1
|
Biabani N, Taherpour K, Ghasemi HA, Akbari Gharaei M, Hafizi M, Nazaran MH. Advanced chelate technology-based trace minerals reduce inflammation and oxidative stress in Eimeria-infected broilers by modulating NF-kB and Nrf2 pathways. Sci Rep 2024; 14:24227. [PMID: 39415045 PMCID: PMC11484868 DOI: 10.1038/s41598-024-75695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
This study investigated the effects of substituting inorganic trace minerals (ITM) with advanced chelate technology-based TM (ACTM) in broiler chicken feed on productive performance, metabolic profile, humoral immunity, antioxidant status, and modulation of NF-kB and Nrf2 signaling pathways in mixed Eimeria species exposure. The study involved 480 newly hatched male broiler chickens, which were divided into 5 treatment groups, each with 6 replicate cages and 16 chickens per replicate. The experimental treatments included an uninfected negative control group fed a basal diet with recommended inorganic TM levels (NC), an infected positive control group fed the same diet (PC), a PC group supplemented with salinomycin (SAL), and two PC groups in which the basal diet was replaced with 50% and 100% ACTM instead of inorganic TM (ACTM50 and ACTM100, respectively). All groups, except for the NC group, were orally challenged with mixed Eimeria species oocysts on day 14. According to the results, the PC group showed lower feed intake, breast yield, low-density lipoprotein-cholesterol concentration, lactobacillus spp. counts, and serum IgG levels, but higher jejunal TGF-β expression versus the NC group. The broilers in the NC, SAL, and ACTM100 groups showed higher body weight gain, carcass yield, and TGF-β expression, but lower serum alkaline phosphatase activity, ileal E. coli count, and jejunal expression levels of IL-1β, IL-6, IFN-γ, Nrf2, and SOD1 compared to the PC group, with the NC group having the highest body weight gain and lowest IL-1β and Nrf2 expression levels. Furthermore, the administration of ACTM100 treatment improved feed efficiency, increased serum iron, zinc, manganese, and copper levels, enhanced total antioxidant capacity and different antioxidant enzyme activities, and reduced malondialdehyde concentration. In conclusion, complete replacement of ITM with ACTM effectively protects broilers from Eimeria infection, with similar positive effects to SAL treatment in terms of productive performance and anti-inflammatory responses and better antioxidant responses and mineral availability.
Collapse
Affiliation(s)
- Nasim Biabani
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran.
| | | | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | | |
Collapse
|
2
|
Yang S, Deng H, Zhu J, Shi Y, Luo J, Chen T, Sun J, Zhang Y, Xi Q. Organic Trace Elements Improve the Eggshell Quality via Eggshell Formation Regulation during the Late Phase of the Laying Cycle. Animals (Basel) 2024; 14:1637. [PMID: 38891684 PMCID: PMC11170995 DOI: 10.3390/ani14111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The quality of eggshells is critical to the egg production industry. The addition of trace elements has been shown to be involved in eggshell formation. Organic trace elements have been found to have higher biological availability than inorganic trace elements. However, the effects of organic trace elements additive doses on eggshell quality during the laying period of commercial laying hens required further investigation. This experiment aims to explore the potential mechanisms of different doses of organic trace elements replacing inorganic elements to remodel the eggshell quality of egg-laying hens during the laying period. A total of 360 healthy hens (Lohmann Pink, 45-week-old) were randomly divided into four treatments, with six replications per treatment and 15 birds per replication. The dietary treatments included a basal diet supplemented with inorganic iron, copper, zinc and manganese at commercial levels (CON), a basal diet supplemented with organic iron, copper, zinc and manganese at 20% commercial levels (LOT), a basal diet supplemented with organic iron, copper, zinc and manganese at 30% commercial levels (MOT), and a basal diet supplemented with organic iron, copper, zinc and manganese at 40% commercial levels (HOT). The trial lasted for 8 weeks. The results of the experiment showed that the replacement of organic trace elements did not significantly affect the production performance of laying hens (p > 0.05). Compared with inorganic trace elements, the MOT and HOT groups improved the structure of the eggshells, enhanced the hardness and thickness of the eggshells, increased the Haugh unit of the eggs, reduced the proportion of the mammillary layer in the eggshell, and increased the proportion of the palisade layer (p < 0.05). In addition, the MOT and HOT groups also increased the enzyme activity related to carbonate transport in the blood, the expression of uterine shell gland-related genes (CA2, OC116, and OCX32), and the calcium and phosphorus content in the eggshells (p < 0.05). We also found that the MOT group effectively reduced element discharge in the feces and enhanced the transportation of iron (p < 0.05). In conclusion, dietary supplementation with 30-40% organic micronutrients were able to improve eggshell quality in aged laying hens by modulating the activity of serum carbonate transport-related enzymes and the expression of eggshell deposition-related genes.
