1
|
Neves KOG, Silva SO, Cruz MS, Mar JM, Bezerra JA, Sanches EA, Cassani NM, Antoniucci GA, Jardim ACG, Chaves FCM, Acho LDR, Lima ES, Machado MB, Santos ADC. Investigation of the Influence of the Extraction System and Seasonality on the Pharmacological Potential of Eugenia punicifolia Leaves. Molecules 2025; 30:713. [PMID: 39942817 PMCID: PMC11820027 DOI: 10.3390/molecules30030713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
The chemical complexity of natural products, such as Eugenia punicifolia (Kunth) DC. plant, presents a challenge when extracting and identifying bioactive compounds. This study investigates the impact of different extraction systems and seasonal variations on the chemical profile and pharmacological potential of E. punicifolia leaves using NMR spectroscopy for chemical analysis and canonical correlation analysis (CCA) for bioactivity correlation. Extracts obtained with methanol (M), ethanol (E), methanol/ethanol (1:1, ME), and methanol/ethanol/water (3:1:1, MEW) were analyzed for antioxidant, antiglycation, and antiviral activities. Quantitative ¹H NMR, combined with the PULCON method, was used to quantify phenolic compounds such as quercetin, myricetin, catechin, and gallic acid. The results showed that the MEW extract obtained in the rainy season exhibited the highest antioxidant and antiglycation activities, with a greater than 93% of advanced-glycation end-products (AGEs) inhibition capacity. Furthermore, our results showed that all the extracts were able to inhibit over 94% of the Zika virus (ZIKV) infection in Vero E6 cells. The CCA established strong correlations between the phenolic compounds and bioactivities, identifying gallic acid, catechin, quercetin, and myricetin as key chemical markers. This study demonstrates the importance of selecting appropriate extraction systems and considering seasonality to optimize the pharmacological potential of E. punicifolia leaves and highlights the efficacy of NMR in linking chemical composition with bioactivities.
Collapse
Affiliation(s)
- Kidney O. G. Neves
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia—NEQUIMA, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil; (K.O.G.N.); (S.O.S.); (M.S.C.)
| | - Samuel O. Silva
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia—NEQUIMA, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil; (K.O.G.N.); (S.O.S.); (M.S.C.)
| | - Marinildo S. Cruz
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia—NEQUIMA, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil; (K.O.G.N.); (S.O.S.); (M.S.C.)
| | - Josiana Moreira Mar
- Laboratório de Polímeros Nanoestruturados (NANOPOL), Departamento de Física de Materiais, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil; (J.M.M.); (J.A.B.); (E.A.S.)
| | - Jaqueline A. Bezerra
- Laboratório de Polímeros Nanoestruturados (NANOPOL), Departamento de Física de Materiais, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil; (J.M.M.); (J.A.B.); (E.A.S.)
| | - Edgar A. Sanches
- Laboratório de Polímeros Nanoestruturados (NANOPOL), Departamento de Física de Materiais, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil; (J.M.M.); (J.A.B.); (E.A.S.)
| | - Natasha Marques Cassani
- Laboratory of Antiviral Research, Federal University of Uberlândia, Uberlândia 38405-302, MG, Brazil; (N.M.C.); (G.A.A.); (A.C.G.J.)
| | - Giovanna A. Antoniucci
- Laboratory of Antiviral Research, Federal University of Uberlândia, Uberlândia 38405-302, MG, Brazil; (N.M.C.); (G.A.A.); (A.C.G.J.)
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Federal University of Uberlândia, Uberlândia 38405-302, MG, Brazil; (N.M.C.); (G.A.A.); (A.C.G.J.)
| | - Francisco C. M. Chaves
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Amazônia Ocidental, Manaus 69010-970, AM, Brazil;
| | - Leonard D. R. Acho
- Laboratório de Atividade Biológica, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil; (L.D.R.A.); (E.S.L.)
| | - Emersom S. Lima
- Laboratório de Atividade Biológica, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil; (L.D.R.A.); (E.S.L.)
| | - Marcos B. Machado
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia—NEQUIMA, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil; (K.O.G.N.); (S.O.S.); (M.S.C.)
| | - Alan D. C. Santos
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia—NEQUIMA, Universidade Federal do Amazonas, Manaus 69067-005, AM, Brazil; (K.O.G.N.); (S.O.S.); (M.S.C.)
- Núcleo de Pesquisa de Produtos Naturais, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
2
|
Silva JDR, Arruda HS, Andrade AC, Berilli P, Borsoi FT, Monroy YM, Rodrigues MVN, Sampaio KA, Pastore GM, Marostica Junior MR. Eugenia calycina and Eugenia stigmatosa as Promising Sources of Antioxidant Phenolic Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:2039. [PMID: 39124157 PMCID: PMC11313698 DOI: 10.3390/plants13152039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
In this study, Eugenia calycina and Eugenia stigmatosa, native Brazilian berries, were explored regarding their proximal composition, bioactive compounds, and antioxidant activities. The edible parts of both fruits presented a low content of lipids, proteins, and carbohydrates, resulting in a low caloric value (<70 kcal/100 g fw). E. stigmatosa fruit showed a high total fiber content (3.26 g/100 g fw), qualifying it as a source of dietary fiber. The sugar profile was mainly monosaccharides (glucose, fructose, and rhamnose). Significant contents of total phenolics and flavonoids, monomeric anthocyanins and, condensed tannins, were observed in both fruits. E. calycina contains a high level of anthocyanins, primarily cyanidin-3-glucoside (242.97 µg/g). Other phenolic compounds were also found, the main ones being rutin and ellagic acid. In contrast, E. stigmatosa is mainly composed of rutin and gallic acid. Furthermore, these fruits showed expressive antioxidant activity, evidenced by ORAC, FRAP, and ABTS. These Eugenia fruits are promising sources of bioactive compounds and have a low caloric and high dietary fiber content, making them interesting options for inclusion in a balanced diet, contributing to the promotion of health and the valorization and conservation of Brazilian biodiversity.
