisboa, Faculdade de Medicina, Instituto de Medicina Preventiva e Saúde Pública, Lisboa, Portugal
| | - Teresa Madeira
- Universidade de Lisboa, Faculdade de Medicina, Instituto de Saúde Ambiental, Lisboa, Portugal; Universidade de Lisboa, Faculdade de Medicina, Instituto de Medicina Preventiva e Saúde Pública, Lisboa, Portugal
| | - Nuno Sousa-Santos
- Universidade de Lisboa, Faculdade de Medicina, Instituto de Saúde Ambiental, Lisboa, Portugal; Escola Superior de Saúde de Leiria, Instituto Politécnico de Leiria, Leiria, Portugal
| | - Ana Virgolino
- Universidade de Lisboa, Faculdade de Medicina, Instituto de Saúde Ambiental, Lisboa, Portugal; Universidade de Lisboa, Faculdade de Medicina, Instituto de Medicina Preventiva e Saúde Pública, Lisboa, Portugal
| | - Osvaldo Santos
- Universidade de Lisboa, Faculdade de Medicina, Instituto de Saúde Ambiental, Lisboa, Portugal; Universidade de Lisboa, Faculdade de Medicina, Instituto de Medicina Preventiva e Saúde Pública, Lisboa, Portugal
| | - António Vaz Carneiro
- Universidade de Lisboa, Faculdade de Medicina, Instituto de Saúde Ambiental, Lisboa, Portugal; Universidade de Lisboa, Faculdade de Medicina, Instituto de Medicina Preventiva e Saúde Pública, Lisboa, Portugal; Universidade de Lisboa, Faculdade de Medicina, Centro de Estudos de Medicina Baseada na Evidência, Lisboa, Portugal
| |
Collapse
|
25
|
Siebert DA, de Mello F, Alberton MD, Vitali L, Micke GA. Determination of acetylcholinesterase and α-glucosidase inhibition by electrophoretically-mediated microanalysis and phenolic profile by HPLC-ESI-MS/MS of fruit juices from Brazilian Myrtaceae Plinia cauliflora (Mart.) Kausel and Eugenia uniflora L. Nat Prod Res 2019; 34:2683-2688. [PMID: 30618311 DOI: 10.1080/14786419.2018.1550760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease and diabetes mellitus are contemporary diseases of great concern. Phenolic compounds are linked to several health benefits and could lead to novel strategies to combat these ailments. The objective of this study was to evaluate by electrophoretically-mediated microanalysis the potential inhibitory activity of the fruit juices from Plinia cauliflora ("jaboticaba") and Eugenia uniflora ("pitanga") toward acetylcholinesterase (AChE) and α-glucosidase, target enzymes in strategies for the treatment of these diseases. The phenolic profiles of the samples were also investigated. Jaboticaba and pitanga juices inhibited 85.90 ± 1.73 and 52.67 ± 1.24% of AChE activity at 5 mg mL-1, and 57.91 ± 2.60 and 69.47 ± 2.89% of α-glucosidase activity at 1 mg mL-1, respectively. Total phenolic content of the juices were 303.54 ± 28.28 and 367.00 ± 11.42 mgGA L-1, respectively. The observed inhibitory activity can be explained, at least in part, by the presence of the phenolic compounds.
Collapse
Affiliation(s)
| | - Flávia de Mello
- Departamento de Ciências Farmacêuticas, Universidade Regional de Blumenau, Blumenau, SC, Brazil
| | | | - Luciano Vitali
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Gustavo Amadeu Micke
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
26
|
Syarifah-Noratiqah SB, Zulfarina MS, Ahmad SU, Fairus S, Naina-Mohamed I. The Pharmacological Potential of Oil Palm Phenolics (OPP) Individual Components. Int J Med Sci 2019; 16:711-719. [PMID: 31217739 PMCID: PMC6566743 DOI: 10.7150/ijms.29934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/14/2019] [Indexed: 11/05/2022] Open
Abstract
The oil palm tree (Elaeis guineensis) from the family Arecaceae is a high oil-producing agricultural crop. A significant amount of vegetation liquor is discarded during the palm oil milling process amounting to 90 million tons per year around the world. This water-soluble extract is rich in phenolic compounds known as Oil Palm Phenolics (OPP). Several phenolic acids including the three isomers of caffeoylshikimic acid (CFA), p-hydroxybenzoic acid (PHBA), protocatechuic acid (PCA) and hydroxytyrosol are among the primary active ingredients in the OPP. Previous investigations have reported several positive pharmacological potentials by OPP such as neuroprotective and atheroprotective effects, anti-tumor and reduction in Aβ deposition in Alzheimer's disease model. In the current review, the pharmacological potential for CFA, PHBA, PCA and hydroxytyrosol is carefully reviewed and evaluated.
