1
|
Paolella G, Pontoni L, Locascio A, Sirakov M, Scivicco M, Fabbricino M. Evaluation of potential bioaccumulation of Bisphenol A in the mussel Mytilus galloprovincialis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125295. [PMID: 40233559 DOI: 10.1016/j.jenvman.2025.125295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Bisphenol A (BPA) is an endocrine disruptor, widespread into the marine environment, which can be accumulated in marine organisms, representing a serious threat to human health, even if it is present at low concentrations. This study presents a new methodology for detecting BPA in the edible mussel Mytilus galloprovincialis which, compared to the existing ones, has several advantages. It is cheaper, faster, independent of the amount of organism material considered, and can be used even for the analysis of very small samples: LOD of 0.13 μg g-1 was obtained extracting 50 mg of tissue. The detection of BPA was obtained by means of a tailored method able to spot the contaminant spiked or bioaccumulated by living mussels at different concentrations and time points. Under environmental conditions inedible mussels (not depurated) bioaccumulated up to 0.6 μg g-1 (d.w.). Our methodology was applied to in vivo experiments whereas the concentration of BPA detected in mussels' tissues was found to depend on the quantity administered. This methodology may provide the baseline for future research and improve environmental regulation and risk assessment protocols.
Collapse
Affiliation(s)
- Giulia Paolella
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | - Ludovico Pontoni
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80121, Naples, Italy.
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | - Maria Sirakov
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Naples, Italy.
| | - Marcello Scivicco
- Department of Veterinary Medicine and Animal Production, Division of Toxicology, University of Naples Federico II, Via Delpino 1, 80137, Naples, Italy.
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy.
| |
Collapse
|
2
|
Erysha Sabrina Jefferi N, Afifah Shamhari A, Abd Hamid Z, Balkis Budin S, Shima Taib I. Interlinkage between inflammation, oxidative stress, and endoplasmic reticulum stress in bisphenols-induced testicular steroidogenesis disturbance: A mini review. Int J Reprod Biomed 2025; 23:17-32. [PMID: 40190456 PMCID: PMC11966212 DOI: 10.18502/ijrm.v23i1.18187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/28/2024] [Accepted: 12/14/2024] [Indexed: 04/09/2025] Open
Abstract
Bisphenols (BP) are endocrine-disrupting chemicals that cause adverse health effects, including testicular steroidogenesis disturbance. Cyclo-oxygenase-2 and nuclear factor erythroid 2-related factor 2 are the target molecules involved in testicular steroidogenesis disturbance via inflammation and oxidative stress (OS), respectively. Interestingly, endoplasmic reticulum (ER) stress was found to be involved in various pathological conditions. However, the mechanisms involved in BP-induced testicular steroidogenesis disturbance remain unclear. Therefore, this research investigates the key mechanisms underlying BP-induced testicular steroidogenesis disturbances. We focus on 3 critical pathways: inflammation, OS, and ER stress. Our findings demonstrate that BP exposure triggers inflammatory responses by targeting the cyclo-oxygenase-2 molecules that impair Leydig cell function. Concurrently, we observed that BP-increased OS via inhibition of nuclear factor erythroid 2-related factor 2, further disrupting steroidogenic enzyme activity. Additionally, ER stress is activated in response to BP exposure, leading to impaired protein synthesis and exacerbating steroidogenic dysfunction. This review elucidates the interlinkage between inflammation, OS, and ER stress in BP-induced testicular steroidogenesis disturbance in which reactive oxygen species is proposed to be the main culprit in linking these 3 mechanisms. These insights provide a crucial foundation for understanding the reproductive toxicology of BPs and inform future strategies for mitigating their effects on male reproductive health.
Collapse
Affiliation(s)
- Nur Erysha Sabrina Jefferi
- Centre for Diagnostics, Therapeutics and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Asma Afifah Shamhari
- Centre for Diagnostics, Therapeutics and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Zariyantey Abd Hamid
- Centre for Diagnostics, Therapeutics and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostics, Therapeutics and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Izatus Shima Taib
- Centre for Diagnostics, Therapeutics and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Aslam N, Fatima R, Altemimi AB, Ahmad T, Khalid S, Hassan SA, Aadil RM. Overview of industrial food fraud and authentication through chromatography technique and its impact on public health. Food Chem 2024; 460:140542. [PMID: 39079380 DOI: 10.1016/j.foodchem.2024.140542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 09/05/2024]
Abstract
Food fraud is widespread nowadays in the food products supply chain, from raw materials processing to the final product and during storage and transport. The most frequent fraud is practiced in staple food commodities like cereals. Their origin, variety, genotype, and bioactive compounds are altered to deceive consumers. Similarly, in various food sectors like beverage, baking, and confectionary, items like melamine, flour improver, and food colors are used in the market to temple consumers. To tackle food fraud and authentication, non-destructive techniques are being used. These techniques have limitations like lack of standardization, interference from multiple absorbing species, ambiguous results, and time-consuming to perform, depending on the type, size, and location of the system proved difficult to quantify the samples of adulteration. Chromatography has been introduced as an effective technique. It serves to safeguard public health due to its detection capabilities. Chromatography proved a crucial tool against fraudulent practices to preserve consumer trust.
Collapse
Affiliation(s)
- Nabila Aslam
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rida Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ammar B Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Talha Ahmad
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Samran Khalid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Syed Ali Hassan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
4
|
Ares AM, Alcaide L, Bernal J, Valverde S. Development and validation of a green analytical method for determining fourteen bisphenols in bee pollen by ultra-high-performance liquid chromatography-tandem mass spectrometry. Food Res Int 2024; 195:114955. [PMID: 39277263 DOI: 10.1016/j.foodres.2024.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
A new analytical method was developed and validated to determine fourteen bisphenols (A, B, C, E, F, M, P, S, Z, AF, AP, BP, FL, PH) in bee pollen using ultra-high-performance liquid chromatography-tandem mass spectrometry. Two different sample treatments were proposed and evaluated: one based on the QuEChERS (quick, easy, cheap, effective, rugged & safe) approach and the other utilizing microextraction with a supramolecular solvent (SUPRAS). In both cases, average analyte recovery ranged between 71 % and 114 %, and the matrix effect was between -45 % and +5 %, although it was not significant when using the QuEChERS-based method (<±20 %). The environmental impact of both sample treatments was assessed using different analytical metrics, with both procedures classified as environmentally friendly, though slightly better results were obtained for SUPRAS. The method was fully validated, showing that the QuEChERS approach had better overall performance, particularly regarding sensitivity and matrix effect. Consequently, the QuEChERS methodology was applied to determine bisphenols in thirty bee pollen samples from different Spanish regions. Residues of three bisphenols (M, P, and S) were detected, although only bisphenol S was quantified in several samples at low concentration levels (<7 μg kg-1), which is below the established specific migration limit (SML; 50 μg kg-1). However, regarding human health, the estimated daily intake, target hazard quotient, and hazard index assessed were higher than acceptable limits, suggesting a potential risk for human consumers.
Collapse
Affiliation(s)
- Ana M Ares
- I.U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47001 Valladolid, Spain
| | - Lucía Alcaide
- I.U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47001 Valladolid, Spain
| | - José Bernal
- I.U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47001 Valladolid, Spain
| | - Silvia Valverde
- I.U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, 47001 Valladolid, Spain.
| |
Collapse
|
5
|
Abalde-Pujales A, Lavilla I, Bendicho C, Romero V. Turn-off fluorescent nanoprobe based on carbon dots synthesised by UV/H 2O 2 advanced oxidation for the detection of bisphenol A in canned foods. Mikrochim Acta 2024; 191:695. [PMID: 39441371 DOI: 10.1007/s00604-024-06784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
A novel assay was developed based on a turn-off fluorescent probe using the in situ generation of carbon dots (CDs) by means of UV/H2O2 advanced oxidation of carbohydrates for the detection of bisphenol A (BPA) in food. Different parameters involved in the synthesis of CDs for the direct recognition of BPA have been optimised and a sensing mechanism is outlined. The presence of H2O2 during CD synthesis causes a fluorescence enhancement due to the action of highly oxidant HO· radicals formed throughout the photochemical reaction. Phenolic compounds such as BPA can be easily degraded by the UV/H2O2 oxidation process, acting as a HO· free radical scavengers. This results in a decrease in the fluorescence that can be related to the BPA concentration. Under optimal conditions, a detection limit of 15 µg/kg of BPA and a quantification limit of 46 µg/kg of BPA in food samples were obtained. The repeatability and reproducibility, expressed as relative standard deviation and obtained for two concentration levels (30 µg/kg and 200 µg/kg, n = 5), were less than 2.0% and 6.4%, respectively. The proposed procedure was applied to the analysis of five samples of canned foods (sweet corn, peas, mushrooms, cockles and natural tuna), obtaining concentrations in the range 29.8-49.9 µg/kg of sample. Recovery studies were conducted at two concentration levels (100 and 400 µg BPA/kg of sample), resulting in recoveries in the range 99-101%. Method validation against two certified reference materials was also successfully performed. The experimental results demonstrate that the novel approach is suitable for the detection and quantification of BPA in canned foods.