Collapse
Affiliation(s)
- Juliana Dara Rabêlo Silva
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Henrique Silvano Arruda
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Amanda Cristina Andrade
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Patrícia Berilli
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Felipe Tecchio Borsoi
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Yaneth Machaca Monroy
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (Y.M.M.); (K.A.S.)
| | - Marili Villa Nova Rodrigues
- Pluridisciplinary Center for Chemical, Biological and Agricultural Research (CPQBA), University of Campinas (UNICAMP), Paulínia 13148-218, São Paulo, Brazil;
| | - Klicia Araujo Sampaio
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (Y.M.M.); (K.A.S.)
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| |
Collapse
|
3
|
Oliveira ESC, Pontes FLD, Acho LDR, da Silva BJP, do Rosário AS, Chaves FCM, Campos FR, Bezerra JDA, Lima ES, Machado MB. NMR and multivariate methods: Identification of chemical markers in extracts of pedra-ume-caá and their antiglycation, antioxidant, and enzymatic inhibition activities. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:552-566. [PMID: 38191126 DOI: 10.1002/pca.3312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION In Brazil, the plant group popularly known as "pedra-ume-caá" is used in folk medicine for the treatment of diabetes, and its raw material is commonly sold. OBJECTIVE The aim of the study was to apply a method for chemical identification of extracts of dry pedra-ume-caá leaves using HPLC-high-resolution mass spectrometry (HRMS) and NMR and develop a multivariate model with NMR data to authenticate commercial samples. In addition, to evaluate the biological activities of the extracts. MATERIALS AND METHODS Dry extracts of Myrcia multiflora, Myrcia amazonica, Myrcia guianensis, Myrcia sylvatica, Eugenia punicifolia leaves, and 15 commercial samples (sold in Manaus and Belém, Brazil) were prepared by infusion. All the extracts were analysed using HPLC-high-resolution mass spectrometry (HRMS), NMR, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The antidiabetic effect of extracts was evaluated according to enzymatic inhibition. Their content of total phenols, cell viability, and antioxidant and antiglycation activities were also determined. RESULTS HPLC-HRMS and NMR analysis of these extracts permitted the identification of 17 compounds. 1H NMR data combined with multivariate analyses allowed us to conclude that catechin, myricitrin, quercitrin, and gallic and quinic acids are the main chemical markers of pedra-ume-caá species. These markers were identified in 15 commercial samples of pedra-ume-caá. Additionally, only the extracts of M. multiflora and E. punicifolia inhibited α-glucosidase. All the extracts inhibited the formation of advanced glycation end products (AGEs) and showed free-radical-scavenging activity. These extracts did not present cytotoxicity. CONCLUSION This study revealed the chemical markers of matrices, and it was possible to differentiate the materials marketed as pedra-ume-caá. Moreover, this study corroborates the potential of these species for treating diabetes.
Collapse
Affiliation(s)
- Edinilze S C Oliveira
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Flávia L D Pontes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Leonard D R Acho
- Laboratório de Atividade Biológica, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Bárbara Janaína P da Silva
- Laboratório de Atividade Biológica, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | | | - Francisco Célio M Chaves
- Unidade Amazônia Ocidental, Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA, Manaus, Amazonas, Brazil
| | - Francinete R Campos
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Jaqueline de A Bezerra
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Departamento de Química, Ambiente e Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Manaus, Amazonas, Brazil
| | - Emerson S Lima
- Laboratório de Atividade Biológica, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Marcos B Machado
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
4
|
Dos Santos Silva LY, da Silva Ramos A, Cavalcante DN, Kinupp VF, da Silva Rodrigues JV, Ventura BML, de Oliveira Mendes TA, Sanches EA, Campelo PH, de Araújo Bezerra J. Hibiscus acetosella: An Unconventional Alternative Edible Flower Rich in Bioactive Compounds. Molecules 2023; 28:4819. [PMID: 37375373 DOI: 10.3390/molecules28124819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The interest in the consumption of edible flowers has increased since they represent a rich source of bioactive compounds, which are significantly beneficial to human health. The objective of this research was to access the bioactive compounds and antioxidant and cytotoxic properties of unconventional alternative edible flowers of Hibiscus acetosella Welw. Ex Hiern. The edible flowers presented pH value of 2.8 ± 0.00, soluble solids content of 3.4 ± 0.0 °Brix, high moisture content of about 91.8 ± 0.3%, carbohydrates (6.9 ± 1.2%), lipids (0.90 ± 0.17%), ashes (0.4 ± 0.0%), and not detectable protein. The evaluation of the scavenging activity of free radicals, such as 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), of the flower extract was better than the results observed for other edible flowers (507.8 ± 2.7 μM TE and 783.9 ± 30.8 μM TE, respectively) as well as the total phenolic composition (TPC) value (568.8 ± 0.8 mg GAE/g). These flowers are rich in organic acids and phenolic compounds, mainly myricetin, and quercetin derivatives, kaempferol, and anthocyanins. The extract showed no cytotoxicity for the cell lineages used, suggesting that the extract has no directly harmful effects to cells. The important bioactive compound identified in this study makes this flower especially relevant in the healthy food area due to its nutraceutical potential without showing cytotoxicity.
