1
|
Li H, Wu X, Lin L, Zhou X, Wu W. Effect of epigallocatechin-3-gallate modification on the structure, hydrophilicity and Pickering emulsion stability of rice bran protein-polysaccharide-phenol natural complex. Food Chem 2025; 482:144175. [PMID: 40184736 DOI: 10.1016/j.foodchem.2025.144175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/28/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
To improve the application of insoluble protein-polysaccharide-phenol natural complex particles as Pickering emulsion stabilizers within the food industry, insoluble rice bran protein-polysaccharide-phenol natural complex (IRBPPP) was modified using epigallocatechin-3-gallate (EGCG) under alkaline conditions. The addition of EGCG increased the bound phenol content and soluble protein content of IRBPPP, and decreased the free amino content, ζ-potential, surface hydrophobicity, and contact angle of IRBPPP. The addition of moderate EGCG (12.5-25 mg/g) enhanced the protein flexibility in IRBPPP (α-helix/β-sheet decreased from 23.56 % to 18.74 %) and induced the transition from highly hydrophilic particles to near-neutral particles (contact angle decreased from 139.8° to 87.3°), which enhanced the Pickering emulsion stability. Conversely, the addition of excessive EGCG (100 mg/g) reduced the stability of IRBPPP-EGCG-stabilized Pickering emulsion compared to the addition of moderate EGCG. Overall, the EGCG modification altered the Pickering emulsion stability by modulating protein flexibility, particle morphology, and hydrophilicity of IRBPPP.
Collapse
Affiliation(s)
- Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Lizhong Lin
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoling Zhou
- Chen Keming Food Manufacturing Co., Ltd, Changsha, Hunan 414000, China
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
2
|
Wang S, Abou-Elsoud M, Li Z, Chen J, Ren S, Shu D, Liu M, Huang X. Structural modulation of eggshell membrane hydrolysates by tannic acid: Simultaneous enhancement of antioxidant and emulsifying properties. Food Chem 2025; 479:143827. [PMID: 40086398 DOI: 10.1016/j.foodchem.2025.143827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
In this study, eggshell membrane hydrolysate (ESMH) and tannic acid (TA) complexes were prepared through both covalent and non-covalent interactions, with their structural properties, antioxidant activity and emulsifying properties being evaluated. The results revealed that the covalent complexes have lower sulfhydryl content (5.3 μmol/g) and higher TA binding capacity (0.15 mg/mL Protein) than the non-covalent complexes at the same TA concentration. FTIR and fluorescence analyses indicated that the structure of ESMH changed after binding with TA. Antioxidant assays demonstrated that TA significantly enhanced the free radical scavenging ability and Fe2+chelating ability of ESMH. Furthermore, when the ESMH-TA covalent complex was applied to a storage test of fresh mayonnaise, the rate of lipid oxidation was effectively slowed down. In addition, the covalent complexes successfully prepared emulsions with smaller particle sizes (8.5 μm) and provided improved stability against lipid oxidation by altering the protein conformation.
Collapse
Affiliation(s)
- Shasha Wang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mahmoud Abou-Elsoud
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Zuyue Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaojiao Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuze Ren
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dewei Shu
- Zaozhuang Key Laboratory of Egg Nutrition and Health, Zaozhuang Jianxiu Bio-pharmaceutical Co., Ltd, Shandong 277000, China
| | - Meiyu Liu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Peng X, Wei Y, Liao Y, Hu X, Gong D, Zhang G. Effect of polysaccharides on the inhibition and binding ability of hesperetin-copper(II) complex on α-glucosidase. Colloids Surf B Biointerfaces 2025; 250:114564. [PMID: 39965483 DOI: 10.1016/j.colsurfb.2025.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
The study aimed to investigate the inhibitory effect of hesperetin-copper (II) [Hsp-Cu(II)] on α-glucosidase in the presence of polysaccharides (xylan, β-glucan, low-, medium- and high-viscosity chitosan). The results showed that all the polysaccharides significantly reduced the inhibitory activity of α-glucosidase by Hsp-Cu(II), and the reduction effect of high-viscosity chitosan was the most significant. The polysaccharides significantly decreased the binding constant of Hsp-Cu(II)α-glucosidase, changed the binding sites of Hsp-Cu(II) to α-glucosidase and reduced the hydrogen bonds of Hsp-Cu(II) bound with α-glucosidase. Circular dichroism showed that the reduction of α-helix content in α-glucosidase caused by Hsp-Cu(II) was raised from 27.2 % to 29.5 %, 31.3 % and 32.7 % in the presence of xylan, β-glucan and high-viscosity chitosan, respectively, suggesting that the polysaccharides could restore the secondary structure of α-glucosidase. Fourier transforms infrared spectra showed that xylan and β-glucan formed hydrogen bonds with Hsp-Cu(II). The mechanism of the decreasing effect might be that the polysaccharides with the low viscosity compete with α-glucosidase to bind Hsp-Cu(II) through hydrogen bonds, restoring the catalytic center and active amino acid residues of Hsp-Cu(II) bound with α-glucosidase and the adsorption of high-viscosity chitosan decreases the binding affinity of Hsp-Cu(II) on α-glucosidase. The study may offer a reference for the development of Hsp-Cu(II)-based nutritional and healthy food for patients with hyperglycemia.
Collapse
Affiliation(s)
- Xi Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Yushi Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yijing Liao
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Xing Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China.
| |
Collapse
|
4
|
Guo X, Wu X, Sun Z, Li D, Jia H, Zhang K, Zhao Y, Zheng H. Preparation, characterization, and binding mechanism of pH-driven gliadin/soy protein isolate nanoparticles. Food Res Int 2025; 208:116289. [PMID: 40263867 DOI: 10.1016/j.foodres.2025.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Protein nanoparticles have attracted significant attention due to their low cost and high bioavailability; however, their poor stability limits their functional applications. To address this challenge, hydrophobic gliadin (G) and hydrophilic soy protein isolate (SPI) were co-assembled using the pH-driven method to evaluate the impact of different G/SPI ratios on their structural and functional properties. The results revealed that at G/SPI ratios between 1:1 and 1:8, the nanoparticles exhibited smaller particle sizes and higher zeta potentials. Spectroscopic analysis showed that protein interactions, primarily hydrogen bonding, hydrophobic interactions, and electrostatic interaction, led to a more compact spatial structure. Functional analysis identified a 1:3 ratio as optimal, offering excellent emulsifying properties (EAI: 28.95 m2/g; ESI: 90.53%) and superior foaming properties (FC: 837.46 %; FS: 87.62 %). Additionally, this ratio significantly enhanced solubility by 75.6 % and improved physical stability compared to gliadin nanoparticles (GNPs). Mechanistic analysis revealed that the assembly of G/SPI nanoparticles was primarily driven by hydrogen bonding, hydrophobic interactions, and electrostatic interactions, with hydrophobic interactions playing a dominant role. Notably, a key turning point in protein folding was identified as the pH shifted from 10 to 9. Molecular docking further pinpointed the binding site, elucidating the assembly process at the molecular level. These findings establish a solid foundation for the development of dual-protein nanoparticles with tailored properties, opening new possibilities for their application in bioactive compound delivery.
