1
|
Rocha GHAM, de Almeida MC, da Silva LLP, Flores IS, Castiglioni GL, De Oliveira TF, Pereira J. Food-related properties and composition of cocoa honey (Theobroma cacao L.): An integrated investigation. Food Res Int 2025; 202:115694. [PMID: 39967153 DOI: 10.1016/j.foodres.2025.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/16/2024] [Accepted: 01/04/2025] [Indexed: 02/20/2025]
Abstract
Cocoa (Theobroma cacao L.) is a tropical fruit used in chocolate production, with a huge portion of its byproducts, such as cocoa honey, being discarded, contributing to the over 52,000 tons of waste generated by the cocoa chain. Cocoa honey is a yellow liquid that drips from cocoa beans, rich in sugars, organic acids, vitamins, and minerals, making it highly susceptible to microbial fermentation. This study aims to provide a comprehensive analysis of cocoa honey's integrated profile, evaluating its antioxidant properties, bioactive compounds, vitamins, minerals, microbiological conditions, and physicochemical characteristics, while integrating a discussion on its potential food-related applications. Advanced analytical techniques, including high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), flame atomic absorption spectrophotometry (FAAS), and thermal analysis methods (differential scanning calorimetry and thermogravimetry, DSC/TGA), were employed to identify bioactive and nutritional compounds in this by-product and explore correlations between different identification instruments. The analytical techniques, combined with physicochemical analysis, revealed a sugar content of 17.68 g 100 mL-1, with fructose (4.65 g 100 mL-1) and glucose (4.19 g 100 mL-1) as the predominant sugars. Additionally, it is rich in essential minerals, including potassium (157.1 mg L-1) and magnesium (213.0 mg L-1), with the latter providing half of the recommended daily intake for an adult. Nuclear Magnetic Resonance (NMR) identified trace amounts of essential amino acids, such as leucine and threonine, along with vitamins like biotin (0.16 mg 100 mL-1), findings further confirmed by HPLC. The structural profile of cocoa honey demonstrated a complex matrix comprising amino acids and fermentative metabolites, including methylamine, ethanol, and lactic acid. GC-MS analysis of volatile compounds revealed key substances, including alcohols and esters, which contribute to cocoa honey's distinctive fruity and floral aroma. Cocoa honey exhibited notable antioxidant activity, with a phenolic content of 251 mg GAE 100 mL-1 and flavonoids at 172.41 mg CE 100 mL-1. This contributed to its antioxidant capacity, as determined by DPPH (312.96 µmol TE 100 mL-1), with results corroborated by other methods such as FRAP and ABTS+. Comparisons highlighted its antioxidant potential relative to other tropical fruit pulps. To ensure stability and prevent microbial spoilage, stabilization treatment temperatures below 75.9 °C were identified as optimal for pathogen elimination while preserving the structural integrity of the honey. In conclusion, cocoa honey exhibits a distinctive composition, antioxidant properties, and both nutritional and physicochemical characteristics, suggesting its potential for various applications in the food industry. These characteristics make it a candidate for use as a functional ingredient in fermented products, as well as a natural flavoring or sweetening agent. Further research is necessary to optimize stabilization methods and evaluate its broader applications in food production.
Collapse
Affiliation(s)
| | - Maria Carolina de Almeida
- Federal Institute of Education Science and Technology of Goiás - IFG Inhumas Campus Avenue Universitária Vale Das Goiabeiras CEP 75402-556 Inhumas Brazil
| | - Lethicya Lucas Pires da Silva
- School of Agronomy Federal University of Goiás-UFG Samambaia Campus Rodovia Goiânia-Nova Veneza km-0 Caixa Postal 131 CEP 74690-900 Goiânia Brazil
| | - Igor Savioli Flores
- Federal Institute of Education Science and Technology of Goiás - IFG Inhumas Campus Avenue Universitária Vale Das Goiabeiras CEP 75402-556 Inhumas Brazil
| | - Gabriel Luis Castiglioni
- School of Agronomy Federal University of Goiás-UFG Samambaia Campus Rodovia Goiânia-Nova Veneza km-0 Caixa Postal 131 CEP 74690-900 Goiânia Brazil
| | - Tatianne Ferreira De Oliveira
- School of Agronomy Federal University of Goiás-UFG Samambaia Campus Rodovia Goiânia-Nova Veneza km-0 Caixa Postal 131 CEP 74690-900 Goiânia Brazil
| | - Julião Pereira
- School of Agronomy Federal University of Goiás-UFG Samambaia Campus Rodovia Goiânia-Nova Veneza km-0 Caixa Postal 131 CEP 74690-900 Goiânia Brazil
| |
Collapse
|
2
|
Yao Z, Xie T, Deng H, Xiao S, Yang T. Directed Evolution of Microbial Communities in Fermented Foods: Strategies, Mechanisms, and Challenges. Foods 2025; 14:216. [PMID: 39856881 PMCID: PMC11764801 DOI: 10.3390/foods14020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Directed Evolution of Microbial Communities (DEMC) offers a promising approach to enhance the functional attributes of microbial consortia in fermented foods by mimicking natural selection processes. This review details the application of DEMC in fermented foods, focusing on optimizing community traits to improve both fermentation efficiency and the sensory quality of the final products. We outline the core techniques used in DEMC, including the strategic construction of initial microbial communities, the systematic introduction of stress factors to induce desirable traits, and the use of artificial selection to cultivate superior communities. Additionally, we explore the integration of genomic tools and dynamic community analysis to understand and guide the evolutionary trajectories of these communities. While DEMC shows substantial potential for refining fermented food products, it faces challenges such as maintaining genetic diversity and functional stability of the communities. Looking ahead, the integration of advanced omics technologies and computational modeling is anticipated to significantly enhance the predictability and control of microbial community evolution in food fermentation processes. By systematically improving the selection and management of microbial traits, DEMC serves as a crucial tool for enhancing the quality and consistency of fermented foods, directly contributing to more robust and efficient food production systems.