Collapse
Affiliation(s)
- Laila Yasmim Dos Santos Silva
- Analytical Center, Campus Manaus Center, Science and Technology of Amazonas, Manaus 69020-120, Brazil
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| | - Andrezza da Silva Ramos
- Analytical Center, Campus Manaus Center, Science and Technology of Amazonas, Manaus 69020-120, Brazil
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| | - Débora Nogueira Cavalcante
- Analytical Center, Campus Manaus Center, Science and Technology of Amazonas, Manaus 69020-120, Brazil
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| | - Valdely Ferreira Kinupp
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| | | | | | | | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers, Materials Physics Department, Federal University of Amazonas, Manaus 69067-005, Brazil
| | | | - Jaqueline de Araújo Bezerra
- Analytical Center, Campus Manaus Center, Science and Technology of Amazonas, Manaus 69020-120, Brazil
- Federal Institute of Education, Science and Technology of Amazonas, Manaus 69020-120, Brazil
| |
Collapse
|
5
|
Potential Inhibitors of Monkeypox Virus Revealed by Molecular Modeling Approach to Viral DNA Topoisomerase I. Molecules 2023; 28:molecules28031444. [PMID: 36771105 PMCID: PMC9919579 DOI: 10.3390/molecules28031444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/05/2023] Open
Abstract
The monkeypox outbreak has become a global public health emergency. The lack of valid and safe medicine is a crucial obstacle hindering the extermination of orthopoxvirus infections. The identification of potential inhibitors from natural products, including Traditional Chinese Medicine (TCM), by molecular modeling could expand the arsenal of antiviral chemotherapeutic agents. Monkeypox DNA topoisomerase I (TOP1) is a highly conserved viral DNA repair enzyme with a small size and low homology to human proteins. The protein model of viral DNA TOP1 was obtained by homology modeling. The reliability of the TOP1 model was validated by analyzing its Ramachandran plot and by determining the compatibility of the 3D model with its sequence using the Verify 3D and PROCHECK services. In order to identify potential inhibitors of TOP1, an integrated library of 4103 natural products was screened via Glide docking. Surface Plasmon Resonance (SPR) was further implemented to assay the complex binding affinity. Molecular dynamics simulations (100 ns) were combined with molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) computations to reveal the binding mechanisms of the complex. As a result, three natural compounds were highlighted as potential inhibitors via docking-based virtual screening. Rosmarinic acid, myricitrin, quercitrin, and ofloxacin can bind TOP1 with KD values of 2.16 μM, 3.54 μM, 4.77 μM, and 5.46 μM, respectively, indicating a good inhibitory effect against MPXV. The MM/PBSA calculations revealed that rosmarinic acid had the lowest binding free energy at -16.18 kcal/mol. Myricitrin had a binding free energy of -13.87 kcal/mol, quercitrin had a binding free energy of -9.40 kcal/mol, and ofloxacin had a binding free energy of -9.64 kcal/mol. The outputs (RMSD/RMSF/Rg/SASA) also indicated that the systems were well-behaved towards the complex. The selected compounds formed several key hydrogen bonds with TOP1 residues (TYR274, LYS167, GLY132, LYS133, etc.) via the binding mode analysis. TYR274 was predicted to be a pivotal residue for compound interactions in the binding pocket of TOP1. The results of the enrichment analyses illustrated the potential pharmacological networks of rosmarinic acid. The molecular modeling approach may be acceptable for the identification and design of novel poxvirus inhibitors; however, further studies are warranted to evaluate their therapeutic potential.
Collapse
|
6
|
Thermal Treatment and High-Intensity Ultrasound Processing to Evaluate the Chemical Profile and Antioxidant Activity of Amazon Fig Juices. Processes (Basel) 2023. [DOI: 10.3390/pr11020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The present paper evaluated the influence of heat treatment (HT) and high-intensity ultrasound (HIUS) on the chemical profile of the Amazon fig (Ficus subapiculata, Moraceae) juices. Antioxidant activity, quantification of carotenoids, total phenolic compounds (TPC), pH, titratable acidity, soluble solids, color and chemical profile (NMR) were evaluated. Treatments did not change the pH (3.4–3.5), titratable acidity (0.044–0.048%) and soluble solids (2.3–2.4 °Brix). The highest antioxidant activity (DPPH, ABTS) and TPC were presented by the HT-treated juice, which was equivalent to 1235 ± 11 µM TE, 1440 ± 13 µM TE and 312 ± 5 mg GAE mL−1, respectively. The treatments influenced the color luminosity according to the L* and a* parameters, while the b* parameter showed no significant change. The L* parameter was elevated in all treated samples compared to the control sample. Analyzing the parameter a* f, it was verified that the sample with thermal treatment (HT) was different from the control sample, but presented similarity with the samples of the HIUS processes. The 1H NMR spectra of the juices showed similar chemical profiles in all treatments. The compounds α-glucose, β-glucose, fructose, citric, malic, quinic, and p-hydroxybenzoic acids were identified. The HT treatment presented higher efficiency to extract the antioxidant compounds from fig juices. The HIUS treatments with constant energy density also improved the tolerance of the antioxidant compounds, especially in conditions of higher potency and reduced time. Future studies will be devoted to carry out microbiological analysis and evaluate the stability of treated juices.