Collapse
Affiliation(s)
- Xiaohang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinghui Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhouliang Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dan Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Jia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Kaili Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanjie Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huanyu Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
5
|
Su Y, Huang M, Chen Q, He J, Li S, Wang M. Harnessing β-glucan conjugated quercetin nanocomplex to function as a promising anti-inflammatory agent via macrophage-targeted delivery. Carbohydr Polym 2025; 349:122952. [PMID: 39638531 DOI: 10.1016/j.carbpol.2024.122952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Quercetin, a promising anti-inflammatory agent, faces challenges related to poor bioavailability and limited practical applications. β-glucan, a natural polysaccharide, can be specifically recognized by macrophages, making it an ideal targeting carrier to enhance therapeutic efficacy for macrophage-related dysfunctions. In this study, β-glucan conjugated quercetin nano-complexes (CM-Cur@QT) were developed to target macrophage and alleviate pro-inflammatory response in M1-like macrophages. The results demonstrated that CM-Cur@QT exhibited a spheric shape with an average diameter around 200 nm. FT-IR, 1H NMR, XRD and XPS analyses confirmed the complexation of CM-Cur@QT. This complex showed excellent stability during stimulated digestion, protecting QT from degradation while maintaining favorable antioxidant activity. After complexation, CM-Cur@QT displayed sustained uptake kinetics and enhanced accumulation in macrophages, with a 61.88 % increase compared to individual quercetin after 5 h of incubation. Meanwhile, CM-Cur@QT administration induced evidently cell cycle phases transitions and altered phagocytotic activity in M1-like macrophages. Furthermore, CM-Cur@QT reduced intracellular ROS accumulation, achieving a ROS scavenging rate of up to 49.92 %, compared to 25.59 % in quercetin group. This complex also effectively modulated TNF-a, IL-6 and TGF-β secretion profiles in pro-inflammatory macrophages, outperforming individual QT treatment. Notably, CM-Cur@QT facilitated anti-inflammatory effects while minimizing impacts on inactivated M0 macrophages. These findings underscore the potential of CM-Cur@QT as a promising agent for mitigating inflammatory disorders.
Collapse
Affiliation(s)
- Yuting Su
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
| | - Manting Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
| | - Qiaochun Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
| | - Jiayi He
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Siqian Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
6
|
Heydarian N, Ferrell M, Nair AS, Roedl C, Peng Z, Nguyen TD, Best W, Wozniak KL, Rice CV. Low-Molecular Weight Branched Polyethylenimine Reduces Cytokine Secretion from Human Immune System Monocytes Stimulated with Bacterial and Fungal PAMPs. ChemMedChem 2024; 19:e202400011. [PMID: 38740551 PMCID: PMC11463166 DOI: 10.1002/cmdc.202400011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The innate immune system is an evolutionarily conserved pathogen recognition mechanism that serves as the first line of defense against tissue damage or pathogen invasion. Unlike the adaptive immunity that recruits T-cells and specific antibodies against antigens, innate immune cells express pathogen recognition receptors (PRRs) that can detect various pathogen-associated molecular patterns (PAMPs) released by invading pathogens. Microbial molecular patterns, such as lipopolysaccharide (LPS) from Gram-negative bacteria, trigger signaling cascades in the host that result in the production of pro-inflammatory cytokines. LPS stimulation produces a strong immune response and excessive LPS signaling leads to dysregulation of the immune response. However, dysregulated inflammatory response during wound healing often results in chronic non-healing wounds that are difficult to control. In this work, we present data demonstrating partial neutralization of anionic LPS molecules using cationic branched polyethylenimine (BPEI). The anionic sites on the LPS molecules from Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) are the lipid A moiety and BPEI binding create steric factors that hinder the binding of PRR signaling co-factors. This reduces the production of pro-inflammatory TNF-α cytokines. However, the anionic sites of Pseudomonas aeruginosa (P. aeruginosa) LPS are in the O-antigen region and subsequent BPEI binding slightly reduces TNF-α cytokine production. Fortunately, BPEI can reduce TNF-α cytokine expression in response to stimulation by intact P. aeruginosa bacterial cells and fungal zymosan PAMPs. Thus low-molecular weight (600 Da) BPEI may be able to counter dysregulated inflammation in chronic wounds and promote successful repair following tissue injury.
Collapse
Affiliation(s)
- Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Maya Ferrell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Ayesha S. Nair
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078
| | - Chase Roedl
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Zongkai Peng
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Tra D. Nguyen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - William Best
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| |
Collapse
|
7
|
Theocharidou A, Lousinian S, Tsagkaris A, Mourtzinos I, Ritzoulis C. Interactions between xanthan gum and phenolic acids. Int J Biol Macromol 2024; 273:133175. [PMID: 38889835 DOI: 10.1016/j.ijbiomac.2024.133175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The molecular and colloidal-level interactions between two major phenolic acids, gallic and caffeic acid, with a major food polysaccharide, xanthan gum, were studied in binary systems aiming to correlate the stability of the binary systems as a function of pH and xanthan-polyphenol concentrations. Global stability diagrams were built, acting as roadmaps for examining the phase separation regimes followed by the fluorimetry-based thermodynamics of the interactions. The effects of noncovalent interactions on the macroscopic behavior of the binary systems were studied, using shear and extensional rheometry. The collected data for caffeic acid - xanthan gum mixtures showed that the main interactions were pH-independent volume exclusions, while gallic acid interacts with xanthan gum, especially at pH 7 with other mechanisms as well, improving the colloidal dispersion stability. A combination of fluorimetry, extensional rheology and stability measurements highlight the effect of gallic acid-induced aggregation of xanthan gum, both in structuring and de-structuring the binary systems. The above provide a coherent framework of the physicochemical aspect of binary systems, shedding light on the role of xanthan gum in its oral functions, such as in inducing texture, in model complex systems containing phenolic acids.
Collapse
Affiliation(s)
- Athina Theocharidou
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, 57400 Thessaloniki, Greece
| | - Sylvie Lousinian
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, 57400 Thessaloniki, Greece
| | - Apostolos Tsagkaris
- Department of Industrial Engineering & Management, International Hellenic University, Alexander Campus, 57400 Thessaloniki, Greece
| | - Ioannis Mourtzinos
- Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, 57400 Thessaloniki, Greece.
| |
Collapse
|
8
|
Yuan S, Yang J, Fu X, Yu H, Guo Y, Xie Y, Xiao Y, Cheng Y, Yao W. Effect of tannic acid binding on the thermal degradation behavior and product toxicity of boscalid. Food Chem 2024; 444:138654. [PMID: 38335685 DOI: 10.1016/j.foodchem.2024.138654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
The effect of tannic acid (TA) binding on the thermal degradation of boscalid was studied in this work. The results revealed that TA binding has a significant impact on boscalid degradation. The degradation rate constant of bound boscalid was reduced, and its corresponding half-life was significantly prolonged compared to the free state. Four identical degradation products were detected in both states through UHPLC-Q-TOF-MS, indicating that degradation products were not affected by TA binding. Based on DFT and MS analysis, the degradation pathways of boscalid included hydroxyl substitution of chlorine atoms and cleavage of CN and CC bonds. The toxicity of B2 and B3 exceeded that of boscalid. In summary, the binding of TA and boscalid significantly affected the thermal degradation rate of boscalid while preserving the types of degradation products. This study contributed to a fundamental understanding of the degradation process of bound pesticide residues in complex food matrices.
Collapse
Affiliation(s)
- Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jian Yang
- China Academy of Launch Vehicle Technology, Beijing, China
| | - Xiaoyan Fu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yuan Xiao
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
| |
Collapse
|
9
|
Wang J, Liu R, Huang X, Bao Y, Wang X, Yi H, Lu Y. The Effect of Nanoscale Modification of Nisin by Different Milk-Derived Proteins on Its Physicochemical Properties and Antibacterial Activity. Foods 2024; 13:1606. [PMID: 38890836 PMCID: PMC11171616 DOI: 10.3390/foods13111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Nisin is used as a natural food preservative because of its broad-spectrum antimicrobial activity against Gram-positive bacteria. However, free nisin is susceptible to various factors that reduce its antimicrobial activity. Milk protein, a protein derived from milk, has self-assembly properties and is a good carrier of bioactive substances. In this study, lactoferrin-nisin nanoparticles (L-N), bovine serum albumin-nisin nanoparticles (B-N), and casein-nisin nanoparticles (C-N) were successfully prepared by a self-assembly technique, and then their properties were investigated. The studies revealed that lactoferrin (LF) and nisin formed L-N mainly through hydrophobic interactions and hydrogen bonding, and L-N had the best performance. The small particle size (29.83 ± 2.42 nm), dense reticular structure, and good thermal stability, storage stability, and emulsification of L-N laid a certain foundation for its application in food. Further bacteriostatic studies showed that L-N enhanced the bacteriostatic activity of nisin, with prominent inhibitory properties against Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus, which mainly disrupted the cell membrane of the bacteria. The above results broaden our understanding of milk protein-nisin nanoparticles, while the excellent antibacterial activity of L-N makes it promising for application as a novel food preservative, which will help to improve the bioavailability of nisin in food systems.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (R.L.); (X.H.); (Y.B.); (X.W.)