Collapse
Affiliation(s)
- Alberto Abalde-Pujales
- Centro de Investigación Mariña, Departamento de Química Analítica y Alimentaria, Universidade de Vigo, Grupo QA2, 36310, Vigo, Spain
| | - Isela Lavilla
- Centro de Investigación Mariña, Departamento de Química Analítica y Alimentaria, Universidade de Vigo, Grupo QA2, 36310, Vigo, Spain
| | - Carlos Bendicho
- Centro de Investigación Mariña, Departamento de Química Analítica y Alimentaria, Universidade de Vigo, Grupo QA2, 36310, Vigo, Spain.
| | - Vanesa Romero
- Centro de Investigación Mariña, Departamento de Química Analítica y Alimentaria, Universidade de Vigo, Grupo QA2, 36310, Vigo, Spain.
| |
Collapse
|
6
|
Liu N, Yan X, Gao Y, Li Z, Ma Q, Zhang Z. A novel electropolymerized molecularly imprinted dual-mode sensor for bisphenol AF detection in pond mud. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174251. [PMID: 38936736 DOI: 10.1016/j.scitotenv.2024.174251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Recently, bisphenol AF (BPAF) as most commonly used bisphenol A analogs had the increasing higher level in the environment with unknown risks. Herein, a synchronous dual-mode sensor had been established based on differential pulse voltammetry (DPV) and electrochemiluminescence (ECL) for the detection of BPAF in pond mud. Firstly, the sensing molecularly imprinted polymer (MIP) films were prepared by electrochemical polymerization procedure with 3,4-ethoxylene dioxy thiophene (EDOT) as the functional monomer, BPAF as the template molecule and MXene as the supporting electrolyte. Due to unique characters of PEDOT and MXene, the constructed MIP films were stable and highly conductive. Meanwhile, zinc-doped bismuth sulfide quantum dots (Zn-Bi2S3 QDs) were synthesized as a nano-emitter to generate strong ECL signals in the MIP film. In the sensing process, a pulsed voltage applied to the PEDOT/MXene MIP film to generate both DPV and ECL signals for simultaneous dual-mode detection. Additionally, the liquid-liquid extraction with deep eutectic solvent (menthol: octanol 1:1) was used for the pre-concentration of the BPAF in the pond mud. Based on the sensing system, the ECL and DPV response showed the good linear relationships with the concentration of BPAF with the ranges of 0.01 μM-50 μM and 0.1 μM-50 μM and the detection limits of 0.0060 μM and 0.059 μM, respectively.
Collapse
Affiliation(s)
- Ning Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaoyi Yan
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yilin Gao
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Zhiquan Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Xue M, Jia M, Qin Y, Li J, Yao T, Francis F, Gu X. Determination of Bisphenol Compounds and the Bioaccumulation after Co-Exposure with Polyethylene Microplastics in Zebrafish. TOXICS 2024; 12:702. [PMID: 39453122 PMCID: PMC11511028 DOI: 10.3390/toxics12100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Knowledge regarding the combined toxicity mechanism of bisphenol compounds and microplastics (MPs) on organisms remains limited. In this study, we first developed an accurate and sensitive method to simultaneously quantify two bisphenol compounds and evaluate their accumulation and tissue distribution after co-exposure with MPs in zebrafish. Then, we determined the bioaccumulation potential of bisphenol A (BPA) and bisphenol S (BPS) in adult zebrafish in the absence and presence of MPs. Bisphenol compounds were found to accumulate in different tissues of zebrafish, with BPS showing lower accumulation levels compared to BPA. Importantly, we discovered that the presence of MPs could exacerbate the accumulation of bisphenol compounds in biological tissues. These findings highlight the enhanced bioavailability and risk posed by the co-exposure of bisphenol compounds and MPs, underscoring the need for further investigation into their combined environmental and biological health impacts.
Collapse
Affiliation(s)
- Moyong Xue
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (M.X.)
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium;
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Ming Jia
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (M.X.)
| | - Yuchang Qin
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Jing Li
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (M.X.)
| | - Ting Yao
- Beijing Institute of Food Control, Beijing 110108, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium;
| | - Xu Gu
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (M.X.)
| |
Collapse
|
8
|
Franko N, Kodila A, Sollner Dolenc M. Adverse outcomes of the newly emerging bisphenol A substitutes. CHEMOSPHERE 2024; 364:143147. [PMID: 39168390 DOI: 10.1016/j.chemosphere.2024.143147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
BPA and its analogues are facing increasingly stringent regulations restricting their use due to the increasing knowledge of their harmful effects. It is therefore expected that novel BPA analogues and alternatives will replace them in plastic products, cans and thermal paper to circumvent restrictions imposed by legislation. This raises concerns about the safety of "BPA-free" products, as they contain BPA substitutes whose safety has not been sufficiently assessed prior to their market introduction. The regulatory agencies have recognised BPAP, BPBP, BPC2, BPE, BPFL, BPG, BPP, BPPH, BPS-MAE, BPS-MPE, BP-TMC, BPZ and the alternatives BTUM, D-90, UU and PF201 as compound with insufficient data regarding their safety. We demonstrate that the mentioned compounds are present in consumer products, food and the environment, thus exhibiting toxicological risk not only to humans, but also to other species where their toxic effects have already been described. Results of in silico, in vitro and in vivo studies examining the endocrine disruption and other effects of BPA analogues show that they disrupt the endocrine system by targeting various nuclear receptors, impairing reproductive function and causing toxic effects such as hepatotoxicity, altered behaviour and impaired reproductive function. In vitro and in vivo data on BPA alternatives are literally non-existent, although these compounds are already present in commonly used thermal papers. However, in silico studies predicted that they might cause adverse effects as well. The aim of this article is to comprehensively collate the information on selected BPA substitutes to illustrate their potential toxicity and identify safety gaps.
