1
|
Loba-Pasternak W, Aksoy MO, Stuper-Szablewska K, Szwajkowska-Michalek L, Kolodziejski P, Szczerbal I, Nowacka-Woszuk J. The Effects of Peruvian maca ( Lepidium meyenii) Root Extract on In Vitro Cultured Porcine Fibroblasts and Adipocytes. Molecules 2025; 30:847. [PMID: 40005158 PMCID: PMC11858347 DOI: 10.3390/molecules30040847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Peruvian maca (Lepidium meyenii) is a plant known for its nutritional and medicinal properties whose use as a supplement in animal diets has attracted much interest. We studied the effects of powdered maca root extract on the growth potential of in vitro cultured porcine cells prior to its use as an additive in animal nutrition. Fibroblast cell viability (MTT), cell proliferation (BrdU), and apoptosis level (TUNEL) were measured for a range of extract doses (0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 7.0, and 10 mg/mL). Transcript levels of CCND1, MCM2, and PCNA genes as molecular markers of cell proliferation were also determined. Next, the effects of maca extract at 2 and 5 mg/mL on in vitro induced adipogenesis were evaluated over eight days of differentiation. The transcript levels of three adipocyte marker genes (CEBPA, PPARG, and FABPB4) were measured at days 0, 4, and 8 of adipose differentiation, and lipid droplet accumulation (BODIPY staining) was also noted. No cytotoxic effect was detected on fibroblast cell viability, and the inhibitory concentration (IC50) value was determined to be IC50 > 10 mg/mL. Doses of maca extract above 3 mg/mL decreased cell proliferation. The transcript level decreased in concentrations above 5 for the MCM2 and PCNA genes. For the CCND1 gene, the transcript level decreased when the greatest maca dose was used. In the in vitro adipogenesis experiment, it was found that the rate of lipid droplet formation increased on day 4 of differentiation for both doses, while decreased lipid droplet formation was observed on day 8 for 5 mg/mL of maca extract. Significant changes were seen in the mRNA level for CEBPA and PPARG on days 4 and 8, while the transcript of FABP4 increased only on day 8 at 2 mg/mL dose. It can be concluded that the addition of Peruvian maca in small doses (<3 mg/mL) has no negative effect on porcine fibroblast growth or proliferation, while 2 mg/mL of maca extract enhances adipocyte differentiation.
Collapse
Affiliation(s)
- Weronika Loba-Pasternak
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland; (W.L.-P.); (M.O.A.); (I.S.)
| | - Mehmet Onur Aksoy
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland; (W.L.-P.); (M.O.A.); (I.S.)
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland; (K.S.-S.); (L.S.-M.)
| | - Lidia Szwajkowska-Michalek
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland; (K.S.-S.); (L.S.-M.)
| | - Pawel Kolodziejski
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland;
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland; (W.L.-P.); (M.O.A.); (I.S.)
| | - Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland; (W.L.-P.); (M.O.A.); (I.S.)
| |
Collapse
|
2
|
Turpo-Peqqueña AG, Luna-Prado S, Valencia-Arce RJ, Del-Carpio-Carrazco FL, Gómez B. A Theoretical Study on the Efficacy and Mechanism of Combined YAP-1 and PARP-1 Inhibitors in the Treatment of Glioblastoma Multiforme Using Peruvian Maca Lepidium meyenii. Curr Issues Mol Biol 2025; 47:40. [PMID: 39852155 PMCID: PMC11763394 DOI: 10.3390/cimb47010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/26/2025] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant forms of brain cancer. Current therapeutic strategies, including surgery, chemotherapy, and radiotherapy, often fail due to the tumor's ability to develop resistance. The proteins YAP-1 (Yes-associated protein 1) and PARP-1 (Poly-(ADP-ribose)-polymerase-1) have been implicated in this resistance, playing crucial roles in cell proliferation and DNA repair mechanisms, respectively. This study explored the inhibitory potential of natural compounds from Lepidium meyenii (Peruvian Maca) on the YAP-1 and PARP-1 protein systems to develop novel therapeutic strategies for GBM. By molecular dynamics simulations, we identified N-(3-Methoxybenzyl)-(9Z,12Z,15Z)- octadecatrienamide (DK5) as the most promising natural inhibitor for PARP-1 and stearic acid (GK4) for YAP-1. Although synthetic inhibitors, such as Olaparib (ODK) for PARP-1 and Verteporfin (VER) for YAP-1, only VER was superior to the naturally occurring molecule and proved a promising alternative. In conclusion, natural compounds from Lepidium meyenii (Peruvian Maca) offer a potentially innovative approach to improve GBM treatment, complementing existing therapies with their inhibitory action on PARP-1 and YAP-1.