Collapse
|
7
|
Genova VM, Gambero A, de Souza Freitas Campos P, Macedo GA. Polyphenolic Compounds Mechanisms as Inhibitors of Advanced Glycation End Products and Their Relationship to Health and Disease. MOLECULAR MECHANISMS OF FUNCTIONAL FOOD 2022:1-27. [DOI: 10.1002/9781119804055.ch1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Parra-Naranjo A, Delgado-Montemayor C, Salazar-Aranda R, Castro-Ríos R, Saucedo AL, Waksman-Minsky N. Two Ways to Achieve the Same Goal-Two Validated Quantitative NMR Strategies for a Low-Abundance Natural Product in Standardized Extracts: The Case of Hepatodamianol in Turnera diffusa. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196593. [PMID: 36235131 PMCID: PMC9570796 DOI: 10.3390/molecules27196593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
The quantification of low-abundance secondary metabolites in plant extracts is an analytical problem that can be addressed by different analytical platforms, the most common being those based on chromatographic methods coupled to a high-sensitivity detection system. However, in recent years nuclear magnetic resonance (NMR) has become an analytical tool of primary choice for this type of problem because of its reliability, inherent simplicity in sample preparation, reduced analysis time, and low solvent consumption. The versatility of strategies based on quantitative NMR (qNMR), such as internal and external standards and electronic references, among others, and the need to develop validated analytical methods make it essential to compare procedures that must rigorously satisfy the analytical well-established acceptance criteria for method validation. In this work, two qNMR methods were developed for the quantification of hepatodamianol, a bioactive component of T. diffusa. The first method was based on a conventional external standard calibration, and the second one was based on the pulse length-based concentration determination (PULCON) method using the ERETIC2 module as a quantitation tool available in TopSpin software. The results show that both procedures allow the content of the analyte of interest in a complex matrix to be determined in a satisfactory way, under strict analytical criteria. In addition, ERETIC2 offers additional advantages such as a reduction in experimental time, reagent consumption, and waste generated.
Collapse
Affiliation(s)
- Aída Parra-Naranjo
- Facultad de Medicina, Departamento de Química Analítica, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Cecilia Delgado-Montemayor
- Facultad de Medicina, Departamento de Química Analítica, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Ricardo Salazar-Aranda
- Facultad de Medicina, Departamento de Química Analítica, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Rocío Castro-Ríos
- Facultad de Medicina, Departamento de Química Analítica, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Alma L. Saucedo
- Facultad de Medicina, Departamento de Química Analítica, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
- Consejo Nacional de Ciencia y Tecnología, Ciudad de México 03940, Mexico
- Correspondence: (A.L.S.); (N.W.-M.)
| | - Noemí Waksman-Minsky
- Facultad de Medicina, Departamento de Química Analítica, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
- Correspondence: (A.L.S.); (N.W.-M.)
| |
Collapse
|
9
|
Shi Y, Zheng Y, Bing X, Yuan J. Experimental Study on the Inhibition of Bacteria and Algae by Jussiaea stipulacea Ohwi Extract. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221124775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nowadays, plant allelopathy, as a new type of biological algal and/or bacterial inhibition technology, has attracted extensive attention. Eight substances were isolated and identified from Jussiaea stipulacea Ohwi, and five concentration gradients, as well as a control (0, 1.25, 5, 10, 20, and 50 mg/L) were set, with three parallels in each group, and then sampled and detected at 24, 48, 72, and 96 h. When the concentration was 50 mg/L, the inhibition rate of Anabaena was as high as 74.8%, 69.2%, and 70.7% for ursolic acid, kaempferol, and luteolin, respectively. Streptococcus iniae and Aeromonas hydrophila were cultured to a logarithmic phase, and their final concentrations reached 1000, 500, 250, 125, 62.50, 31.25, 15.63, and 7.81 μg/mL. Luteolin and gallic acid showed an inhibitory effect on S iniae and A hydrophila at 1000 μg/mL. We found that allelochemicals also had a certain bacteriostatic effect, among which luteolin has great development potential.
Collapse
Affiliation(s)
- Yulu Shi
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Yao Zheng
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, China
| | - Xuwen Bing
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, China
| | - Julin Yuan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| |
Collapse
|
10
|
Chemical composition and anti-inflammatory activity of water extract from black cocoa tea (Camellia ptilophylla). Food Res Int 2022; 161:111831. [DOI: 10.1016/j.foodres.2022.111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
|
11
|
Oliveira ESC, Acho LDR, da Silva BJP, Morales-Gamba RD, Pontes FLD, do Rosário AS, Bezerra JDA, Campos FR, Barcellos JFM, Lima ES, Machado MB. Hypoglycemic effect and toxicity of the dry extract of Eugenia biflora (L.) DC. leaves. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115276. [PMID: 35421528 DOI: 10.1016/j.jep.2022.115276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves of Eugenia biflora (Myrtaceae) are traditionally used by Amazonian populations for the control of diabetes. However, their chemical composition has not yet been described and pharmacological evidence has not been reported. OBJECTIVE This study aimed to identify the chemical constituents and evaluate the hypoglycemic and toxic effect of the dry extract of the E. biflora leaves (DEEB). MATERIALS AND METHODS DEEB, obtained by infusion, was analyzed using LC-HRMS and NMR, whose the catechin flavonoid was quantified using NMR. The antidiabetic effect of DEEB was evaluated according to its inhibition of the enzymes α-amylase and α-glucosidase, as well as the content of total phenols, free radical scavengingand antiglycation activities, and its in vitro cell viability. Oral maltose tolerance and chronic multiple dose tests (28 days) in streptozotocin-induced diabetic mice (STZ) were performed. The hypoglycemic effect and toxicity of this extract were evaluated in the multiple dose assay. Biochemical parameters, hemolysis, and levels of the thiobarbituric acid reactive species in the liver were investigated and histopathological analyses of the kidneys and liver were performed. RESULTS Eight phenolic compounds were identified, with catechin (15.5 ± 1.7 mg g-1) being the majority compound and a possible chemical marker of DEEB. The extract showed inhibition activity of the enzyme α-glucosidase. Chronic administration of DEEB (50 mg/kg of body weight) reduced glucose levels in diabetic animals, similar to acarbose; however, DEEB (100 and 200 mg/kg bw) caused premature death of mice by D22 of the treatment. Our data indicate that one of the mechanisms of toxicity in DEEB may be related to the aggravation of oxidative stress in the liver. This histopathological study indicated that DEEB failed to minimize the progression of the toxicity of diabetes caused by STZ. CONCLUSIONS This study demonstrated the hypoglycemic potential of E. biflora leaves. However, the prolonged use of this tea can be harmful to its users due to its considerable toxicity, which needs to be better investigated.