Collapse
Affiliation(s)
- Nina Franko
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Anja Kodila
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Marija Sollner Dolenc
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Zhang Z, Feng Y, Teng H, Ru S, Li Y, Liu M, Wang J. Development and application of bisphenol S electrochemical immunosensor and iridium oxide nanoparticle-based lateral flow immunoassay. CHEMOSPHERE 2024; 364:143034. [PMID: 39117083 DOI: 10.1016/j.chemosphere.2024.143034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Bisphenol S (BPS) is a common pollutant in the environment and has posed a potential threat to aquatic animals and human health. To accurately assess the pollution level and ecological risk of BPS, there is an urgent need to establish simple and sensitive detection methods for BPS. In this study, BPS complete antigen was successfully prepared by introducing methyl 4-bromobutyrate and coupling bovine serum albumin (BSA). The monoclonal antibody against BPS (anti-BPS mAb) with high affinity (1: 256,000) was developed based on the BPS complete antigen, which showed low cross-reactivity with BPS structural analogues. Then, an electrochemical immunosensor was constructed to detect BPS using multi-walled carbon nanotubes and gold nanoflower composites as signal amplification elements and using anti-BPS mAb as the probe. The electrochemical immunosensor had a linear range from 1 to 250 ng⋅mL-1 and a limit of detection (LOD) down to 0.6 ng⋅mL-1. Additionally, a more stable and sensitive lateral flow immunoassay (LFIA) for BPS was developed based on iridium oxide nanoparticles, with a visual detection limit of 1 ng⋅mL-1, which was 10 times lower than that of classical Au-NPs LFIA. After evaluation of their stability and specificity, the reliability of these two methods were further validated by measuring BPS concentrations in the water and fish tissues. Thus, this study provides sensitive, robust and rapid methods for the detection of BPS in the environment and organisms, which can provide a methodological reference for monitoring environmental contaminants.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yongliang Feng
- Department of Basic Courses, Tangshan University, Tangshan, 063000, China
| | - Hayan Teng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Minhao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
10
|
Lee Y, Baek J, Kwon Y. Assessing dietary bisphenol A exposure among Koreans: comprehensive database construction and analysis using the Korea National Health and Nutrition Examination Survey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1018-1055. [PMID: 38923903 DOI: 10.1080/19440049.2024.2362252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Bisphenol A (BPA) exposure primarily occurs through dietary intake. This study aimed to estimate the extent of dietary BPA exposure among Koreans. A thorough literature search was conducted to establish a BPA content database encompassing common foods consumed in Korea, including various food raw materials and processed food products. Dietary exposure levels were estimated by integrating the constructed BPA database with comprehensive nationwide 24 h-dietary recall datasets. The finding revealed that dietary BPA exposure was low for most Koreans, with a mean of 14.5 ng/kg bw/day, but was higher for preschool-age children (over 23 ng). Canned foods accounted for 9-36% of the total dietary exposure of the highest dietary exposure groups; while across all age groups, a considerable amount was derived from canned tuna, contribution of canned fruits and canned coffee (milk-containing) was high for preschool-age children and adults, respectively. Notably, for adults, a substantial proportion also stemmed from beer packaged in cans. While diet contributed over 80% of aggregate exposure for most age groups, preschool-age children experienced 60% exposure through diet due to additional exposure from indoor dust. Even at the high exposure scenario, aggregate BPA exposure levels remained lower than the current tolerable daily intake (TDI) set by the Korean agency (20 μg/kg bw/day). Nevertheless, most Koreans were exposed to BPA levels surpassing the strictest TDI (0.2 ng/kg bw/day) set by the European Food Safety Authority.
Collapse
Affiliation(s)
- Yoonjoo Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| | - Jiyun Baek
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| | - Youngjoo Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| |
Collapse
|
11
|
Neri I, Russo G, Grumetto L. Bisphenol A and its analogues: from their occurrence in foodstuffs marketed in Europe to improved monitoring strategies-a review of published literature from 2018 to 2023. Arch Toxicol 2024; 98:2441-2461. [PMID: 38864942 PMCID: PMC11272703 DOI: 10.1007/s00204-024-03793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
In this review article, the research works covering the analytical determination of bisphenol A (BPA) and its structural analogues published from 2018 to present (February 2024) were examined. The review offers an overview of the concentration levels of these xenoestrogens in food and beverages, and discusses concerns that these may possibly pose to the human health and scrutinises, from an analytical perspective, the main biomonitoring approaches that are applied. This comes as a natural evolution of a previous review that covered the same topic but in earlier years (up to 2017). As compared to the past, while the volume of published literature on this topic has not necessarily decreased, the research studies are now much more homogeneous in terms of their geographical origin, i.e., Southern Europe (mainly Italy and Spain). For this reason, an estimated daily intake of the European population could not be calculated at this time. In terms of the analytical approaches that were applied, 67% of the research groups exploited liquid chromatography (LC), with a detection that was prevalently (71%) afforded by mass spectrometry, with over one-fourth of the research teams using fluorescence (26%) and a minority (3%) detecting the analytes with diode array detection. One-third of the groups used gas chromatography (GC)-mass spectrometry achieving comparatively superior efficiency as compared to LC. Derivatisation was performed in 59% of the GC studies to afford more symmetrical signals and enhanced sensitivity. Although the contamination levels are well below the threshold set by governments, routinely biomonitoring is encouraged because of the possible accumulation of these contaminants in the human body and of their interplay with other xenoestrogens.
Collapse
Affiliation(s)
- Ilaria Neri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| | - Giacomo Russo
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK.
| | - Lucia Grumetto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| |
Collapse
|
12
|
Carro N, Fernández R, Cobas J, García I, Ignacio M, Mouteira A. Optimization of a modified Captiva EMR-lipid method based on micro-matrix solid-phase dispersion coupled with gas chromatography-mass spectrometry for the determination of nine bisphenols in mussel samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3957-3967. [PMID: 38847157 DOI: 10.1039/d4ay00738g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
This work describes a reliable, cheap, easy and fast method for analysis of nine bisphenols in mussel samples by gas chromatography-mass spectrometry after trimethylsilylation. The modified method consisted of miniaturized matrix solid phase dispersion (micro-MSPD) in a glass Pasteur pipette using Captiva EMR (enhanced matrix removal)-lipid as the sorbent. Good linearity was obtained in the work range (1-500 μg L-1) with a correlation coefficient (R2) ≥ 0.998. The method accuracy and precision were determined at two concentration levels. The results show recoveries ranging from 55 to 111%. The precision varied from 1.95 to 11.4% (RSD). The whole quantification limits were between 0.056 and 3.42 μg per kg dry weight. The analytical procedure was applied for the analyses of five mussel samples collected from Galician Rias. The major compound was BPA, and wild mussels from Rías de Ferrol, Vigo and A Coruña had the highest levels. The proposed method is suitable for the analysis of BPA and its analogues in mussel samples.
Collapse
Affiliation(s)
- N Carro
- Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia, INTECMAR, Consellería Do Mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - R Fernández
- Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia, INTECMAR, Consellería Do Mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - J Cobas
- Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia, INTECMAR, Consellería Do Mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - I García
- Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia, INTECMAR, Consellería Do Mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - M Ignacio
- Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia, INTECMAR, Consellería Do Mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| | - A Mouteira
- Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia, INTECMAR, Consellería Do Mar, Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain.
| |
Collapse
|
13
|
Lin YJ, Chen HC, Chang JW, Huang HB, Chang WT, Huang PC. Exposure characteristics and cumulative risk assessment of bisphenol A and its substitutes: the Taiwan environmental survey for toxicants 2013. Front Public Health 2024; 12:1396147. [PMID: 38846618 PMCID: PMC11153798 DOI: 10.3389/fpubh.2024.1396147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Ever since the use of bisphenol A (BPA) has been restricted, concerns have been raised regarding the use of its substitutes, such as bisphenol S (BPS) and bisphenol F (BPF). Meanwhile, the EU European Food Safety Authority (EFSA) issued the new tolerable daily intake (TDI) after the latest re-risk assessment for BPA, which enforced the need for cumulative risk assessment in the population. This study was conducted to identify BPA and its substitute's exposure characteristics of the general Taiwanese population and estimate the cumulative risk of bisphenol exposure. Methods Urine samples (N = 366 [adult, 271; minor, 95]) were collected from individuals who participated in the Taiwan Environmental Survey for Toxicants 2013. The samples were analyzed for BPA, BPS, and BPF through ultraperformance liquid chromatography-tandem mass spectrometry. Daily intake (DI) levels were calculated for each bisphenol. Hazard quotients (HQs) were calculated with the consideration of tolerable DI and a reference dose. Additionally, hazard index (HI; sum of HQs for each bisphenol) values were calculated. Results Our study found that the median level of BPA was significantly higher in adults (9.63 μg/g creatinine) than in minors (6.63 μg/g creatinine) (p < 0.001). The DI of BPS was higher in female (0.69 ng/kg/day) than in male (0.49 ng/kg/day); however, the DIs of BPF and BPS were higher in boys (1.15 and 0.26 ng/kg/day, respectively) than in girls (0.57 and 0.20 ng/kg/day, respectively). Most HI values exceeded 1 (99% of the participants) after EFSA re-establish the TDI of BPA. Discussion Our study revealed that the exposure profiles and risk of BPA and its substitute in Taiwanese varied by age and sex. Additionally, the exposure risk of BPA was deemed unacceptable in Taiwan according to new EFSA regulations, and food contamination could be the possible source of exposure. We suggest that the risk of exposure to BPA and its substitutes in most human biomonitoring studies should be reassessed based on new scientific evidence.