Collapse
Affiliation(s)
- Albert Gabriel Turpo-Peqqueña
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Medicina Humana, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Facultad de Biología, Universidad Nacional de San Agustín, Av. Alcides Carrión s/n, Arequipa 04001, Peru
| | - Sebastian Luna-Prado
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Renato Javier Valencia-Arce
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Fabio Leonardo Del-Carpio-Carrazco
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Badhin Gómez
- Centro de Investigación en Ingeniería Molecular–CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru; (A.G.T.-P.); (S.L.-P.); (R.J.V.-A.); (F.L.D.-C.-C.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| |
Collapse
|
3
|
Ryu KM, Kim H, Woo J, Lim J, Kang CG, Kim SW, Kim T, Kim D. Enhancement of the bioactive compounds and biological activities of maca ( Lepidium meyenii) via solid-state fermentation with Rhizopus oligosporus. Food Sci Biotechnol 2024; 33:2585-2596. [PMID: 39144202 PMCID: PMC11319679 DOI: 10.1007/s10068-023-01508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 08/16/2024] Open
Abstract
Maca (Lepidium meyenii Walp) is renowned for its phytochemicals, including amino acids, saponins, and macamides, confer nutritional and medicinal benefits. This study analyzed the bioactive constituents of maca via solid-state fermentation with Rhizopus oligosporus for 0-15 days. After fermentation, the l-carnitine content reached 157.3 μg/g. A 93% increase in macamide B was recorded after 7-day fermentation. Total flavonoid and saponin contents increased by 88.2% and 110.3%, respectively. The fermentation process significantly enhanced the physicochemical attributes of maca; in particular, its water retention and cholesterol-binding capacities increased by 1.73- and 4.30-fold, respectively, compared with the non-fermented maca. Moreover, fermented maca exhibited stronger antioxidant and α-glucosidase-inhibiting effects than non-fermented maca. Finally, the neuroprotective effect of maca on HT-22 cells increased by 23% after 5-day fermentation. These findings demonstrate the potential of fermented maca as a novel ingredient for foods, beverages, and pharmaceuticals. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01508-6.
Collapse
Affiliation(s)
- Kyeong Min Ryu
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Hayeong Kim
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergence, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Jiho Woo
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Juho Lim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Choon Gil Kang
- Ottogi Corporation, Anyang-si, Gyeonggi-do 14060 Republic of Korea
| | - Seung Wook Kim
- Ottogi Corporation, Anyang-si, Gyeonggi-do 14060 Republic of Korea
| | - Taeyoon Kim
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergence, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
- Institute of Food Industrialization, Institutes of Green Bioscience & Technology, Center for Food and Bioconvergence, Seoul National University, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
- Fervere Campus Corporation, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| |
Collapse
|
4
|
Tóth S, Szlávik MF, Mandel R, Fekecs F, Tusnády G, Vajda F, Varga N, Apáti Á, Bényei A, Paczal A, Kotschy A, Szakács G. Synthesis and Systematic Investigation of Lepidiline A and Its Gold(I), Silver(I), and Copper(I) Complexes Using In Vitro Cancer Models and Multipotent Stem Cells. ACS OMEGA 2024; 9:32226-32234. [PMID: 39072085 PMCID: PMC11270681 DOI: 10.1021/acsomega.4c05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
The imidazole alkaloid lepidiline A from the root of Lepidium meyenii has a moderate to low in vitro anticancer effect. Our aim was to extend cytotoxicity investigations against a panel of cancer cells, including multidrug-resistant cancer cells, and multipotent stem cells. Lepidiline A is a N-heterocyclic carbene precursor, therefore a suitable ligand source for metal complexes. Thus, we synthesized lepidiline A and its copper(I), gold(I), and silver(I) complexes and tested them against ovarian, gastrointestinal, breast, and uterine cancer cells and bone marrow-derived and adipose-derived mesenchymal stem cells. Lepidiline A and its copper complex demonstrated moderate cytotoxicity, while silver and gold complexes exhibited significantly enhanced and consistent cytotoxicity against both cancer and stem cell lines. ABCB1 in the multidrug-resistant uterine sarcoma line conferred significant resistance against lepidiline A and the copper-lepidiline A complex, but not against the silver and gold complexes. Our results indicate that only the copper complex induced a significant and universal increase in the production of reactive oxygen species within cells. In summary, binding of metal ions to lepidiline A results in enhanced cytotoxicity with the nature of the metal ion playing a critical role in determining its properties.