Collapse
Affiliation(s)
| | | | | | | | - Tao Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Li T, Cao W, Li D, Wei C, Yan Y, Zeng X. Metagenomic insights into quorum sensing-associated microbial profiling and its correlations with flavor compounds of Maotai-flavor liquor: A case study of stacking fermented grains. Food Res Int 2024; 198:115324. [PMID: 39643336 DOI: 10.1016/j.foodres.2024.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
Stacking fermentation is typical process of Maotai-flavor Baijiu and microbial composition determine content of flavors. To date, the knowledge on the driving force of microbial composition was as yet unknown. Since quorum sensing molecule (QSM) plays an important role in modifying microbial interactions. Therefore, the objectives of the present study were: (1) to describe the microbial profile associated with QSM in stacking grains using metagenomics; (2) to elucidate how QSM shapes microbial interactions and accordingly regulates flavor synthesis. Results indicated that bacterial QSM including AI-2, DSF, and AHL as well as fungal QSM aromatic alcohols and farnesol were prevalent in the stacking fermented grains. Thereinto, AI-2 might be an important driving force of microbial composition due to its highest abundance. AI-2 in Limosilactobacillus fermentum, Pediococcus pentosaceus, and Weissella cibaria perhaps modified microbial interactions together with fungal QSM in Schizosaccharomyces pombe and Pichia membranifaciens. The role of AI-2 was much higher than that of fungal QSM. Furthermore, QSM indirectly influenced the synthesis of important flavors such as ethyl lactate, phenylethanol, and ethyl phenylacetate through the dynamic of microbial composition. Together, this current study for the first time explored the effects of QSM on microbial composition and flavor synthesis in the Baijiu field.
Collapse
Affiliation(s)
- Tao Li
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang 550025, China
| | - Wentao Cao
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang 550025, China
| | - Dounan Li
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang 550025, China
| | - Chaoyang Wei
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang 550025, China
| | - Yan Yan
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang 550025, China
| | - Xiangyong Zeng
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Han D, Yang Y, Guo Z, Dai S, Jiang M, Zhu Y, Wang Y, Yu Z, Wang K, Rong C, Yu Y. A Review on the Interaction of Acetic Acid Bacteria and Microbes in Food Fermentation: A Microbial Ecology Perspective. Foods 2024; 13:2534. [PMID: 39200461 PMCID: PMC11353490 DOI: 10.3390/foods13162534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
In fermented foods, acetic acid bacteria (AAB), kinds of bacteria with a long history of utilization, contribute to safety, nutritional, and sensory properties primarily through acetic acid fermentation. AAB are commonly found in various fermented foods such as vinegar, sour beer, fermented cocoa and coffee beans, kefir beverages, kombucha, and sourdough. They interact and cooperate with a variety of microorganisms, resulting in the formation of diverse metabolites and the production of fermented foods with distinct flavors. Understanding the interactions between AAB and other microbes is crucial for effectively controlling and utilizing AAB in fermentation processes. However, these microbial interactions are influenced by factors such as strain type, nutritional conditions, ecological niches, and fermentation duration. In this review, we examine the relationships and research methodologies of microbial interactions and interaction studies between AAB and yeasts, lactic acid bacteria (LAB), and bacilli in different food fermentation processes involving these microorganisms. The objective of this review is to identify key interaction models involving AAB and other microorganisms. The insights gained will provide scientific guidance for the effective utilization of AAB as functional microorganisms in food fermentation processes.
Collapse
Affiliation(s)
- Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yunsong Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Zhantong Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Shuwen Dai
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Mingchao Jiang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Chunchi Rong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, China; (D.H.); (Z.G.)
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Jiangsu University of Science and Technology, Zhenjiang 212004, China
| |
Collapse
|
5
|
Kang J, Huang X, Li R, Zhang Y, Chen XX, Han BZ. Deciphering the core microbes and their interactions in spontaneous Baijiu fermentation: A comprehensive review. Food Res Int 2024; 188:114497. [PMID: 38823877 DOI: 10.1016/j.foodres.2024.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The spontaneous Baijiu fermentation system harbors a complex microbiome that is highly dynamic in time and space and varies depending on the Jiuqu starters and environmental factors. The intricate microbiota presents in the fermentation environment is responsible for carrying out various reactions. These reactions necessitate the interaction among the core microbes to influence the community function, ultimately shaping the distinct Baijiu styles through the process of spontaneous fermentation. Numerous studies have been conducted to enhance our understanding of the diversity, succession, and function of microbial communities with the aim of improving fermentation manipulation. However, a comprehensive and critical assessment of the core microbes and their interaction remains one of the significant challenges in the Baijiu fermentation industry. This paper focuses on the fermentation properties of core microbes. We discuss the state of the art of microbial traceability, highlighting the crucial role of environmental and starter microbiota in the Baijiu brewing microbiome. Also, we discuss the various interactions between microbes in the Baijiu production system and propose a potential conceptual framework that involves constructing predictive network models to simplify and quantify microbial interactions using co-culture models. This approach offers effective strategies for understanding the core microbes and their interactions, thus beneficial for the management of microbiota and the regulation of interactions in Baijiu fermentation processes.
Collapse
Affiliation(s)
- Jiamu Kang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China; School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiaoning Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rengshu Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuandi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xiao-Xue Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Li M, Lao F, Pan X, Yuan L, Zhang D, Wu J. Insights into the mechanisms driving microbial community succession during pepper fermentation: Roles of microbial interactions and endogenous environmental changes. Food Res Int 2024; 179:114033. [PMID: 38342553 DOI: 10.1016/j.foodres.2024.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024]
Abstract
Elucidating the driving mechanism of microbial community succession during pepper fermentation contributes to establishing efficient fermentation regulation strategies. This study utilized three-generation high-throughput sequencing technology, microbial co-occurrence network analysis, and random forest analysis to reveal microbial community succession processes and driving mechanisms during pepper fermentation. The results showed that more positive correlations than negative correlations were observed among microorganisms, with positive correlation proportions of 60 %, 51.03 %, and 71.43 % between bacteria and bacteria, fungi and fungi, and bacteria and fungi in sipingtou peppers, and 69.23 %, 54.93 %, and 79.44 % in zhudachang peppers, respectively. Microbial interactions, mainly among Weissella hellenica, Lactobacillus plantarum, Hanseniaspora opuntiae, and Kazachstania humillis, could drive bacterial and fungal community succession. Notably, the bacterial community successions during the fermentation of two peppers were similar, showing the transition from Leuconostoc pseudomesenteroides, Lactococcus lactis, Weissella ghanensis to Weissella hellenica and Lactobacillus plantarum. However, the fungal community successions in the two fermented peppers differed significantly, and the differential biomarkers were Dipodascus geotrichum and Kazachstania humillis. Differences in autochthonous microbial composition and inherent constituents brought by pepper varieties resulted in different endogenous environmental changes, mainly in fructose, malic acid, and citric acid. Furthermore, endogenous environmental factors could also drive microbial community succession, with succinic acid, lactic acid, and malic acid being the main potential drivers of bacterial community succession, whereas fructose, glucose, and succinic acid were the main drivers of fungal community succession. These results will provide insights into controlling fermentation processes by raw material combinations, optimization of environmental parameters, and microbial interactions.