Collapse
Affiliation(s)
- Songfeng Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
- Guangdong Xingtengke Biotechnology Co., Ltd., Zhaoqing 526000, China
| | - Haibin Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Yiru Shi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| |
Collapse
|
3
|
Li Y, Mu T, Li R, Miao S, Jian H, Dong X, Zou X. Effects of different selenium sources and levels on the physiological state, selenoprotein expression, and production and preservation of selenium-enriched eggs in laying hens. Poult Sci 2024; 103:103347. [PMID: 38150828 PMCID: PMC10788287 DOI: 10.1016/j.psj.2023.103347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Selenium (i.e., Se) is a trace element that is vital in poultry nutrition, and optimal forms and levels of Se are critical for poultry productivity and health. This study aimed to compare the effects of sodium selenite (SS), yeast selenium (SY), and methionine selenium (SM) at selenium levels of 0.15 mg/kg and 0.30 mg/kg on production performance, egg quality, egg selenium content, antioxidant capacity, immunity and selenoprotein expression in laying hens. The trial was conducted in a 3 × 2 factorial arrangement, and a total of 576 forty-three-wk-old Hyland Brown laying hens were randomly assigned into 6 treatment groups, with diets supplemented with 0.15 mg Se/kg and 0.3 mg Se/kg of SS, SY and SM for 8 wk, respectively. Results revealed that SM increased the laying rate compared to SS and SY (P < 0.05), whereas different selenium levels had no effect. Organic selenium improved egg quality, preservation performance, and selenium deposition compared to SS (P < 0.05), while SY and SM had different preferences for Se deposition in the yolk and albumen. Also, organic selenium enhanced the antioxidant capacity and immune functions of laying hens at 0.15 mg Se/kg, whereas no obvious improvement was observed at 0.30 mg Se/kg. Moreover, SY and SM increased the mRNA expression of most selenoproteins compared to SS (P < 0.05), with SM exhibiting a more pronounced effect. Correlation analysis revealed a strong positive association between glutathione peroxidase 2 (GPx2), thioredoxin reductases (TrxRs), selenoprotein K (SelK), selenoprotein S (SelS), and antioxidant and immune properties. In conclusion, the use of low-dose organic selenium is recommended as a more effective alternative to inorganic selenium, and a dosage of 0.15 mg Se/kg from SM is recommended based on the trail conditions.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Tianming Mu
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Ru Li
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Sasa Miao
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Huafeng Jian
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyang Dong
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoting Zou
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Luo Y, Bi Y, Du R, Yuan H, Hou Y, Luo R. The impact of freezing methods on the quality, moisture distribution, microstructure, and flavor profile of hand-grabbed mutton during long-term frozen storage. Food Res Int 2023; 173:113346. [PMID: 37803651 DOI: 10.1016/j.foodres.2023.113346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
The aim of present study was to investigate the influence of conventional freezing (CF, -18 °C), low-temperaturefreezing (LF, -40 °C), and ultra-low-temperature freezing (ULF, -80 °C) on the quality, moisture distribution, microstructure, and flavor profile of hand-grabbed mutton (HGM) during frozen storage (0, 30, 60, 90, 120, 150 and 180 days). The TPC, TVB-N, and TBARS values increased significantly with prolonged storage, while the moisture content decreased (P < 0.05). Additionally, the concentrations of aldehydes, alcohols, ketones, acids, and alkenes decreased significantly as the storage duration increased. However, the concentrations of esters and heterocyclics increased (P < 0.05). Notably, at 30-180 days of storage, the TBARS and TVB-N values in ULF samples were significantly lower than those in CF and LF samples, while the moisture content was significantly higher (P < 0.05). Low field-nuclear magnetic resonance (LF-NMR) analysis showed that ULF decreased water migration and maintained the original texture characteristics of HGM during frozen storage. The ULF and LF groups had significantly higher levels of volatiles than the CF group (P < 0.05). The findings show that ULF, with its relatively rapid freezing rates, can still maintain the high quality of HGM after 180 days of frozen storage, contributing to quality control.