Collapse
Affiliation(s)
- Szilárd Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Márton F. Szlávik
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Réka Mandel
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Fanni Fekecs
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
| | - Gábor Tusnády
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Flóra Vajda
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Doctoral
School of Molecular Medicine, Semmelweis
University, Budapest H-1089, Hungary
| | - Nóra Varga
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Creative
Cell Ltd., Puskas Tivadar
u. 13, Budapest H-1119, Hungary
| | - Ágota Apáti
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Attila Bényei
- Department
of Physical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Attila Paczal
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
| | - András Kotschy
- Servier
Research Institute of Medicinal Chemistry, Záhony utca 7, Budapest H-1031, Hungary
| | - Gergely Szakács
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Center
for Cancer Research, Medical University
of Vienna, Spitalgasse 23, Vienna A-1090, Austria
| |
Collapse
|
5
|
Le NTH, Foubert K, Theunis M, Naessens T, Bozdag M, Van Der Veken P, Pieters L, Tuenter E. UPLC-TQD-MS/MS Method Validation for Quality Control of Alkaloid Content in Lepidium meyenii (Maca)-Containing Food and Dietary Supplements. ACS OMEGA 2024; 9:15971-15981. [PMID: 38617670 PMCID: PMC11007719 DOI: 10.1021/acsomega.3c09356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 04/16/2024]
Abstract
Lepidium meyenii Walp. (Brassicaceae), also known as Maca or Peruvian ginseng, is a common ingredient in food supplements with many claimed health benefits, such as improved endurance, increased energy level, and enhanced sexual properties. Due to potential toxicity of its chemicals, including alkaloids, some regulatory authorities, e.g., in Belgium, Germany, the United States, expressed concerns about the safe consumption of Maca root. However, due to the lack of commercial standards, no established analytical method currently exists for this purpose. The current project focuses on the quantitative determination of potentially toxic alkaloids from Maca. The current study presents the first analytical method for quality control of alkaloid content in Maca-containing food and dietary supplements, assessing the presence of 11 major compounds belonging to three different classes, i.e., imidazole, β-carboline, and pyrrole alkaloids. An accurate, rapid, and sensitive UPLC-TQD-MS/MS method is reported, which was fully validated according to the International Council for Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) and SANTE/11312/2021 guidelines. To ensure the method's applicability and practicability in the absence of primary standards, validation of secondary standards (SSs) alongside primary standards (PSs) was also conducted for imidazole alkaloids. As a result, in Maca raw powder, total alkaloid content was found to vary from 418 to 554 ppm (mg/kg). Furthermore, all quantified imidazole alkaloids were ascertained to be the major alkaloids with the total content from 323 to 470 ppm in Maca raw powder, followed by the β-carboline and pyrrole alkaloids. It was also observed that the commercial preparation of finished products affects the total alkaloid content, evidenced by the large variation from 56 to 598 ppm. Ultimately, from a regulatory point of view, it seems advisible not to request the complete absence of the alkaloids but to impose a maximum level based on safety considerations. In addition to the analytical method, a low-cost, simple, and scalable synthetic scheme of macapyrrolins A, C, and G was reported for the first time.
Collapse
Affiliation(s)
- Ngoc-Thao-Hien Le
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Kenn Foubert
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Mart Theunis
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Tania Naessens
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Murat Bozdag
- Laboratory
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University
of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Pieter Van Der Veken
- Laboratory
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University
of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Luc Pieters
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Emmy Tuenter
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| |
Collapse
|
6
|
Minich DM, Ross K, Frame J, Fahoum M, Warner W, Meissner HO. Not All Maca Is Created Equal: A Review of Colors, Nutrition, Phytochemicals, and Clinical Uses. Nutrients 2024; 16:530. [PMID: 38398854 PMCID: PMC10892513 DOI: 10.3390/nu16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Maca (Lepidium meyenii, Lepidium peruvianum) is part of the Brassicaceae family and grows at high altitudes in the Peruvian Andes mountain range (3500-5000 m). Historically, it has been used as a nutrient-dense food and for its medicinal properties, primarily in enhancing energy and fertility. Scientific research has validated these traditional uses and other clinical applications by elucidating maca's mechanisms of action, nutrition, and phytochemical content. However, research over the last twenty years has identified up to seventeen different colors (phenotypes) of maca. The color, hypocotyl size, growing location, cultivation, and post-harvest processing methods can have a significant effect on the nutrition content, phytochemical profile, and clinical application. Yet, research differentiating the colors of maca and clinical applications remains limited. In this review, research on the nutrition, phytochemicals, and various colors of maca, including black, red, yellow (predominant colors), purple, gray (lesser-known colors), and any combination of colors, including proprietary formulations, will be discussed based on available preclinical and clinical trials. The gaps, deficiencies, and conflicts in the studies will be detailed, along with quality, safety, and efficacy criteria, highlighting the need for future research to specify all these factors of the maca used in publications.
