1
|
Huang Y, Yang C, Fu B, Guo H, Chen Y, Xu D. Impact of Ligilactobacillus salivarius Li01 on benzo[ a]pyrene-induced colitis, based on host-microbiome interactions in Mongolian gerbils. Front Nutr 2025; 12:1494525. [PMID: 40078411 PMCID: PMC11896860 DOI: 10.3389/fnut.2025.1494525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Background Probiotics supplementations have been regarded as an effective strategy for colitis treatment. However, the effect of Ligilactobacillus salivarius Li01 on benzo[a]pyrene (BaP)-induced colitis in Mongolian gerbils remains unclear. In this study, we leverage a BaP-induced model of colitis that exhibits significant remission following Ligilactobacillus salivarius Li01 intervention, to conduct an animal experiment that integrates histopathological assessment, inflammatory cytokines, 16S rRNA sequencing, targeted metabolomic profiling to investigate the relationship between Ligilactobacillus salivarius Li01, gut microbiota, and colitis. Results We demonstrated that the improvements in colon histopathological assessment and inflammatory cytokines by Ligilactobacillus salivarius Li01 supplementation are accompanied by alterations in gut microbiota structure marked by increased abundance of strains with probiotic potential belonging to Bifidobacterium and Eubacterium_coprostanoligenes. Targeted metabolomic profiling analysis showed that Ligilactobacillus salivarius Li01 supplementation increases the concentration of acetic, propionic, butyric, and valeric acid. Correlation analysis showed that the alteration in the indicators associated with colitis is closely correlated to the changed microbial taxa and short-chain fatty acids (SCFAs). Conclusion These data highlighted that Ligilactobacillus salivarius Li01 supplementation ameliorated the BaP-induced colitis, probably via modulating the structure of gut microbiota and promoting the production of SCFAs. Our findings provide preliminary evidence for a possible therapeutic strategy for the treatment of colitis based on host-microbiome interactions.
Collapse
Affiliation(s)
- Yilun Huang
- Alberta Institute, Wenzhou Medical University, Wenzhou, China
| | - Can Yang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Bingmeng Fu
- Department of Nutrition, Child, and Adolescent Health, School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Honggang Guo
- Center of Laboratory Animal, Hangzhou Medical College, Hangzhou, China
| | - Yunxiang Chen
- Center for Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China
| | - Dengfeng Xu
- Department of Nutrition, Child, and Adolescent Health, School of Public Health, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
2
|
Mauliasari IR, Lee HJ, Koo SY, Hitayezu E, Kieu ANT, Lee SM, Cha KH. Benzo(a)pyrene and Gut Microbiome Crosstalk: Health Risk Implications. TOXICS 2024; 12:938. [PMID: 39771153 PMCID: PMC11840287 DOI: 10.3390/toxics12120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 02/23/2025]
Abstract
This review delves into the impact of benzo(a)pyrene (B(a)P), which is a toxic and pervasive polycyclic aromatic hydrocarbon (PAH) and known carcinogen, on the human health risk from a gut microbiome perspective. We retrieved the relevant articles on each PAH and summarized the reporting to date, with a particular focus on benzo(a)pyrene, which has been reported to have a high risk of gut microbiome-related harm. B(a)P exposure can compromise the homeostasis of the gut microbiota, leading to dysbiosis, a state of microbial imbalance. The consequences of B(a)P-induced gut dysbiosis can be far-reaching, potentially contributing to inflammation, metabolic disorders, and an increased risk of various diseases. Additionally, due to the strong coupling between B(a)P and microparticles, the toxicity of B(a)P may be further compounded by its reaction with strong gut disruptors such as micro-/nanoplastics, which have recently become a serious environmental concern. This review summarizes current research on the impact of B(a)P on the gut microbiome, highlighting the intricate relationship between environmental exposure, gut health, and human disease. Further research is necessary to elucidate the underlying mechanisms and develop effective strategies to mitigate the adverse health effects of B(a)P exposure.
Collapse
Affiliation(s)
- Intan Rizki Mauliasari
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Department of Aquatic Life Medicine, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Hee Ju Lee
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
| | - Song Yi Koo
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
| | - Emmanuel Hitayezu
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Department of Food Science, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Anh Nguyen Thi Kieu
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Natural Products Applied Science, KIST School, University of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sang-Min Lee
- Department of Aquatic Life Medicine, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Kwang Hyun Cha
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Natural Products Applied Science, KIST School, University of Science and Technology, Gangneung 25451, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, 20, Ilsan-ro, Wonju 26493, Republic of Korea
| |
Collapse
|
3
|
Yang L, Niu Y, Guo J. Un-avoided polycyclic aromatic hydrocarbons exposure on human and animals: current detoxication strategies and future prospects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-14. [PMID: 39565295 DOI: 10.1080/09603123.2024.2431240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous organic compounds mainly produced during the incomplete combustion or pyrolysis of organic materials. Multiple studies have acknowledged PAHs as human carcinogen, which necessitates its detoxication from human and animals. Great and continuous efforts have been made to alleviate the adverse effects of PAHs to human and animals. This study summarizes plenty of techniques, including herbal extraction, phytochemicals, commercial agent and microbes, coupled with some optimized strategies, have utilized for the detoxication of PAHs, which also have limitations. Augmenting the delivery systems of phytochemicals for the improvement of sustained release property and enhancement of the bioavailability, introducing newly screened microbes for PAHs detoxication via biodegrading, as well as engineering microbes for the production of phytochemicals and degradation enzymes are the three future aspects needed to be considered in-depth.