Collapse
Affiliation(s)
- Yulong Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Yongzhao Bi
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Rui Du
- Yinchuan Agricultural Product Quality Testing Center, Yinchuan Agriculture and Rural Bureau, Yinchuan 750021, PR China
| | - Hong Yuan
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Yanru Hou
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Ruiming Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, PR China.
| |
Collapse
|
5
|
Ge C, Luo X, Wu L, Lv Y, Hu Z, Yu D, Liu B. Plant essential oils improve growth performance by increasing antioxidative capacity, enhancing intestinal barrier function, and modulating gut microbiota in Muscovy ducks. Poult Sci 2023; 102:102813. [PMID: 37343349 PMCID: PMC10404791 DOI: 10.1016/j.psj.2023.102813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Essential oils (EO) are known for their antioxidant, anti-inflammatory, antimicrobial, and growth-promoting properties. However, data rgarding their impact on the intestinal health and gut microbiota of ducks remain limited. Thus, this study aimed to investigate the effects of plant EO on the growth performance, intestinal health, and gut microbiota of Muscovy ducks. A total of 360 healthy male Muscovy ducks aged 1 d were randomly divided into 4 groups with 6 replicates and 15 ducks per replicate. Ducks were fed basal diets supplemented with 0, 100, 200, or 300 mg/kg EO. The results showed that 200 mg/kg EO supplementation significantly (P < 0.05) increased the final body weight and average daily gain, while significantly (P < 0.05) decreased the feed conversion ratio during the 56-d experimental period. Furthermore, dietary 200 mg/kg EO significantly (P < 0.05) enhanced antioxidant capacity and immune function and improved the barrier function of the intestine. Additionally, 16S rDNA sequencing analysis results showed that 200 mg/kg EO favorably modulated the cecal microbial diversities and composition evidenced by the increased (P < 0.05) the abundances of short-chain fatty acid-producing bacteria (e.g., Subdoligranulum and Shuttleworthia) and decreased (P < 0.05) abundances of potential enteric pathogenic bacteria (e.g., Alistipes, Eisenbergiella, and Olsenella). The relative abundance of beneficial bacteria was positively correlated with antioxidant, immune, and barrier function biomarkers. Overall, these findings revealed that dietary supplementation with 200 mg/kg EO had several potentially beneficial effects on the growth performance of Muscovy ducks by improving antioxidant capacity, enhancing the intestinal barrier function and favorably modulating gut microbiota.
Collapse
Affiliation(s)
- Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China.