Collapse
Affiliation(s)
- Meilun Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Lin Yuan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Donghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
7
|
Guzmán-Armenteros TM, Ruales J, Cuesta-Plúa C, Bravo J, Sinche M, Vera E, Vera E, Vargas-Jentzsch P, Ciobotă V, Ortega-Ojeda FE, Proaño A, Echeverría A, Ramos-Guerrero L. Raman Spectroscopic and Sensory Evaluation of Cocoa Liquor Prepared with Ecuadorian Cocoa Beans Treated with Gamma Irradiation or Induced Electromagnetic Field Fermentation. Foods 2023; 12:3924. [PMID: 37959042 PMCID: PMC10647436 DOI: 10.3390/foods12213924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 11/15/2023] Open
Abstract
Cocoa liquor is the primary precursor of the worldwide highly appreciated commodity chocolate. Its quality depends on several factors, such as the type of cocoa, the fermentation process, and the control of the contaminants in the fermented beans. This study aims to evaluate whether the induced magnetic field treatment during the fermentation process or the pathogen reduction with gamma irradiation after the fermentation affect the characteristics of the cocoa liquor obtained from Ecuadorian cocoa beans. For this purpose, liquor samples from controls (standard process), from beans treated with an induced magnetic field up to 80 mT, and from beans irradiated with nominal doses up to 3 kGy were characterized through Raman spectroscopic analysis and sensorial evaluation. The most relevant bands of the cocoa liquor were assigned according to reports from the literature, spectroscopic data, and chemometrics. The spectra corresponding to different treatments and doses were visually very similar, but they could be discriminated using OPLS-DA models, where the most intense Raman signals were attributed to the lipid components. The sensorial evaluation rated the presence of floral, fruity, almondy, acid, and bitter flavors, along with astringency and intense aroma, and these attributes exhibited variable behavior depending on the dose of the irradiation or magnetic treatment. Therefore, both treatments may exert an influence on cocoa beans and, therefore, on the cocoa liquor quality.
Collapse
Affiliation(s)
- Tania María Guzmán-Armenteros
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.); (E.V.)
| | - Jenny Ruales
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.); (E.V.)
| | - Cristina Cuesta-Plúa
- Agencia de Regulación y Control Fito y Zoosanitario (AGROCALIDAD), Av. Interoceánica km 14 ½, Tumbaco 170184, Ecuador; (C.C.-P.); (J.B.)
| | - Juan Bravo
- Agencia de Regulación y Control Fito y Zoosanitario (AGROCALIDAD), Av. Interoceánica km 14 ½, Tumbaco 170184, Ecuador; (C.C.-P.); (J.B.)
| | - Marco Sinche
- Departamento de Ciencias Nucleares, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170525, Ecuador; (M.S.); (E.V.); (P.V.-J.)
| | - Edwin Vera
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.); (E.V.)
| | - Edison Vera
- Departamento de Ciencias Nucleares, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170525, Ecuador; (M.S.); (E.V.); (P.V.-J.)
| | - Paul Vargas-Jentzsch
- Departamento de Ciencias Nucleares, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170525, Ecuador; (M.S.); (E.V.); (P.V.-J.)
| | - Valerian Ciobotă
- Rigaku Analytical Devices, Inc., 30 Upton Drive, Suite 2, Wilmington, MA 01887, USA;
| | - Fernando E. Ortega-Ojeda
- Departamento de Ciencias de la Computación, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.6, 28871 Alcalá de Henares, Madrid, Spain;
- Instituto Universitario de Investigación en Ciencias Policiales (IUICP), Universidad de Alcalá, Libreros 27, 28801 Alcalá de Henares, Madrid, Spain
| | - Andrés Proaño
- Programa de Reactivación de Café y Cacao, Ministerio de Agricultura y Ganadería, Av. Eloy Alfaro y Av. Amazonas, Quito 170518, Ecuador;
| | - Armando Echeverría
- Facultad de Ciencias Técnicas, Universidad Internacional del Ecuador, Quito 170411, Ecuador;
| | - Luis Ramos-Guerrero
- Grupo de Investigación Bio-Quimioinformática, Carrera de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito 170503, Ecuador
| |
Collapse
|
8
|
Tang L, O'Dwyer J, Kimyon Ö, Manefield MJ. Microbial community composition of food waste before anaerobic digestion. Sci Rep 2023; 13:12703. [PMID: 37543702 PMCID: PMC10404229 DOI: 10.1038/s41598-023-39991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023] Open
Abstract
Anaerobic digestion is widely used to process and recover value from food waste. Commercial food waste anaerobic digestion facilities seek improvements in process efficiency to enable higher throughput. There is limited information on the composition of microbial communities in food waste prior to digestion, limiting rational exploitation of the catalytic potential of microorganisms in pretreatment processes. To address this knowledge gap, bacterial and fungal communities in food waste samples from a commercial anaerobic digestion facility were characterised over 3 months. The abundance of 16S rRNA bacterial genes was approximately five orders of magnitude higher than the abundance of the fungal intergenic spacer (ITS) sequence, suggesting the numerical dominance of bacteria over fungi in food waste before anaerobic digestion. Evidence for the mass proliferation of bacteria in food waste during storage prior to anaerobic digestion is presented. The composition of the bacterial community shows variation over time, but lineages within the Lactobacillaceae family are consistently dominant. Nitrogen content and pH are correlated to community variation. These findings form a foundation for understanding the microbial ecology of food waste and provide opportunities to further improve the throughput of anaerobic digestion.