Collapse
Affiliation(s)
- Liyang Yang
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, PR China
| | - Yali Niu
- Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Jianquan Guo
- Shanxi Key Laboratory of Environmental Health Impairment and Prevention, NHC Key Laboratory of Pneumoconiosis, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
4
|
Che Y, Li L, Kong M, Geng Y, Wang D, Li B, Deng L, Chen G, Wang J. Dietary supplementation of Astragalus flavonoids regulates intestinal immunology and the gut microbiota to improve growth performance and intestinal health in weaned piglets. Front Immunol 2024; 15:1459342. [PMID: 39416777 PMCID: PMC11479930 DOI: 10.3389/fimmu.2024.1459342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Astragali Radix (AS) is a widely used herb in traditional Chinese medicine, with calycosin as its main isoflavonoid. Our previous study discovered that calycosin triggers host defense peptide (HDP) production in IPEC-J2 cells. The aim of this study is to investigate the alleviation effects of AS total flavone and AS calycosin on growth performance, intestinal immunity, and microflora in weaned piglets. Sixty-four piglets were assigned randomly to 4 treatment groups, (1) CON: the basal diet, (2) P-CON: the basal diet plus antibiotics (1 g/kg), (3) AS-TF: the basal diet plus AS total flavone at 60 mg/day per piglet, (4) AS-CA: the basal diet plus AS calycosin at 30 mg/day per piglet. Each treatment consists of 4 replicates with 4 piglets per replicate. Results showed that treatment with AS-TF and AS-CA enhanced average daily growth and average daily feed intake compared to the CON group (P < 0.01), while AS-CA significantly reduced the diarrhea rate (P < 0.05). Both AS-TF and AS-CA significantly increased serum immunoglobulin (Ig) A and IgG levels, with AS-CA further boosting intestinal mucosal secretory IgA levels (P < 0.05). Histological analysis revealed improvements in the morphology of the jejunum and ileum and goblet cell count by AS-TF and AS-CA (P < 0.05). Supplementation of AS-TF and AS-CA promoted the expression of several intestinal HDPs (P < 0.05), and the effect of AS-CA was better than that of AS-TF. In addition, the AS-TF and AS-CA regulated jejunal microbial diversity and composition, with certain differential bacteria genera were showing high correlation with serum cytokines and immunoglobulin levels, suggesting that the intestinal flora affected by AS-TF and AS-CA may contribute to host immunity. Overall, AS CA and AS TF all improved growth performance and health, likely by enhancing nutrition digestibility, serum and intestinal immunity, and intestinal microbial composition. They showed the similar beneficial effect, indicating AS CA appears to be a major compound contributing to the effects of AS TF. This study demonstrated the positive effect of AS flavonoids on weaned piglets and provided a scientific reference for the efficient use of AS products.
Collapse
Affiliation(s)
- Yuyan Che
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Mengjie Kong
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yiwen Geng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bin Li
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lufang Deng
- Department of Technology, Feed Branch of Beijing Sanyuan Breeding Technology Co., Ltd, Beijing, China
| | - Guoshun Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
5
|
Wang Z, Yang L, Feng Y, Duan B, Zhang H, Tang Y, Zhang C, Yang J. Isoorientin Alleviates DSS-Treated Acute Colitis in Mice by Regulating Intestinal Epithelial P-Glycoprotein (P-gp) Expression. DNA Cell Biol 2024; 43:520-536. [PMID: 39180442 DOI: 10.1089/dna.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024] Open
Abstract
Isoorientin (ISO) is a naturally occurring flavonoid with diverse functional properties that mitigate the risk of diseases stemming from oxidation, inflammation, and cancer cell proliferation. P-glycoprotein (P-gp) is a vital component of the intestinal epithelium and may play a role in the onset of intestinal inflammatory conditions, such as inflammatory bowel disease (IBD). Recent studies have suggested that short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) produced by the gut microbiota stimulate the increase of P-gp expression, alleviating excessive inflammation and thereby preservation of intestinal homeostasis. ISO has been shown to improve colon health and modulate the gut microbiota. In this study, we aimed to explore whether ISO can modulate the microbes and their metabolites to influence P-gp expression to alleviate IBD. First, the impact of ISO on dextran sulfate sodium (DSS)-treated colitis in mice was investigated. Second, 16S rRNA gene sequencing was conducted. The present study indicated that ISO mitigated the symptoms and pathological damage associated with DSS-treated colitis in mice. Western blot analysis revealed ISO upregulated P-gp in colon tissues, suggesting the critical role of P-gp protein in intestinal epithelial cells. 16S microbial diversity sequencing revealed ISO restored the richness and variety of intestinal microorganisms in colitis-bearing mice and enriched SCFA-producing bacteria, such as Lachnospiraceae_NK4A136_group. The experiments also revealed that the ISO fecal microbiota transplantation (FMT) inoculation of DSS-treated mice had similarly beneficial results. FMT mice showed a reduction in colitis symptoms, which was more pronounced in ISO-FMT than in CON-FMT mice. Meanwhile, ISO-FMT expanded the abundance of beneficial microorganisms, increased the expression of metabolites, such as SCFAs and total SBAs, and significantly upregulated the expression of P-gp protein. In addition, Spearman's correlation analysis demonstrated a positive correlation between the production of SCFAs and SBAs and the expression of P-gp. The present study identified that ISO increases the expression of P-gp in the intestinal epithelium by regulating intestinal microorganisms and their metabolites, which maintains colonic homeostasis, improves the integrity of the colonic epithelium, and alleviates colitis.