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Zhang Y, Liu Y, Li C, Huang X, Zhang X, Deng P, Chen J, Wu S, Wang H, Jiang G, Dai Q. Effects of supplementation of inorganic trace elements with organic trace elements chelated with hydroxy methionine on laying performance, egg quality, blood micronutrients, antioxidant capacity and immune function of laying ducks. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.1070018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
IntroductionThis study aimed to investigate the effects of organic trace elements chelated with hydroxy methionine (OTE-HM) in diets, which substituted inorganic trace elements, on laying performance, egg quality, blood microelement content, antioxidant capacity and immune function of laying ducks.MethodsA total of 300 healthy laying ducks at age of 30 wk were randomly divided into 5 treatments and 10 ducks per replicate. The treatments included a control group (CON) which was served with basal diet supplemented with 20 mg/kg Cu, 50 mg/kg Fe, 70 mg/kg Mn, and 70 mg/kg Zn in inorganic form, and 4 OTE-HM treated groups (OTE-HM25, OTE-HM50, OTE-HM75, OTE-HM100) which were served with basal diets supplemented with OTE-HM providing trace elements (combination of Cu, Fe, Mn, Zn) at 25%, 50%, 75% and 100% of the commercial levels, respectively.ResultsResults showed that substitution of inorganic trace elements with OTE-HM did not affect egg production, qualified egg rate, average egg weight, average daily egg mass, average daily feed intake, or feed per kg egg of laying ducks (P > 0.05). Dietary with OTE-HM did not influence eggshell strength, eggshell thickness, egg shape index, eggshell ratio, yolk ratio, albumen ratio, albumen height, and Haugh unit of the sampled eggs of ducks (P > 0.05), but increased the yolk color, compared with dietary with inorganic trace elements (P< 0.01). Moreover, the blood content of Cu of the laying ducks was significantly increased by OTE-HM compared with that in CON (P< 0.001), but the other elements in laying duck blood were not different among treatments (P > 0.05). OTE-HM (75% and 100%) significantly increased serum activities of glutathione peroxidase and Cu-Zn superoxide dismutase, and decreased serum content of malonaldehyde of laying ducks compared with those in CON (P< 0.05). OTE-HM (50%, 75%, and 100%) significantly increased the serum contents of immunoglobulin G and immunoglobulin A of laying ducks compared with those in CON (P< 0.05).DiscussionCollectively, replacing inorganic trace elements with 50% and 75% OTE-HM in diets did not influence the laying performance or egg quality, but improved trace element efficacy, antioxidant capacity and immune function of the laying ducks.
Collapse
|
7
|
Effect of Bis(maltolato)oxovanadium(IV) on Zinc, Copper, and Manganese Homeostasis and DMT1 mRNA Expression in Streptozotocin-Induced Hyperglycemic Rats. BIOLOGY 2022; 11:biology11060814. [PMID: 35741335 PMCID: PMC9219771 DOI: 10.3390/biology11060814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023]
Abstract
Our aim was to examine whether vanadium (IV) corrects alterations in zinc, copper and manganese homeostasis, observed in streptozotocin-induced hyperglycemic rats, and whether such changes are related to divalent metal transporter 1 (DMT1) mRNA expression, and antioxidant and proinflammatory parameters. Four groups of Wistar rats were examined: control; hyperglycemic (H); hyperglycemic treated with 1 mg V/day (HV); and hyperglycemic treated with 3 mg V/day (HVH). Vanadium was supplied in drinking water as bis(maltolato)oxovanadium(IV) for five weeks. Zinc, copper and manganese were measured in food, excreta, serum and tissues. DMT1 mRNA expression was quantified in the liver. Hyperglycemic rats showed increased Zn and Cu absorption and content in the liver, serum, kidneys and femurs; DMT1 expression also increased (p < 0.05 in all cases). HV rats showed no changes compared to H rats other than decreased DMT1 expression (p < 0.05). In the HVH group, decreased absorption and tissular content of studied elements (p < 0.05 in all cases) and DMT1 expression compared to H (p < 0.05) were observed. Liver zinc, copper and manganese content correlated positively with glutathione peroxidase activity and negatively with catalase activity (p < 0.05 in both cases). In conclusion, treatment with 3 mg V/d reverted the alterations in zinc and copper homeostasis caused by hyperglycemia, possibly facilitated by decreased DMT1 expression.