Collapse
Affiliation(s)
- Edinilze S C Oliveira
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Leonard D R Acho
- Laboratório de Atividade Biológica, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas Manaus, Amazonas, Brazil
| | - Bárbara Janaína P da Silva
- Laboratório de Atividade Biológica, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas Manaus, Amazonas, Brazil
| | - Ruben Dario Morales-Gamba
- Programa de Pós-graduação em Zoologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Flávia L D Pontes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Alessandro S do Rosário
- Engenharia Florestal, Campus Paragominas, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil
| | - Jaqueline de A Bezerra
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil; Departamento de Química, Ambiente e Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Manaus, Amazonas, Brazil
| | - Francinete R Campos
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil; Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - José Fernando M Barcellos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Emerson S Lima
- Laboratório de Atividade Biológica, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas Manaus, Amazonas, Brazil
| | - Marcos B Machado
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil.
| |
Collapse
|
12
|
de Souza AP, Schardosim RF, Al Kateeb JE, Lehmann M, Grivicich I, Dihl RR. Modulatory effect of myricitrin against chromosome instability and cytostasis induced by bleomycin and oxaliplatin in CHO-K1 cells. Drug Chem Toxicol 2022:1-10. [PMID: 35702048 DOI: 10.1080/01480545.2022.2085739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Myricitrin (MYR), a flavonol consumed in the leaves and fruits of plants of the Myrtaceae family, presents anti-proliferative, anti-inflammatory, anti-diabetic, and antioxidant properties in humans. However, there are few studies regarding the cyto-genotoxicity and the chemopreventive potential of MYR. Using the in vitro Micronucleus test, the cytostasis, mutagenicity, and modulatory effect of MYR in CHO-K1 cells were assessed. The concentrations of 39 and 78 µg/mL (p < 0.001.) of MYR decrease the cytokinesis-block proliferation index (CBPI) in the short exposure treatment (4 h), while in the extended treatment (24 h), concentrations of 4.8, 9.7, 19.5, 39 and 78 µg/mL (p < 0.001.) decreased the CBPI. MYR associated with oxaliplatin decreased CBPI at all tested concentrations in the pre-(p < 0.001) and post-treatments (p < 0.001), but there was no decrease when associated with bleomycin. As for chromosome instability, MYR did not increase the frequency of micronuclei (MNi), nucleoplasmic bridges (NPBs), or nuclear buds (NBUDs) in the 4 h exposure time, however, in the 24 h treatment, MYR increased the frequency of MNi and NPBs at concentration 19.5 µg/mL (p < 0.001). As for the modulatory effect, MYR associated with bleomycin decreased the frequency of MNi, NPBs, and NBUDs at all concentrations in the pretreatment (MNi and NPBs p < 0.001, NBUDs p < 0.05) and simultaneously (MNi, NPBs and NBUDs p < 0.001). When associated with oxaliplatin, the simultaneous treatment decreased the frequency of MNi (p < 0.001) and NBUDs (p < 0.01) at all concentrations, however, in the post-treatment, MYR increased MNi (p < 0.001) and NPBs p < 0.05) in CHO-K1 cells, when compared to oxaliplatin alone. The results demonstrated that MYR could modulate the mutagenic and cytostatic actions of bleomycin and oxaliplatin, demonstrating distinct behaviors, depending on the mechanism of action of the chemotherapeutic agent.
Collapse
Affiliation(s)
- Ana Paula de Souza
- Laboratory of Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Raíne Fogliati Schardosim
- Laboratory of Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil.,Laboratory of Genetic Toxicity (TOXIGEN), Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Juliana Escouto Al Kateeb
- Laboratory of Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Mauricio Lehmann
- Laboratory of Genetic Toxicity (TOXIGEN), Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Ivana Grivicich
- Laboratory of Cancer Biology, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Rafael Rodrigues Dihl
- Laboratory of Cellular Toxic-Genetics Analysis, Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil.,Laboratory of Genetic Toxicity (TOXIGEN), Graduate Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil.,Graduate Program in Dentistry, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| |
Collapse
|
13
|
Souza PLL, Ramos AS, Dos Santos ADC, Boeira LS, Bezerra JDA, Machado MB. Evaluation of sensory and antioxidant properties of araçá-boi wines as an effect of yeast type, must filtration and fermentation temperature. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Chacko S, Haseeb YB, Haseeb S. Metabolomics Work Flow and Analytics in Systems Biology. Curr Mol Med 2021; 22:870-881. [PMID: 34923941 DOI: 10.2174/1566524022666211217102105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022]
Abstract
Metabolomics is an omics approach of systems biology that involves the development and assessment of large-scale, comprehensive biochemical analysis tools for metabolites in biological systems. This review describes the metabolomics workflow and provides an overview of current analytic tools used for the quantification of metabolic profiles. We explain analytic tools such as mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, ionization techniques, and approaches for data extraction and analysis.