Collapse
Affiliation(s)
- Zhenzhen Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lanzhu Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yun Feng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bensong Duan
- Department of Gastroenterology Shanghai East Hospital, School of Medicine, Endoscopy Center, Tongji University, Shanghai, China
| | - Haibin Zhang
- Department of Gastroenterology Shanghai East Hospital, School of Medicine, Endoscopy Center, Tongji University, Shanghai, China
| | - Yanru Tang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Caihang Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingya Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| |
Collapse
|
6
|
Yang M, Mao K, Cao X, Liu H, Mao W, Hao L. Integrated network toxicology, transcriptomics and gut microbiomics reveals hepatotoxicity mechanism induced by benzo[a]pyrene exposure in mice. Toxicol Appl Pharmacol 2024; 491:117050. [PMID: 39111554 DOI: 10.1016/j.taap.2024.117050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant posing various toxicity effects on organisms. Previous studies demonstrated that BaP could induce hepatotoxicity, while the underlying mechanism remains incompletely elucidated. In this study, a comprehensive strategy including network toxicology, transcriptomics and gut microbiomics was applied to investigate the hepatotoxicity and the associated mechanism of BaP exposure in mice. The results showed that BaP induced liver damage, liver oxidative stress and hepatic lipid metabolism disorder. Mechanistically, BaP may disrupt hepatic lipid metabolism through increasing the uptake of free fatty acid (FFA), promoting the synthesis of FA and triglyceride (TG) in the liver and suppressing lipid synthesis in white adipose tissue. Moreover, integrated network toxicology and hepatic transcriptomics revealed that BaP induced hepatotoxicity by acting on several core targets, such as signal transducer and activator of transcription 1 (STAT1), C-X-C motif chemokine ligand 10 (CXCL10) and toll-like receptor 2 (TLR2). Further analysis suggested that BaP inhibited JAK2-STAT3 signaling pathway, as supported by molecular docking and western blot. The 16S rRNA sequencing showed that BaP changed the composition of gut microbiota which may link to the hepatotoxicity based on the correlation analysis. Taken together, this study demonstrated that BaP caused liver injury, hepatic lipid metabolism disorder and gut microbiota dysbiosis, providing novel insights into the hepatotoxic mechanism induced by BaP exposure.
Collapse
Affiliation(s)
- Miao Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kanmin Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongjuan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weifeng Mao
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing 100022, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Fu P, Li R, Sze SCW, Yung KKL. Associations between fine particulate matter and colorectal cancer: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:447-457. [PMID: 36810202 DOI: 10.1515/reveh-2022-0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Colorectal cancer (CRC) is the second deadliest cancer worldwide. The impact of fine particulate matter (PM2.5) on many diseases is a global concern, yet its association with CRC is unclear. This study aimed to assess the effect of PM2.5 exposure on CRC. We searched PubMed, Web of Science, and Google Scholar databases for population-based articles published before September 2022, providing risk estimates with 95% confidence intervals (CI). Among 85,743 articles, we identified 10 eligible studies across multiple countries and regions in North America and Asia. We calculated the overall risk, incidence and mortality and performed subgroup analyses according to countries and regions. The results revealed an association between PM2.5 and increased risk of CRC (total risk, 1.19 [95% CI 1.12-1.28]; incidence, OR=1.18 [95% CI 1.09-1.28]; mortality, OR=1.21 [95% CI 1.09-1.35]). The elevated risks of CRC associated with PM2.5 were different across countries and regions, at 1.34 [95% CI 1.20-1.49], 1.00 [95% CI 1.00-1.00], 1.08 [95% CI 1.06-1.10], 1.18 [95% CI 1.07-1.29], 1.01 [95% CI 0.79-1.30], in the United States, China, Taiwan, Thailand, and Hong Kong, respectively. Incidence and mortality risks were higher in North America than those in Asia. In particular, the incidence and mortality were highest in the United States (1.61 [95% CI 1.38-1.89] and 1.29 [95% CI 1.17-1.42], respectively) than those in other countries. This study is the first comprehensive meta-analysis to find a strong association between PM2.5 exposure and increased CRC risk.
Collapse
Affiliation(s)
- Pengfei Fu
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Stephen Cho Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong, China
| | - Ken Kin Lam Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
8
|
Goyal SP, Maurya R, Mishra V, Kondepudi KK, Saravanan C. Ameliorative potential of synbiotic combination of Lactobacillus sp. and polyphenols against Benzo[a]pyrene-induced toxicity in Caco-2 cell line. CHEMOSPHERE 2024; 349:140891. [PMID: 38101482 DOI: 10.1016/j.chemosphere.2023.140891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/17/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Exposure to benzo[a]pyrene (B[a]P), a major global food safety concern, is often associated with increasing incidence of colorectal cancers. This in-vitro study was focused on the identification of potential B[a]P-adsorbing Lactobacillus strains and evaluation of the ameliorative effect of synbiotic combination of selected Lactobacillus sp. and polyphenols (quercetin or resveratrol) against B[a]P-induced intestinal toxicity in Caco-2 cells. Preliminary studies lead to the selection of Lactiplantibacillus plantarum MTCC 25433 strain that showed 86% of B[a]P adsorption in 2 h as compared to L. rhamnosus GG that showed 74% of B[a]P adsorption. B[a]P adsorption by MTCC 25433 was reduced to 9%, 16% and 20% upon pre-treatment with SDS, NaIO4 and mutanolysin, attributing the involvement of cell wall proteins and polysaccharides in the adsorption. Additionally, peptidoglycan of both strains adsorbed >50% of B[a]P. In-vitro assays revealed that the selected LAB mitigated the B[a]P-induced epithelial cell damage. Among the polyphenols, quercetin, resveratrol and curcumin, varied in their potency to mitigate B[a]P-induced oxidative stress, with curcumin being least effective. Combinations of selected Lactobacillus sp. and polyphenols were more potent in averting B[a]P-induced toxicity via increase in GSH (17-30 %), SOD (50-88 %), catalase (19-45 %), and reduction in IL-8 secretion (14-28 %) and barrier dysfunction. Principal component analysis affirmed the superior potency of combination of L. plantarum MTCC 25433 and quercetin in averting B[a]P-induced toxicity. Overall, this study highlighted a novel promising strategy of synbiotic combination of Lactobacillus sp. and polyphenols (quercetin or resveratrol) in alleviating the B[a]P-induced toxicity in intestinal epithelial cells.
