1
|
Liu W, Zhang Z, Chen X, Mu Y, Zheng D, Huang X, Ma H, Li L. Chemical Profiles and Biological Effects of Polyphenols in Eucalyptus Genus: A Comprehensive Review on Their Applications in Human Health and the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40243000 DOI: 10.1021/acs.jafc.4c13084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The genus Eucalyptus is an important member of the family Myrtaceae. Eucalyptus plants contain unique and diverse phytochemicals, contributing to their remarkable ecological and economic values. Although the chemical components of several Eucalyptus food products (e.g., essential oil, honey, and wax) have been studied, research efforts are directed to other less characterized Eucalyptus phytochemicals, particularly polyphenols. Notably, some Eucalyptus polyphenols, such as formyl phloroglucinol meroterpenoids, have unique chemical structures with promising health-promoting effects. Thus, chemical characterization and biological evaluation of Eucalyptus polyphenols are critical to promoting their applications. Herein, this review provides a comprehensive summary of the phytochemical studies of Eucalyptus polyphenols and their biological activities, including antimicrobial, antiviral, anticancer, antioxidant, and anti-inflammatory effects. Eucalyptus polyphenols' structure-activity relationship is analyzed in the context of the development of their biological applications. In addition, the utilization of polyphenols from Eucalyptus plants in food preservation and production is summarized.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Zhuo Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xin Chen
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
2
|
Ncho CM, Gupta V, Goel A, Jeong CM, Jung JY, Ha SY, Eom JU, Yang HS, Yang JK, Choi YH. Impact of dietary polyphenols from shredded, steam-exploded pine on growth performance, organ indices, meat quality, and cecal microbiota of broiler chickens. Poult Sci 2025; 104:105088. [PMID: 40154182 PMCID: PMC11995072 DOI: 10.1016/j.psj.2025.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025] Open
Abstract
The chicken's gastrointestinal tract is home to complex and diverse microbial communities that can be manipulated to enhance health and productivity. Although polyphenols have recently attracted the attention of researchers due to their potent antioxidant capabilities, their impact on the gut microbiota remains largely unexplored. Hence, in this study, we conducted a comprehensive analysis of the effects of dietary supplementation with polyphenol-rich extract from shredded, steam-exploded pine particles (PSPP) on growth, meat quality, and gut microbial dynamics in broiler chickens. Supplementation of PSPP was found to significantly improve birds' FCR until the third week of the trial but only marginally affected meat quality. Based on metataxonomic analyses of the cecal microbiotas of broilers fed increasing concentrations of PSPP, dietary PSPP modulated the composition of the cecal microbiota of the birds with a concomitant increase of Bacteroidetes and a decrease in the Firmicutes population. Similar trends were observed for the proportions of Alistipes and Faecalibacterium at the genus level. Additionally, 43 unique bacterial species were detected in the cecal microbiome of birds fed with PSPP. However, microbial diversity did not vary significantly among treatment groups. A particularly interesting finding was the specialization observed in the microbiome of birds receiving PSPP supplementation. Microbial co-occurrence network analyses revealed substantial modifications in their network structure when compared to control birds. Families like Rikenellaceae and Eubacteriaceae were notably absent, and the number of microbial interactions was drastically lower in the PSPP-fed group. Microbial taxa modeling revealed that the impact of increasing dietary PSPP levels primarily affected genus-level taxa, showing a decreasing trend. Overall, this offers compelling evidence that continuous PSPP supplementation may not only alter the composition of intestinal microbes but also have a profound effect on the interactions among different microbial species. Conversely, PSPP had minimal effects on broilers' performance and meat quality.