Collapse
Affiliation(s)
- Linjie Tang
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Jack O'Dwyer
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Önder Kimyon
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Michael J Manefield
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
9
|
Zeng X, Zou Y, Zheng J, Qiu S, Liu L, Wei C. Quorum sensing-mediated microbial interactions: Mechanisms, applications, challenges and perspectives. Microbiol Res 2023; 273:127414. [PMID: 37236065 DOI: 10.1016/j.micres.2023.127414] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Microbial community in natural or artificial environments playes critical roles in substance cycles, products synthesis and species evolution. Although microbial community structures have been revealed via culture-dependent and culture-independent approaches, the hidden forces driving the microbial community are rarely systematically discussed. As a mode of cell-to-cell communication that modifies microbial interactions, quorum sensing can regulate biofilm formation, public goods secretion, and antimicrobial substances synthesis, directly or indirectly influencing microbial community to adapt to the changing environment. Therefore, the current review focuses on microbial community in the different habitats from the quorum sensing perspective. Firstly, the definition and classification of quorum sensing were simply introduced. Subsequently, the relationships between quorum sensing and microbial interactions were deeply explored. The latest progressives regarding the applications of quorum sensing in wastewater treatment, human health, food fermentation, and synthetic biology were summarized in detail. Finally, the bottlenecks and outlooks of quorum sensing driving microbial community were adequately discussed. To our knowledge, this current review is the first to reveal the driving force of microbial community from the quorum sensing perspective. Hopefully, this review provides a theoretical basis for developing effective and convenient approaches to control the microbial community with quorum sensing approaches.
Collapse
Affiliation(s)
- Xiangyong Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang 550025, China.
| | - Yunman Zou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co Ltd, No.150 Minjiang West Road, Yibin City 644007, China
| | - Shuyi Qiu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang 550025, China
| | - Lanlan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang 550025, China
| | - Chaoyang Wei
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biophomacy, Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Guzmán-Armenteros TM, Ramos-Guerrero LA, Guerra LS, Weckx S, Ruales J. Optimization of cacao beans fermentation by native species and electromagnetic fields. Heliyon 2023; 9:e15065. [PMID: 37077687 PMCID: PMC10106516 DOI: 10.1016/j.heliyon.2023.e15065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Acid and bitter notes of the cocoa clone Cacao Castro Naranjal 51 (CCN 51) negatively affect the final quality of the chocolate. Thence, the fermentative process of cocoa beans using native species and electromagnetic fields (EMF) was carried out to evaluate the effect on the yield and quality of CCN 51 cocoa beans. The variables magnetic field density (D), exposure time (T), and inoculum concentration (IC) were optimized through response surface methodology to obtain two statistically validated second-order models, explaining 88.39% and 92.51% of the variability in the yield and quality of the beans, respectively. In the coordinate: 5 mT(D), 22.5 min (T), and 1.6% (CI), yield and bean quality improved to 110% and 120% above the control (without magnetic field). The metagenomic analysis showed that the changes in the microbial communities favored the aroma profile at low and intermediate field densities (5-42 mT) with high yields and floral, fruity, and nutty notes. Conversely, field densities (80 mT) were evaluated with low yields and undesirable notes of acidity and bitterness. The findings revealed that EMF effectively improves the yield and quality of CCN 51 cocoa beans with future applications in the development and quality of chocolate products.
Collapse
Affiliation(s)
- Tania María Guzmán-Armenteros
- Departamento de Ciencia de Alimentos y Biotecnología (DECAB), Escuela Politécnica Nacional (EPN), Quito, Ecuador
- Corresponding author.
| | | | - Luis Santiago Guerra
- Department of Pathology, Faculty of Medical Sciences, Universidad Central del Ecuador (UCE), Capus El Dorador, Quito, Ecuador
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | - Jenny Ruales
- Departamento de Ciencia de Alimentos y Biotecnología (DECAB), Escuela Politécnica Nacional (EPN), Quito, Ecuador
| |
Collapse
|
11
|
Herrera-Rocha F, Fernández-Niño M, Cala MP, Duitama J, Barrios AFG. Omics approaches to understand cocoa processing and chocolate flavor development: A review. Food Res Int 2023; 165:112555. [PMID: 36869541 DOI: 10.1016/j.foodres.2023.112555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
The global market of chocolate has increased worldwide during the last decade and is expected to reach a value of USD 200 billion by 2028. Chocolate is obtained from different varieties of Theobroma cacao L, a plant domesticated more than 4000 years ago in the Amazon rainforest. However, chocolate production is a complex process requiring extensive post-harvesting, mainly involving cocoa bean fermentation, drying, and roasting. These steps have a critical impact on chocolate quality. Standardizing and better understanding cocoa processing is, therefore, a current challenge to boost the global production of high-quality cocoa worldwide. This knowledge can also help cocoa producers improve cocoa processing management and obtain a better chocolate. Several recent studies have been conducted to dissect cocoa processing via omics analysis. A vast amount of data has been produced regarding omics studies of cocoa processing performed worldwide. This review systematically analyzes the current data on cocoa omics using data mining techniques and discusses opportunities and gaps for cocoa processing standardization from this data. First, we observed a recurrent report in metagenomics studies of species of the fungi genus Candida and Pichia as well as bacteria from the genus Lactobacillus, Acetobacter, and Bacillus. Second, our analyzes of the available metabolomics data showed clear differences in the identified metabolites in cocoa and chocolate from different geographical origin, cocoa type, and processing stage. Finally, our analysis of peptidomics data revealed characteristic patterns in the gathered data including higher diversity and lower size distribution of peptides in fine-flavor cocoa. In addition, we discuss the current challenges in cocoa omics research. More research is still required to fill gaps in central matter in chocolate production as starter cultures for cocoa fermentation, flavor evolution of cocoa, and the role of peptides in the development of specific flavor notes. We also offer the most comprehensive collection of multi-omics data in cocoa processing gathered from different research articles.