Collapse
Affiliation(s)
| | - Mohamed S Zulfarina
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shihab Uddin Ahmad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Syed Fairus
- Metabolics Unit, Advanced Biotechnology and Breeding Centre (ABBC), Malaysian Palm Oil Board (MPOB), Kajang, Selangor, Malaysia
| | - Isa Naina-Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Dohrmann DD, Putnik P, Bursać Kovačević D, Simal-Gandara J, Lorenzo JM, Barba FJ. Japanese, Mediterranean and Argentinean diets and their potential roles in neurodegenerative diseases. Food Res Int 2018; 120:464-477. [PMID: 31000263 DOI: 10.1016/j.foodres.2018.10.090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/18/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Environmental factors are responsible of cellular senescence and processes found in the development of cognitive disorders. The aim of this paper is to compare benefits of the Japanese, Mediterranean, and Argentinian Diet on the onset or prevention of senile dementia (SD) and Alzheimer's Disease (AD). Special focus was on the effects of specific compounds such as polyunsaturated fatty acids (PUFAs), antioxidants, and saturated and trans fatty acids. A high adherence to diets rich in PUFAs, monounsaturated fatty acids (MUFAs) and antioxidants may decrease the risk of developing neurodegenerative diseases; while the predominance of saturated and trans fatty acids possibly rises it.
Collapse
Affiliation(s)
- Diana Denise Dohrmann
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, València, Spain; Universidad de la Cuenca del Plata, Facultad de Ingeniería y Tecnología. Lavalle 50, 3410 Corrientes, Argentina
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, València, Spain.
| |
Collapse
|
28
|
Figueiredo-González M, Reboredo-Rodríguez P, González-Barreiro C, Carrasco-Pancorbo A, Cancho-Grande B, Simal-Gándara J. The involvement of phenolic-rich extracts from Galician autochthonous extra-virgin olive oils against the α-glucosidase and α-amylase inhibition. Food Res Int 2018; 116:447-454. [PMID: 30716967 DOI: 10.1016/j.foodres.2018.08.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/03/2018] [Accepted: 08/18/2018] [Indexed: 01/08/2023]
Abstract
'Brava' and 'Mansa de Figueiredo' extra-virgin olive oils (EVOOs) are two varieties identified from north-western Spain. A systematic phenolic characterization of the studied oils was undertaken by LC-ESI-IT-MS. In addition, the role of dietary polyphenols from these EVOOs has been evaluated against the inhibition of key enzymes (α-glucosidase and α-amylase) in the management of diabetes mellitus (DM). Oleuropein and ligstroside derivatives comprised 83% and 67% of the total phenolic compounds in 'Brava' and 'Mansa de Figueiredo' EVOOs, respectively. The main secoiridoids from oleuropein were DOA (3,4-DHPEA-EDA, 59 and 22 mg kg-1, respectively) and the main isomer of OlAgl (3,4-DHPEA-EA, 74 and 23 mg kg-1). The main secoiridoids from ligstroside were D-LigAgl (p-HPEA-EDA or oleocanthal, 23 and 167 mg kg-1) and the main isomer of LigAgl (p-HPEA-EA, 214 and 114 mg kg-1). For α-glucosidase, both EVOO extracts displayed stronger inhibitory activity (IC50 values of 60 ± 8 and 118 ± 9 μg mL-1, respectively) than the commercial inhibitor acarbose (IC50 = 356 ± 21 μg mL-1). Nevertheless, for α-amylase, only 'Brava' extracts showed anti-α-amylase capacity. A daily VOO intake lower than the requirements of EFSA seem to be enough to reach both 50% for α-glucosidase and 25% for α-amylase inhibition. These findings support the potential health benefits derived from Galician EVOOs that might be probably linked to the outstanding high concentration levels of phenolic acids and flavonoids.
Collapse
Affiliation(s)
- M Figueiredo-González
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - P Reboredo-Rodríguez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Via Ranieri 65, 60131 Ancona, Italy
| | - C González-Barreiro
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - A Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| | - B Cancho-Grande
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - J Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
29
|
Effect of subcritical water and steam explosion pretreatments on the recovery of sterols, phenols and oil from olive pomace. Food Chem 2018; 265:298-307. [PMID: 29884386 DOI: 10.1016/j.foodchem.2018.05.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/02/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
Hydrothermal pretreatments including steam explosion and subcritical water (SCW) facilitate hydrolyses of plant cell wall materials and supply environmentally friendly extraction solvents to recover value added compounds. In this study, effect of steam and SCW and temperature (160, 180 and 200 °C, 5 min) on yield and β-sitosterol content of pomace oil and phenolics were compared for value added utilization of olive pomace. Compared to acid hydrolysis, hydrothermal pretreatments yielded similar oil recovery. 54-76% of the bound oil and 18-32% of the bound β-sitosterol of the pomace were recovered by hydrothermal pretreatments. Steam pretreatment was more effective than SCW pretreatment at lower temperatures, however SCW showed increasing trend on oil yield related to steam pretreatment. As further research on process development, use of sequential temperature might be investigated, starting with steam explosion (<180 °C), followed by SCW pretreatment (>200 °C) to obtain multiple, aqueous and meal, fractions for total valorization of olive pomace.