Collapse
Affiliation(s)
- Yu-Jung Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| |
Collapse
|
14
|
Zhou B, Sheng X, Cao J, Xie H, Li X, Huang L, Yang M, Zhong M, Liu YN. A novel electrochemical sensor based on dual-functional MMIP-CuMOFs for both target recognition and signal reporting and its application for sensing bisphenol A in milk. Food Chem 2024; 437:137756. [PMID: 37897829 DOI: 10.1016/j.foodchem.2023.137756] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023]
Abstract
In this work, novel magnetic molecularly imprinted CuMOFs (MMIP-CuMOFs) were synthesized and applied to construct an electrochemical bisphenol A sensor. The constructed sensor used an electrode modified with reduced graphene oxide (RGO/GCE) as the sensing platform to improve its stability and sensitivity. The Fe3O4 nanoparticles in magnetic MOFs simplified the preparation process. Moreover, the combination of CuMOFs and molecular imprinting methodology was beneficial for improving the detection specificity, and the electroactive copper hexacyanoferrate generated by the reaction of Cu2+ in CuMOFs with potassium ferricyanide was used as the signal probe. The sensor showed a good linear relationship in the range of 0.5 to 500 nmol/L, with a low detection limit of 0.18 nmol/L. In addition, the sensor had good selectivity, repeatability (RSD = 2.59 %), and a good recovery rate for actual milk sample detection (99.8-102.49 %). This technique holds great promise for the detection of detrimental substances in food.
Collapse
Affiliation(s)
- Binbin Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Xingxin Sheng
- College of Construction Equipment, GuiZhou Polytechnic of Construction, Guiyang, Guizhou 551499, China
| | - Jing Cao
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Hao Xie
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Lijun Huang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Ming Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
| | - Ming Zhong
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
15
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
16
|
Liu SG, Wu T, Liang Z, Zhao Q, Gao W, Shi X. A fluorescent method for bisphenol A detection based on enzymatic oxidation-mediated emission quenching of silicon nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123123. [PMID: 37441956 DOI: 10.1016/j.saa.2023.123123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
As a common raw material of industrial products, bisphenol A (BPA) is widely used in the production of food contact materials, and there is a high risk of exposure in food. However, BPA is a well-known endocrine disruptor and poses a serious threat to human health. Herein, a fluorescent sensing platform of BPA based on enzymatic oxidation-mediated fluorescence quenching of silicon nanoparticles (SiNPs) is established and used to the detection of BPA in food species. The SiNPs are prepared with a facile one-step synthesis and emit bright green fluorescence. BPA can be oxidized by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) to form a product which can quench the fluorescence of SiNPs through electron transfer. There is a good linear relationship between the fluorescence intensity and BPA concentration in the range of 1-100 μM. Therefore, a fluorometry of BPA is established with a low limit of detection (LOD) of 0.69 μM. This method has been applied to the determination of BPA in mineral drinking water, orange juice, and milk with satisfactory results. The fluorescent sensor of BPA based on SiNPs has favorable application foreground in the field of food safety analysis.
Collapse
Affiliation(s)
- Shi Gang Liu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Tiankang Wu
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhixin Liang
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qian Zhao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Wenli Gao
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xingbo Shi
- Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
17
|
Peivasteh-roudsari L, Barzegar-bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar-oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023; 9:e18140. [PMID: 37539203 PMCID: PMC10395372 DOI: 10.1016/j.heliyon.2023.e18140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing public health concern worldwide. Consumption of foodstuffs is currently thought to be one of the principal exposure routes to EDCs. However, alternative ways of human exposure are through inhalation of chemicals and dermal contact. These compounds in food products such as canned food, bottled water, dairy products, fish, meat, egg, and vegetables are a ubiquitous concern to the general population. Therefore, understanding EDCs' properties, such as origin, exposure, toxicological impact, and legal aspects are vital to control their release to the environment and food. The present paper provides an overview of the EDCs and their possible disrupting impact on the endocrine system and other organs.
Collapse
Affiliation(s)
| | - Raziyeh Barzegar-bafrouei
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurush Aghbolagh Sharifi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Shamimeh Azimisalim
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Karami
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Asadinezhad
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behrouz Tajdar-oranj
- Food and Drug Administration of Iran, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 1475744741, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
18
|
Ni L, Zhong J, Chi H, Lin N, Liu Z. Recent Advances in Sources, Migration, Public Health, and Surveillance of Bisphenol A and Its Structural Analogs in Canned Foods. Foods 2023; 12:foods12101989. [PMID: 37238807 DOI: 10.3390/foods12101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The occurrence of bisphenol A (BPA) and its structural analogs, known as endocrine disruptors is widely reported. Consumers could be exposed to these chemicals through canned foods, leading to health risks. Considerable advances have occurred in the pathogenic mechanism, migration law, and analytical methodologies for these compounds in canned foods. However, the confusion and controversies on sources, migration, and health impacts have plagued researchers. This review aimed to provide insights and perspectives on sources, migration, effects on human health, and surveillance of these chemicals in canned food products. Current trends in the determination of BPA and its structural analogs have focused on mass spectroscopy and electrochemical sensor techniques. Several factors, including pH, time, temperature, and volume of the headspace in canned foods, could affect the migration of the chemicals. Moreover, it is necessary to quantify the proportion of them originating from the can material used in canned product manufacturing. In addition, adverse reaction research about exposure to low doses and combined exposure with other food contaminants will be required. We strongly believe that the information presented in this paper will assist in highlighting the research needs on these chemicals in canned foods for future risk evaluations.
Collapse
Affiliation(s)
- Ling Ni
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Jian Zhong
- Shanghai Key Laboratory of Pediatric Gastroenterology & Nutrition, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hai Chi
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Na Lin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Zhidong Liu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
19
|
Wu Q, Oliveira MM, Achata EM, Kamruzzaman M. Reagent-free detection of multiple allergens in gluten-free flour using NIR spectroscopy and multivariate analysis. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
20
|
Li R, Zhan W, Ren J, Zhang F, Huang X, Ma Y. Temporal trends in risk of bisphenol A, benzophenone-3 and triclosan exposure among U.S. children and adolescents aged 6-19 years: Findings from the National Health and Nutrition Examination Survey 2005-2016. ENVIRONMENTAL RESEARCH 2023; 216:114474. [PMID: 36202243 DOI: 10.1016/j.envres.2022.114474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phenolic compounds with potential adverse health effects are gradually being replaced. Little is known about the potential health risks of BPA, BP3, and TCS exposure in children and adolescents aged 6-19 years in the United States. OBJECTIVES To determine trends and rates of change in hazard indices (HI) for three phenolics in U.S. children and adolescents for BPA, BP3, TCS, and to assess changes in gender, race/ethnicity, age, and potential health risks. METHODS Metabolic biomonitoring data from field-collected urine samples from the National Health and Nutrition Examination Survey (NHANES) were utilized. Daily intake of three phenols (bisphenol A, benzophenone-3, and triclosan) between 2005 and 2016 in children and adolescents were obtained. Cumulative risk indicators, including hazard quotient (HQ), hazard index (HI), and maximum cumulative ratio (MCR), were used for the health risk assessment of the three phenols. RESULTS During this period, the change in LSGM HI was -2.9% per cycle [95% Cl: (-3.7%, -2.2%)], and the percentage of participants with HI > 0.1 decreased from 15.6% to 10.5%. Children (6-11 years) had higher mean HI values than adolescents (12-19 years), while female had higher LSGM HI values than male. MCR values were generally low and negatively correlated with HI. However, the average value of MCR increased from 1.722 to 2.107 during this period. CONCLUSION Exposure to phenolics among U.S. children and adolescents has changed in recent decades. However, gaps in data limit the interpretation of trends but legislative activity and advocacy campaigns by nongovernmental organizations may play a role in changing trends. Moreover, there are growing concerns about the potential health risks associated with exposure to multiple phenols in children and adolescents.