Collapse
Affiliation(s)
- Deanna M. Minich
- Human Nutrition and Functional Medicine, Adjunct Faculty, University of Western States, Portland, OR 97213, USA
- Food & Spirit, LLC, Port Orchard, WA 98366, USA
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Symphony Natural Health Institute, West Valley City, UT 84119, USA
| | - Kim Ross
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Symphony Natural Health Institute, West Valley City, UT 84119, USA
- Kim Ross Consulting, LLC, Lakewood Ranch, FL 34211, USA
- College of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
| | - James Frame
- Symphony Natural Health Holdings Inc., Craigmuir Chambers, Road Town, Tortola VG1110, (BVI), UK;
- Natural Health International Pty Ltd., Sydney, NSW 2000, Australia
| | - Mona Fahoum
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Meridian Medicine, Seattle, WA 98133, USA
- Bastyr Center for Natural Health, Bastyr University, Kenmore, WA 98028, USA
| | - Wendy Warner
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Wendy Warner, MD, PC, Yardley, PA 19067, USA
| | - Henry O. Meissner
- National Institute of Complementary Medicine, Health Research Institute, Western Sydney University, Building J, 158-160 Hawkesbury Road, Westmead, NSW 2145, Australia;
- Therapeutic Research, TTD International Pty Ltd., 39 Leopard Ave., Elanora-Gold Coast, QLD 4221, Australia
| |
Collapse
|
7
|
Lee E, Park M, Kim B, Kang S. Effect of Black Maca Supplementation on Inflammatory Markers and Physical Fitness in Male Elite Athletes. Nutrients 2023; 15:nu15071618. [PMID: 37049458 PMCID: PMC10097151 DOI: 10.3390/nu15071618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Given the current lack of studies, the primary purpose of this study was to investigate the effects of black maca supplementation intake on changes in physical strength and inflammatory markers among elite athletes. Forty-four elite athletes were recruited for the present study. They included shooting athletes, racket sports athletes, and fin swimming athletes. The intake capsules contained 2500 mg of 100% concentrated black maca extract. Participants were instructed to take one capsule twice a day for eight weeks with pure water. Changes were seen in the ATP-PC systems and aerobic energy systems, particularly in the fin swimming athletes requiring aerobic energy systems. This effect is caused by increased antioxidant activity and influenced mitochondrial biosynthesis regulatory factors due to black maca supplementation intake. These findings provide preliminary evidence that elite athletes will benefit from taking black maca to improve their inflammation levels and physical fitness.
Collapse
Affiliation(s)
- Eunjae Lee
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Republic of Korea;
- Waseda Institute for Sport Sciences, Waseda University, Saitama 341-0018, Japan
| | - Myeonghun Park
- Charmacist, Seoul 02797, Republic of Korea; (M.P.); (B.K.)
- Laboratory of Exercise Physiology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| | - Byoungju Kim
- Charmacist, Seoul 02797, Republic of Korea; (M.P.); (B.K.)
| | - Sunghwun Kang
- Laboratory of Exercise Physiology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Republic of Korea
- Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Republic of Korea
- Correspondence: ; Tel.: +82-33-250-6788; Fax: +82-33-259-5680
| |
Collapse
|
8
|
Medicinal Plants in Peru as a Source of Immunomodulatory Drugs Potentially Useful Against COVID-19. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:237-258. [PMID: 36855527 PMCID: PMC9948797 DOI: 10.1007/s43450-023-00367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
The current COVID-19 pandemic, characterized by a highly contagious severe acute respiratory syndrome, led us to look for medicinal plants as an alternative to obtain new drugs, especially those with immunomodulatory abilities, capable of acting against the pulmonary infection caused by coronavirus 2 (SARS-CoV-2). Despite medical advances with COVID-19 drugs and vaccines, plant-based compounds could provide an array of suitable candidates to test against this virus, or at the very least, to alleviate some symptoms. Therefore, this review explores some plants widely used in Peru that show immunomodulatory properties or, even more, contain phytoconstituents potentially useful to prevent or alleviate the COVID-19 infection. More interestingly, the present review highlights relevant information from those plants to support the development of new drugs to boost the immune system. We used three criteria to choose nine vegetal species, and a descriptive search was then conducted from 1978 to 2021 on different databases, using keywords focused on the immune system that included information such as pharmacological properties, phytochemical, botanical, ethnobotanical uses, and some clinical trials. From these literature data, our results displayed considerable immunomodulation activity along with anti-inflammatory, antiviral, antioxidant, and antitumoral activities. Noticeably, these pharmacological activities are related with a wide variety of bioactive phytoconstituents (mixtures or isolated compounds) which may be beneficial in modulating the overt inflammatory response in severe COVID-19. Further scientific research on the pharmacological activities and clinical utilization of these potential plants are warranted. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-023-00367-w.