Collapse
|
8
|
Arbabi-Motlagh MM, Ghasemi HA, Hajkhodadadi I, Ebrahimi M. Effect of chelated source of additional zinc and selenium on performance, yolk fatty acid composition, and oxidative stability in laying hens fed with oxidised oil. Br Poult Sci 2022; 63:680-690. [PMID: 35522173 DOI: 10.1080/00071668.2022.2071596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The following study determined whether the effects of the combined addition of zinc amino acid complex (ZA) and selenomethionine (SM) was superior to their single addition in controlling the oxidative stress induced by dietary oxidised fat in laying hens.2. Two hundred and forty 32-week-old laying hens were divided into the following dietary treatments (each consisting of six replicates of eight birds): 1) a fresh soy oil (FSO) diet; 2) an oxidised soy oil (OSO) diet; 3) an OSO diet plus 20 mg zinc as ZA/kg (OSO+ZA); 4) an OSO diet plus 0.2 mg selenium as SM/kg (OSO+SM); and 5) an OSO diet plus ZA and SM (OSO+ZA+SM).3. After 10 weeks of feeding hens, feed intake, egg production, and egg mass in the OSO+ZA+SM group were similar to the FSO group but better (P<0.05) than those in the OSO group. Shell thickness and shell breaking strength were significantly improved by the OSO+ZA and OSO+ZA+SM treatments.4. Increases in the yolk concentrations of palmitic acid and total saturated fatty acids (SFA), and decreases in yolk linoleic acid, n-6 polyunsaturated fatty acids (PUFA), total PUFA, and PUFA/SFA ratio were induced by dietary oxidised fat which were normalised (P<0.05) by OSO+SM and OSO+ZA+SM.5. An increase (P<0.05) in malondialdehyde and a decrease in 2,2-diphenyl-picrylhydrazyl radical scavenging activity in the yolk, induced by dietary oxidised fat, was significantly improved by all dietary supplementations, but only birds fed the OSO+ZA+SM diet exhibited similar values to those fed FSO.6. In conclusion, the simultaneous inclusion of organic zinc plus selenium in the oxidised fat diets was beneficial for improving egg-laying performance, yolk fatty acid profile, and oxidative stability, but not for internal egg quality, compared with either zinc or selenium alone in laying hens.
Collapse
Affiliation(s)
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran
| | - Iman Hajkhodadadi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran
| | - Mahdi Ebrahimi
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| |
Collapse
|
9
|
Xiong YL. Muscle protein oxidation and functionality: a global view of a once neglected phenomenon. MEAT AND MUSCLE BIOLOGY 2022. [DOI: 10.22175/mmb.14349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Muscle is a highly organized apparatus with a hierarchicmicrostructure that offers the protection of cellular components againstreactive oxygen species (ROS). However, fresh meat immediately postmortem andmeat undergoing processing become susceptible to oxidation due to physicaldisruption and the influx of molecular oxygen. Upon the activation byendogenous prooxidants, oxygen species are rapidly produced, and bothmyofibrillar and sarcoplasmic proteins become their primary targets. Direct ROSattack of amino acid sidechains and peptide backbone leads to proteinconformational changes, conversion to carbonyl and thiol derivatives, andsubsequent aggregation and polymerization. Interestingly, mild radical andnonradical oxidation enables orderly protein physicochemical changes, which explainswhy gels formed by ROS-modified myofibrillar protein has improved rheologicalproperties and binding potential in comminuted meat and meat emulsions. Theincorporation of phenolic and other multi-functional compounds promotes gelnetwork formation, fat emulsification, and water immobilization; however,extensive protein modification induced by high levels of ROS impairs proteinfunctionality. Now recognized to be a natural occurrence, once-neglectedprotein oxidation has drawn much interest and is being intensively studiedwithin the international community of meat science. This review describes thehistory and evolution of muscle protein oxidation, the mechanism andfunctionality impact hereof, and innovative oxidant/antioxidant strategies tocontrol and manipulate oxidation in the context of meat processing, storage,and quality. It is hoped that the review will stimulate in-depth discussion of scientificas well as industrial relevance and importance of protein oxidation and inspirerobust international collaboration in addressing this global challenge.