Collapse
Affiliation(s)
- Ruiqiang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Wenqiang Zhan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Fan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xin Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
| |
Collapse
|
21
|
Wang X, Nag R, Brunton NP, Siddique MAB, Harrison SM, Monahan FJ, Cummins E. A probabilistic approach to model bisphenol A (BPA) migration from packaging to meat products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158815. [PMID: 36115396 DOI: 10.1016/j.scitotenv.2022.158815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA), a synthetic chemical which has raised concerns due to its potential toxicological effects on humans, has been widely detected in canned and non-canned meat and meat products. This study estimated BPA migration from packaging to non-canned and canned meat products by developing two probabilistic models. BPA concentration data in packaging materials were collated, including polyethylene terephthalate, polyvinyl chloride, epoxy-based coatings, and polyester-based coatings. Migration ratios were calculated from migration tests of BPA molecules moving from packaging to food simulants. The predictive model revealed that the BPA migration concentration from packaging ranges from 0.017 to 0.13 (5th-95th percentile) μg kg-1 with a simulated mean of 0.056 μg kg-1 in non-canned meat products. This is in stark contrast to the simulated mean of 134.57 (5th-95th percentile: 59.17-223.25) μg kg-1 for canned meat products. Nevertheless, plastic packaging was estimated to contribute only 3 % of BPA levels in non-canned meat products. The sensitivity analysis showed that the contact area of meat products with films is the most sensitive parameter of the plastic packaging migration model. It is concluded that plastic packaging may not be the only or dominant source of BPA in non-canned meat products.
Collapse
Affiliation(s)
- Xin Wang
- University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| | - Nigel P Brunton
- University College Dublin, School of Agriculture and Food Science, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| | - Md Abu Bakar Siddique
- University College Dublin, School of Agriculture and Food Science, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| | - Sabine M Harrison
- University College Dublin, School of Agriculture and Food Science, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| | - Frank J Monahan
- University College Dublin, School of Agriculture and Food Science, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- University College Dublin, School of Biosystems and Food Engineering, Agriculture and Food Science, Belfield, Dublin 4, Ireland.
| |
Collapse
|
22
|
Qiao JY, Pang YH, Yan ZY, Shen XF. Electro-enhanced solid-phase microextraction with membrane protection for enrichment of bisphenols in canned meat. J Chromatogr A 2022; 1685:463592. [DOI: 10.1016/j.chroma.2022.463592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
|
23
|
Wang X, Nag R, Brunton NP, Siddique MAB, Harrison SM, Monahan FJ, Cummins E. Human health risk assessment of bisphenol A (BPA) through meat products. ENVIRONMENTAL RESEARCH 2022; 213:113734. [PMID: 35750124 DOI: 10.1016/j.envres.2022.113734] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Meat and meat products are often consumed in our daily diet, providing essential nutrients. Contamination by chemical hazards, including bisphenol A (BPA) in meat products, is a concern and is continuously monitored. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects on reproductive, nervous, and immune systems. Dietary consumption is the main route of BPA exposure, and meat products are a major contributor. BPA exposure from meat consumption is the focus of this review. This review found that BPA has been widely detected in canned and non-canned meat products. BPA in canned meat is assumed to be predominantly from migration from can coatings. Relatively low levels are observed in non-canned products, and the source of contamination in these products has yet to be definitively identified. A recent European Food Safety Authority (EFSA) draft opinion has proposed to lower the tolerable daily intake of BPA from 4 μg kg body weight (bw)-1 day-1 to 0.04 ng kg body weight (bw)-1 day-1, therefore potential health risks need to be addressed. This review has investigated potential contamination at the farm, industrial processes, and retail levels. Data gaps in the literature are also identified to improve future food safety in the meat industry. Also, a unified risk assessment strategy has been proposed. Further understanding of BPA migration in meat products is needed as a part of the exposure assessment to reduce potential risk, and more data on the dose-response relationship will help comprehend potential adverse health effects of BPA on humans. This research will inform the public, meat producers and processing industry, and policymakers on potential exposure to BPA and risk reduction measures, thus, ensuring food safety.
Collapse
Affiliation(s)
- Xin Wang
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Md Abu Bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
24
|
Cunha SC, Ferreira R, Marmelo I, Vieira LR, Anacleto P, Maulvault A, Marques A, Guilhermino L, Fernandes JO. Occurrence and seasonal variation of several endocrine disruptor compounds (pesticides, bisphenols, musks and UV-filters) in water and sediments from the estuaries of Tagus and Douro Rivers (NE Atlantic Ocean coast). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155814. [PMID: 35588845 DOI: 10.1016/j.scitotenv.2022.155814] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Exposure of aquatic environments to emerging contaminants is a global issue, special relevant in many estuaries due to impacts from anthropogenic activity. The aim of this work was to evaluate thirty-seven endocrine disruptor chemicals (EDCs) from four different classes (pesticides, bisphenols, polycyclic musks and UV-filters) in water and sediment samples collected during one-year in the estuaries of Tagus and Douro Rivers located into the NE Atlantic Ocean coast. EDCs analysis was achieved afterward validation of a gas-chromatography mass spectrometry (GC-MS) method using Dispersive Liquid-Liquid Microextraction (DLLME) as extraction procedure for water samples, and Quick, Easy, Cheap, Efficient, Rugged and Safe (QuEChERS) combined with DLLME for sediments. Tagus estuary presented higher levels of contamination with pesticide residues and bisphenols (BPs) than the Douro estuary in both water and sediment samples. Contrariwise, levels and frequency of polycyclic musks (PCMs) and UV-filters (UVF) were slightly higher in Douro estuary. Levels of pesticide residues in both sediment and water samples, and levels of PCMs and UVF in water samples were higher in warmer seasons (summer and spring) than in colder ones (winter and autumn). The opposite was found in what respect levels of BPs in water and sediment samples, and PCMs and UVF levels in sediment samples. Although the levels found for each contaminant are low, usually in the order of a few ng/mL(g), the presence of a high number of toxic compounds is a source of concern and requires constant monitoring.
Collapse
Affiliation(s)
- Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Ricardo Ferreira
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Isa Marmelo
- IPMA, Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Luís R Vieira
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Patrícia Anacleto
- IPMA, Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences of the University of Lisbon (FCUL), Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Ana Maulvault
- IPMA, Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - António Marques
- IPMA, Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Lúcia Guilhermino
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
25
|
Owczarek K, Waraksa E, Kłodzińska E, Zrobok Y, Ozimek M, Rachoń D, Kudłak B, Wasik A, Mazerska Z. Validated GC–MS method for determination of bisphenol a and its five analogues in dietary and nutritional supplements. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Di Marco Pisciottano I, Albrizio S, Guadagnuolo G, Gallo P. Development and validation of a method for determination of 17 endocrine disrupting chemicals in milk, water, blood serum and feed by UHPLC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1744-1758. [PMID: 35947373 DOI: 10.1080/19440049.2022.2104933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The concern for human exposure to bisphenol A (BPA) has led to the introduction of other bisphenols to be used as substitutes in industrial processes. These compounds show activity similar to BPA as endocrine disruptors and could be already widespread both in the environment and in food. To monitor their possible occurrence in the food chain, an analytical method based on affinity chromatography clean-up and UHPLC coupled to tandem mass spectrometry detection was developed and in-house validated according to European law, for simultaneous determination of 17 bisphenols in milk and blood serum from bovine and buffalo, in drinking water and in feed. The analytical performance parameters of the method for these matrices were determined. The results showed satisfactory precision in terms of relative standard deviation (3.3%-21.4%), overall good trueness as mean percentage recoveries (77.0%-119.4%), with the only exception of bisphenol PH and bisphenol S in milk and BPA diglycidyl ether in serum. The high specificity and sensitivity of the method allowed us to determine the analytes at very low concentrations, that is, 0.01-1.0 ng/mL in water, 0.1-2.0 ng/mL in milk, 0.01-1.0 ng/g in blood serum and 1.0-10.0 ng/g in feed.