Collapse
|
9
|
Quispe-Sanchez L, Mestanza M, Goñas M, Gill ERA, Oliva-Cruz M, Chavez SG. Physical, functional and sensory properties of bitter chocolates with incorporation of high nutritional value flours. Front Nutr 2022; 9:990887. [PMID: 36204381 PMCID: PMC9531265 DOI: 10.3389/fnut.2022.990887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the growing demand for healthy food products, the industry is seeking to incorporate inputs with high nutritional potential to traditional products. The objective of this research was to evaluate the effect of incorporating Lepidium meyenii, Chenopodium pallidicaule, Amaranthus caudatus, Sesamum indicum and Salvia hispanica flours on the physical, chemical, rheological, textural and thermal characteristics, and the degree of sensory acceptance of dark chocolate bars (65% cocoa). To this end, chocolate bars were made with the incorporation of five flours in four doses (1, 2, 3 and 4%), obtaining 20 different formulations compared with a control treatment (without flour addition). It was found that as flour incorporation levels increased, viscosity, antioxidants and particle size of the chocolates increased, but hardness and pH decreased. The addition of the flours also affected the acceptability and microstructure of the chocolate bars. The incorporation of up to 4% of the flours studied improved the degree of acceptance of the chocolates. Consequently, the incorporation of grain flours with high nutritional value can enhance the characteristics of dark chocolates, becoming a technological alternative for the chocolate industry.
Collapse
Affiliation(s)
- Luz Quispe-Sanchez
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- *Correspondence: Luz Quispe-Sanchez,
| | - Marilu Mestanza
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Malluri Goñas
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Elizabeth Renee Ambler Gill
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- College of Life Sciences and Agriculture COLSA, University of New Hampshire, Durham, NC, United States
| | - Manuel Oliva-Cruz
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Segundo G. Chavez
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| |
Collapse
|
10
|
Non-targeted Metabolite Profiling to Evaluate the Drying Process Effect in the Peruvian Maca Actives Through Principal Component Analysis. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Ibrahim RM, Elmasry GF, Refaey RH, El-Shiekh RA. Lepidium meyenii (Maca) Roots: UPLC-HRMS, Molecular Docking, and Molecular Dynamics. ACS OMEGA 2022; 7:17339-17357. [PMID: 35647470 PMCID: PMC9134390 DOI: 10.1021/acsomega.2c01342] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/26/2022] [Indexed: 06/01/2023]
Abstract
Lepidium meyenii or Maca is widely cultivated as a health care food supplement due to its nutritional and medicinal properties. Although there are a few in-depth studies evaluating Maca antihypertensive effects, the correlations between the chemical constituents and bioactivity of the plant have not been studied before. Thus, the roots were extracted using different solvents (aqueous, methanol, 50% methanol, and methylene chloride) and investigated for their antihypertensive and antioxidant activities through several in vitro assays. The methanolic extract exhibited the best renin and angiotensin converting enzyme (ACE) inhibitory activities with IC50 values of 24.79 ± 1.3 ng/mL and 22.02 ± 1.1 ng/mL, respectively, along with the highest antioxidant activity. In total, 120 metabolites from different classes, e.g., alkylamides, alkaloids, glucosinolates, organic acids, and hydantoin derivatives, were identified in the methanolic extract using ultrahigh-performance liquid chromatography/high-resolution mass spectrometry (UPLC/HRMS). Molecular docking simulations were used to investigate the potential binding modes and the intermolecular interactions of the identified compounds with ACE and renin active sites. Glucotropaeolin, β-carboline alkaloids, succinic acid, and 2,4-dihydroxy-3,5-cyclopentyl dienoic acid showed the highest affinity to target the ACE with high docking scores (S ranging from -35.32 to -22.51 kcal mol-1) compared to lisinopril (S = -36.64 kcal mol-1). Interestingly, macamides displayed the greatest binding affinity to the active site of renin with docking scores (S ranging from -22.47 to -28.25 kcal mol-1). Further, β-carbolines achieved docking scores comparable to that of the native ligand (S ranging from -13.50 to -20.06 kcal mol-1). Molecular dynamics simulations and MMPBSA were also carried out and confirmed the docking results. Additionally, the computational ADMET study predicted that the compounds attaining promising docking results had proper pharmacokinetics, drug-likeness characteristics, and safe toxicological profiles. Ultimately, our findings revealed that Maca roots could be considered a promising candidate as an antihypertensive drug.