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (R.L.); (X.H.); (Y.B.); (X.W.)
| | - Xiaoyang Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (R.L.); (X.H.); (Y.B.); (X.W.)
| | - Yuexin Bao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (R.L.); (X.H.); (Y.B.); (X.W.)
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (R.L.); (X.H.); (Y.B.); (X.W.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China;
| | - Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (R.L.); (X.H.); (Y.B.); (X.W.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Park JY, Cho DH, Choi DJ, Moon SY, Park EY, Kim JY. Preparation of catechin-starch nanoparticles composites and its application as a Pickering emulsion stabilizer. Carbohydr Polym 2024; 332:121950. [PMID: 38431403 DOI: 10.1016/j.carbpol.2024.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Starch is a biopolymer commonly used for nanoparticle synthesis. Starch nanoparticles (SNPs) have potential as encapsulation agents and Pickering emulsion stabilizers. Here, we prepared SNPs by dry heating under mildly acidic conditions to encapsulate catechin. Catechin (30 mg) and SNPs (50-150 mg) were dispersed in distilled water and freeze-dried to prepare catechin-SNP composites. Isothermal titration calorimetry and Fourier-transform infrared spectroscopy revealed that the binding of catechin to SNP may involve spontaneous hydrogen bonding and hydrophobic interactions. SNPs exhibited encapsulation efficiency for catechin, with 100 % catechin retention when 150 mg of SNP was used to prepare the composites. The catechin-SNP composites had a particle size of 54.2-74.9 nm. X-ray diffraction analysis revealed the formation of small amounts of inclusion complexes in catechin-SNP composites. As the amount of SNPs added for encapsulation increased, the catechin encapsulated in the SNP composites exhibited higher water solubility and UV stability than the pure catechin. The catechin-SNP composite with 150 mg of catechin exhibited the highest contact angle (51.37°) and formed a stable emulsion without notable droplet size changes. Therefore, catechin-SNP composites improved the encapsulation efficiency, water-solubility, stability of catechins, and Pickering emulsion stability.
Collapse
Affiliation(s)
- Jae Young Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Hwa Cho
- Eversummer Laboratory, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Dan Jung Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So Yeon Moon
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun Young Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jong-Yea Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
11
|
Jin H, Li C, Sun Y, Zhao B, Li Y. Preparation and Application of High Internal Phase Pickering Emulsion Gels Stabilized by Starch Nanocrystal/Tannic Acid Complex Particles. Gels 2024; 10:335. [PMID: 38786252 PMCID: PMC11121127 DOI: 10.3390/gels10050335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Herein, the starch nanocrystal/tannic acid (ST) complex particles, which were prepared based on the hydrogen bond between starch nanocrystal (SNC) and tannic acid (TA), were successfully used to stabilize the HIPPE gels. The optimal TA concentration of the ST complex particles resulted in better water dispersibility, surface wettability, and interfacial activity as compared to SNC. The hydrogen bond responsible for the formation of ST complex particles and subsequent stable emulsions was demonstrated by varying the pH and ionic strength of the aqueous phase. Notably, the HIPPE gels stabilized via the ST complex particles can maintain long-term stability for up to three months. The HIPPEs stabilized via the ST complex particles all displayed gel-like features and had smaller droplets and denser droplet networks than the SNC-stabilized HIPPEs. The rheological behavior of HIPPE gels stabilized via the ST complex particles can be readily changed by tuning the mass ratio of SNC and TA as well as pH. Finally, the prepared HIPPE gels used to effectively protect encapsulated β-carotene against high temperatures and ultraviolet radiation and its controllable release at room temperature were demonstrated. It is anticipated that the aforementioned findings will provide new perspectives on the preparation of Pickering emulsion for delivery systems.
Collapse
Affiliation(s)
- Haoran Jin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China (B.Z.)
| | - Chen Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China (B.Z.)
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Yajuan Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China (B.Z.)
| | - Bingtian Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China (B.Z.)
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China (B.Z.)
| |
Collapse
|
12
|
Cerdá-Bernad D, D’costa AS, Moreno DA, Bordenave N, Frutos MJ. Functional Model Beverages of Saffron Floral By-Products: Polyphenolic Composition, Inhibition of Digestive Enzymes, and Rheological Characterization. Foods 2024; 13:1440. [PMID: 38790740 PMCID: PMC11120039 DOI: 10.3390/foods13101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the rapid and dynamic evolution of research into dietary polyphenols, there is still a knowledge gap regarding their bioaccessibility since it could be influenced by the chemical and nutritional compositions of the food matrix. This study aimed to describe the impact of food thickeners (xanthan gum, guar gum, β-glucan, pectin) on the bioactivity of flavonoids from saffron floral by-products in model beverages before and after thermal processing. The different beverage formulas were characterized in terms of polyphenolic composition using HPLC-DAD-ESI-MSn and rheological properties. The impact of food thickeners and thermal processing on the inhibition of digestive enzymes was also determined. The model beverages mainly presented glycosylated flavonols (of kaempferol, quercetin, and isorhamnetin), with a reduced content in some heat-treated samples. The inhibitory effect on α-amylase was only detected in heat-treated beverages, showing the formulation without any thickener to have the greatest inhibitory effect. Finally, the presence of saffron floral by-products in the beverages showed a tendency to decrease the flow consistency index (K) and an increase in the flow behavior index (n), most probably driven by the aggregation of phenolics with thickeners. Therefore, this research provides new insights into the development of flavonoid-rich beverages in order to ensure that they exert the expected beneficial effects after their ingestion.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain;
| | - Adrian S. D’costa
- School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.S.D.); (N.B.)
| | - Diego A. Moreno
- Phytochemistry and Healthy Food Lab, Department of Food Science and Technology, CEBAS, CSIC, Campus Universitario de Espinardo-25, 30100 Murcia, Spain;
| | - Nicolas Bordenave
- School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.S.D.); (N.B.)
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- INRAE, Avignon Université, UMR SQPOV, 84000 Avignon, France
| | - María José Frutos
- Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain;
| |
Collapse
|
13
|
Long M, Ren Y, Li Z, Yin C, Sun J. Effects of different oil fractions and tannic acid concentrations on konjac glucomannan-stabilized emulsions. Int J Biol Macromol 2024; 265:130723. [PMID: 38467227 DOI: 10.1016/j.ijbiomac.2024.130723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Polysaccharide-stabilized emulsions have received extensive attention, but emulsifying activity of polysaccharides is poor. In this study, konjac glucomannan (KGM) and tannic acid (TA) complex (KGM-TA) was prepared via non-covalent binding to increase the polysaccharide interfacial stability. The emulsifying stabilities of KGM-TA complex-stabilized emulsions were analyzed under different TA concentrations and oil fractions. The results indicated that hydrogen bonds and hydrophobic bonds were the main binding forces for KGM-TA complex, which were closely related to TA concentrations. The interfacial tension of KGM-TA complex decreased from 20.0 mN/m to 13.4 mN/m with TA concentration increasing from 0 % to 0.3 %, indicating that TA improved the interfacial activity of KGM. Meanwhile, the contact angle of KGM-TA complex was closer to 90° with the increasing TA concentrations. The emulsifying stability of KGM-TA complex-stabilized emulsions increased in an oil mass fraction-dependent manner, reaching the maximum at 75 % oil mass fraction. Moreover, the droplet sizes of KGM-TA complex-stabilized high-internal-phase emulsions (HIPEs) decreased from 82.7 μm to 44.7 μm with TA concentration increasing from 0 to 0.3 %. Therefore, high TA concentrations were conducive to the improvement of the emulsifying stability of KGM-TA complex-stabilized HIPEs. High oil mass fraction promoted the interfacial contact of adjacent droplets, thus enhancing the non-covalent binding of KGM molecules at the interfaces with TA as bridges. Additionally, the high TA concentrations increased the gel network density in the aqueous phase, thus enhancing the emulsifying stability of emulsions. Our findings reveal the mechanisms by which polysaccharide-polyphenol complex stabilized HIPEs. Therefore, this study provides theoretical basis and references for the developments of polysaccharide emulsifier with high emulsifying capability and high-stability emulsions.