Collapse
Affiliation(s)
| | - Stefania Albrizio
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Grazia Guadagnuolo
- Department of Chemistry, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, NA, Italy
| | - Pasquale Gallo
- Department of Chemistry, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, NA, Italy
| |
Collapse
|
27
|
Şahin S, Üstündağ Z, Caglayan MO. Spectroscopic ellipsometry-based aptasensor platform for bisphenol a detection. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Zhang Y, Chen Y, Lei Y, Lu H, Wang X, Zhang Z, Li J. Tailoring diameters of carbon nanofibers with optimal mesopores to remarkably promote hemin adsorption toward ultrasensitive detection of bisphenol A. Food Chem 2022; 383:132628. [PMID: 35413765 DOI: 10.1016/j.foodchem.2022.132628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Bisphenol A (BPA) is a worldwide used endocrine disrupting chemical that can migration from food containers and packaging, resulting in bioaccumulation of BPA in humans and causing adverse health effects. Porous electrodes have been proved with large surface areas and high sensing abilities in electrochemical detection of BPA. However, how to tailor the pore sizes to further improve the sensing performance is still a great challenge. Here, we delicately tailored the diameters of carbon nanofibers (CNFs) by adjusting electrospinning parameters to have optimal mesopore structure for strong adsorption of hemin that has been demonstrated with high electrocatalytic activity for BPA sensing. Benefiting from the optimal mesopores structure of CNFs and the synergistic effect of hemin and CNFs, this hemin@CNFs based sensor achieves an ultrahigh sensitivity of 40.97 μA cm-2 μM-1, a low detection limit of 3.1 nM and satisfactory recoveries from 90.2% to 104.2% in the direct detection of BPA in liquors. This work offers a promising sensing platform for ultrasensitive monitoring of BPA.
Collapse
Affiliation(s)
- Yuhuan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China.
| | - Yue Chen
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yanan Lei
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China
| | - Hao Lu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China
| | - Xingyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhong Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China; University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Xi'an 710119, China.
| |
Collapse
|
29
|
Release of Selected Non-Intentionally Added Substances (NIAS) from PET Food Contact Materials: A New Online SPE-UHPLC-MS/MS Multiresidue Method. SEPARATIONS 2022. [DOI: 10.3390/separations9080188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Food contact materials (FCMs) are an underestimated source of food chemical contaminants and a potentially relevant route of human exposure to chemicals that are harmful to the endocrine system. Foods and water are the main sources of exposure due to contact with the packaging materials, often of polymeric nature. European Regulation 10/2011 requires migration tests on FCMs and foodstuffs to evaluate the presence of listed substances (authorized monomers and additives) and non-intentionally added substances (NIAS) not listed in the regulation and not subjected to restrictions. The tests are required to ensure the compliance of packaging materials for the contained foods. NIAS are a heterogeneous group of substances classified with a potential estrogenic or androgenic activity. Subsequently, the evaluation of the presence of these molecules in foods and water is significant. Here we present an online SPE/UHPLC-tandem MS method to quantify trace levels of NIAS in food simulants (A: aqueous 3% acetic acid; B: aqueous 20% ethanol) contained in PET preformed bottles. The use of online SPE reduces systemic errors thanks to the automation of the technique. For the developed analytical method, we evaluate the limit of detection (LOD), the limit of quantitation (LOQ), selectivity, RSD% and BIAS% for LLOQ for a total of twelve NIAS, including monomers, antioxidants, UV-filters and additives. LOD ranged between 0.002 µg/L for bisphenol S and 13.6 µg/L for 2,6-di-tert-butyl-4-methylphenol (BHT). LOQs are comprised between 0.01 µg/L for bisphenol S and 42.2 µg/L for BHT. The online-SPE/UHPLC-tandem MS method is applied to the food simulants contained in several types of PET packaging materials to evaluate the migration of the selected NIAS. The results show the presence (µg/L) of NIAS in the tested samples, underlining the need for a new regulation for these potentially toxic molecules.
Collapse
|
30
|
Development and Validation of a Modified QuEChERS Method for the Analysis of Bisphenols in Meats by UPLC-MS/MS. Chromatographia 2022. [DOI: 10.1007/s10337-022-04149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Lei Y, Zhang Y, Wang B, Zhang Z, Yuan L, Li J. A lab-on-injector device with Au nanodots confined in carbon nanofibers for in situ electrochemical BPA sensing in beverages. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Lin N, Ma D, Liu Z, Wang X, Ma L. Migration of bisphenol A and its related compounds in canned seafood and dietary exposure estimation. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The present study sought to investigate the migration of target bisphenols, such as BPA, BPF, BADGE, BADGE·H2O, BADGE·2H2O, and BFDGE in 102 samples of several canned seafood, namely canned Antarctic krill, scallop, oysters, mussel, clam, and mantis shrimp stored for months at different temperatures through a high-performance liquid chromatographic-fluorescence detector (HPLC-FLD) combined with a microwave-assisted extraction method. Except for BFDGE, the other five bisphenols were observed in most of the analyzed samples. The canned shrimp showed the highest migration of BPA (0.089 mg/kg), exceeding the specific migration limit (SML) of BPA (0.05 mg/kg) specified by the European Union (EU), while the migration levels of BADGE and its derivatives were within their SMLs. The migration behavior of bisphenols in the canned seafood was majorly affected by the analytes, storage conditions, and food types. BPA, BADGE·H2O, and BADGE·2H2O were characterized by a rapid migration during the first half of the shelf life, which increased with the increase of temperature, followed by a stabilization or decline of their concentrations for prolonged durations. Besides, the migration of target bisphenols was significantly influenced by the storage temperature in some seafood species. Notably, higher migration level of BPA was found in samples with higher fat content. The average dietary exposure of Chinese adults to BPA, BPF, BADGE·2H2O, BADGE·H2O, and BADGE of canned seafood was estimated at 11.69, 1.21, 6.47, 8.74, and 4.71 ng/kg bw/day, respectively. The target hazard quotient (THQ) values of all the analyzed bisphenols were below 1 for the Chinese adults, suggesting an insignificant exposure to these bisphenols through canned seafood consumption.
Collapse
Affiliation(s)
- Na Lin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Derong Ma
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Zhidong Liu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | | | - Liyan Ma
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| |
Collapse
|
33
|
Xiao Z, Wang S, Suo D, Wang R, Huang Y, Su X. Enzymatic probe sonication for quick extraction of total bisphenols from animal-derived foods: Applicability to occurrence and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118457. [PMID: 34742818 DOI: 10.1016/j.envpol.2021.118457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
A high demand exists in bisphenols (BPs) screening studies for quick, reliable and straightforward analytical methods that generate data faster and simultaneously. Herein, we describe a combination of enzymatic probe sonication (EPS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for quick extraction and simultaneous quantification of eight important BPs in animal-derived foods. Results obtained demonstrated that the ultrasonic probe power could not only enhance the enzymatic hydrolysis efficiency, but also accelerate the liquid-liquid extraction procedure. Under optimized EPS parameters, one sample could be exhaustively extracted within 120 s, as compared with 12 h needed for the conventional enzymatic extraction which is more suitable for high-throughput analysis. The method was successfully applied to analyze residual BPs in animal-derived foods collected from Beijing, China. Widespread occurrence of BPA, BPS, BPF, BPAF, BPP, and BPB were found, with detection frequencies of 65.2%, 42.4%, 33.7%, 29.4%, 28.3%, and 27.2%, respectively. The highest total concentration levels of BPs (sum of the eight BPs analyzed, ΣBPs) were found in chicken liver (mean 12.2 μg/kg), followed by swine liver (6.37 μg/kg), bovine muscle (3.24 μg/kg), egg (2.03 μg/kg), sheep muscle (2.03 μg/kg), chicken muscle (1.45 μg/kg), swine muscle (1.42 μg/kg), and milk (1.17 μg/kg). The estimated daily intake (EDI) of BPs, based on the mean and 95th percentile concentrations and daily food consumptions, was estimated to be 5.687 ng/kg bw/d and 22.71 ng/kg bw/d, respectively. The human health risk assessment in this work suggests that currently BPs do not pose significant risks to the consumers because the hazard index (HI) was <1.