Collapse
Affiliation(s)
- Rana M. Ibrahim
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street, 11562 Cairo, Egypt
| | - Ghada F. Elmasry
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street, 11562 Cairo, Egypt
| | - Rana H. Refaey
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, October University of Modern Sciences and Arts (MSA), Giza, Egypt
| | - Riham A. El-Shiekh
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street, 11562 Cairo, Egypt
| |
Collapse
|
12
|
Le HTN, Van Roy E, Dendooven E, Peeters L, Theunis M, Foubert K, Pieters L, Tuenter E. Alkaloids from Lepidium meyenii (Maca), structural revision of macaridine and UPLC-MS/MS feature-based molecular networking. PHYTOCHEMISTRY 2021; 190:112863. [PMID: 34242970 DOI: 10.1016/j.phytochem.2021.112863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Lepidium meyenii Walp., known as Peruvian ginseng, is widely used in ethnomedicine. To date, L. meyenii is cultivated worldwide at high-altitude and is commonly used as a food supplement. However, its medicinal value is still controversial and its mechanism of action remains unknown, due to limited knowledge about the phytochemical constituents of this plant species. In this study, a multidisciplinary approach comprising conventional NMR- and HRMS-based structure elucidation, quantum mechanical calculation of NMR chemical shifts and UPLC-MS/MS feature-based molecular networking was applied to analyse the phytochemical profile of L. meyenii. In the current work, three previously undescribed imidazole alkaloids were identified using extensive spectroscopic techniques (HRMS, NMR), for which the names lepidiline E, F and G were adopted. In addition, two amidine alkaloids were reported, representing an undescribed class of alkaloids in L. meyenii, and 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid, a well-known β-carboline alkaloid, was also isolated from L. meyenii for the first time. Molecular networks of imidazole, amidine and β-carboline alkaloids in L. meyenii were constructed by the Global Natural Products Social Molecular Networking (GNPS) web platform, resulting in the tentative identification of three undescribed analogues. In addition, the structure of a previously reported compound named 'macaridine' was revised as macapyrrolin C based on density functional theory (DFT) calculations and comprehensive comparison of NMR data.
Collapse
Affiliation(s)
- Hien T N Le
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Elias Van Roy
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Ella Dendooven
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Laura Peeters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Mart Theunis
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
13
|
Xia C, Deng J, Pan Y, Lin C, Zhu Y, Xiang Z, Li W, Chen J, Zhang Y, Zhu B, Huang Q. Comprehensive Profiling of Macamides and Fatty Acid Derivatives in Maca with Different Postharvest Drying Processes Using UPLC-QTOF-MS. ACS OMEGA 2021; 6:24484-24492. [PMID: 34604630 PMCID: PMC8482404 DOI: 10.1021/acsomega.1c02926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/25/2023]
Abstract
Macamides are characteristically found in maca (Lepidium meyenii Walper). Fatty acid derivatives are also an important type of constituent in maca, since they not only relate to the biosynthesis of macamides in the postharvest process but also possess some bioactivities. To study their comprehensive profiles in maca tubers processed via the air-drying method, ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) analyses were performed to identify macamide and fatty acid molecules. Their contents in maca tubers that were processed via air drying and freeze drying, respectively, were further quantified using high-performance liquid chromatography (HPLC) analyses comparing with eight macamide and three fatty acid reference standards. A total of 19 macamides (including four novel ones) and 16 fatty acid derivatives (two found in maca for the first time) were identified. Quantification analyses results showed the eight macamides with contents ranging from 31.39 to 1163.19 μg/g (on dry tuber), and fatty acids from 18.71 to 181.99 μg/g in the air-dried maca, but there were only three macamides and one fatty acid detected with very low contents (3.97-34.36 μg/g) in the freeze-dried maca. The results demonstrated that the air-drying method can increase the accumulations of macamides and fatty acids in the metabolism of maca in the postharvest process. The biosynthesis of two types of macamides, i.e., N-benzyl-oxo-octadecadienamides and N-benzyl-oxo-octadecatrienamides, was further elucidated in detail. These results provide more valuable insights into the phytochemicals of maca, which is helpful to explain its health benefits.