Collapse
Affiliation(s)
- Chris Major Ncho
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Vaishali Gupta
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Akshat Goel
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chae-Mi Jeong
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji-Young Jung
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Si-Young Ha
- Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong-Uk Eom
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han-Sul Yang
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jae-Kyung Yang
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yang-Ho Choi
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
3
|
Yu W, Wang J, Xiong Y, Liu J, Baranenko D, Cifuentes A, Ibañez E, Zhang Y, Lu W. Impact of Imperata Cylindrica polysaccharide on liver lipid metabolism disorders caused by hyperuricemia. Int J Biol Macromol 2024; 283:137592. [PMID: 39557274 DOI: 10.1016/j.ijbiomac.2024.137592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Elevated uric acid levels are associated with lipid metabolism disorders. The effects of Imperata cylindrica polysaccharide (ICPC-a) were explored using a hyperuricemia mouse model and a uric acid-induced HepG2 hepatocyte model. ICPC-a significantly improved total cholesterol, triglycerides, low-density lipoprotein levels, and hepatic lipid deposition in hyperuricemia mice. The liver/body weight ratio decreased, and markers of liver damage, inflammation, and dyslipidemia improved. Metabolomics analysis suggested that ICPC-a modulates lipid metabolism by influencing the glycerophospholipid pathway and the enzyme LPCAT3. Stable HepG2 cell lines with knocked-down LPCAT3 were constructed, and western blot and RT-PCR were used to assess the impact of its knockdown on lipid metabolism under uric acid stimulation. In cells with reduced LPCAT3 expression, ICPC-a was still able to alleviate uric acid-induced lipid accumulation, though the effect was less pronounced compared to cells with normal LPCAT3 levels. However, the effectiveness was diminished compared to cells where LPCAT3 was not knocked down. These findings indicated that LPCAT3 was an important target through which ICPC-a regulated lipid metabolism disorders induced by hyperuricemia. These discoveries emphasized that ICPC-a, as a prebiotic, could modulate hepatic lipid accumulation and inflammation, contributing to the maintenance of hepatic lipid homeostasis.
Collapse
Affiliation(s)
- Wenchen Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
| | - Junwen Wang
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
| | - Yi Xiong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China; National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
| | - Jiaren Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Denis Baranenko
- School of Life Sciences, International research centre Biotechnologies of the Third Millennium, ITMO University, St. Petersburg 197101, Russia
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibañez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Yingchun Zhang
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China.
| | - Weihong Lu
- National and Local Joint Engineering Laboratory for Synthesis, Harbin Institute of Technology, Harbin, China; School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China.
| |
Collapse
|
4
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
5
|
Zhang H, Wei J, Xv H, Khan I, Sun Q, Zhao X, Gao J, Liu S, Wei S. Bactericidal efficacy of plasma-activated water against Vibrio parahaemolyticus on Litopenaeus vannamei. Front Nutr 2024; 11:1365282. [PMID: 38515524 PMCID: PMC10954878 DOI: 10.3389/fnut.2024.1365282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
In this study, the antimicrobial mechanism of plasma-activated water (PAW) against Vibrio parahaemolyticus and the effectiveness of PAW in artificially contaminated Litopenaeus vannamei were investigated. The results demonstrated a significant reduction (p < 0.05) in viable counts of V. parahaemolyticus with increasing plasma discharge time (5, 10, 20, and 30 min) and PAW immersion time (3, 5, 10, 20, and 30 s). Specifically, the count of V. parahaemolyticus decreased by 2.1, 2.7, 3.3, and 4.4 log CFU/mL after exposed to PAW 5, PAW 10, PAW 20, and PAW 30 for 30 s, respectively. Significant cell surface wrinkling, accompanied by notable nucleic acid and protein leakage were observed after treatment with PAW. The permeability of the inner and outer cell membranes was significantly increased (p < 0.05), along with an increase in electrical conductivity (p < 0.05). The reactive oxygen species (ROS) within V. parahaemolyticus cells were significantly increased (p < 0.05), while superoxide dismutase (SOD) activity, and the relative expression of the ompW, emrD, and luxS genes were significantly decreased (p < 0.05). A reduction number of 1.3, 1.8, 2.1, and 2.2 log CFU/g of V. parahaemolyticus in artificially contaminated L. vannamei was obtained with PAW for 5 min. The study elucidated that PAW could destroy cell membranes, leading to cell death. The findings would strengthen strategies for V. parahaemolyticus control and provide a potential application of PAW for preserving aquatic products.