Collapse
|
10
|
Zhang KK, Han MM, Dong YY, Miao ZQ, Zhang JZ, Song XY, Feng Y, Li HF, Zhang LH, Wei QY, Xu JP, Gu DC, Li JH. Low levels of organic compound trace elements improve the eggshell quality, antioxidant capacity, immune function, and mineral deposition of aged laying hens. Animal 2021; 15:100401. [PMID: 34794097 DOI: 10.1016/j.animal.2021.100401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022] Open
Abstract
In the egg production industry, trace elements are required as additional dietary supplements to play vital roles in performance and egg quality. Compared to inorganic microelements (ITs), appropriate dose of organic trace microelements (OTs) are environmentally friendly and sufficient to satisfy the needs of hens. In order to evaluate the extent to which low-dose OTs replace whole ITs, the effects of organic copper, zinc, manganese, and iron compound on the performance, eggshell quality, antioxidant capacity, immune function, and mineral deposition of old laying hens were investigated. A total of 1 080 57-week-old Jing Hong laying hens were assigned to five groups with six replicates of 36 layers each for an 8-week experimental period. The birds were fed either a basal diet (control treatment (CT)) or the basal diet supplemented with commercial levels of inorganic trace elements (IT 100%) or the equivalent organic trace elements at 20%, 30%, and 50% of the inorganic elements (OT 20%, OT 30%, and OT 50%, respectively). Results showed that compared with those in the CT treatment, feeding hens with inorganic or organic microelement diet had significant effects on the eggshell quality, antioxidant capacity, immune function, and mineral deposition of old laying hens (P < 0.05). The eggshell strength and ratio between OT 30%, OT 50%, and IT 100% were similar at weeks 4 and 8, and the eggshell thickness of these groups was also similar at weeks 6 and 8. At week 8, the eggshell colour in OT 50% was darker than that in IT 100%. The mineral content in the eggshells of OT 50% and IT 100% significantly increased (P < 0.001), with no significant difference in effective thickness, mammillary thickness, and mammillary knob width between groups. There were no differences in the malondialdehyde content, total antioxidant capacity, and total superoxide dismutase activity in serum between OT 30%, OT 50%, and IT100%. While the catalase activities, the interleukin-1β, interleukin-10, immunoglobulin G, and immunoglobulin M concentrations in serum were not significantly different between OT 50% and IT 100%. The mineral contents in the faeces of the organic groups were considerably reduced compared with those in IT 100% (P < 0.001). In conclusion, dietary supplementation with 30-50% organic compound microelements has the potential to replace 100% inorganic microelements in the hen industry for improving eggshell quality, mineral deposition in the eggshell, antioxidant capacity, and immune function, and reducing emissions to the environment without negative effects on laying performance.
Collapse
Affiliation(s)
- K K Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - M M Han
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Y Y Dong
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Z Q Miao
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - J Z Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - X Y Song
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Y Feng
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - H F Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - L H Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Q Y Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - J P Xu
- DeBon Bio-Tech Co., Ltd., Hunan 421500, China
| | - D C Gu
- DeBon Bio-Tech Co., Ltd., Hunan 421500, China
| | - J H Li
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
11
|
Wu M, Ke L, Zhi M, Qin Y, Han J. The influence of gastrointestinal pH on speciation of copper in simulated digestive juice. Food Sci Nutr 2021; 9:5174-5182. [PMID: 34532026 PMCID: PMC8441336 DOI: 10.1002/fsn3.2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022] Open
Abstract
Speciation can provide knowledge about absorption, reactivity to binding sites, bioavailability, toxicity, and excretion of elements. In this study, the speciation of copper in different model solutions under the influence of gastrointestinal (GI) pH was studied by ion selective electrode (ISE) and inductively coupled plasma optical emission spectrometry (ICP OES). It was found that the electrode response (mV) against Cu2+ decreased with the increase in pH and dropped to the lowest point at pH 7.5 in all model solutions. When amino acids and organic acids were present, the ratio of filtered copper (0.45 μm, pH 7.5) was more than 90%. When casein was present, whey protein, pancreatin, and starch were added, and the ratio of filtered copper was 85.6 ± 0.3, 56.7 ± 8.8, 38.5 ± 5.1, and 1.0 ± 0.3%, respectively. When there is not enough organic ligand, excessive copper will form copper hydroxide precipitation with the increase in pH, but it got the highest electrode response (mV) against Cu2+. From this study, it can be concluded that the speciation of copper in GI tract is strongly influenced by the pH and the composition of food. When there are few ligands coexisting in the GI tract, the concentration of copper ion may be relatively high.