Collapse
Affiliation(s)
- Chen Xia
- Institute
of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, Sichuan, China
| | - Junlin Deng
- Institute
of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, Sichuan, China
| | - Yu Pan
- Institute
of Medicinal Plants, Yunnan Academy of Agricultural
Sciences, 2228 Beijing Road, Kunming 650200, Yunnan, China
| | - Changbin Lin
- Institute
of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, Sichuan, China
| | - Yongqing Zhu
- Institute
of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, Sichuan, China
| | - Zhuoya Xiang
- Institute
of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, Sichuan, China
| | - Wanyi Li
- Institute
of Medicinal Plants, Yunnan Academy of Agricultural
Sciences, 2228 Beijing Road, Kunming 650200, Yunnan, China
| | - Jian Chen
- Institute
of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, Sichuan, China
| | - Yingjiao Zhang
- Institute
of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, Sichuan, China
| | - Boyu Zhu
- Institute
of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, Sichuan, China
| | - Qiaolian Huang
- Institute
of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Road, Chengdu 610066, Sichuan, China
| |
Collapse
|
14
|
Macathiohydantoin L, a Novel Thiohydantoin Bearing a Thioxohexahydroimidazo [1,5-a] Pyridine Moiety from Maca ( Lepidium meyenii Walp.). Molecules 2021; 26:molecules26164934. [PMID: 34443522 PMCID: PMC8398295 DOI: 10.3390/molecules26164934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Five new thiohydantoin derivatives (1–5) were isolated from the rhizomes of Lepidium meyenii Walp. NMR (1H and 13C NMR, 1H−1H COSY, HSQC, and HMBC), HRESIMS, and ECD were employed for the structure elucidation of new compounds. Significantly, the structure of compound 1 was the first example of thiohydantoins with thioxohexahydroimidazo [1,5-a] pyridine moiety. Additionally, compounds 2 and 3 possess rare disulfide bonds. Except for compound 4, all isolates were assessed for neuroprotective activities in corticosterone (CORT)-stimulated PC12 cell damage. Among them, compound (−)-3 exhibited moderate neuroprotective activity (cell viability: 68.63%, 20 μM) compared to the positive control desipramine (DIM) (cell viability: 88.49%, 10 μM).
Collapse
|
15
|
Carvalho FV, Fonseca Santana L, Diogenes A da Silva V, Costa SL, Zambotti-Villelae L, Colepicolo P, Ferraz CG, Ribeiro PR. Combination of a multiplatform metabolite profiling approach and chemometrics as a powerful strategy to identify bioactive metabolites in Lepidium meyenii (Peruvian maca). Food Chem 2021; 364:130453. [PMID: 34186480 DOI: 10.1016/j.foodchem.2021.130453] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/28/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
Lepidium meyenii is an edible plant that has been used as a nutritional supplement worldwide due to its medicinal properties. However, most of the studies have focused on the pharmacological activities of the extracts rather than their chemical composition. Herein, we used a combination of a multiplatform metabolite profiling approach and chemometrics to identify bioactive metabolites in L. meyenii. Extracts obtained with ethyl acetate and ethanol showed the promising antioxidant, anti-glioma and antibacterial activities. Sixty metabolites were identified by HPLC-MS, whereas fifteen were identified by GC-MS. Partial least squares discriminant analysis (PLS-DA), hierarchical cluster analysis (HCA), and Variable Importance in Projection (VIP) successfully discriminated extracts obtained in different organic solvents from in natura dry roots and commercial product samples of L. meyenii. Additionally, correlation analysis allowed us to pinpoint potential candidates responsible for each biological activity tested for the extracts, which could be extrapolate for other food-related species.
Collapse
Affiliation(s)
- Fernanda V Carvalho
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115 Salvador, Brazil
| | - Lucia Fonseca Santana
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Victor Diogenes A da Silva
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Silvia L Costa
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Leonardo Zambotti-Villelae
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Caline G Ferraz
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115 Salvador, Brazil
| | - Paulo R Ribeiro
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115 Salvador, Brazil.
| |
Collapse
|
16
|
Jiao M, Dong Q, Zhang Y, Lin M, Zhou W, Liu T, Yuan B, Yin H. Neuroprotection of N-benzyl Eicosapentaenamide in Neonatal Mice Following Hypoxic-Ischemic Brain Injury. Molecules 2021; 26:molecules26113108. [PMID: 34067444 PMCID: PMC8197015 DOI: 10.3390/molecules26113108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Maca (Lepidium meyenii) has emerged as a popular functional plant food because of its medicinal properties and nutritional value. Macamides, as the exclusively active ingredients found in maca, are a unique series of non-polar, long-chain fatty acid N-benzylamides with multiple bioactivities such as antifatigue characteristics and improving reproductive health. In this study, a new kind of macamide, N-benzyl eicosapentaenamide (NB-EPA), was identified from maca. We further explore its potential neuroprotective role in hypoxic–ischemic brain injury. Our findings indicated that treatment with biosynthesized NB-EPA significantly alleviates the size of cerebral infarction and improves neurobehavioral disorders after hypoxic–ischemic brain damage in neonatal mice. NB-EPA inhibited the apoptosis of neuronal cells after ischemic challenge. NB-EPA improved neuronal cell survival and proliferation through the activation of phosphorylated AKT signaling. Of note, the protective property of NB-EPA against ischemic neuronal damage was dependent on suppression of the p53–PUMA pathway. Taken together, these findings suggest that NB-EPA may represent a new neuroprotectant for newborns with hypoxic–ischemic encephalopathy.