Collapse
Affiliation(s)
- Sanoj Chacko
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Yumna B Haseeb
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sohaib Haseeb
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Corrêa JGDS, Bianchin M, Lopes AP, Silva E, Ames FQ, Pomini AM, Carpes ST, de Carvalho Rinaldi J, Cabral Melo R, Kioshima ES, Bersani-Amado CA, Pilau EJ, de Carvalho JE, Ruiz ALTG, Visentainer JV, Santin SMDO. Chemical profile, antioxidant and anti-inflammatory properties of Miconia albicans (Sw.) Triana (Melastomataceae) fruits extract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113979. [PMID: 33647428 DOI: 10.1016/j.jep.2021.113979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Miconia albicans (Sw.) Triana has been widely used in Brazilian popular medicine for the treatment of several diseases. Aerial parts are used as an infusion to treat arthrosis and arthritis, to relieve rheumatic and stomach pains, and intestinal disorders due to its anti-inflammatory, anti-mutagenic anti-nociceptive, digestive and hepatoprotective properties. AIM OF THE STUDY This study aimed to characterize the of M. albicans (Sw.) Triana fruits extract (MAFRE) chemical profile and to evaluate its antioxidant, anti-inflammatory and antitumor activities, as well as its toxicity. MATERIALS AND METHODS Maceration with methanol as liquid extractor was used to prepare MAFRE. M. albicans (Sw.) Triana fruits chemical composition was characterized by UHPLC-QTOF-MS/MS and GC-FID (fatty acid methyl esters composition from lyophilized fruits). MAFRE antioxidant potential was evaluated in vitro using a combination of assays: Folin-Ciocalteu reducing capacity, DPPH• and ABTS radical scavenging ability and ferric reducing antioxidant power (FRAP). In vitro antiproliferative activity was investigated in four human tumor cell lines (U251, 786-0, HT29 and MDA-MB-231) while the effect on the non-tumor cell viability was assessed in the VERO cell line using the on-step MTT assay. In addition, in vivo anti-inflammatory effect was assessed by Croton oil-induced ear edema in mice followed by myeloperoxidase (MPO) activity evaluation. RESULTS Thirty-five compounds were identified by UHPLC-QTOF-MS/MS. Among it flavonoids derived from quercetin (8), myricetin (1), kaempferol (2), terpenoids (6) and other compounds (18). GC-FID analysis identified and quantified nine fatty acids: palmitic, stearic, arachidic, behenic, elaidic, oleic, eicosenoic, and linoleic acids. The most abundant fatty acids were polyunsaturated fatty acids (5.33 ± 0.17 mg g-1), followed by saturated fatty acids (2.38 ± 0.07 mg g-1) and monounsaturated fatty acids (1.74 ± 0.09 mg g-1). The extract revealed high content of phenolic compounds (43.68 ± 0.50 mg GAE/g of extract), potent antioxidant, and ferrous chelating capacities. Morever, it proved to be non-toxic to the VERO cells, not affecting cells viability (95% of viable cells). No antiproliferative effect against human tumor cell lines were found. Furthermore, MAFRE significantly (p<0.05) reduced ear edema (≈35%) and MPO activity (84.5%) having a statistical effect similar to traditional steroidal and non-steroidal anti-inflammatory drugs. CONCLUSIONS Taken together, the results evidenced that M. albicans fruit extract has antioxidant properties, a higher concentration of phenolic compounds, flavonoids, fatty acids, and also topical anti-inflammatory activity with low toxicity of extract on VERO cells. Through the ethnomedicinal study, these findings supporting the popular use of M. albicans, but also highlight that not only aerial parts and leaves deserve attention, but the fruits also have anti-inflammatory proprieties and can be a source of phenolic compounds and other substances with potential health benefices.