Collapse
Affiliation(s)
- Min Long
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yuanyuan Ren
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Zhenshun Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Chaomin Yin
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Jie Sun
- College of Life Science and Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| |
Collapse
|
14
|
Li X, Li C, Feng J, Li T, Zhou D, Wu C, Fan G. Insights into formation and stability mechanism of V 7-type short amylose-resveratrol complex using molecular dynamics simulation and molecular docking. Int J Biol Macromol 2024; 265:130930. [PMID: 38513898 DOI: 10.1016/j.ijbiomac.2024.130930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Pre-formed V-type amylose as a kind of wall material has been reported to carry polyphenols, while the interaction mechanism between V-type amylose and polyphenol is still elusive. In this work, the formation and stability mechanism of a V7-type short amylose-resveratrol complex was investigated via isothermal titration calorimetry, molecular dynamics, and molecular docking. The results presented that two stoichiometric ratios of resveratrol to short amylose were calculated to 0.120 and 0.800, and the corresponding main driving force was hydrogen bonding and hydrophobic interaction, respectively. The folding and unfolding conformation of V7-type short amylose chains appeared alternately during the simulation. Resveratrol tended to be bound in the short amylose helix between 40 ns and 80 ns to form a more stable complex. Hydrogen bonds between resveratrol molecule and O6 at the 22nd glucose molecule/O2 at the 24th glucose molecules and hydrophobic interaction between resveratrol molecule and glucose molecules (19th, 20th, 21st and 23rd) could be found.
Collapse
Affiliation(s)
- Xiaojing Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Caihong Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiawen Feng
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tingting Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dandan Zhou
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Caie Wu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Gongjian Fan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
15
|
Wei X, Xie H, Hu Z, Zeng X, Dong H, Liu X, Bai W. Multiscale structure changes and mechanism of polyphenol-amylose complexes modulated by polyphenolic structures. Int J Biol Macromol 2024; 262:130086. [PMID: 38360224 DOI: 10.1016/j.ijbiomac.2024.130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
This study was designed to investigate the effect of polyphenolic structure on the interaction strength and process between polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) and amylose (AM). The results of Fourier transform infrared spectroscopy, isothermal titration calorimetry, X-ray photoelectron spectroscopy and molecular dynamic simulation (MD) suggested that the interactions between the three polyphenols and AM were noncovalent, spontaneous, low-energy and driven by enthalpy, which would be enhanced with increasing amounts of pyrogallol groups in the polyphenols. The results of turbidity, particle size and appearance of the complex solution showed that the interaction process between polyphenols and AM could be divided into three steps and would be advanced by increasing the number of pyrogallol groups in the polyphenols. At the same time, MD was intuitively employed to exhibit the interaction process between amylose and polyphenols, and it revealed that the interaction induced the aggregation of amylose and that the agglomeration degree of amylose increased with increasing number of pyrogallol groups at polyphenols. Last, the SEM and TGA results showed that TA/AM complexes had the tightest structure and the highest thermal stability (TA/AM˃EGCG/AM˃GA/AM), which could be attributed to TA having five pyrogallol groups.
Collapse
Affiliation(s)
- Xianling Wei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Huan Xie
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; School of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technology University, Shanghai 201514, China
| | - Ziqing Hu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Hao Dong
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiaoyan Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
16
|
Zhang W, Zhang QY, Li J, Ren XN, Zhang Y, Niu Q. Study on the Digestive Behavior of Chlorogenic Acid in Biomimetic Dietary Fiber and the Antioxidative Synergistic Effect of Polysaccharides and Chlorogenic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2634-2647. [PMID: 38267223 DOI: 10.1021/acs.jafc.3c08886] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Chlorogenic acid (CA) is often combined with dietary fiber polysaccharides in plant foods, which may affect its digestive behavior and antioxidant activity. This study constructed a biomimetic dietary fiber (BDF) model by combining bacterial cellulose (BC) and pectin with CA and investigated the digestive behavior of CA in BDF. Additionally, the study examined the interaction and synergistic effects of polysaccharides and CA against oxidation. Results showed that BDF and natural dietary fiber had similar microstructures, group properties, and crystallization properties, and polysaccharides in BDF were bound to CA. After simulated gastrointestinal digestion, 41.03% of the CA existed in a conjugated form, and it was possibly influenced by the interaction between polysaccharides and CA. And the release of CA during simulated digestion potentially involved four mechanisms, including the disintegration of polysaccharide-CA complex, the dissolution of pectin, escape from BC-pectin (BCP) network structure, and diffusion release. And polysaccharides and CA may be combined through noncovalent interactions such as hydrogen bonding, van der Waals force, or electrostatic interaction force. Meanwhile, polysaccharides-CA combination had a synergistic antioxidant effect by the results of free-radical scavenging experiments, it was probably related to the interaction between polysaccharides and CA. The completion of this work has a positive significance for the development of dietary intervention strategies for oxidative damage.
Collapse
Affiliation(s)
- Wen Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qian-Yu Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Zhejiang Xianju Pharmaceutical Co., Ltd., Taizhou 317300, China
| | - Ji Li
- School of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xue-Ning Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yue Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiao Niu
- CCIC Northwest Ecological Technology (Shaanxi), Xi'an 710021, China
| |
Collapse
|
17
|
Yan S, Regenstein JM, Qi B, Li Y. Construction of protein-, polysaccharide- and polyphenol-based conjugates as delivery systems. Crit Rev Food Sci Nutr 2023; 65:1363-1381. [PMID: 38108638 DOI: 10.1080/10408398.2023.2293253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Natural polymers, such as polysaccharides and proteins, have been used to prepare several delivery systems owing to their abundance, bioactivity, and biodegradability. They are usually modified or combined with small molecules to form the delivery systems needed to meet different needs in food systems. This paper reviews the interactions of proteins, polysaccharides, and polyphenols in the bulk phase and discusses the design strategies, coupling techniques, and their applications as conjugates in emulsion delivery systems, including traditional, Pickering, multilayer, and high internal-phase emulsions. Furthermore, it explores the prospects of the application of conjugates in food preservation, food development, and nanocarrier development. Currently, there are seven methods for composite delivery systems including the Maillard reaction, carbodiimide cross-linking, alkali treatment, enzymatic cross-linking, free radical induction, genipin cross-linking, and Schiff base chemical cross-linking to prepare binary and ternary conjugates of proteins, polysaccharides, and polyphenols. To design an effective target complex and its delivery system, it is helpful to understand the physicochemical properties of these biomolecules and their interactions in the bulk phase. This review summarizes the knowledge on the interaction of biological complexes in the bulk phase, preparation methods, and the preparation of stable emulsion delivery system.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, China
| | | | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Wu Y, Li P, Jiang Z, Sun X, He H, Yan P, Xu Y, Liu Y. Bioinspired yeast-based β-glucan system for oral drug delivery. Carbohydr Polym 2023; 319:121163. [PMID: 37567689 DOI: 10.1016/j.carbpol.2023.121163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023]
Abstract
Oral drug delivery is the preferred route of drug administration for patients, especially those who need long-term medication. Recently, bioinspired drug delivery systems have emerged for the oral delivery of various therapeutics. Among them, the yeast-based β-glucan system is a novel and promising platform, for oral administration that can overcome the biological barriers of the harsh gastrointestinal environment. Remarkably, the yeast-based β-glucan system not only protects the drug through the harsh gastrointestinal environment but also achieves targeted therapeutic effects by specifically recognizing immune cells, especially macrophages. Otherwise, it exhibits immunomodulatory properties. Based on the pleasant characteristics of the yeast-based β-glucan system, they are widely used in various macrophage-related diseases for oral administration. In this review, we introduced the structure and function of yeast-based β-glucan. Subsequently, we further summarized the current preparation methods of yeast-based β-glucan carriers and the strategies for preparing yeast-based β-glucan drug delivery systems. In addition, we focus on discussing the applications of β-glucan drug delivery systems in various diseases. Finally, the current challenges and future perspectives of the β-glucan drug delivery system are introduced.