Collapse
Affiliation(s)
- Fabio Herrera-Rocha
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Miguel Fernández-Niño
- Leibniz-Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, D-06120 Halle, Germany.
| | - Mónica P Cala
- MetCore - Metabolomics Core Facility, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia.
| |
Collapse
|
12
|
Chen Y, Chen T, Yin J. Impact of N-butyryl-l-homoserine lactone-mediated quorum sensing on acidogenic fermentation under saline conditions: Insights into volatile fatty acids production and microbial community. BIORESOURCE TECHNOLOGY 2023; 368:128354. [PMID: 36410593 DOI: 10.1016/j.biortech.2022.128354] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic fermentation is often inhibited under high salinity conditions. This study discovered a strong, positive association between N-butyryl-l-homoserine lactone (C4-HSL)-mediated quorum sensing (QS) and the production of volatile fatty acids (VFAs) under saline conditions. N-acyl-homoserine lactones were identified during acidogenic fermentation for VFA production. Only C4-HSL was detected at all salt concentrations, and a maximum C4-HSL concentration of 0.49 μg/L was observed at a salt concentration of 15 g/L. C4-HSL secretion was closely related to salinity, and a strong correlation was observed between C4-HSL and VFAs (p < 0.01), especially butyrate. Further experiments with C4-HSL addition indicated that exogenous C4-HSL promoted substrate hydrolysis and increased butyrate production by 1.5 times at 15 g/L NaCl. Microbial community analysis indicated that unclassified_f__Enterobacteriaceae and Clostridium_sensu_stricto_1, associated with QS genes and butyrate production, were positively associated with C4-HSL. This study demonstrates the positive effect of C4-HSL-mediated QS on acidogenic fermentation.
Collapse
Affiliation(s)
- Yaqin Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China.
| |
Collapse
|
13
|
Unveiling the Microbial Ecology behind Mezcal: A Spirit Drink with a Growing Global Demand. FERMENTATION 2022. [DOI: 10.3390/fermentation8110662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The advent of omics has expanded our knowledge of microbial ecology behind Mezcal, a fermented spirit made from the juices of cooked Agave plants (Agave spp., Asparagaceae). Mezcal has been produced in Mexico for over 200 years, however, has been in high demand since its discovery by international markets in the last decade. Mezcal is appreciated for its diverse and complex sensory profile, which is tied to the geographic and environmental diversity of the different Mezcal-producing regions. This regional typicity is brought about by spontaneous fermentation consortia that act in loosely controlled artisanal fermentation processes. Previous works have mainly concentrated on microorganisms involved in the biosynthesis of alcohol and other volatile compounds, or from a different perspective, on culturable microorganisms (mainly yeasts) influencing the taste profile. Attention has been aimed at the richness of microbial populations in point events or under laboratory conditions, which leaves much of the biological richness out of account. Omics techniques have become powerful tools for characterizing the composition of autochthonous fermentation microbiota, regional or endemic features, and ecological processes that determine the dynamics of Mezcal fermentation. The analyses of genetic material, proteins, and metabolites allow disentangling the biological complexity of Mezcal production. This review presents the reader with an up-to-date overview of publications that discuss microbial communities in Mezcal fermentation, metabolic pathways regulated by microbial interactions, and the application of omics to characterize the spontaneous fermenting microbiota conformation and dynamics considering the subjacent ecological processes.
Collapse
|
14
|
Lima CODC, De Castro GM, Solar R, Vaz ABM, Lobo F, Pereira G, Rodrigues C, Vandenberghe L, Martins Pinto LR, da Costa AM, Koblitz MGB, Benevides RG, Azevedo V, Uetanabaro APT, Soccol CR, Góes-Neto A. Unraveling potential enzymes and their functional role in fine cocoa beans fermentation using temporal shotgun metagenomics. Front Microbiol 2022; 13:994524. [PMID: 36406426 PMCID: PMC9671152 DOI: 10.3389/fmicb.2022.994524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/04/2022] [Indexed: 03/23/2024] Open
Abstract
Cocoa beans fermentation is a spontaneous process, essential for the generation of quality starting material for fine chocolate production. The understanding of this process has been studied by the application of high-throughput sequencing technologies, which grants a better assessment of the different microbial taxa and their genes involved in this microbial succession. The present study used shotgun metagenomics to determine the enzyme-coding genes of the microbiota found in two different groups of cocoa beans varieties during the fermentation process. The statistical evaluation of the most abundant genes in each group and time studied allowed us to identify the potential metabolic pathways involved in the success of the different microorganisms. The results showed that, albeit the distinction between the initial (0 h) microbiota of each varietal group was clear, throughout fermentation (24-144 h) this difference disappeared, indicating the existence of selection pressures. Changes in the microbiota enzyme-coding genes over time pointed to the distinct ordering of fermentation at 24-48 h (T1), 72-96 h (T2), and 120-144 h (T3). At T1, the significantly more abundant enzyme-coding genes were related to threonine metabolism and those genes related to the glycolytic pathway, explained by the abundance of sugars in the medium. At T2, the genes linked to the metabolism of ceramides and hopanoids lipids were clearly dominant, which are associated with the resistance of microbial species to extreme temperatures and pH values. In T3, genes linked to trehalose metabolism, related to the response to heat stress, dominated. The results obtained in this study provided insights into the potential functionality of microbial community succession correlated to gene function, which could improve cocoa processing practices to ensure the production of more stable quality end products.
Collapse
Affiliation(s)
- Carolina O. de C. Lima
- Department of Biological Sciences, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| | - Giovanni M. De Castro
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Solar
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Aline B. M. Vaz
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Francisco Lobo
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gilberto Pereira
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Cristine Rodrigues
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Luciana Vandenberghe
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | - Andréa Miura da Costa
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Maria Gabriela Bello Koblitz
- Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Guimarães Benevides
- Department of Biological Sciences, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Aristóteles Góes-Neto
- Department of Biological Sciences, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
15
|
Zhu Z, Wu Y, Hu W, Zheng X, Chen Y. Valorization of food waste fermentation liquid into single cell protein by photosynthetic bacteria via stimulating carbon metabolic pathway and environmental behaviour. BIORESOURCE TECHNOLOGY 2022; 361:127704. [PMID: 35908636 DOI: 10.1016/j.biortech.2022.127704] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Single cell protein (SCP) production by photosynthetic bacteria (PSB) is dependent on the bioavailability of carbon source, while sufficient volatile fatty acids (VFAs) in food waste fermentation liquid might be a potential alternative. It is unclear how the fermentation liquid affects the SCP biosynthesis and the related metabolic mechanism. This work demonstrated that the SCP production could be improved effectively (2088.4 mg/L) with high conversion capacity of carbon source (0.99 mg-biomass/mg-COD) by regulating carbon source level. PSB preferred to utilize the VFAs in food waste fermentation liquid. The carbon metabolic pathways (e.g., the transformation of VFAs to acetyl-CoA, and tricarboxylic acid cycle) involved in the SCP production were enhanced under optimal condition. Moreover, optimal carbon source regulation could significantly stimulate the environmental behaviour of PSB (e.g., two-component system, quorum sensing, and ATP-binding cassette transporter) involved in adaptation to external stimulus and maintaining high bacterial activity, resulting in SCP yield promotion.