Collapse
|
30
|
Reboredo-Rodríguez P, González-Barreiro C, Cancho-Grande B, Forbes-Hernández TY, Gasparrini M, Afrin S, Cianciosi D, Carrasco-Pancorbo A, Simal-Gándara J, Giampieri F, Battino M. Characterization of phenolic extracts from Brava extra virgin olive oils and their cytotoxic effects on MCF-7 breast cancer cells. Food Chem Toxicol 2018; 119:73-85. [PMID: 29753866 DOI: 10.1016/j.fct.2018.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/18/2023]
Abstract
The aim of the present work was to evaluate the phenolic profile of the 'Brava' extra virgin olive oil and assess its potential as a "natural adjuvant" in combination with chemotherapy treatment. The total phenol content of the phenolic extracts was 764 mg gallic acid equivalents/kg and the total antioxidant capacity was 2309, 1881 and 2088 μM trolox equivalents/kg determined by Diphenyl-1-picrylhydrazyl free radical method, Ferric Reducing Antioxidant Power and Trolox Equivalent Antioxidant Capacity assay, respectively. Secoiridoids comprised 83% of the total phenolic compounds. The main secoiridoid from oleuropein was the main isomer of oleuropein aglycone (74 mg/kg). The main secoiridoid from ligstroside was the main isomer of ligstroside aglycone (214 mg/kg). These phenolic extracts showed a significant decrease in cell viability on MCF-7 breast cancer cells in a dose and time dependent manner. 48 h-treatments with different concentrations of the extracts induced intracellular ROS generation and cell death.
Collapse
Affiliation(s)
- Patricia Reboredo-Rodríguez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy; Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - Carmen González-Barreiro
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - Beatriz Cancho-Grande
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy.
| | - Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy.
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy.
| | - Alegría Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, E-18071 Granada, Spain.
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
31
|
Di Serio MG, Giansante L, Di Loreto G, Di Giacinto L. Shelf life of extra-virgin olive oils: First efforts toward a prediction model. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Gabriella Di Serio
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (IT); Viale Lombardia C.da Bucceri, 65012 Cepagatti (Pescara); Italy
| | - Lucia Giansante
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (IT); Viale Lombardia C.da Bucceri, 65012 Cepagatti (Pescara); Italy
| | - Giuseppina Di Loreto
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (IT); Viale Lombardia C.da Bucceri, 65012 Cepagatti (Pescara); Italy
| | - Luciana Di Giacinto
- Council for Agricultural Research and Economics (CREA), Research Centre for Engineering and Agro-Food Processing (IT); Viale Lombardia C.da Bucceri, 65012 Cepagatti (Pescara); Italy
| |
Collapse
|
32
|
Figueiredo-González M, Reboredo-Rodríguez P, González-Barreiro C, Carrasco-Pancorbo A, Simal-Gándara J, Cancho-Grande B. Nutraceutical Potential of Phenolics from 'Brava' and 'Mansa' Extra-Virgin Olive Oils on the Inhibition of Enzymes Associated to Neurodegenerative Disorders in Comparison with Those of 'Picual' and 'Cornicabra'. Molecules 2018; 23:E722. [PMID: 29561824 PMCID: PMC6017695 DOI: 10.3390/molecules23040722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
The increasing interest in the Mediterranean diet is based on the protective effects against several diseases, including neurodegenerative disorders. Polyphenol-rich functional foods have been proposed to be unique supplementary and nutraceutical treatments for these disorders. Extra-virgin olive oils (EVOOs) obtained from 'Brava' and 'Mansa', varieties recently identified from Galicia (northwestern Spain), were selected for in vitro screening to evaluate their capacity to inhibit key enzymes involved in Alzheimer's disease (AD) (acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and 5-lipoxygenase (5-LOX)), major depressive disorder (MDD) and Parkinson's disease (PD) (monoamine oxidases: hMAO-A and hMAO-B respectively). 'Brava' oil exhibited the best inhibitory activity against all enzymes, when they are compared to 'Mansa' oil: BuChE (IC50 = 245 ± 5 and 591 ± 23 mg·mL-1), 5-LOX (IC50 = 45 ± 7 and 106 ± 14 mg·mL-1), hMAO-A (IC50 = 30 ± 1 and 72 ± 10 mg·mL-1) and hMAO-B (IC50 = 191 ± 8 and 208 ± 14 mg·mL-1), respectively. The inhibitory capacity of the phenolic extracts could be associated with the content of secoiridoids, lignans and phenolic acids.
Collapse
Affiliation(s)
- María Figueiredo-González
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Orense, Spain.
| | - Patricia Reboredo-Rodríguez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Orense, Spain.
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Via Ranieri 65, 60131 Ancona, Italy.
| | - Carmen González-Barreiro
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Orense, Spain.
| | - Alegría Carrasco-Pancorbo
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain.
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Orense, Spain.
| | - Beatriz Cancho-Grande
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Orense, Spain.
| |
Collapse
|