Collapse
Affiliation(s)
- Huanlan Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
| | - Jie Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
| | - Hongjie Xv
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
| | - Imran Khan
- Department of Food Science and Technology, The University of Haripur, Haripur, Pakistan
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
| | - Xihong Zhao
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
6
|
Ivane NMA, Haruna SA, Wang W, Ma Q, Wang J, Liu Y, Sun J. Characterization, antioxidant activity and potential application fractionalized Szechuan pepper on fresh beef meat as natural preservative. Meat Sci 2024; 208:109383. [PMID: 37948957 DOI: 10.1016/j.meatsci.2023.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The pericarp of Szechuan pepper is rich in phenols and alkylamides, making it a potential source of antioxidant compounds. Despite being recognized as the primary antioxidants in Szechuan pepper, there is still limited knowledge about their application in real food systems. This study aims to identify, separate, and apply polyphenol and alkylamide fractions derived from Szechuan extracts to beef meat. Using HPLC-MS2, we identified 5 phenols and 11 alkylamides in Szechuan extracts. The quality of the minced meat was evaluated based on color, thiobarbituric acid reactive substances (TBARS), conjugated dienes, carbonyl content, Sulfhydryl content, microbiological content, and total volatile basic nitrogen content (TVB-N). Compared to the polyphenol fraction (1.25 mg/mL), alkylamide fraction (25 mg/mL), and control samples, beef samples incorporated with the polyphenol fraction (6.25 mg/mL) significantly reduced carbonyl content, TBARS, and TVB-N values at the end of storage. Furthermore, they exhibited a significant slowdown in microbial development, improved meat color stability, and preserved pH. Therefore, the use of Szechuan pepper fractions as natural preservatives in meat and meat products is an important area of research and has the potential to enhance the safety and quality of meat products.
Collapse
Affiliation(s)
- Ngouana Moffo A Ivane
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Center of Potato Processing, Hebei 076576, China
| | - Suleiman A Haruna
- Department of Food Science and Technology, Kano University of Science and Technology, Wudil, P.M.B 3244, Kano, Kano State, Nigeria
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China.
| |
Collapse
|
7
|
Zhao X, Du B, Wan M, Li J, Qin S, Nian F, Tang D. Analysis of the antioxidant activity of toons sinensis extract and their biological effects on broilers. Front Vet Sci 2024; 10:1337291. [PMID: 38260193 PMCID: PMC10800727 DOI: 10.3389/fvets.2023.1337291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Plant extracts are rich in a variety of nutrients and contain a large number of bioactive compounds, and compared with traditional feed additives, they have advantages such as wide sources, natural safety and rich nutrition. This study employed in vitro antioxidant and animal experiments to comprehensively evaluate the use of Toona sinensis extract (TSE) in broiler production. 508 1-day-old Cobb 500 broilers were randomly assigned to the 7 experimental groups with 6 replications and 12 birds/replicate. Two groups received Vitamin C (VC) 300 g/t and Vitamin E 500 g/t, and five dose groups of TSE received 0, 300, 600, 900, and 1,200 g/t of TSE in their feed. The study spanned 42 days, with a starter phase (1-21 days) and a finisher phase (22-42 days). The results showed that compared to ascorbic acid, TSE had the scavenging ability of 2,2-Diphenyl-1-picrylhydrazyl and hydroxyl radical, with IC50 values of 0.6658 mg/mL and 33.1298 mg/mL, respectively. Compared to TSE 0 group, broilers fed with 1,200 g/t TSE showed significant weight gain during the starter phase and increased the feed-to-weight gain ratio during both the starter and finisher phases. Additionally, broilers receiving 1,200 g/t TSE had enhanced dry matter and organic matter utilization. Concerning meat quality, broilers in the 1,200 g/t TSE group demonstrated increased cooked meat yield, and pH value, as well as higher antioxidant capacity (T-AOC), dismutase (SOD), and glutathione peroxidase (GSH-PX) in serum. In addition, there was no significant difference in ileal microflora due to TSE supplementation. In summary, this study confirms the positive impact of a dietary inclusion of 1,200 g/t TSE on broiler growth, meat quality, and serum antioxidants.