Collapse
Affiliation(s)
- Zhiming Xiao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Decheng Suo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruiguo Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Huang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoou Su
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
34
|
Petrarca MH, Fernandes JO, Marmelo I, Marques A, Cunha SC. Multi-analyte gas chromatography-mass spectrometry method to monitor bisphenols, musk fragrances, ultraviolet filters, and pesticide residues in seafood. J Chromatogr A 2021; 1663:462755. [PMID: 34968957 DOI: 10.1016/j.chroma.2021.462755] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
A gas chromatography-mass spectrometry method for the analysis of thirty-six anthropogenic contaminants in the edible portion of four distinct seafood items is reported. Considering the heterogeneous composition of algae, mussels, and lean/fatty fish muscles, a generic sample preparation based on the QuEChERS procedure combined with dispersive liquid-liquid microextraction (DLLME) with in situ acetylation was successfully applied for quantification of pesticide residues, bisphenols, musk fragrances and UV-filters. Matrix effects were influenced by the type of seafood, with the lowest effects being observed with EMR-lipid and graphitized carbon black sorbents in dispersive solid-phase extraction cleanup step. Method performance features were successful evaluated in the different seafood samples - algae, mussel, lean and fatty fish muscles, following the criteria established by SANTE/12682/2019 for analytical methods for pesticide residues analysis. The detection and quantification of bisphenol F, musk fragrances (galaxolide and tonalide), UV-filters (2-ethylhexyl salicylate, 2-ethylhexyl 4-methoxycinnamate, and isoamyl 4-methoxycinnamate), and residues of permethrin in commercial samples of algae, mussel and fish collected in a Portuguese estuary support the suitability of the proposed method for future seafood monitoring by food safety authorities.
Collapse
Affiliation(s)
- Mateus Henrique Petrarca
- LAQV-REQUIMTE, Food Chemistry, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Food Chemistry, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Isa Marmelo
- IPMA, Divisão de Aquacultura e Valorização, Instituto Português do Mar e da Atmosfera, I.P., Avenida de Brasília, Lisboa 1449-006, Portugal; CIIMAR, Universidade do Porto, Rua dos Bragas 289, Porto 4050-123, Portugal; UCIBIO-REQUIMTE, Department of Chemistry, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica 2829-516, Portugal
| | - António Marques
- IPMA, Divisão de Aquacultura e Valorização, Instituto Português do Mar e da Atmosfera, I.P., Avenida de Brasília, Lisboa 1449-006, Portugal; CIIMAR, Universidade do Porto, Rua dos Bragas 289, Porto 4050-123, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Food Chemistry, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal.
| |
Collapse
|
35
|
Yuan J, Che S, Zhang L, Li X, Yang J, Sun X, Ruan Z. Assessing the combinatorial cytotoxicity of the exogenous contamination with BDE-209, bisphenol A, and acrylamide via high-content analysis. CHEMOSPHERE 2021; 284:131346. [PMID: 34217936 DOI: 10.1016/j.chemosphere.2021.131346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 05/25/2023]
Abstract
Food is often exposed to multiple types of contaminants, and the coexistence of contaminants may have antagonistic, additive or synergistic effects. This study investigated the combinatorial toxicity of the three most widespread exogenous contaminants, decabrominated diphenyl ether (BDE-209), bisphenol A (BPA), and acrylamide (ACR) to HepG2 cells. A mathematical model (Chou-Talalay) and high-content analysis (HCA) were used to probe the nature of the contaminants' interactions and their cytotoxicity mechanisms, respectively. The results highlighted that for the individual pollutants, the cytotoxicity order was BDE-209> BPA > ACR, and varying combinations of contaminants exhibited additive/synergistic effects. In general, combining multiple contaminants significantly increased intracellular reactive oxygen species (ROS), Ca2+ flux, DNA damage and Caspase-3, and decreased mitochondrial membrane potential (MMP) and nucleus roundness, indicating that the additive or synergistic mechanism of the combined contaminations was disturbance to multiple organelles. This study emphasizes the complexity of human exposure to food contaminants and provides a scientific basis for formulating strict regulatory standards.
Collapse
Affiliation(s)
- Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| | - Junhua Yang
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Xiaoming Sun
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| |
Collapse
|
36
|
Wang J, Yin R, Zhang X, Wang N, Xiao P, Hirai H, Xiao T. Transcriptomic analysis reveals ligninolytic enzymes of white-rot fungus Phanerochaete sordida YK-624 participating in bisphenol F biodegradation under ligninolytic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62390-62397. [PMID: 34195946 DOI: 10.1007/s11356-021-15012-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol F (BPF) is widely used in the plastic manufacturing industry as a replacement for bisphenol A (BPA) because BPF and BPA have similar structures and comparable properties. However, BPF is ubiquitously present in the environment and has higher toxicity to humans. This study is the first to report BPF degradation using the white-rot fungus Phanerochaete sordida YK-624 under ligninolytic conditions (pH=4.5, 30 °C). P. sordida YK-624 almost completely degraded BPF within 4 days. Moreover, functional genes involved in BPF degradation were detected by RNA-Seq. Metabolic processes and peroxidases were enriched by GO analysis, and the metabolic pathway was enriched according to the KEGG pathway analysis. These results suggested that P. sordida YK-624 could secrete higher levels of ligninolytic enzymes lignin peroxidase (LiP) and manganese peroxidase (MnP) for BPF degradation. The results indicated that LiPs and MnPs are important for BPF degradation and cytochrome P450s play a small role. Furthermore, reliability of the RNA-Seq results was validated by qRT-PCR.
Collapse
Affiliation(s)
- Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ru Yin
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xue Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
37
|
Assessing Knowledge and Use Practices of Plastic Food Packaging among Young Adults in South Africa: Concerns about Chemicals and Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010576. [PMID: 34682322 PMCID: PMC8535462 DOI: 10.3390/ijerph182010576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
Chemicals associated with health problems can migrate from packaging into food matrices. Therefore, consumers need to be aware of health concerns associated with incorrectly used plastic food packaging. However, little is known about consumers’ knowledge and their plastics usage practices. This study assessed this knowledge and practices among young South African adult consumers. Our online survey of 293 participants focused on their objective (actual) and subjective (self-perceived) knowledge about plastic food packaging care and safety, their utilization practices, and their sources of information about safe use of plastics. Participants’ utilization practices showed broad misuse. Their subjective knowledge about the correct use of plastic packaging was in most respects contradicted by their limited objective knowledge. We found that plastic identification codes on packaging largely failed in their informative purpose; instead, participants mainly consulted informal information sources about plastics. The knowledge gaps, unsafe plastic use practices, and information source deficiencies identified here can help to guide future improvements. We call for consumer education, across all demographics, about plastic utilization practices and associated health concerns about plastic chemicals. We also highlight the need for the government, food and plastics industries to join forces in ensuring that consumers are informed about safe plastic packaging usage.
Collapse
|
38
|
Vandenberg LN, Pelch KE. Systematic Review Methodologies and Endocrine Disrupting Chemicals: Improving Evaluations of the Plastic Monomer Bisphenol A. Endocr Metab Immune Disord Drug Targets 2021; 22:748-764. [PMID: 34610783 DOI: 10.2174/1871530321666211005163614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are found in plastics, personal care products, household items, and other consumer goods. Risk assessments are intended to characterize a chemical's hazards, identify the doses at which adverse outcomes are observed, quantify exposure levels, and then compare these doses to determine the likelihood of risk in a given population. There are many problems with risk assessments for EDCs, allowing people to be exposed to levels that are later associated with serious health outcomes in epidemiology studies. OBJECTIVE In this review, we examine issues that affect the evaluation of EDCs in risk assessments (e.g., use of insensitive rodent strains and absence of disease-oriented outcomes in hazard assessments; inadequate exposure assessments). We then review one well-studied chemical, Bisphenol A (BPA; CAS #80-05-7) an EDC found in plastics, food packaging, and other consumer products. More than one hundred epidemiology studies suggest associations between BPA exposures and adverse health outcomes in environmentally exposed human populations. FINDINGS We present support for the use of systematic review methodologies in the evaluation of BPA and other EDCs. Systematic reviews would allow studies to be evaluated for their reliability and risk of bias. They would also allow all data to be used in risk assessments, which is a requirement for some regulatory agencies. CONCLUSION Systematic review methodologies can be used to improve evaluations of BPA and other EDCs. Their use could help to restore faith in risk assessments and ensure that all data are utilized in decision-making. Regulatory agencies are urged to conduct transparent, well-documented and proper systematic reviews for BPA and other EDCs.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, United States
| | | |
Collapse
|
39
|
Moghadam FH, Taher MA, Karimi-Maleh H. A sensitive and fast approach for voltammetric analysis of bisphenol a as a toxic compound in food products using a Pt-SWCNTs/ionic liquid modified sensor. Food Chem Toxicol 2021; 152:112166. [PMID: 33819550 DOI: 10.1016/j.fct.2021.112166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022]
Abstract
A sensitive and fast approach has been introduced for the voltammetric sensing of bisphenol A based on modification of a paste electrode with Pt-SWCNTs and 1-ethyl-3-methylimidazolium n-butylsulfate as a highly conductive binder. The new sensor was used to determine the concentration of bisphenol A in food products in I-V mode. The Pt-SWCNTs nanocomposite was synthesized through the polyol method and its morphology was evaluated by field emission scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy techniques. The determining factors influencing the sensing performance, i.e., pH and mediators used in the modification process were optimized in the first step and the results showed that at a pH of 7.0, a modified paste containing 9% (w:w) nanocomposite and 20% (v:v) 1-ethyl-3-methylimidazolium n-butylsulfate formed catalytic properties enhancing the oxidation signal of bisphenol A by 5.9 folds. Current density investigation clearly confirmed the conductivity of Pt-SWCNTs and 1-ethyl-3-methylimidazolium n-butylsulfate in the paste matrix. In addition, fabricated sensor showed considerable sensing behavior for bisphenol A in the concentration range of 0.5 nM-180 μM with a detection limit of 0.2 nM. In the final step, using standard addition technique, the ability of fabricated sensor for sensing bisphenol A in food products was evaluated, and the results confirmed improved performance of the modified electrodes.