Collapse
Affiliation(s)
- Zizeng Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wanying Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
16
|
Liu L, Tao Y, Li Y, Deng X, Liu G, Yao Y, Chen X, Yang S, Tu M, Peng Q, Huang L, Xiang W, Rao Y. Isolation and characterization of bacteria that produce quorum sensing molecules during the fermentation and deterioration of pickles. Int J Food Microbiol 2022; 379:109869. [DOI: 10.1016/j.ijfoodmicro.2022.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
|
17
|
Wang F, Luo J, Fang S, Huang W, Zhang Y, Zhang L, Cheng X, Du W, Fang F, Cao J, Wu Y. Mechanisms of allicin exposure for the sludge fermentation enhancement: Focusing on the fermentation processes and microbial metabolic traits. J Environ Sci (China) 2022; 115:253-264. [PMID: 34969453 DOI: 10.1016/j.jes.2021.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 06/14/2023]
Abstract
As a frequently used product with antimicrobial activity, consumed allicin might be discharged and concentrated in waste-activated sludge (WAS). However, the influence of allicin (as an exogenous pollutant) on WAS fermentation has not been clearly revealed. This study aimed to disclose the impacts of allicin on volatile fatty acid (VFA) generation during WAS fermentation. The results showed that the appropriate presence of allicin (10 mg/g TSS) significantly enhanced the VFA yield (1894 versus 575 mg COD/L in the control) with increased acetate proportion (24.3%). Further exploration found that allicin promoted WAS solubilization, hydrolysis and acidification simultaneously. Metagenomic analysis revealed that the key genes involved in extracellular hydrolysis metabolism (i.e., CAZymes), membrane transport (i.e., gtsA and ytfT), substrate metabolism (i.e., yhdR and pfkC) and fatty acid synthesis (i.e., accA and accD) were all highly expressed. Allicin also induced the bacteria to produce more signalling molecules and regulate cellular functions, thereby enhancing the microbial adaptive and regulatory capacity to the unfavourable environment. Moreover, the variations in fermentative microbes and their contributions to the upregulation of functional genes (i.e., ytfR, gltL, INV, iolD and pflD) for VFA generation were disclosed. Overall, the simultaneous stimulation of functional microbial abundances and metabolic activities contributed to VFA production in allicin-conditioned reactors.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yunqi Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
18
|
Kang J, Zheng X, Yang X, Li H, Cheng J, Fan L, Zhao H, Xue Y, Ding Z, Han B. Contrasting summer versus winter dynamic microbial communities and their environmental driving factors in the solid-state saccharification process of Fuyu-flavor Baijiu. Food Res Int 2022; 154:111008. [DOI: 10.1016/j.foodres.2022.111008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/04/2023]
|
19
|
|
20
|
Almeida OGG, Gimenez MP, De Martinis ECP. Comparative pangenomic analyses and biotechnological potential of cocoa-related Acetobacter senegalensis strains. Antonie van Leeuwenhoek 2021; 115:111-123. [PMID: 34817761 DOI: 10.1007/s10482-021-01684-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
Acetobacter senegalensis belongs to the group of acetic acid bacteria (AAB) that present potential biotechnological applications, for production of D-gluconate, cellulose and acetic acid. AAB can overcome heat and acid stresses by using strategies involving the overexpression of heat-shock proteins and enzymes from the complex pyrroquinoline-ADH, besides alcohol dehydrogenases (ADH). Nonetheless, the isolation of A. senegalensis and other AAB from food may be challenging due to presence of viable but non-culturable (VBNC) cells and due to uncertainties about nutritional requirements. To contribute for a better understanding of the ecology of AAB, this paper reports on the pangenome analysis of five strains of A. senegalensis recently isolated from a Brazilian spontaneous cocoa fermentation. The results showed biosynthetic clusters exclusively found in some cocoa-related AAB, such as those related to terpene pathways, which are important for flavour development. Genes related to oxidative stress were conserved in all the genomes, with multiple clusters. Moreover, there were genes coding for ADH and putative ABC transporters distributed in core, shell and cloud genomes, while chaperonin-encoding genes were present only in the core and soft-core genomes. Regarding quorum sensing, a response regulator gene was in the shell genome, and the gene encoding for acyl-homoserine lactone efflux protein was in the soft-core genome. There were quorum quenching-related genes, mainly encoding for lactonases, but also for acylases. Moreover, A. senegalensis did not have determinants of virulence or antibiotic resistance, which are good traits for strains intended to be applied in food fermentation.