Collapse
Affiliation(s)
- Shivani Popli Goyal
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India
| | - Ruchika Maurya
- Healthy Gut Research Group, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Punjab, 140306, India
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Punjab, 140306, India.
| | - Chakkaravarthi Saravanan
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India.
| |
Collapse
|
9
|
Lin WS, Cheng WC, Ho PY, Ho CT, Pan MH. Regulation of Xenobiotic-Metabolizing Enzymes by 5-Demethylnobiletin and Nobiletin to Mitigate Benzo[a]pyrene-Induced DNA Damage In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14604-14614. [PMID: 37610775 DOI: 10.1021/acs.jafc.3c03347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a genotoxic polycyclic aromatic hydrocarbon that is metabolized by cytochrome P450 family 1 enzymes (CYP 1s) and can bind to DNA to form DNA adducts, leading to DNA damage and increased colorectal cancer risk. Previous studies have shown polymethoxyflavones to have a high potential for anticancer effects by regulating CYP 1s, especially nobiletin (NBT) and 5-demethylnobiletin (5-DMNB). However, the effects of NBT and 5-DMNB on B[a]P metabolism remain unclear. Therefore, this study aimed to clarify the effects of NBT and 5-DMNB on B[a]P-induced DNA damage in vitro and in vivo. In NCM460 cells, 5-DMNB and NBT appeared to reduce the metabolic conversion of B[a]P by regulating the aryl hydrocarbon receptor (AhR)/CYP 1s signaling pathway. This process protected NCM460 cells from B[a]P's cytotoxic effects by decreasing DNA damage and suppressing B[a]P diol-epoxide-DNA adduct formation. In BALB/c mice, 5-DMNB and NBT also protected against B[a]P-induced DNA damage. Altogether, these findings indicate that 5-DMNB and NBT attenuate B[a]P-induced DNA damage by modulating biotransformation, highlighting their chemopreventive potential against B[a]P-induced carcinogenesis. Therefore, 5-DMNB and NBT are promising agents for colorectal cancer chemoprevention in the future.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pin-Yu Ho
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
10
|
Feng S, Li Y, Huang H, Huang H, Duan Y, Yuan Z, Zhu W, Mei Z, Luo L, Yan P. Isoorientin reverses lung cancer drug resistance by promoting ferroptosis via the SIRT6/Nrf2/GPX4 signaling pathway. Eur J Pharmacol 2023; 954:175853. [PMID: 37329975 DOI: 10.1016/j.ejphar.2023.175853] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Cisplatin, or DDP, is a highly successful and well-known chemotherapy drug used to treat cancer. Acquired resistance to chemotherapy is a major clinical concern, yet the mechanisms of this resistance are still unknown. Ferroptosis is a type of cell death distinct from other forms, fueled by a buildup of iron-associated lipid reactive oxygen species (ROS). Gaining insight into the process of ferroptosis could lead to novel treatments for overcoming cancer resistance. In this study, the combination of isoorientin (IO) and DDP treatment resulted in a significant decrease in the viability of drug-resistant cells, a substantial increase in intracellular iron, malondialdehyde (MDA) and ROS concentrations, a notable decrease in glutathione concentration, and the occurrence of ferroptosis in cells, as revealed by in vitro and in vivo experiments. Additionally, there was a decrease in the expression of nuclear factor-erythroid factor 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), and sirtuin 6 (SIRT6) proteins, and an increase in cellular ferroptosis. Isoorientin acts as a mediator to regulate cellular ferroptosis and reverse drug resistance in lung cancer cells by controlling the SIRT6/Nrf2/GPX4 signaling pathway. The findings of this study suggest that IO can promote ferroptosis and reverse drug resistance in lung cancer through the SIRT6/Nrf2/GPX4 signaling pathway, thus offering a theoretical basis for its potential clinical application.
Collapse
Affiliation(s)
- Senling Feng
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuting Li
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hanhui Huang
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hongliang Huang
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yingying Duan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhongwen Yuan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenting Zhu
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Mei
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang China.
| | - Pengke Yan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Cui T, Lan Y, Lu Y, Yu F, Lin S, Fu Y, Qiu J, Niu G. Isoorientin ameliorates H 2O 2-induced apoptosis and oxidative stress in chondrocytes by regulating MAPK and PI3K/Akt pathways. Aging (Albany NY) 2023; 15:204768. [PMID: 37277114 PMCID: PMC10292868 DOI: 10.18632/aging.204768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 06/07/2023]
Abstract
Osteoarthritis (OA) is a chronic and complicated degenerative disease for which there is currently no effective treatment. Isoorientin (ISO) is a natural plant extract that has antioxidant activity and could be used to treat OA. However, due to a lack of research, it has not been widely used. In this study, we investigated the protective effects and molecular mechanisms of ISO on H2O2-induced chondrocytes, a widely used cell model for OA. Based on RNA-seq and bioinformatics, we discovered that ISO significantly increased the activity of chondrocytes induced by H2O2, which was associated with apoptosis and oxidative stress. Furthermore, the combination of ISO and H2O2 significantly reduced apoptosis and restored mitochondrial membrane potential (MMP), which may be achieved by inhibiting apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, ISO increased superoxide dismutase (SOD), heme oxygenase 1 (HO-1) and quinone oxidoreductase 1 (NQO-1) and reduced malondialdehyde (MDA) levels. Finally, ISO inhibited H2O2-induced intracellular reactive oxygen species (ROS) in chondrocytes by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) and phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathways. This study establishes a theoretical framework for ISO's ability to inhibit OA in vitro models.