Collapse
Affiliation(s)
- Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Zongzhe Jiang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaolei Sun
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Huqiang He
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China
| | - Pijun Yan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
19
|
Fernandes PAR, Coimbra MA. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr Polym 2023; 314:120965. [PMID: 37173007 DOI: 10.1016/j.carbpol.2023.120965] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Over the last years, polysaccharides have been linked to antioxidant effects using both in vitro chemical and biological models. The reported structures, claimed to act as antioxidants, comprise chitosan, pectic polysaccharides, glucans, mannoproteins, alginates, fucoidans, and many others of all type of biological sources. The structural features linked to the antioxidant action include the polysaccharide charge, molecular weight, and the occurrence of non-carbohydrate substituents. The establishment of structure/function relationships can be, however, biased by secondary phenomena that tailor polysaccharides behavior in antioxidant systems. In this sense, this review confronts some basic concepts of polysaccharides chemistry with the current claim of carbohydrates as antioxidants. It critically discusses how the fine structure and properties of polysaccharides can define polysaccharides as antioxidants. Polysaccharides antioxidant action is highly dependent on their solubility, sugar ring structure, molecular weight, occurrence of positive or negatively charged groups, protein moieties and covalently linked phenolic compounds. However, the occurrence of phenolic compounds and protein as contaminants leads to misleading results in methodologies often used for screening and characterization purposes, as well as in vivo models. Despite falling in the concept of antioxidants, the role of polysaccharides must be well defined according with the matrices where they are involved.
Collapse
Affiliation(s)
- Pedro A R Fernandes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Li Y, Zhou L, Zhang H, Liu G, Qin X. Preparation, Characterization and Antioxidant Activity of Glycosylated Whey Protein Isolate/Proanthocyanidin Compounds. Foods 2023; 12:foods12112153. [PMID: 37297399 DOI: 10.3390/foods12112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
A glycosylated protein/procyanidin complex was prepared by self-assembly of glycosylated whey protein isolate and proanthocyanidins (PCs). The complex was characterized through endogenous fluorescence spectroscopy, polyacrylamide gel electrophoresis, Fourier infrared spectroscopy, oil-water interfacial tension, and transmission electron microscopy. The results showed that the degree of protein aggregation could be regulated by controlling the added amount of procyanidin, and the main interaction force between glycosylated protein and PCs was hydrogen bonding or hydrophobic interaction. The optimal binding ratio of protein:PCs was 1:1 (w/w), and the solution pH was 6.0. The resulting glycosylated protein/PC compounds had a particle size of about 119 nm. They exhibited excellent antioxidant and free radical-scavenging abilities. Moreover, the thermal denaturation temperature rose to 113.33 °C. Confocal laser scanning microscopy (CLSM) images show that the emulsion maintains a thick interface layer and improves oxidation resistance with the addition of PCs, increasing the application potential in the functional food industry.
Collapse
Affiliation(s)
- Yaochang Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lian Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haizhi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Gang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| |
Collapse
|
21
|
Geng Q, McClements DJ, Wu Z, Li T, He X, Shuai X, Liu C, Dai T. Investigation of bovine β-lactoglobulin-procyanidin complexes interactions and its utilization in O/W emulsion. Int J Biol Macromol 2023; 240:124457. [PMID: 37068535 DOI: 10.1016/j.ijbiomac.2023.124457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Procyanidins are bioactive polyphenols that have a strong affinity to proteins. Beta-lactoglobulin (BLG) is widely used as an emulsifier in the food and other industries. This study evaluated the interaction between BLG and A-type procyanidin dimer (PA2) using the spectroscopic, thermodynamic, and molecular simulation. PA2 decreased the transmissivity and quenched the intrinsic fluorescence of BLG, suggesting that the two molecules formed a complex. The binding of PA2 reduced the surface hydrophobicity and altered the conformation of BLG with increasing the random coil regions. Thermodynamic and isothermal titration calorimetry analyses suggested that the main driving force of PA2-BLG interaction was hydrophobic attraction. Molecular docking simulations were used to identify the main interaction sites and forces in the BLG-PA2 complexes, which again indicated that hydrophobic interactions dominated. In addition, the influence of PA2 on the ability of BLG to form and stabilize O/W emulsions was analyzed. Emulsions formulated using BLG-PA2 complexes contained relatively small droplets (D4,3 ≈ 0.7 μm) and high surface potentials (absolute value >50 mV). Compared to BLG alone, BLG-PA2 complexes improved the storage stability of the emulsions. This study provides valuable new insights into the formation, properties, and application of protein-polyphenol complexes as functional ingredients in foods.
Collapse
Affiliation(s)
- Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | | | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xuemei He
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, Guangxi 530007, China
| | - Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Nanning, Guangxi 530007, China.
| |
Collapse
|
22
|
Structural characterization, interfacial and emulsifying properties of soy protein hydrolysate-tannic acid complexes. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Raschip IE, Darie-Nita RN, Fifere N, Hitruc GE, Dinu MV. Correlation between Mechanical and Morphological Properties of Polyphenol-Laden Xanthan Gum/Poly(vinyl alcohol) Composite Cryogels. Gels 2023; 9:gels9040281. [PMID: 37102893 PMCID: PMC10137999 DOI: 10.3390/gels9040281] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023] Open
Abstract
This study aimed to evaluate the effect of the synthesis parameters and the incorporation of natural polyphenolic extract within hydrogel networks on the mechanical and morphological properties of physically cross-linked xanthan gum/poly(vinyl alcohol) (XG/PVA) composite hydrogels prepared by multiple cryo-structuration steps. In this context, the toughness, compressive strength, and viscoelasticity of polyphenol-loaded XG/PVA composite hydrogels in comparison with those of the neat polymer networks were investigated by uniaxial compression tests and steady and oscillatory measurements under small deformation conditions. The swelling behavior, the contact angle values, and the morphological features revealed by SEM and AFM analyses were well correlated with the uniaxial compression and rheological results. The compressive tests revealed an enhancement of the network rigidity by increasing the number of cryogenic cycles. On the other hand, tough and flexible polyphenol-loaded composite films were obtained for a weight ratio between XG and PVA of 1:1 and 10 v/v% polyphenol. The gel behavior was confirmed for all composite hydrogels, as the elastic modulus (G') was significantly greater than the viscous modulus (G″) for the entire frequency range.