Collapse
Affiliation(s)
- Mengya Jiao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
| | - Qun Dong
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiting Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Min Lin
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510310, China;
| | - Wan Zhou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
- Correspondence: (T.L.); (H.Y.)
| | - Baohong Yuan
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Yin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (T.L.); (H.Y.)
| |
Collapse
|
17
|
de S Farias C, Dias de Cerqueira M, Colepicolo P, Zambotti-Villela L, Fernandez LG, Ribeiro PR. HPLC/HR-MS-Based Metabolite Profiling and Chemometrics: A Powerful Approach to Identify Bioactive Compounds from Abarema cochliacarpos. Chem Biodivers 2021; 18:e2100055. [PMID: 33780593 DOI: 10.1002/cbdv.202100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/29/2021] [Indexed: 11/10/2022]
Abstract
Despite its importance as a medicinal plant, there is a lack of studies that assessed the chemical composition of A. cochliacarpos extracts. Herein, we used a metabolite profiling approach and chemometrics as a powerful strategy to correlate the chemical composition with the antioxidant activity of A. cochliacarpos extracts. Extracts obtained with ethyl acetate showed greater antioxidant activity and higher total phenolic content than extracts obtained with hexane. The chemical composition was assessed by HPLC/HR-MS and it encompassed fatty alcohols, terpenoids, phenolic derivatives, lipids, carotenoid-like compounds, alkaloids, flavonoids, polyketides, and glycerophospholipids. Chemometrics successfully differentiated not only the chemical composition of extracts in response to the nature of the extraction solvent and the botanical part used during extraction but also it allowed us to associate the chemical composition with the antioxidant activity of the extracts, which might be particularly helpful for drug discovery and development programs.
Collapse
Affiliation(s)
- Caroline de S Farias
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Martins Dias de Cerqueira
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Leonardo Zambotti-Villela
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Luzimar G Fernandez
- Laboratório de Bioquímica, Biotecnologia e Bioprodutos, Departamento de Bioquímica e Biofísica, Universidade Federal da Bahia, Reitor Miguel Calmon s/n, 40160-100, Salvador, Brazil
| | - Paulo R Ribeiro
- Metabolomics Research Group, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115, Salvador, Brazil
| |
Collapse
|
18
|
Macamides: A review of structures, isolation, therapeutics and prospects. Food Res Int 2020; 138:109819. [DOI: 10.1016/j.foodres.2020.109819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
|
19
|
Apaza Ticona L, Arnanz Sebastián J, Serban AM, Rumbero Sánchez Á. Alkaloids isolated from Tropaeolum tuberosum with cytotoxic activity and apoptotic capacity in tumour cell lines. PHYTOCHEMISTRY 2020; 177:112435. [PMID: 32562919 DOI: 10.1016/j.phytochem.2020.112435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Two alkaloids were isolated and identified for the first time in the black tubers of Tropaeolum tuberosum, collected from the Titicani-Taca, Ingavi province in La Paz, Bolivia. Their structures were elucidated by extensive NMR and MS spectroscopic analyses. The isolated compounds were evaluated for their cytotoxicity and apoptotic capacity against four human cancer cell lines. 2-Benzyl-3-thioxohexahydropyrrolo[1,2-c]imidazole-1-one (1) showed slight cytotoxic activity against all the cancer cell lines which were tested, with IC50 values ranging from 27.45 ± 0.80 to 31.07 ± 0.87 μM. Moreover, N-(4-acetyl-5-methyl-5-phenyl-4,5-dihydro-1,3,4-thiadiazol-2-yl) acetamide (2) showed significant anti-cancer potential, with IC50 values between 1.26 ± 0.57 μM and 1.37 ± 0.09 μM against all human cancer cell lines which were tested. Treatment of tumour cell lines with the compounds caused an increase in the apoptotic rate of these cells, observing that compound 2 presented an apoptotic effect which was double with respect to the control (Dimethylenastron).
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049, Madrid, Spain; Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid. Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Julia Arnanz Sebastián
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049, Madrid, Spain
| | - Andreea Madalina Serban
- Maria Sklodowska Curie University Hospital for Children. Constantin Brancoveanu Boulevard, 077120, Bucharest, Romania
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|