Collapse
Affiliation(s)
- Tiehan Cui
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yun Lan
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Yuying Lu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Fei Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Suai Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yizhe Fu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Guangliang Niu
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing 100039, China
| |
Collapse
|
12
|
Du B, Xiao X, Wang H, Li W, Xia Z, Yang P, Huang SK, Yuan R, Liu J, Han M, Zou Y, Zhu J, He D, Lyu J, Jin X, Xu X, Wang J, Yang H, Xiao L, Liu X, Kristiansen K. Evaluation of the Impact of BaP Exposure on the Gut Microbiota and Allergic Responses in an OVA-Sensitized Mouse Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:67004. [PMID: 37267060 DOI: 10.1289/ehp11874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND Exposure to environmental pollutants, including benzo[a]pyrene (BaP), has been implicated in allergic diseases and intestinal microbiota homeostasis, but the environment-microbiota-immunity triangular relationship and to what extent BaP-induced remodeling of the gut microbiota contributes to intestinal allergic inflammation remain to be established. OBJECTIVES We investigated the impact of BaP on intestinal allergic inflammation and examined the relationship between this effect and gut microbiota dysbiosis. We explored the potential ability of intestinal bacteria to degrade BaP and alleviate cytotoxicity as a detoxification strategy to counteract the effects of BaP exposure. METHODS We combined microbiome shotgun metagenomics with animal histological and intestinal allergic inflammatory responses to assess the effects of BaP (50μg/mouse per day) in a 23-d toxicity test in antigen-induced allergic female mice. In addition, genome annotation, quantitative analysis of BaP, and in vitro cytotoxicity-tests using CaCo-2 cells were conducted to infer the role of intestinal bacteria in BaP detoxification. RESULTS BaP exposure impacted the taxonomic composition and the functional potential of the gut microbiota and aggravated antigen-induced intestinal allergic inflammatory responses. The level of inflammatory cytokines correlated with the abundance of specific bacterial taxa, including Lachnospiraceae bacterium 28-4 and Alistipes inops. We identified 614 bacteria harboring genes implicated in the degradation of BaP, and 4 of these bacterial strains were shown to significantly reduce the cytotoxicity of BaP to CaCo-2 cells in vitro. DISCUSSION Using allergic female mice as a model, we investigated the relationship between BaP, microbiota, and host immune reactions, highlighting the role of gut bacteria in BaP-aggravated allergic reactions. Our findings offer novel insight toward establishing the causal relationship between BaP exposure and the occurrence of allergic disorders. Identifying gut bacteria that degrade BaP may provide new strategies for ameliorating BaP cytotoxicity. https://doi.org/10.1289/EHP11874.
Collapse
Affiliation(s)
- Beibei Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Xiaojun Xiao
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Huailing Wang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Wenxi Li
- BGI-Shenzhen, Shenzhen, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | | | - Pingchang Yang
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
- National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan, China
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan, China
- Department of Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruyi Yuan
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jie Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Mo Han
- BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | | | | | | | - Xin Jin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
| | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Liang Xiao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| |
Collapse
|
13
|
Li J, Bai J, Si X, Jia H, Wu Z. Benzo[a]pyrene induces epithelial tight junction disruption and apoptosis via inhibiting the initiation of autophagy in intestinal porcine epithelial cells. Chem Biol Interact 2023; 374:110386. [PMID: 36754226 DOI: 10.1016/j.cbi.2023.110386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Ingestion of food contaminated with benzo[a]pyrene (B[a]P) poses health risks to animals and humans. However, the toxicity of B[a]P exposure on the intestinal barrier function and underlying mechanisms remain obscure. In the present study, intestinal porcine epithelial cells (IPEC-1) were challenged with different doses of B[a]P and its deleterious effects were determined. We found that B[a]P exposure led to impaired intestinal tight junction function as evidenced by reduced transepithelial electric resistance, increased permeability, and downregulated intestinal tight junction protein levels. Further study demonstrated that B[a]P treatment induced cell cycle arrest, and resulted in oxidative damage-related apoptosis in IPEC-1 cells. Intriguingly, we observed an inhibition of autophagy and an activation of unfolded protein response (UPR) in B[a]P-challenged cells, when compared with controls. To investigate the role of autophagy on B[a]P-induced epithelial tight junction disruption and apoptosis, cells were cotreated with B[a]P and rapamycin, and rapamycin dramatically improved intestinal tight junction and reduced apoptosis, indicating a protective effect of autophagy for the cells in response to B[a]P treatment. We also explored the role of UPR in B[a]P-induced cellular damage by using 4-phenylbutyric acid, an antagonist of UPR. Interestingly, B[a]P-induced apoptosis and dysfunction of the intestinal tight junction were exacerbated by 4-phenylbutyric acid, and the 4-phenylbutyric acid didn't ameliorate the inhibitory effects of B[a]P on microtubule-associated protein 1 light chain 3 (LC3-II) and lysosomal-associated membrane protein 2 (LAMP2) in IPEC-1 cells. These novel findings provided herein indicated that B[a]P induces intestinal epithelial tight junction disruption and apoptotic cell death via inhibiting autophagy in IPEC-1 cells.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, Nutrition and Feed Science, China Agricultural University, Beijing, 100193, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Korczak M, Pilecki M, Granica S, Gorczynska A, Pawłowska KA, Piwowarski JP. Phytotherapy of mood disorders in the light of microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154642. [PMID: 36641978 DOI: 10.1016/j.phymed.2023.154642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 11/22/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clinical research in natural product-based psychopharmacology has revealed a variety of promising herbal medicines that may provide benefit in the treatment of mild mood disorders, however failed to unambiguously indicate pharmacologically active constituents. The emerging role of the microbiota-gut-brain axis opens new possibilities in the search for effective methods of treatment and prevention of mood disorders. PURPOSE Considering the clinically proven effectiveness juxtaposed with inconsistencies regarding the indication of active principles for many medicinal plants applied in the treatment of anxiety and depression, the aim of the review is to look at their therapeutic properties from the perspective of the microbiota-gut-brain axis. METHOD A literature-based survey was performed using Scopus, Pubmed, and Google Scholar databases. The current state of knowledge regarding Hypericum perforatum, Valeriana officinalis, Piper methysticum, Passiflora incarnata, Humulus lupulus, Melissa officinalis, Lavandula officinalis, and Rhodiola rosea in terms of their antimicrobial activity, bioavailability, clinical effectiveness in depression/anxiety and gut microbiota - natural products interaction was summarized and analyzed. RESULTS Recent studies have provided direct and indirect evidence that herbal extracts and isolated compounds are potent modulators of gut microbiota structure. Additionally, some of the formed postbiotic metabolites exert positive effects and ameliorate depression-related behaviors in animal models of mood disorders. The review underlines the gap in research on natural products - gut microbiota interaction in the context of mood disorders. CONCLUSION Modification of microbiota-gut-brain axis by natural products is a plausible explanation of their therapeutic properties. Future studies evaluating the effectiveness of herbal medicine and isolated compounds in treating mild mood disorders should consider the bidirectional interplay between phytoconstituents and the gut microbiota community.