Collapse
Affiliation(s)
- O G G Almeida
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - M P Gimenez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - E C P De Martinis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| |
Collapse
|
21
|
Gong C, He Y, Tang Y, Hu R, Lv Y, Zhang Q, Tardy BL, Richardson JJ, He Q, Guo J, Chi Y. Biofilms in plant-based fermented foods: Formation mechanisms, benefits and drawbacks on quality and safety, and functionalization strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Santos CA, Lima EMF, Franco BDGDM, Pinto UM. Exploring Phenolic Compounds as Quorum Sensing Inhibitors in Foodborne Bacteria. Front Microbiol 2021; 12:735931. [PMID: 34594318 PMCID: PMC8477669 DOI: 10.3389/fmicb.2021.735931] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of multidrug-resistant bacteria stimulates the search for new substitutes to traditional antimicrobial agents, especially molecules with antivirulence properties, such as those that interfere with quorum sensing (QS). This study aimed to evaluate the potential of phenolic compounds for QS inhibition in a QS biosensor strain (Chromobacterium violaceum) and three foodborne bacterial species (Aeromonas hydrophila, Salmonella enterica serovar Montevideo, and Serratia marcescens). Initially, an in silico molecular docking study was performed to select the compounds with the greatest potential for QS inhibition, using structural variants of the CviR QS regulator of C. violaceum as target. Curcumin, capsaicin, resveratrol, gallic acid, and phloridizin presented good affinity to at least four CviR structural variants. These phenolic compounds were tested for antimicrobial activity, inhibition of biofilm formation, and anti-QS activity. The antimicrobial activity when combined with kanamycin was also assessed. Curcumin, capsaicin, and resveratrol inhibited up to 50% of violacein production by C. violaceum. Biofilm formation was inhibited by resveratrol up to 80% in A. hydrophila, by capsaicin and curcumin up to 40% in S. Montevideo and by resveratrol and capsaicin up to 60% in S. marcescens. Curcumin completely inhibited swarming motility in S. marcescens. Additionally, curcumin and resveratrol increased the sensitivity of the tested bacteria to kanamycin. These results indicate that curcumin and resveratrol at concentrations as low as 6μM are potential quorum sensing inhibitors besides having antimicrobial properties at higher concentrations, encouraging applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | - Uelinton Manoel Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Hernandez CE, Granados L. Quality differentiation of cocoa beans: implications for geographical indications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3993-4002. [PMID: 33421139 DOI: 10.1002/jsfa.11077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Geographical indications may stimulate collective actions of governance for quality control, trade and marketing as well as innovation based on the use of local resources and regional biodiversity. Cocoa production, however, dominated by small family agriculture in tropical regions, has rarely made use of such strategies. This review is aimed at understanding major research interests and emerging technologies helpful for the origin differentiation of cocoa quality. Results from literature search and cited references of publications on cocoa research were imported into VOSviewer for data analysis, which aided in visualizing major research hotpots. Co-occurrence analysis yielded major research clusters which guided the discussion of this review. Observed was a consensus recognizing cocoa quality resulting from the interaction of genotype, fermentation variables and geographical origin. A classic view of cocoa genetics based on the dichotomy of 'fine versus bulk' has been reexamined by a broader perspective of human selection and cocoa genotype evolution. This new approach to cocoa genetic diversity, together with the understanding of complex microbiome interactions through fermentation, as well as quality reproducibility challenged by geographical conditions, have demonstrated the importance of terroir in the production of special attributes. Cocoa growing communities around the tropics have been clearly enabled by new omics and chemometrics to systematize producing conditions and practices in the designation of specifications for the differentiation of origin quality. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carlos Eduardo Hernandez
- Laboratory of Food Quality Innovation, School of Agricultural Sciences, National University (UNA), Heredia, Costa Rica
| | - Leonardo Granados
- Center for the Development of Denominations of Origin and Agrifood Quality (CADENAGRO), School of Agricultural Sciences, National University (UNA), Heredia, Costa Rica
| |
Collapse
|
24
|
Mota-Gutierrez J, Cocolin L. Current trends and applications of plant origin lactobacilli in the promotion of sustainable food systems. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Metagenome-Assembled Genomes Contribute to Unraveling of the Microbiome of Cocoa Fermentation. Appl Environ Microbiol 2021; 87:e0058421. [PMID: 34105982 DOI: 10.1128/aem.00584-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metagenomic studies about cocoa fermentation have mainly reported on the analysis of short reads for determination of operational taxonomic units. However, it is also important to determine metagenome-assembled genomes (MAGs), which are genomes deriving from the assembly of metagenomics. For this research, all the cocoa metagenomes from public databases were downloaded, resulting in five data sets: one from Ghana and four from Brazil. In addition, in silico approaches were used to describe putative phenotypes and the metabolic potential of MAGs. A total of 17 high-quality MAGs were recovered from these microbiomes, as follows: (i) for fungi, Yamadazyma tenuis (n = 1); (ii) lactic acid bacteria, Limosilactobacillus fermentum (n = 5), Liquorilactobacillus cacaonum (n = 1), Liquorilactobacillus nagelli (n = 1), Leuconostoc pseudomesenteroides (n = 1), and Lactiplantibacillus plantarum subsp. plantarum (n = 1); (iii) acetic acid bacteria, Acetobacter senegalensis (n = 2) and Kozakia baliensis (n = 1); and (iv) Bacillus subtilis (n = 1), Brevundimonas sp. (n = 2), and Pseudomonas sp. (n = 1). Medium-quality MAGs were also recovered from cocoa microbiomes, including some that, to our knowledge, were not previously detected in this environment (Liquorilactobacillus vini, Komagataeibacter saccharivorans, and Komagataeibacter maltaceti) and others previously described (Fructobacillus pseudoficulneus and Acetobacter pasteurianus). Taken together, the MAGs were useful for providing an additional description of the microbiome of cocoa fermentation, revealing previously overlooked microorganisms, with prediction of key phenotypes and biochemical pathways. IMPORTANCE The production of chocolate starts with the harvesting of cocoa fruits and the spontaneous fermentation of the seeds in a microbial succession that depends on yeasts, lactic acid bacteria, and acetic acid bacteria in order to eliminate bitter and astringent compounds present in the raw material, which will be further roasted and grinded to originate the cocoa powder that will enter the food processing industry. The microbiota of cocoa fermentation is not completely known, and yet it advanced from culture-based studies to the advent of next-generation DNA sequencing, with the generation of a myriad of data that need bioinformatic approaches to be properly analyzed. Although the majority of metagenomic studies have been based on short reads (operational taxonomic units), it is also important to analyze entire genomes to determine more precisely possible ecological roles of different species. Metagenome-assembled genomes (MAGs) are very useful for this purpose; here, MAGs from cocoa fermentation microbiomes are described, and the possible implications of their phenotypic and metabolic potentials are discussed.