Collapse
Affiliation(s)
- Irina Elena Raschip
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | | | - Nicusor Fifere
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Gabriela-Elena Hitruc
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
24
|
Fu X, Yuan S, Yang F, Yu H, Xie Y, Guo Y, Yao W. Characterization of the interaction between boscalid and tannic acid and its effect on the antioxidant properties of tannic acid. J Food Sci 2023; 88:1325-1335. [PMID: 36786363 DOI: 10.1111/1750-3841.16488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
The binding of pesticide residues and fruit components may have a profound impact on pesticide dissipation and the functional characteristics of the corresponding components. Therefore, the interaction between boscalid and tannic acid (TA, a representative phenolic in fruit) was systematically investigated using spectroscopic, thermodynamic, and computational chemistry methods. A separable system was designed to obtain the boscalid-TA complex. Fourier transform infrared and 1 H-NMR spectroscopies indicated the formation of hydrogen bonds in the complex. Isothermal titration calorimetry showed that the complex bound spontaneously through hydrophobic interactions (ΔG < 0, ΔH > 0, ΔS > 0), with a binding constant of 6.0 × 105 M-1 at 298 K. The molecular docking results further confirmed the formation of hydrogen bonds and hydrophobic interactions in the complex at the molecular level, with a binding energy of -8.43 kcal mol-1 . In addition, the binding of boscalid to TA significantly decreased the antioxidant activity of TA. The binding of boscalid residue to TA was characterized at the molecular level, which significantly reduced the in vitro antioxidant properties of TA. PRACTICAL APPLICATION: This study provides a reference for the molecular mechanisms of the interaction between pesticide residues and food matrices, as well as a basis for regulating bound-state pesticide residues in food.
Collapse
Affiliation(s)
- Xiaoyan Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
25
|
Kim E, Jung JS, Yoon SG, Ho Park W. Eco-friendly silk fibroin/tannic acid coacervates for humid and underwater wood adhesives. J Colloid Interface Sci 2022; 632:151-160. [DOI: 10.1016/j.jcis.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/11/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
26
|
Effects of tannic acid interfacial absorption on the physicochemical stability of algal oil-loaded emulsions and inhibition of fishy off-flavor. Food Chem 2022; 403:134381. [DOI: 10.1016/j.foodchem.2022.134381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
|
27
|
Song T, Liu H, Monto AR, Shi T, Yuan L, Gao R. Improvement of Storage Stability of Zein-Based Pickering Emulsions by the Combination of Konjac Glucomannan and L-Lysine. Front Nutr 2022; 9:955272. [PMID: 35898718 PMCID: PMC9309815 DOI: 10.3389/fnut.2022.955272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, L-lysine (Lys) was employed together with konjac glucomannan (KGM) to fabricate zein colloidal particles (ZCPs) aimed at enhancing the storage stability of Pickering emulsions. With the addition of Lys, zein-Lys colloidal particles (ZLCPs) and zein-Lys-KGM (ZLKCPs) exhibited smaller particle size (133.64 ± 1.43, 162.54 ± 3.51 nm), polydispersity index (PDI) (0.10 ± 0.029, 0.13 ± 0.022), π value, and more adsorbed protein. Meanwhile, KGM underwent deamidation in an alkaline solution, so the emulsions stabilized by ZLKCPs exhibited a solid gel-like structure with higher storage modulus (G′) and loss modulus (G′′), leading to lower fluidity and better stability. The synergistic effects of Lys and KGM improved the stability of the emulsion. Hydrophobic interactions and hydrogen bonds were the main driving forces forming colloidal particles, which were determined by driving force analysis.
Collapse
Affiliation(s)
- Teng Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- College of Life Science, Anhui Normal University, Wuhu, China
| | - Hui Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Li Yuan,
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Ruichang Gao,
| |
Collapse
|
28
|
Siddiqui SA, Bahmid NA, Taha A, Khalifa I, Khan S, Rostamabadi H, Jafari SM. Recent advances in food applications of phenolic-loaded micro/nanodelivery systems. Crit Rev Food Sci Nutr 2022; 63:8939-8959. [PMID: 35426751 DOI: 10.1080/10408398.2022.2056870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current relevance of a healthy diet in well-being has led to a surging interest in designing novel functional food products enriched by biologically active molecules. As nature-inspired bioactive components, several lines of research have revealed the capability of polyphenolic compounds (phenolics) in the medical intervention of different ailments, i.e., tumors, cardiovascular and inflammatory diseases. Phenolics typically possess antioxidant and antibacterial properties and, due to their unique molecular structure, can offer superior platforms for designing functional products. They can protect food ingredients from oxidation and promote the physicochemical attributes of proteins and carbohydrate-based materials. Even though these properties contribute to the inherent benefits of bioactive phenolics as important functional ingredients in the food industry, the in vitro/in vivo instability, poor solubility, and low bioavailability are the main factors restricting their food/pharma applicability. Recent advances in the encapsulation realm are now offering efficient platforms to overcome these limitations. The application of encapsulation field may offer protection and controlled delivery of phenolics in food formulations. Here, we review recent advances in micro/nanoencapsulation of phenolics and highlight efficient carriers from this decade, which have been utilized successfully in food applications. Although further development of phenolic-containing formulations promises to design novel functional food formulations, and revolutionize the food industry, most of the strategies found in the scientific literature are not commercially applicable. Moreover, in vivo experiments are extremely crucial to corroborate the efficiency of such products.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Nur Alim Bahmid
- National Research and Innovation Agency, Jakarta, Indonesia
- Agricultural Product Technology Department, Sulawesi Barat University, Majene, Indonesia
| | - Ahmed Taha
- Center for Physical Sciences and Technology, State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Hadis Rostamabadi
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Mahdi Jafari
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
29
|
Nutritional interventions to support broiler chickens during Eimeria infection. Poult Sci 2022; 101:101853. [PMID: 35413594 PMCID: PMC9018146 DOI: 10.1016/j.psj.2022.101853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Different combinations of gut health-promoting dietary interventions were tested to support broilers during different stages of Eimeria infection. One-day-old male Ross 308 broilers (n = 720) were randomly assigned to one of 6 dietary treatments, with 6 pens per treatment and 20 birds per pen, for 35 d. At 7 d of age (d7), all birds were inoculated with 1000, 100, and 500 sporulated oocysts of E. acervulina, E. maxima, and E. tenella, respectively. A 4-phase feeding schedule was provided. The dietary treatments (TRT) 1 to 4 included the basal diet supplemented with multispecies probiotics from d0 to 9 and coated butyrate and threonine from d28 to 35 but received four different combinations of prebiotics and phytochemicals from d9 to 18 and d18 to 28. The basal diet for the positive control (PC, TRT5) included diclazuril as a anticoccidial. The negative control (NC, TRT6) contained no anticoccidial. Performance was assessed for each feeding phase, and oocyst output, Eimeria lesion scores, cecal weight, litter quality, and footpad lesions were assessed at d14, d22, d28, and d35. Body weight gain (BWG) and feed intake (FI) were not affected by dietary treatment. PC broilers had the best feed conversion ratio (FCR) of all treatments from d0 to 35 (P < 0.001). None of the dietary treatments resulted in better litter quality or reduced footpad lesions compared to the PC. Moreover, the PC was most effective in reducing oocyst output and lesion scores compared to all other treatments. However, broilers that received the multispecies probiotics (d0 to 9), saponins (d9 to 18), saponins, artemisin, and curcumin (d18 to 28), and coated butyrate and threonine (d28 to 35) had the best FCR (P < 0.001) and lowest oocyst output and lesion scores compared to other dietary treatments. This study suggests that although the tested compounds did not perform as well as the anticoccidial, when applied in the proper feeding period, they may support bird resilience during coccidiosis infection.
Collapse
|
30
|
Wu X, Xu N, Cheng C, McClements DJ, Chen X, Zou L, Liu W. Encapsulation of hydrophobic capsaicin within the aqueous phase of water-in-oil high internal phase emulsions: Controlled release, reduced irritation, and enhanced bioaccessibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Zhang N, Zhang X, Zhang Y, Li Y, Gao Y, Li Q, Yu X. Non-covalent interaction between pea protein isolate and catechin: effects on protein structure and functional properties. Food Funct 2022; 13:12208-12218. [DOI: 10.1039/d2fo01549h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this study was to investigate the effects of non-covalent interaction between pea protein isolate (PPI) and different concentrations (0.05–0.25%, w/v) of catechin (CT) on the structural and functional characteristics of protein.