Collapse
Affiliation(s)
- Maciej Korczak
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gorczynska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Karolina A Pawłowska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
15
|
Wang Z, Shi L, Li H, Song W, Li J, Yuan L. Selenium-Enriched Black Soybean Protein Prevents Benzo( a)pyrene-Induced Pyroptotic Colon Damage and Gut Dysbacteriosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12629-12640. [PMID: 36129345 DOI: 10.1021/acs.jafc.2c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selenium-enriched black soybean protein (SeBSP) is a kind of high-quality selenium resource with many physiological functions. Benzo(a)pyrene (BaP) is a well-known injurant that widely exists in high-temperature processed food and has been previously found to cause colon injury. In this study, the effects of SeBSP on colonic damage induced by BaP in BALB/C mice were investigated by comparing it with normal black soybean protein (BSP). SeBSP inhibited the BaP-induced reductions on body weight, food intake, and water intake. Moreover, metabolic enzymes, including AhR, CYP1A1, CYP1B1, and GST-P1, that were promoted by BaP were downregulated by SeBSP, reducing oxidative damage caused by BaP in the metabolic process. The classical pyroptosis indexes (i.e., NLRP3, ASC, Caspase-1, GSDMD) and inflammatory factors (i.e., TNF-α, IL-1β, IL-18, iNOS, COX-2) were downregulated by SeBSP in BaP-treated mice, suggesting the benefits of SeBSP in reducing colonic toxicity. Notably, SeBSP enhanced microbial diversity of gut microbiota and increased relative abundances of prebiotic bacteria, for example, Lactobacillus reuteri, Bacteroides thetaiotaomicron, and genera Bifidobacterium, and Blautia, along with the promotion of short-chain fatty acids. Integrative analysis showed strong links between the antioxidant and anti-inflammatory effects of SeBSP and its altered gut microbiota. Collectively, our study demonstrates the pronounced benefits of Se-enriched black soybean in preventing the colonic toxicity of BaP, and such effects could be mediated by gut microbiota.
Collapse
Affiliation(s)
- Zhulin Wang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Lin Shi
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Hao Li
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Wei Song
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Jianke Li
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Li Yuan
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
16
|
Zhang Z, Tan X, Sun X, Wei J, Li QX, Wu Z. Isoorientin Affects Markers of Alzheimer's Disease via Effects on the Oral and Gut Microbiota in APP/PS1 Mice. J Nutr 2022; 152:140-152. [PMID: 34636875 DOI: 10.1093/jn/nxab328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND There is growing evidence of strong associations between the pathogenesis of Alzheimer's disease (AD) and dysbiotic oral and gut microbiota. Recent studies demonstrated that isoorientin (ISO) is anti-inflammatory and alleviates markers of AD, which were hypothesized to be mediated by the oral and gut microbiota. OBJECTIVES We studied the effects of oral administration of ISO on AD-related markers and the oral and gut microbiota in mice. METHODS Eight-month-old amyloid precursor protein/presenilin-1 (AP) transgenic male mice were randomly allocated to 3 groups of 15 mice each: vehicle (AP) alone or with a low dose of ISO (AP + ISO-L; 25 mg/kg) or a high dose of ISO (AP + ISO-H; 50 mg/kg). Age-matched wild-type (WT) C57BL/6 male littermates were used as controls. The 4 groups were treated intragastrically with ISO or sterilized ultrapure water for 2 months. AD-related markers in the brain, serum, colon, and liver were analyzed with immunohistochemical and histochemical staining, Western blotting, and ELISA. Oral and gut microbiotas were analyzed using 16S ribosomal RNA gene sequencing. RESULTS The high-dose ISO treatment significantly decreased amyloid beta 42-positive deposition by 38.1% and 45.2% in the cortex and hippocampus, respectively, of AP mice (P < 0.05). Compared with the AP group, both ISO treatments reduced brain phospho-Tau, phosphor-p65, phosphor-inhibitor of NF-κB, and brain and serum LPS and TNF-α by 17.9%-72.5% and increased brain and serum IL-4 and IL-10 by 130%-210% in the AP + ISO-L and AP + ISO-H groups (P < 0.05). Abundances of 26, 25, and 23 microbial taxa in oral, fecal and cecal samples, respectively, were increased in both the AP + ISO-L and AP + ISO-H groups relative to the AP group [linear discriminant analysis (LDA) >3.0; P < 0.05]. Gram-negative bacteria, Alteromonas, Campylobacterales, and uncultured Bacteroidales bacterium were positively correlated (rho = 0.28-0.59; P < 0.05) with the LPS levels and responses of inflammatory cytokines. CONCLUSIONS The microbiota-gut-brain axis is a potential mechanism by which ISO reduces AD-related markers in AP mice.