Collapse
Affiliation(s)
| | - Mohammad A Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran.
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, P.O. Box 611731, Chengdu, People's Republic of China; Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Islamic Republic of Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg, 2028, South Africa.
| |
Collapse
|
40
|
Siddique MAB, Harrison SM, Monahan FJ, Cummins E, Brunton NP. Bisphenol A and Metabolites in Meat and Meat Products: Occurrence, Toxicity, and Recent Development in Analytical Methods. Foods 2021; 10:foods10040714. [PMID: 33801667 PMCID: PMC8066211 DOI: 10.3390/foods10040714] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bisphenol A (BPA) is a commonly used compound in many industries and has versatile applications in polycarbonate plastics and epoxy resins production. BPA is classified as endocrine-disrupting chemical which can hamper fetal development during pregnancy and may have long term negative health outcomes in humans. Dietary sources, main route of BPA exposure, can be contaminated by the migration of BPA into food during processing. The global regulatory framework for using this compound in food contact materials is currently not harmonized. This review aims to outline, survey, and critically evaluate BPA contamination in meat products, including level of BPA and/or metabolites present, exposure route, and recent advancements in the analytical procedures of these compounds from meat and meat products. The contribution of meat and meat products to the total dietary exposure of BPA ranges between 10 and 50% depending on the country and exposure scenario considered. From can lining materials of meat products, BPA migrates towards the solid phase resulting higher BPA concentration in solid phase than the liquid phase of the same can. The analytical procedure is comprised of meat sample pre-treatment, followed by cleaning with solid phase extraction (SPE), and chromatographic analysis. Considering several potential sources of BPA in industrial and home culinary practices, BPA can also accumulate in non-canned or raw meat products. Very few scientific studies have been conducted to identify the amount in raw meat products. Similarly, analysis of metabolites and identification of the origin of BPA contamination in meat products is still a challenge to overcome.
Collapse
Affiliation(s)
- Md Abu bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (M.A.b.S.); (S.M.H.); (F.J.M.)
| | - Sabine M. Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (M.A.b.S.); (S.M.H.); (F.J.M.)
| | - Frank J. Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (M.A.b.S.); (S.M.H.); (F.J.M.)
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Nigel P. Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; (M.A.b.S.); (S.M.H.); (F.J.M.)
- Correspondence: ; Tel.: +353-017167603
| |
Collapse
|
41
|
Morgan MK, Clifton MS. Exposure to Triclosan and Bisphenol Analogues B, F, P, S and Z in Repeated Duplicate-Diet Solid Food Samples of Adults. TOXICS 2021; 9:47. [PMID: 33802249 PMCID: PMC8001473 DOI: 10.3390/toxics9030047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Triclosan (TCS) and bisphenol analogues are used in a variety of consumer goods. Few data exist on the temporal exposures of adults to these phenolic compounds in their everyday diets. The objectives were to determine the levels of TCS and five bisphenol analogues (BPB, BPF, BPP, BPS, and BPZ) in duplicate-diet solid food (DDSF) samples of adults and to estimate maximum dietary exposures and intake doses per phenol. Fifty adults collected 776 DDSF samples over a six-week monitoring period in North Carolina in 2009-2011. The levels of the target phenols were concurrently quantified in the DDSF samples using gas chromatography/mass spectrometry. TCS (59%), BPS (32%), and BPZ (28%) were most often detected in the samples. BPB, BPF, and BPP were all detected in <16% of the samples. In addition, 82% of the total samples contained at least one target phenol. The highest measured concentration of 394 ng/g occurred for TCS in the food samples. The adults' maximum 24-h dietary intake doses per phenol ranged from 17.5 ng/kg/day (BPB) to 1600 ng/kg/day (TCS). An oral reference dose (300,000 ng/kg/day) is currently available for only TCS, and the adult's maximum dietary intake dose was well below a level of concern.
Collapse
Affiliation(s)
- Marsha K. Morgan
- United States Environmental Protection Agency’s Center for Public Health and Environmental Assessment, Research Triangle Park, NC 27711, USA
| | - Matthew S. Clifton
- United States Environmental Protection Agency’s Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27711, USA
| |
Collapse
|
42
|
Kalogiouri NP, Pritsa A, Kabir A, Furton KG, Samanidou VF. A green molecular imprinted solid-phase extraction protocol for bisphenol A monitoring with HPLC-UV to guarantee the quality and safety of walnuts under different storage conditions. J Sep Sci 2021; 44:1633-1640. [PMID: 33448130 DOI: 10.1002/jssc.202001199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/10/2023]
Abstract
Monitoring the residual toxicant concentrations in foods is the key step for minimizing potential hazards. The huge interest about food contamination and exposure to endocrine disruptors such as bisphenol A has emerged the development of sensitive analytical methodologies to guarantee the safety and quality of foods. In this work, a green molecularly imprinted solid-phase extraction protocol coupled with high-performance liquid chromatography with UV detection was optimized following the principles of green analytical chemistry. An imprinted sol-gel silica-based hybrid inorganic-organic polymeric sorbent was used to monitor the leaching of bisphenol A from different packaging materials (glass vessels, cans, and polypropylene containers) in walnuts stored within a period of 6 months at 25 and 4°C. Extraction parameters including loading time (5-20 min), solvent type (acetonitrile, ethanol, methanol, acetone, acetonitrile:methanol, 50:50, v/v), and elution flow rate (0.2-1 mL/min) were optimized with one-factor-at-a-time method. The selected extraction optimum parameters incorporated elution with acetonitrile at 0.2 mL/min flow rate, for 10 min sample holding time. The imprinting factor was equal to 4.55 ± 0.26 (n = 3). The optimized method presented high recovery (94.3 ± 4.2%, n = 3), good linearity (>0.999), intra-assay repeatability (90.2-95.6%, n = 3), and interassay precision (86.7-93.1%, n = 3).
Collapse
Affiliation(s)
- Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Agathi Pritsa
- Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
43
|
Electrochemical detection of bisphenols in food: A review. Food Chem 2021; 346:128895. [PMID: 33421902 DOI: 10.1016/j.foodchem.2020.128895] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Bisphenols (BPs) are worldwide used organic compounds in plastics, belonging to the group of endocrine disrupting chemicals (EDCs) which exhibits endocrine disruption to beings. Migration of BPs from food contact materials like plastic containers, epoxy coatings in metal cans and thermal papers, would results in bioaccumulation of BPs in human beings, causing adverse health effects. Therefore, sensitive and selective determination of BPs in food is needed. Among different strategies have been explored for the detection of BPs, electrochemical sensors with relatively high sensitivity and fast response are promising. This paper is devoted to comprehensively review the developed electrochemical methods for BPs sensing in food, so that to find a direction for developing low cost, high accuracy and compatibility sensors toward the sensitive and selective detection of BPs. Different electrochemical technologies categorized by recognition agents, aptamers, enzymes, molecularly imprinted polymers and nanomaterials are discussed and summarized in their mechanisms, usages, merits and limitations. The challenges and further perspectives in the development of electrochemical sensors is also discussed.
Collapse
|