Collapse
Affiliation(s)
| | - Mirelli Bianchin
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Ana Paula Lopes
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Evandro Silva
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Franciele Q Ames
- Department of Pharmacology Applied to Therapeutics, State University of Maringá, Paraná, Brazil
| | - Armando M Pomini
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Solange T Carpes
- Department of Chemistry, Federal Technological University of Paraná, Pato Branco, PR, Brazil
| | | | - Raquel Cabral Melo
- Postgraduate Program in Biosciences and Pathophysiology, State University of Maringá, Paraná, Brazil
| | - Erika S Kioshima
- Postgraduate Program in Biosciences and Pathophysiology, State University of Maringá, Paraná, Brazil
| | - Ciomar A Bersani-Amado
- Department of Pharmacology Applied to Therapeutics, State University of Maringá, Paraná, Brazil
| | - Eduardo J Pilau
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | | | - Ana Lúcia T G Ruiz
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
16
|
Oliveira ESC, Pontes FLD, Acho LDR, do Rosário AS, da Silva BJP, de A Bezerra J, Campos FR, Lima ES, Machado MB. qNMR quantification of phenolic compounds in dry extract of Myrcia multiflora leaves and its antioxidant, anti-AGE, and enzymatic inhibition activities. J Pharm Biomed Anal 2021; 201:114109. [PMID: 33957365 DOI: 10.1016/j.jpba.2021.114109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023]
Abstract
Myrcia multiflora (Lam.) DC. is often used in Brazilian folk medicine to control diabetes. Analysis using HPLC-HRMS and NMR of the dry extract from the infusion of leaves of this species revealed twelve phenolic compounds. Among these compounds, chlorogenic acid (1), 4-O-caffeoylquinic acid (2), corilagin (3), chebulagic acid (4), pedunculagin (5), quercetin-3-O-β-2″-galloylglucoside (7), and kaempferol-3-O-rhamnoside (12) are described for the first time in this matrix. Furthermore, six compounds were quantified using qNMR. The compounds in the dry extracts are 3, 6 (myricetin-3-O-d-glucoside), 8 (myricitrin), 9 (hyperoside), 10 (guaijaverin) and 11 (quercitrin). These compounds may be considered chemical markers in this matrix. In addition, this extract presents activities of α-glucosidase inhibition (IC50 = 79.9 μg mL-1) and glycation in vitro (IC50 = 10.2 μg mL-1), in addition to antioxidant activity against DPPH and ABTS radicals (1,856.7 and 1,032.0 μmol TEq, respectively). This extract did not show significant cytotoxicity in human fibroblasts. Therefore, the enzymatic inhibition, anti-AGE (advanced glycation end-products) and antioxidant activities of Myrcia multiflora leaves corroborated its antidiabetic therapeutic potential and instigates future preclinical studies aimed at the treatment of diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Edinilze S C Oliveira
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Flávia L D Pontes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Leonard D R Acho
- Laboratório de Atividade Biológica, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas Manaus, Amazonas, Brazil
| | - Alessandro S do Rosário
- Engenharia Florestal, Campus Paragominas, Universidade Federal Rural da Amazônia, Paragominas, Pará, Brazil
| | - Bárbara Janaína P da Silva
- Laboratório de Atividade Biológica, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas Manaus, Amazonas, Brazil
| | - Jaqueline de A Bezerra
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil; Departamento de Química, Ambiente e Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Manaus, Amazonas, Brazil
| | - Francinete R Campos
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil; Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Emerson S Lima
- Laboratório de Atividade Biológica, Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas Manaus, Amazonas, Brazil
| | - Marcos B Machado
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil.
| |
Collapse
|
17
|
Peixoto Araujo NM, Arruda HS, de Paulo Farias D, Molina G, Pereira GA, Pastore GM. Plants from the genus Eugenia as promising therapeutic agents for the management of diabetes mellitus: A review. Food Res Int 2021; 142:110182. [PMID: 33773658 DOI: 10.1016/j.foodres.2021.110182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
This review combined scientific data regarding the use of genus Eugenia plants for the management of diabetes. Diabetes mellitus is a chronic metabolic disease mainly characterized by hyperglycaemia, which can lead to serious health complications. Scientists have been seeking therapeutic compounds in plants, reporting the species of the genus Eugenia as a potential source of phytochemicals with antidiabetic properties. In vitro and in vivo studies have proved that the bioactive compounds in the genus Eugenia can positively affect the biomarkers of diabetes. We discussed the phytochemical profile of the genus Eugenia and its mechanism of action on diabetes, which could modulate carbohydrate metabolism, glucose homeostasis, and insulin secretion, inhibit carbohydrases and reduce oxidative stress, suppressing the formation of advanced glycation end-products and protecting/regenerating pancreatic β-cells. Therefore, plants of the genus Eugenia showed therapeutic potential to be used in the treatment of diabetes and its comorbidities.
Collapse
Affiliation(s)
- Nayara Macêdo Peixoto Araujo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| | - Henrique Silvano Arruda
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil; Nutrition and Metabolism Laboratory, Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Gustavo Molina
- Institute of Science and Technology, Food Engineering, UFVJM, 39100-000 Diamantina, MG, Brazil
| | - Gustavo Araujo Pereira
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), 66075-110 Belém, PA, Brazil
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| |
Collapse
|
18
|
Souza ACL, Ramos AS, Mar JM, Boeira LS, de Bezerra JA, Machado MB. Alcoholic beverages from araçá-boi fruit: quantification of antioxidant compounds by NMR ERETIC2. Journal of Food Science and Technology 2020; 57:4733-4738. [PMID: 33087984 DOI: 10.1007/s13197-020-04721-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
Fermentation is a preservation process responsible for increasing food product shelf life. In this context, alcoholic fermentation can add value to unconventional Amazon fruits, e.g., araçá-boi (Eugenia stipitata). This fruit has various antioxidant phenolic compounds with well-known nutraceutical properties. However, araçá-boi is still underexplored by food industry. This rationale led to investigate the influence of five commercial yeasts (Saccharomyces cerevisiae) and filtration process on chemical composition and antioxidant capacity of araçá-boi beverages. DPPH and Folin Ciocalteu assays were used to determine antioxidant capacity and total phenolic content. Organic compounds' contents were assessed by NMR-ERETIC2. In all beverages, ten compounds [tyrosol, sucrose, fructose, (α/β)-glucose, ethanol, malic, citric, gallic, and succinic acids] were identified and quantified. The highest phenolic concentrations [gallic acid (390.0 µM) and tyrosol (380.0 µM)] were found in Biolievito Bayanus (BBA) beverage. The new BBA beverage was used for investigating filtration process influence on chemical composition and antioxidant responses. Alcoholic content (unfiltered: 13.9°GL and filtered: 12.7°GL), antioxidant responses, and total phenolic contents were influenced by filtration process. The yeast type and unfiltered process were determinant for chemical content and antioxidant capacity of beverages. These results might be useful to private sector and future production and commercialization of araçá-boi beverages.