Collapse
Affiliation(s)
- Min Wu
- Hangzhou Vocational & Technical CollegeEcology and Health InstituteHangzhouChina
- Food Safety Key Laboratory of Zhejiang ProvinceSchool of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Leqin Ke
- Hangzhou Vocational & Technical CollegeEcology and Health InstituteHangzhouChina
| | - Mingyu Zhi
- Hangzhou Vocational & Technical CollegeEcology and Health InstituteHangzhouChina
| | - Yumei Qin
- Food Safety Key Laboratory of Zhejiang ProvinceSchool of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| | - Jianzhong Han
- Food Safety Key Laboratory of Zhejiang ProvinceSchool of Food Science and BiotechnologyZhejiang Gongshang UniversityHangzhouChina
| |
Collapse
|
12
|
Ghasemi HA, Hajkhodadadi I, Hafizi M, Fakharzadeh S, Abbasi M, Kalanaky S, Nazaran MH. Effect of advanced chelate compounds-based mineral supplement in laying hen diet on the performance, egg quality, yolk mineral content, fatty acid composition, and oxidative status. Food Chem 2021; 366:130636. [PMID: 34314929 DOI: 10.1016/j.foodchem.2021.130636] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/04/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022]
Abstract
The study aimed to determine the efficiency of advanced chelate compounds-based trace minerals (OTM) in laying hens. Laying hens (240, 32 weeks old) were assigned to one of the following five groups: NOTM (no added trace minerals), CONTM (standard mineral salts), and three experimental groups in which chelates were used to replace 33, 66, and 100% of mineral salts (OTM33, OTM66, and OTM100, respectively). Each treatment had six replicates with eight hens per replicate. After 18 weeks, performance and physicochemical properties of eggs in all experimental groups was better than those in the NOTM group. Among the treatments, OTM66 and OTM100 produced the best results in terms of laying performance, yolk PUFA/SFA ratio, Zn and Se contents, and malondialdehyde concentration in both serum and yolk. In conclusion, up to 66% OTM supplementation was beneficial for performance, lipid and mineral composition of yolk, and oxidative status.
Collapse
Affiliation(s)
- Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| | - Iman Hajkhodadadi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Meysam Abbasi
- Iranian Construction Engineering Organization, Markazi Province Branch, Arak, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | | |
Collapse
|
13
|
Oswell NJ, Gilstrap OP, Pegg RB. Variation in the terminology and methodologies applied to the analysis of water holding capacity in meat research. Meat Sci 2021; 178:108510. [PMID: 33895433 DOI: 10.1016/j.meatsci.2021.108510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 12/20/2020] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Studies examining meat quality variation, possibly resulting from animal physiology, processing, or ingredient additions, are likely to include at least one measure of water holding capacity (WHC). Methods for evaluating WHC can be classified as direct or indirect. Direct methods either gauge natural release of fluids from muscle or require the application of force to express water. The indirect methods do not actually measure WHC. They attempt to separate meat into two or three categories based on predictions of direct method results: the extreme of high and low WHC and an optional 'normal' group. Considerable statistical analyses are required to generate these predictive models. Presently, there are inconsistent terms (e.g., water holding, WHC, water binding, water binding potential/capacity) used to describe WHC and no standardized techniques recommended to evaluate it. To ensure that results can be compared across different laboratories, a better consensus must be reached in how these terms are employed and how this critical parameter is determined.
Collapse
Affiliation(s)
- Natalie J Oswell
- Department of Food Science & Technology, College of Agricultural and Environmental Sciences, The University of Georgia, 100 Cedar Street, Athens, GA 30602, USA
| | - Olivia P Gilstrap
- College of Agriculture + Food Science, Florida Agricultural and Mechanical University, Perry-Paige Building, 1740 S Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| | - Ronald B Pegg
- Department of Food Science & Technology, College of Agricultural and Environmental Sciences, The University of Georgia, 100 Cedar Street, Athens, GA 30602, USA.