Collapse
Affiliation(s)
- Na Zhang
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| | - Xuping Zhang
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| | - Yan Zhang
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| | - Yonglin Li
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| | - Yuan Gao
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| | - Qi Li
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| | - Xiuzhu Yu
- Shaanxi “Four Subjects and One Union” Engineering Technology School-Enterprise Joint Research Center of Functional Oils, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
32
|
Yuan E, Nie S, Liu L, Ren J. Study on the interaction of Hericium erinaceus mycelium polysaccharides and its degradation products with food additive silica nanoparticles. Food Chem X 2021; 12:100172. [PMID: 34901828 PMCID: PMC8639428 DOI: 10.1016/j.fochx.2021.100172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Gastric mucosal injury is a common gastrointestinal disorder. Hericium erinaceus polysaccharide, the major active ingredient in Hericium erinaceus, can reduce gastric mucosal damage to some extent. In this study, two different products HMP-Vc and HMP-Ce were obtained by Vitamin C and cellulase degradation of Hericium erinaceus mycelium polysaccharide (HMP). The gastroprotective activity of polysaccharides and its interaction products with food additives silica nanoparticles (nSiO2) were studied in GES-1 cells. It was found that gastroprotective activity of HMP was significantly higher than that of degradation products, and the addition of nSiO2 could enhance this activity of HMP. The greatest difference between the degradation products and HMP was the reduction of the triple helix structure, which might be the reason of the gastroprotective activity was less than that of HMP. Moreover, nSiO2 might interact with HMP through hydrogen bonding to enhance its activity.
Collapse
Affiliation(s)
- Erdong Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shiying Nie
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Liangyun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
33
|
Tan C, Huang M, McClements DJ, Sun B, Wang J. Yeast cell-derived delivery systems for bioactives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Dridi W, Bordenave N. Influence of polysaccharide concentration on polyphenol-polysaccharide interactions. Carbohydr Polym 2021; 274:118670. [PMID: 34702486 DOI: 10.1016/j.carbpol.2021.118670] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/21/2023]
Abstract
Non-covalent interactions between polysaccharides and phenolics affect the physical properties of polysaccharide solutions. These interactions may in turn be influenced by polysaccharide-polysaccharide interactions. To test this hypothesis, we studied the influence of polysaccharide concentration (with guar, β-glucans, and xanthan) on the variations of rheological and water-binding properties upon addition of phenolics compounds (vanillin, caffeic acid, gallic acid, and epigallocatechin gallate). Addition of phenolics led to increased flow behavior index and decreased flow consistency index, with maximum effects at polysaccharide concentrations ranging between 0.6 × C* and 1.4 × C*, where C* is the critical overlap concentration of each polysaccharide. Water mobility was generally not significantly influenced by the addition of phenolics. The results showed that the ability of phenolic compounds to induce aggregation of polysaccharides in solution was strongly influenced by polysaccharide concentration around C* and therefore by polysaccharide-polysaccharide interactions.
Collapse
Affiliation(s)
- Wafa Dridi
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada
| | - Nicolas Bordenave
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada; School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Canada.
| |
Collapse
|
35
|
Siemińska-Kuczer A, Szymańska-Chargot M, Zdunek A. Recent advances in interactions between polyphenols and plant cell wall polysaccharides as studied using an adsorption technique. Food Chem 2021; 373:131487. [PMID: 34741970 DOI: 10.1016/j.foodchem.2021.131487] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
Polyphenols include flavonoids, phenolic acids, tannins and lignans which are known to have antioxidant, UV protection and antimicrobial properties. Among them the most commonly investigated are flavonoids and phenolic acids, which, due to their plant origin, may interact with the plant cell wall (PCW) components, specifically with its polysaccharides. Knowledge concerning the nature of the interactions between these components may be used in the production of functional food or in the development of food packaging materials with additional properties. The content of polyphenols in such products is responsible for their colour and taste, and may also act as a natural preservative. On the other hand, the PCW components may have protective role of polyphenols which has impact on their release in the human digestive system. Therefore, this review is an attempt to summarize the current state of knowledge that emerged after 2017 concerning the interaction of PCW components with polyphenols, with a particular focus on hemicellulose and pectin.
Collapse
Affiliation(s)
- Anna Siemińska-Kuczer
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | | | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
36
|
Boachie RT, Commandeur MMB, Abioye RO, Capuano E, Oliviero T, Fogliano V, Udenigwe CC. β-Glucan Interaction with Lentil ( Lens culinaris) and Yellow Pea ( Pisum sativum) Proteins Suppresses Their In Vitro Digestibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10630-10637. [PMID: 34473491 DOI: 10.1021/acs.jafc.1c03022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, β-glucan interaction with lentil and yellow pea proteins and the effect on in vitro protein digestibility were investigated. Proteins were mixed with β-glucan at mass ratios of 1:0.5, 1:1, and 1:2. The interaction between β-glucan and the proteins was demonstrated by the decrease in transmittance and surface charge and the increase in particle size of the complexes. Bright-field microscopy showed the formation of aggregates between the biopolymers, although increased molecular size was not observed by discontinuous native polyacrylamide gel electrophoresis. Fluorescence microscopy indicated that β-glucan formed aggregates with lentil proteins, while the interaction with yellow pea proteins appeared as distinct phases of protein within the β-glucan network. The in vitro protein digestibility of lentil and pea protein decreased by 27.3 and 34.5%, respectively, in the presence of a β-glucan mass ratio of 1:2. The findings confirm the possibility to modulate protein digestibility by changing the physical characteristics of a food matrix.
Collapse
Affiliation(s)
- Ruth T Boachie
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Mieke M B Commandeur
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Raliat O Abioye
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Teresa Oliviero
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
37
|
Miao J, Xu N, Cheng C, Zou L, Chen J, Wang Y, Liang R, McClements DJ, Liu W. Fabrication of polysaccharide-based high internal phase emulsion gels: Enhancement of curcumin stability and bioaccessibility. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
38
|
Zhou M, Chen J, Bi J, Li X, Xin G. The roles of soluble poly and insoluble tannin in the enzymatic browning during storage of dried persimmon. Food Chem 2021; 366:130632. [PMID: 34311235 DOI: 10.1016/j.foodchem.2021.130632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/04/2021] [Accepted: 07/15/2021] [Indexed: 02/02/2023]
Abstract
The roles of total soluble polyphenols (TSP) and insoluble tannins (IST) in the enzymatic browning during the storage of dried persimmon slices packaged by different methods was studied. The color evolution was comprehensively evaluated within 18 weeks of storage, as well as determination the content variation of TSP, IST, and carotenoids. A series of simulated reactions were conducted to investigate the involvement of TSP and IST in PPO-catalyzed reaction. The results showed that N2-opaque packaging was a good way to alleviate this browning issue. The IST contributed preponderantly to the browning during the whole storage, while the contribution of TSP was little. And the degradation of carotenoids might be related to the color deterioration in the early storage. The IST participated in PPO-catalyzed reaction directly with the insoluble state. By contrast, only a small amount of TSP participated in PPO-catalyzed browning reaction, since it preferentially interacted with IST.
Collapse
Affiliation(s)
- Mo Zhou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaxin Chen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinfeng Bi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xuan Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
39
|
Jakobek L, Matić P, Ištuk J, Barron A. Study of Interactions Between Individual Phenolics of Aronia with Barley Beta-Glucan. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/136051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Fang XH, Zou MY, Chen FQ, Ni H, Nie SP, Yin JY. An overview on interactions between natural product-derived β-glucan and small-molecule compounds. Carbohydr Polym 2021; 261:117850. [PMID: 33766346 DOI: 10.1016/j.carbpol.2021.117850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/28/2022]
Abstract
β-Glucans are widely found in plants and microorganisms, which has a variety of functional activities. During production and application, interactions with other components have a great influence on the structure and functional properties of β-glucan. In this paper, interactions (including non-covalent interaction and free-radical reaction) between natural product derived β-glucan and ascorbic acid, polyphenols, bile acids/salts, metal ion or other compounds were summarized. Besides, the mechanism and influence factors of interactions between β-glucan and small-molecule compounds, and their effects on the functional properties of β-glucan were detailed. This review aims to develop an understanding and practical suggestions on interactions between β-glucan and small-molecule compounds, which is expected to provide a useful reference for processing and application.