Collapse
Affiliation(s)
- Zhongbao Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoqin Tan
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaorong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianhua Wei
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Zhongyi Wu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
17
|
Muller CJF, Joubert E, Chellan N, Miura Y, Yagasaki K. New Insights into the Efficacy of Aspalathin and Other Related Phytochemicals in Type 2 Diabetes-A Review. Int J Mol Sci 2021; 23:ijms23010356. [PMID: 35008779 PMCID: PMC8745648 DOI: 10.3390/ijms23010356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
In the pursuit of bioactive phytochemicals as a therapeutic strategy to manage metabolic risk factors for type 2 diabetes (T2D), aspalathin, C-glucosyl dihydrochalcone from rooibos (Aspalathus linearis), has received much attention, along with its C-glucosyl flavone derivatives and phlorizin, the apple O-glucosyl dihydrochalcone well-known for its antidiabetic properties. We provided context for dietary exposure by highlighting dietary sources, compound stability during processing, bioavailability and microbial biotransformation. The review covered the role of these compounds in attenuating insulin resistance and enhancing glucose metabolism, alleviating gut dysbiosis and associated oxidative stress and inflammation, and hyperuricemia associated with T2D, focusing largely on the literature of the past 5 years. A key focus of this review was on emerging targets in the management of T2D, as highlighted in the recent literature, including enhancing of the insulin receptor and insulin receptor substrate 1 signaling via protein tyrosine phosphatase inhibition, increasing glycolysis with suppression of gluconeogenesis by sirtuin modulation, and reducing renal glucose reabsorption via sodium-glucose co-transporter 2. We conclude that biotransformation in the gut is most likely responsible for enhancing therapeutic effects observed for the C-glycosyl parent compounds, including aspalathin, and that these compounds and their derivatives have the potential to regulate multiple factors associated with the development and progression of T2D.
Collapse
Affiliation(s)
- Christo J. F. Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg 7505, South Africa; (C.J.F.M.); (N.C.)
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa;
- Department of Food Science, Stellenbosch University, Matieland 7602, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg 7505, South Africa; (C.J.F.M.); (N.C.)
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Yutaka Miura
- Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Kazumi Yagasaki
- Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
- Correspondence:
| |
Collapse
|
18
|
Li D, Miao J, Pan L, Zhou Y, Gao Z, Yang Y, Xu R, Zhang X. Impacts of benzo(a)pyrene exposure on scallop (Chlamys farreri) gut health and gut microbiota composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149471. [PMID: 34371399 DOI: 10.1016/j.scitotenv.2021.149471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
The gut tissue interacts with nutrients and pollutants which can impact gut health. Gut microbiota is essential to the host health, but is also easily affected by external environment. However, little is known about the toxicological assessment of environmental contaminants on gut health and microbiota, especially in marine invertebrates. In this study, we first explored the effect of benzo(a)pyrene (BaP) on the gut health and gut microbiota of scallops (Chlamys farreri). The scallops were exposed to different concentrations (0, 0.4, 2 and 10 μg/L) of BaP for 21 days. The histological morphology, immune- and oxidative enzyme-related gene expression, and lipid peroxidation of the scallops were analyzed at 7, 14 and 21 days. The results revealed that BaP could impair intestinal barrier function, increasing the intestinal permeability of scallops. Moreover, immune and antioxidant responses were induced in the gut tissue. After a 21-day exposure to different concentrations of BaP, the intestinal microbial community was analyzed based on 16S rRNA sequencing. Our results suggested that BaP exposure altered the gut microbial diversity and composition in scallops. Many beneficial genera declined after BaP treatment, while the potential pathogens were increased, such as Mycoplasma and Tenacibaculum. A series of hydrocarbon-degrading bacteria were recognized in BaP-treated groups, such as Pseudomonas, Polaribacter, Amphritea and Kordiimonas. Interestingly, the degrading bacteria present varied after exposure to different concentrations of BaP. Overall, this study provides new insights into gut health and gut microbiota in marine invertebrates following exposure to persistent organic pollutants.