| |
Collapse
|
14
|
Liu B, Xiong YL, Jiang J, Yu D, Lin G. Cellular antioxidant mechanism of selenium-enriched yeast diets in the protection of meat quality of heat-stressed hens. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Effects of Supplementation of Microalgae ( Aurantiochytrium sp.) to Laying Hen Diets on Fatty Acid Content, Health Lipid Indices, Oxidative Stability, and Quality Attributes of Meat. Foods 2020; 9:foods9091271. [PMID: 32927865 PMCID: PMC7555786 DOI: 10.3390/foods9091271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The present study is conducted to investigate the effects of dietary docosahexaenoic acid (DHA)-rich microalgae (MA, Aurantiochytrium sp.) on health lipid indices, stability, and quality properties of meat from laying hens. A total of 450 healthy 50-wk-old Hy-Line Brown layers were randomly allotted to 5 groups (6 replicates of 15 birds each), which received diets supplemented with 0, 0.5, 1.0, 1.5, and 2.0% MA for 15 weeks. Fatty acid contents and quality properties of breast and thigh muscles from two randomly selected birds per replicate (n = 12) were measured. The oxidative stability of fresh, refrigerated, frozen, and cooked meat was also determined. Results indicated that supplemental MA produced dose-dependent enrichments of long-chain n-3 polyunsaturated fatty acids (n-3 LC-PUFA), predominantly DHA, in breast and thigh muscles, with more health-promoting n-6/n-3 ratios (1.87-5.27) and favorable lipid health indices (p < 0.05). MA supplementation did not affect tenderness (shear force) and color (L*, a*, and b* values) of hen meat nor muscle endogenous antioxidant enzymes and fresh meat oxidation (p > 0.05). However, the n-3 LC-PUFA deposition slightly increased lipid oxidation in cooked and stored (4 °C) meat (p < 0.05). In conclusion, MA supplementation improves the nutritional quality of hen meat in terms of lipid profile without compromising meat quality attributes. Appropriate antioxidants are required to mitigate oxidation when such DHA-enriched meat is subjected to cooking and storage.
Collapse
|
16
|
Liu B, Zhou Q, Zhu J, Lin G, Yu D, Ao T. Time course of nutritional and functional property changes in egg yolk from laying hens fed docosahexaenoic acid-rich microalgae. Poult Sci 2020; 99:4616-4625. [PMID: 32868006 PMCID: PMC7598007 DOI: 10.1016/j.psj.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Marine microalgae (MA) has received wide attention as a promising source of omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) enrichment in animal products to improve the health status and wellbeing of the consumers. This study evaluated dynamic changes in n-3 LC-PUFA, color, and functional properties as well as atherogenic and thrombogenic health lipid indices of egg yolk from hens fed graded levels (0, 0.5, and 1.0%) of docosahexaenoic acid (DHA)–rich MA (Aurantiochytrium sp.) during a 56-D feeding period. Egg freshness parameters and yolk lipid oxidative stability were also measured after 0, 14, and 28 D of refrigerated storage. The hen performance and egg quality (except for yolk color) were not affected (P > 0.05) by MA supplementation. Docosahexaenoic acid contents in yolk from hens fed 1.0% MA increased quadratically with feeding time with a plateau at about 30 D (P < 0.05). Afterward, the DHA content leveled off to a constant value (946.3 mg/100 g yolk) with the n-6/n-3 ratio at 3.5: 1. Dietary inclusion of 1.0% of MA also significantly decreased the atherogenic and thrombogenic indices of yolk lipid (P < 0.05). Because the microalgal carotenoids incorporated into egg yolk, the L∗ value of yolk from hens fed MA decreased whereas a∗ value increased (P < 0.05), corresponding to yolk Roche color scores. As expected, there were no significant changes in yolk functional properties (e.g., viscosity and emulsifying activity) related to DHA enrichment (P > 0.05). Microalgal carotenoids enrichment also helped attenuate fatty acid oxidation of the DHA-enriched yolk and increase their lipid oxidative stability. In conclusion, dietary supplementation with up to 1.0% of MA significantly increased DHA contents with more health-promoting n-6/n-3 ratio and atherogenic and thrombogenic indices, as well as more intense yolk color within consumers' acceptability, and the feeding strategy had a minimal impact on yolk physical and functional properties or oxidative stability during subsequent refrigerated storage.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Institute of Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qin Zhou
- Institute of Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiaming Zhu
- Institute of Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Dongyou Yu
- Institute of Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tuoying Ao
- Center for Applied Nutrigenomics and Applied Animal Nutrition, Alltech, Nicholasville, KY 40356, USA
| |
Collapse
|