Collapse
Affiliation(s)
- Xiangmin Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Baolong Du
- Yizhou District Animal Disease Prevention and Control Center, Hami, China
| | - Minyan Wan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinlu Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fang Nian
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Jiang A, Liu Z, Lv X, Zhou C, Ran T, Tan Z. Prospects and Challenges of Bacteriophage Substitution for Antibiotics in Livestock and Poultry Production. BIOLOGY 2024; 13:28. [PMID: 38248459 PMCID: PMC10812986 DOI: 10.3390/biology13010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
The overuse and misuse of antibiotics in the livestock and poultry industry has led to the development of multi-drug resistance in animal pathogens, and antibiotic resistance genes (ARGs) in bacteria transfer from animals to humans through the consumption of animal products, posing a serious threat to human health. Therefore, the use of antibiotics in livestock production has been strictly controlled. As a result, bacteriophages have attracted increasing research interest as antibiotic alternatives, since they are natural invaders of bacteria. Numerous studies have shown that dietary bacteriophage supplementation could regulate intestinal microbial composition, enhance mucosal immunity and the physical barrier function of the intestinal tract, and play an important role in maintaining intestinal microecological stability and normal body development of animals. The effect of bacteriophages used in animals is influenced by factors such as species, dose, and duration. However, as a category of mobile genetic elements, the high frequency of gene exchange of bacteriophages also poses risks of transmitting ARGs among bacteria. Hence, we summarized the mechanism and efficacy of bacteriophage therapy, and highlighted the feasibility and challenges of bacteriophage utilization in farm animal production, aiming to provide a reference for the safe and effective application of bacteriophages as an antibiotic alternative in livestock and poultry.
Collapse
Affiliation(s)
- Aoyu Jiang
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zixin Liu
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaokang Lv
- College of Animal Science, Anhui Science and Technology University, Bengbu 233100, China;
| | - Chuanshe Zhou
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tao Ran
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (A.J.); (Z.L.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
9
|
Zhang S, Xie H, Huang J, Chen Q, Li X, Chen X, Liang J, Wang L. Ultrasound-assisted extraction of polyphenols from pine needles (Pinus elliottii): Comprehensive insights from RSM optimization, antioxidant activity, UHPLC-Q-Exactive Orbitrap MS/MS analysis and kinetic model. ULTRASONICS SONOCHEMISTRY 2024; 102:106742. [PMID: 38171196 PMCID: PMC10797201 DOI: 10.1016/j.ultsonch.2023.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Extracting polyphenolic bioactive compounds from Pinus elliottii needles, a forestry residue, promises economic and environmental benefits, however, relevant experimental data are lacking. Herein, a comprehensive investigation of the polyphenolic composition of pine needles (PNs) was carried out. Ultrasound-Assisted Extraction (UAE) was applied to extract the polyphenolic compounds of pine needles. The optimal conditions of extracts were determined by Response Surface Methodology (RSM). The maximum total phenolic content (TPC) of 40.37 mg GAE/g PNs was achieved with solid-liquid ratio of 1:20, 60 % ethanol, and 350 W for 25 min at 45 °C. Polyphenolic extracts showed antioxidant activity in scavenging free radicals and reducing power (DPPH, IC50 41.05 μg/mL; FRAP 1.09 mM Fe2+/g PNs; ABTS, IC50 214.07 μg/mL). Furthermore, the second-order kinetic model was also constructed to describe the mechanism of the UAE process, with the extraction activation energy estimated at 12.26 kJ/mol. In addition, 37 compounds in PNs were first identified by UHPLC-Q-Exactive Orbitrap MS/MS, including flavonoids and phenolic acids. The results suggest that Ultrasound-Assisted is an effective method for the extraction of natural polyphenolic compounds from pine needles and this study could serve as a foundation for utilizing phenolics derived from PNs in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Siheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Hongzhao Xie
- Guangxi Standardization Association, Nanning 530009, PR China
| | - Jie Huang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Qiumei Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Xin Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Xiaopeng Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Jiezhen Liang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China
| | - Linlin Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
10
|