Collapse
Affiliation(s)
- Xiao-Hui Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ming-Yue Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Fu-Quan Chen
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Hui Ni
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
41
|
Liu Y, Yan C, Chen J, Wang Y, Liang R, Zou L, McClements DJ, Liu W. Enhancement of beta-carotene stability by encapsulation in high internal phase emulsions stabilized by modified starch and tannic acid. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106083] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Zhang Q, Jeganathan B, Dong H, Chen L, Vasanthan T. Effect of sodium chloride on the thermodynamic, rheological, and microstructural properties of field pea protein isolate/chitosan complex coacervates. Food Chem 2020; 344:128569. [PMID: 33280960 DOI: 10.1016/j.foodchem.2020.128569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/11/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023]
Abstract
The effect of increasing sodium chloride concentration (cNaCl, 0-0.4 M) on the formation and rheological and microstructural properties of field pea protein isolate (FPPI)/chitosan (Ch) complex coacervates was investigated. The maximum turbidity and zeta potential of FPPI/Ch mixtures consistently decreased with the increasing cNaCl. The tertiary conformation of FPPI was altered to facilitate the aggregation of FPPI/Ch complexes via hydrophobic interactions. Changes in thermodynamic parameters during the titration of FPPI with Ch confirmed the addition of NaCl could cause the inhibition of electrostatic complexation and the induction of non-Coulombic interactions. FPPI/Ch complex coacervates exhibited first enhanced and then weakened viscoelastic properties and an initially tightened and then a loosened microstructure as the cNaCl increased. In summary, appropriate cNaCl favors the formation of FPPI/Ch complex coacervates with improved functionalities via the coordination of promoted hydrophobic interactions and inhibited electrostatic attractions, facilitating the application of this protein ingredient in food development.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; College of Food Science/Institute of Food Processing and Safety, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| | - Brasathe Jeganathan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Hongmin Dong
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Thava Vasanthan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
43
|
Dai T, Li T, Li R, Zhou H, Liu C, Chen J, McClements DJ. Utilization of plant-based protein-polyphenol complexes to form and stabilize emulsions: Pea proteins and grape seed proanthocyanidins. Food Chem 2020; 329:127219. [PMID: 32516714 DOI: 10.1016/j.foodchem.2020.127219] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 11/24/2022]
Abstract
Plant-based proteins and polyphenols are increasingly being explored as functional food ingredients. Colloidal complexes were prepared from pea protein (PP) and grape seed proanthocyanidin (GSP) and the ability of the PP/GSP complexes to form and stabilize oil-in-water emulsions were investigated. The main interactions between PP and GSP were hydrogen bonding. The stability of PP-GSP complexes to environmental changes were studied: pH (2-9); ion strength (0-0.3 M); and temperature (30-90 °C). Emulsions produced using PP-GSP complexes as emulsifiers had small mean droplet diameters (~200 nm) and strongly negative surface potentials (~-60 mV). Compared to PP alone, PP-GSP complexes slightly decreased the isoelectric point, thermostability, and salt stability of the emulsions, but increased their storage stability. The presence of GSP gave the emulsions a strong salmon (red-yellow) color, which may be beneficial for some specific applications. These results may assist in the creation of more efficacious food-based strategies for delivering proanthocyanidins.
Collapse
Affiliation(s)
- Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Ruyi Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Hualu Zhou
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, PR China.
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
44
|
Fabrication and characterization of emulsions stabilized by tannic acid-wheat starch complexes. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Xue Z, Gao X, Jia Y, Wang Y, Lu Y, Zhang M, Panichayupakaranant P, Chen H. Structure characterization of high molecular weight soluble dietary fiber from mushroom Lentinula edodes (Berk.) Pegler and its interaction mechanism with pancreatic lipase and bile salts. Int J Biol Macromol 2020; 153:1281-1290. [PMID: 31758996 DOI: 10.1016/j.ijbiomac.2019.10.263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/25/2019] [Accepted: 10/28/2019] [Indexed: 02/05/2023]
Abstract
Aimed to evaluate the hypolipidemic effects of high molecular weight soluble dietary fiber extracted from L. edodes (LEHSDF), this study investigated the structure and interaction mechanism of LEHSDF with pancreatic lipase (PL) and bile salts (BS) that were involved in lipid digestion. 1D/2D NMR spectra indicated that the main chain of LEHSDF consisted of (1 → 2,4)-linked β-D-arabinopyranosyl, (1 → 3)-linked α-L-rhamnopyranosyl, (1 → 4)-linked β-D-xylopyranosyl, (1 → 6)-linked and (1 → 4)-linked β-D-glucopyranosyl, with β-D-galactopyranosyl and α-D-mannopyranosyl as terminal unit. Oil red O staining results suggested that LEHSDF had an effective inhibitory effect on lipid accumulation in HepG2 cells. Isothermal titration calorimetry, fluorescence and circular dichroism spectra showed that BS did not specifically bind to LEHSDF, and the strong inhibitory effect of LEHSDF on lipase was dominated by hydrophobic forces, electrostatic forces, encapsulation and adsorption interactions. The results will be helpful for the design of food containing LEHSDF as a functional additive to control lipid digestion.
Collapse
Affiliation(s)
- Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yangpeng Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
46
|
Fabrication and characterization of zein nanoparticles by dextran sulfate coating as vehicles for delivery of curcumin. Int J Biol Macromol 2020; 151:1074-1083. [DOI: 10.1016/j.ijbiomac.2019.10.149] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022]
|
47
|
Li R, Dai T, Tan Y, Fu G, Wan Y, Liu C, McClements DJ. Fabrication of pea protein-tannic acid complexes: Impact on formation, stability, and digestion of flaxseed oil emulsions. Food Chem 2020; 310:125828. [DOI: 10.1016/j.foodchem.2019.125828] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022]
|
48
|
Tudorache M, McDonald JL, Bordenave N. Gallic acid reduces the viscosity and water binding capacity of soluble dietary fibers. Food Funct 2020; 11:5866-5874. [DOI: 10.1039/d0fo01200a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Water binding capacity and viscosity of soluble dietary fibers are known to be essential drivers of their nutritional benefits.
Collapse
Affiliation(s)
- Mihaela Tudorache
- School of Chemistry and Biomolecular Sciences
- Faculty of Sciences
- University of Ottawa
- Canada
| | - Jean-Luc McDonald
- School of Nutrition Sciences
- Faculty of Health Sciences
- University of Ottawa
- Canada
| | - Nicolas Bordenave
- School of Chemistry and Biomolecular Sciences
- Faculty of Sciences
- University of Ottawa
- Canada
- School of Nutrition Sciences
| |
Collapse
|
49
|
Yuan Y, Li H, Liu C, Zhu J, Xu Y, Zhang S, Fan M, Zhang D, Zhang Y, Zhang Z, Wang D. Fabrication of stable zein nanoparticles by chondroitin sulfate deposition based on antisolvent precipitation method. Int J Biol Macromol 2019; 139:30-39. [DOI: 10.1016/j.ijbiomac.2019.07.090] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 01/08/2023]
|
50
|
Li R, Peng S, Zhang R, Dai T, Fu G, Wan Y, Liu C, McClements DJ. Formation and characterization of oil-in-water emulsions stabilized by polyphenol-polysaccharide complexes: Tannic acid and β-glucan. Food Res Int 2019; 123:266-275. [DOI: 10.1016/j.foodres.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 11/28/2022]
|