Collapse
Affiliation(s)
- Amanda C L Souza
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Universidade Federal do Amazonas - UFAM, Manaus, Amazonas Brazil
| | - Andrezza S Ramos
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Universidade Federal do Amazonas - UFAM, Manaus, Amazonas Brazil
| | - Josiana M Mar
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Universidade Federal do Amazonas - UFAM, Manaus, Amazonas Brazil
| | - Lúcia S Boeira
- Department of Chemistry, Environment and Food, Instituto Federal de Educação, Ciência e Tecnologia do Amazonas - IFAM, Manaus, Amazonas Brazil
| | - Jaqueline A de Bezerra
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Universidade Federal do Amazonas - UFAM, Manaus, Amazonas Brazil.,Department of Chemistry, Environment and Food, Instituto Federal de Educação, Ciência e Tecnologia do Amazonas - IFAM, Manaus, Amazonas Brazil
| | - Marcos B Machado
- Núcleo de Estudos Químicos de Micromoléculas da Amazônia - NEQUIMA, Universidade Federal do Amazonas - UFAM, Manaus, Amazonas Brazil
| |
Collapse
|
19
|
Cocoa tea (Camellia ptilophylla) induces mitochondria-dependent apoptosis in HCT116 cells via ROS generation and PI3K/Akt signaling pathway. Food Res Int 2019; 129:108854. [PMID: 32036895 DOI: 10.1016/j.foodres.2019.108854] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022]
Abstract
Cocoa tea (Camellia ptilophylla), a natural gallocatechin gallate (GCG)-rich and low caffeine-containing tea species, has been recently reported to possess various bioactivities. However, the anti-colon cancer effects of Cocoa tea and its underlying mechanisms remain virtually unknown. This study aimed to assess the anti-proliferative and pro-apoptotic effects of water extract of Cocoa tea (CWE) on human colon cancer HCT116 cells compared with Yunnan Daye tea (YWE). Primarily, CWE showed stronger anti-proliferation and apoptosis induction than YWE. Moreover, reduction of mitochondrial membrane potential (MMP), up-regulation of Bax/Bcl-2 ratio, release of cytochrome c, activation of caspase-9 and -3, and cleavage of poly (ADP-ribose) polymerase (PARP) were observed, suggesting that mitochondrial apoptotic pathway was activated by CWE. Furthermore, CWE-induced apoptosis in HCT116 cells was dependent on the generation of intracellular reactive oxygen species (ROS) and down-regulation of phosphatidylinositol-3-kinase (PI3K)/Akt pathway. Pretreatment with ROS scavenger N-acetyl cysteine (NAC) attenuated the impact of CWE on mitochondria-related apoptosis proteins, and partially recovered the inhibition of Akt phosphorylation. These results indicated that ROS generation mediated mitochondrial dysfunction and inactivation of PI3K/Akt pathway in CWE-induced HCT116 cell apoptosis. Additionally, CWE significantly inhibited tumor growth in HCT116 tumor-bearing mice, suggesting that Cocoa tea could act as a potential functional beverage to prevent or treat colorectal cancer.
Collapse
|
20
|
Lankatillake C, Huynh T, Dias DA. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. PLANT METHODS 2019; 15:105. [PMID: 31516543 PMCID: PMC6731622 DOI: 10.1186/s13007-019-0487-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/20/2019] [Indexed: 05/15/2023]
Abstract
Type 2 Diabetes Mellitus has reached epidemic proportions as a result of over-nutrition and increasingly sedentary lifestyles. Current therapies, although effective, are not without limitations. These limitations, the alarming increase in the prevalence of diabetes, and the soaring cost of managing diabetes and its complications underscores an urgent need for safer, more efficient and affordable alternative treatments. Over 1200 plant species are reported in ethnomedicine for treating diabetes and these represents an important and promising source for the identification of novel antidiabetic compounds. Evaluating medicinal plants for desirable bioactivity goes hand-in-hand with methods in analytical biochemistry for separating and identifying lead compounds. This review aims to provide a comprehensive summary of current methods used in antidiabetic plant research to form a useful resource for researchers beginning in the field. The review summarises the current understanding of blood glucose regulation and the general mechanisms of action of current antidiabetic medications, and combines knowledge on common experimental approaches for screening plant extracts for antidiabetic activity and currently available analytical methods and technologies for the separation and identification of bioactive natural products. Common in vivo animal models, in vitro models, in silico methods and biochemical assays used for testing the antidiabetic effects of plants are discussed with a particular emphasis on in vitro methods such as cell-based bioassays for screening insulin secretagogues and insulinomimetics. Enzyme inhibition assays and molecular docking are also highlighted. The role of metabolomics, metabolite profiling, and dereplication of data for the high-throughput discovery of novel antidiabetic agents is reviewed. Finally, this review also summarises sample preparation techniques such as liquid-liquid extraction, solid phase extraction, and supercritical fluid extraction, and the critical function of nuclear magnetic resonance and high resolution liquid chromatography-mass spectrometry for the dereplication, putative identification and structure elucidation of natural compounds from evidence-based medicinal plants.
Collapse
Affiliation(s)
- Chintha Lankatillake
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| | - Tien Huynh
- School of Science, RMIT University, Bundoora, VIC 3083 Australia
| | - Daniel A. Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| |
Collapse
|