Collapse
|
26
|
Kang X, Gao Z, Zheng L, Zhang X, Li H. Regulation of Lactobacillus plantarum on the reactive oxygen species related metabolisms of Saccharomyces cerevisiae. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Viesser JA, de Melo Pereira GV, de Carvalho Neto DP, Favero GR, de Carvalho JC, Goés-Neto A, Rogez H, Soccol CR. Global cocoa fermentation microbiome: revealing new taxa and microbial functions by next generation sequencing technologies. World J Microbiol Biotechnol 2021; 37:118. [PMID: 34131809 DOI: 10.1007/s11274-021-03079-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 12/01/2022]
Abstract
This review provides an overview of the application of next-generation sequencing (NGS) technologies for microbiome analysis of cocoa beans fermentation. The cocoa-producing regions where NGS has been applied include Brazil, Ghana, Ivory Coast, Cameroon, Nicaragua, and Colombia. The data collected were processed by principal component analysis (PCA) and Venn diagrams to perform a multivariate association between microbial diversity and cocoa-producing regions. NGS studies have confirmed the dominance of three major microbial groups revealed by culture-dependent approaches, i.e., lactic acid bacteria, acetic acid bacteria, and yeasts. However, a more complex microbial diversity has been revealed, comprising sub-dominant populations, late-growing species, and uncultivable microorganisms. A total of 99 microbial genera and species were for the first time reported in cocoa beans fermentation, such as Brevibacillus sp., Halomonas meridiana, Methylobacterium sp., Novosphingobium sp., and Paenibacillus pabuli. PCA and Venn diagrams showed that species composition is rarely fixed and often experiences fluctuations of varying degrees and at varying frequencies between different cocoa-producing regions. Understanding these differences will provide further directions for exploring the functional and metabolic activity of rare and abundant taxa, as well as their use as starter cultures to obtain high-quality cocoa beans.
Collapse
Affiliation(s)
- Jéssica A Viesser
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Gilberto V de Melo Pereira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Gabriel R Favero
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Júlio Cesar de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Aristóteles Goés-Neto
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Hervé Rogez
- Centre for Valorisation of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará, Belém, PA, Brazil
| | - Carlos R Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
28
|
Zhang Y, Dai Z, Zhou Z, Yin H, Zhang M, Zhang H, Liu Y, Li Q, Nan X, Liu X, Meng D. Development of the yeast and lactic acid bacteria co-culture agent for atmospheric ammonia removing: Genomic features and on-site applications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112287. [PMID: 33933812 DOI: 10.1016/j.ecoenv.2021.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/22/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Odorous gas (e.g. atmospheric ammonia) in low ventilation public places, such as public toilets and waste transfer stations, causes severe health problems. Many technologies are developed to purify the atmospheric ammonia, among which the microbial agents are supposed to be a green and economical approach. In this study, we developed a yeast, Pichia sp. J1, and a lactic acid bacterium (LAB), Lactobacillus paracasei B1, co-culture agent for atmospheric ammonia removing. The on-site application results indicated the yeast and LAB mixed fermented agent had a maximum ammonia removing efficiency of 98.78%, which is significantly higher than the pure cultures (78.93% for B1 and 75.00% for J1), indicating the co-culture agent is an excellent biological product for ammonia removal. The excellent performance of the agent is closely related to the synergy behaviors between the yeast and LAB. In the co-culture agents, some of the LAB cells adhered closely to the yeast, and the growth and lactic acid producing ability of LAB were significantly promoted by yeast. Genomic analysis indicated the complementary of nutrients, i.e. carbon and nitrogen resources, signal transduction, and adhesion proteins (regulates adhesion behavior) played roles in regulating the synergy effects. Our study offers a novel biological solution of odorous gas purification.
Collapse
Affiliation(s)
- Yanfang Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Zhimin Dai
- Central South Water Science and Technology Co. Ltd, Changsha 410001, China; National City Water Supply Water Quality Monitoring Network Changsha Monitoring Station, Changsha 410001, China
| | - Zhicheng Zhou
- Hunan Tobacco Science Institute, Changsha 410010, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Hetian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha 410010, China
| | - Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Xiaolong Nan
- 306 Bridge of Hunan Nuclear Geology, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China.
| |
Collapse
|
29
|
Pineda APA, Campos GZ, Pimentel-Filho NJ, Franco BDGDM, Pinto UM. Brazilian Artisanal Cheeses: Diversity, Microbiological Safety, and Challenges for the Sector. Front Microbiol 2021; 12:666922. [PMID: 33959118 PMCID: PMC8093504 DOI: 10.3389/fmicb.2021.666922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
Artisanal cheeses made with raw milk are highly appreciated products in Brazil. Most of these cheeses are produced in small facilities across different production regions in the country, some of which have been granted a protected designation of origin and are award winners. The most prominent state that manufactures these products is Minas Gerais (MG), but production is also gaining strength in other Brazilian states. The major challenge faced by artisanal cheese production is related to microbial risks associated with foodborne pathogens when the quality of the raw milk is unsatisfactory. Regulations created for the dairy industry are constantly been revised and adapted, considering the small-scale production of Brazilian artisanal cheeses, in order to guarantee safety at all steps of cheese production and commercialization. This text presents a summary of the huge diversity of artisanal cheeses produced in the country, grouped by geographical regions, and reviews the current challenges faced by producers and government considering the safety of these cheeses.
Collapse
Affiliation(s)
- Ana Paulina Arellano Pineda
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Zampieri Campos
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Uelinton Manoel Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
de Almeida OGG, Vitulo N, De Martinis ECP, Felis GE. Pangenome analyses of LuxS-coding genes and enzymatic repertoires in cocoa-related lactic acid bacteria. Genomics 2021; 113:1659-1670. [PMID: 33839269 DOI: 10.1016/j.ygeno.2021.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/04/2021] [Accepted: 04/05/2021] [Indexed: 01/15/2023]
Abstract
Lactobacillaceae presents potential for interspecific Quorum Sensing (QS) in spontaneous cocoa fermentation, correlated with high abundance of luxS. Three Brazilian isolates from cocoa fermentation were characterized by Whole Genome Sequencing and luxS gene was surveyed in their genomes, in comparison with public databases. They were classified as Lactiplantibacillus plantarum, Limosilactobacillus fermentum and Pediococcus acidilactici. LuxS genes were conserved in core genomes of the novel isolates, but in some non-cocoa related Lactic Acid Bacteria (LAB) it was accessory and plasmid-borne. The conservation and horizontal acquisition of luxS reinforces that QS is determinant for bacterial adaptation in several environments, especially taking into account the luxS has been correlated with modulation of bacteriocin production, stress tolerance and biofilm formation. Therefore, in this paper, new clade and species-specific primers were designed for future application for screening of luxS gene in LAB to evaluate the adaptive potential to diverse food fermentations.
Collapse
Affiliation(s)
| | - Nicola Vitulo
- University of Verona, Department of Biotechnology, Verona, Italy
| | | | - Giovanna E Felis
- University of Verona, Department of Biotechnology, Verona, Italy
| |
Collapse
|