Collapse
Affiliation(s)
- Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
19
|
Yahyazadeh R, Baradaran Rahimi V, Yahyazadeh A, Mohajeri SA, Askari VR. Promising effects of gingerol against toxins: A review article. Biofactors 2021; 47:885-913. [PMID: 34418196 DOI: 10.1002/biof.1779] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Ginger is a medicinal and valuable culinary plant. Gingerols, as an active constituent in the fresh ginger rhizomes of Zingiber officinale, exhibit several promising pharmacological properties. This comprehensive literature review was performed to assess gingerol's protective and therapeutic efficacy against the various chemical, natural, and radiational stimuli. Another objective of this study was to investigate the mechanism of anti-inflammatory, antioxidant, and antiapoptotic properties of gingerol. It should be noted that the data were gathered from in vivo and in vitro experimental studies. Gingerols can exert their protective activity through different mechanisms and cell signaling pathways. For example, these are mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-kB), Wnt/β-catenin, nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), transforming growth factor beta1/Smad3 (TGF-β1/Smad3), and extracellular signal-related kinase/cAMP-response element-binding protein (ERK/CREB). We hope that more researchers can benefit from this review to conduct preclinical and clinical studies, treat cancer, inflammation, and attenuate the side effects of drugs and industrial pollutants.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Luo M, Zhou DD, Shang A, Gan RY, Li HB. Influences of food contaminants and additives on gut microbiota as well as protective effects of dietary bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Liu J, He H, Xu M, Wang T, Dziugan P, Zhao H, Zhang B. Detoxification of Oral Exposure to Benzo(a)pyrene by Lactobacillus plantarum CICC 23121 in Mice. Mol Nutr Food Res 2021; 65:e2001149. [PMID: 33900027 DOI: 10.1002/mnfr.202001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Indexed: 11/11/2022]
Abstract
This study's previous work showed that the carcinogen and mutagen benzo(a)pyrene (BaP) can be adsorbed by Lactobacillus cells in vitro. However, in vivo BaP detoxification by lactic acid bacteria has not yet been investigated. The present study evaluates the effects of orally administered Lactobacillus plantarum CICC 23121 in BaP-treated mice. Oral administration of 50 mg kg-1 BaP perturbed the intestinal microflora, caused Proteobacteria to predominate, and severely damaged DNA. However, oral administration of 5 × 1010 CFU mL-1 CICC 23121 in BaP-treated mice enhances fecal BaP excretion from 181.70 ± 1.04 µg/(g∙h) to 271.47 ± 11.71 µg/(g∙h) after 6 h. Fecal BaP excretion reaches up to 280.66 ± 22.97 µg/(g∙h) after the first 4 days of orally administered CICC 23121 and decreased to 94.31 ± 2.64 µg/(g∙h) by day 11. Intestinal microbiota are restored and Firmicutes predominates. CICC 23121 alleviates BaP-induced DNA damage and reduces tail length from 56.37 ± 5.31 to 39.69 ± 4.27 µm. Therefore, oral CICC23121 consumption is a promising strategy for reducing BaP toxicity in mice. To the best of our knowledge, this report is the first report to demonstrate in vivo that Lactobacillus cells can detoxify BaP.
Collapse
Affiliation(s)
- Jinxia Liu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Huan He
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Mengfan Xu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Tao Wang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Piotr Dziugan
- Institute of Fermentation Technology & Microbiology, Technical University of Lodz, Lodz, 90924, Poland
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
22
|
Wang X, He S, Yuan L, Deng H, Zhang Z. Synthesis, Structure Characterization, and Antioxidant and Antibacterial Activity Study of Iso-orientin-Zinc Complex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3952-3964. [PMID: 33764779 DOI: 10.1021/acs.jafc.0c06337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flavonoid-metal complexes possess more effective functional properties than flavonoids. However, the research of iso-orientin (Iso)-metal complex has rarely been reported. In this study, Iso-zinc complex (Iso-Zn, [Zn3(C21H14O11)2]·4H2O) had been synthesized and characterized. From the UV-vis spectra and IR spectra, the 4-carbonyl group in the C-ring of Iso was involved in the metal chelation besides A-ring and B-ring hydroxyl group. Thermal gravimetric analysis and the water contact angle test showed that Iso-Zn had higher thermal stability and better hydrophilicity than Iso, respectively. The radical scavenger and antibacterial potencies of Iso-Zn were significantly stronger than those of Iso. Furthermore, Iso-Zn showed lower erythrocytes hemolysis ratio and cytotoxicity. The present study demonstrated that Iso-Zn exhibited better water solubility, antioxidative and antibacterial activities, and lower cytotoxicity and provided a theoretical basis for expanding the utilization scope of Iso through enhancing its hydrophilicity.
Collapse
Affiliation(s)
- Xiao Wang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Shenyuan He
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Li Yuan
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Hong Deng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Zhong Zhang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
23
|
Elmassry MM, Zayed A, Farag MA. Gut homeostasis and microbiota under attack: impact of the different types of food contaminants on gut health. Crit Rev Food Sci Nutr 2020; 62:738-763. [DOI: 10.1080/10408398.2020.1828263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed A. Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
24
|
Feng P, Ye Z, Han H, Ling Z, Zhou T, Zhao S, Virk AK, Kakade A, Abomohra AEF, El-Dalatony MM, Salama ES, Liu P, Li X. Tibet plateau probiotic mitigates chromate toxicity in mice by alleviating oxidative stress in gut microbiota. Commun Biol 2020; 3:242. [PMID: 32415160 PMCID: PMC7229148 DOI: 10.1038/s42003-020-0968-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
Heavy metal contamination in food endangers human health. Probiotics can protect animals and human against heavy metals, but the detoxification mechanism has not been fully clarified. Here, mice were supplemented with Pediococcus acidilactici strain BT36 isolated from Tibetan plateau yogurt, with strong antioxidant activity but no chromate reduction ability for 20 days to ensure gut colonization. Strain BT36 decreased chromate accumulation, reduced oxidative stress, and attenuated histological damage in the liver of mice. 16S rRNA and metatranscriptome sequencing analysis of fecal microbiota showed that BT36 reversed Cr(VI)-induced changes in gut microbial composition and metabolic activity. Specifically, BT36 recovered the expressions of 788 genes, including 34 inherent Cr remediation-relevant genes. Functional analysis of 10 unannotated genes regulated by BT36 suggested the existence of a new Cr(VI)-reduction gene in the gut microbiota. Thus, BT36 can modulate the gut microbiota in response to Cr(VI) induced oxidative stress and protect against Cr toxicity.
Collapse
Affiliation(s)
- Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Ze Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Shuai Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Amanpreet Kaur Virk
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, Himachal Pradesh, India
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | | | - Marwa M El-Dalatony
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Ei-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China.
| |
Collapse
|