Ren C, Li Q, Luo T, Betti M, Wang M, Qi S, Wu L, Zhao L. Antioxidant Polyphenols from Lespedeza bicolor Turcz. Honey: Anti-Inflammatory Effects on Lipopolysaccharide-Treated RAW 264.7 Macrophages. Antioxidants (Basel) 2023; 12:1809. [PMID: 37891888 PMCID: PMC10604429 DOI: 10.3390/antiox12101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023] Open
Abstract
Although the honey produced by Lespedeza bicolor Turcz. is precious because of its medicinal value, its pharmacological mechanism is still unclear. Here, its anti-inflammatory and antioxidant functions on lipopolysaccharide (LPS)-treated murine RAW 264.7 macrophages were analyzed using targeted and non-targeted metabolomics. Results showed that twelve polyphenols were identified in L. bicolor honey using UHPLC-QQQ-MS/MS. L. bicolor honey extract could scavenge the free radicals DPPH• and ABTS+ and reduce Fe3+. Furthermore, pretreatment with L. bicolor honey extract significantly decreased NO production; suppressed the expression of COX-2, IL-10, TNF-α, and iNOS; and upregulated HO-1's expression in the cells with LPS application. UHPLC-Q-TOF-MS/MS-based metabolomics results revealed that L. bicolor honey extract could protect against inflammatory damage caused by LPS through the reduced activation of sphingolipid metabolism and necroptosis pathways. These findings demonstrate that L. bicolor honey possesses excellent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Caijun Ren
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| | - Qiangqiang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| | - Teng Luo
- Institute of NBC Defence, Beijing 102205, China;
| | - Mirko Betti
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Miao Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| | - Liming Wu
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Beijing 100093, China
| | - Liuwei Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.R.); (Q.L.); (M.W.); (S.Q.)
| |
Collapse
|
11
|
Oleforuh-Okoleh VU, Sikiru AB, Kakulu II, Fakae BB, Obianwuna UE, Shoyombo AJ, Adeolu AI, Ollor OA, Emeka OC. Improving hydrocarbon toxicity tolerance in poultry: role of genes and antioxidants. Front Genet 2023; 14:1060138. [PMID: 37388938 PMCID: PMC10302211 DOI: 10.3389/fgene.2023.1060138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Sustenance of smallholder poultry production as an alternative source of food security and income is imperative in communities exposed to hydrocarbon pollution. Exposure to hydrocarbon pollutants causes disruption of homeostasis, thereby compromising the genetic potential of the birds. Oxidative stress-mediated dysfunction of the cellular membrane is a contributing factor in the mechanism of hydrocarbon toxicity. Epidemiological studies show that tolerance to hydrocarbon exposure may be caused by the activation of genes that control disease defense pathways like aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2p45-related factor 2 (Nrf2). Disparity in the mechanism and level of tolerance to hydrocarbon fragments among species may exist and may result in variations in gene expression within individuals of the same species upon exposure. Genomic variability is critical for adaptation and serves as a survival mechanism in response to environmental pollutants. Understanding the interplay of diverse genetic mechanisms in relation to environmental influences is important for exploiting the differences in various genetic variants. Protection against pollutant-induced physiological responses using dietary antioxidants can mitigate homeostasis disruptions. Such intervention may initiate epigenetic modulation relevant to gene expression of hydrocarbon tolerance, enhancing productivity, and possibly future development of hydrocarbon-tolerant breeds.
Collapse
Affiliation(s)
| | - Akeem B. Sikiru
- Department of Animal Science, Federal University of Agriculture, Zuru, Kebbi State, Nigeria
| | - Iyenemi I. Kakulu
- Department of Estate Management, Faculty of Environmental Sciences, Rivers State University, Port Harcourt, Nigeria
| | - Barineme B. Fakae
- Department of Animal and Environmental Biology, Rivers State University, Port Harcourt, Rivers State, Nigeria
| | | | - Ayoola J. Shoyombo
- Department of Animal Science, College of Agricultural Science, Landmark University, Omu-aran, Kwara State, Nigeria
| | - Adewale I. Adeolu
- Department of Agriculture, Animal Science Programme, Alex-Ekwueme Federal University, Ikwo, Ebonyi, Nigeria
| | - Ollor A. Ollor
- Department of Medical Laboratory Science, Faculty of Science, Rivers State University, Port Harcourt, Rivers State, Nigeria
| | - Onyinyechi C. Emeka
- Department of Animal Science, Rivers State University, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
12
|
Wadaan MA, Baabbad A, Khan MF, Saravanan M, Anderson A. Phytochemical profiling, anti-hyperglycemic, antifungal, and radicals scavenging potential of crude extracts of Athyrium asplenioides- an in-vitro approach. ENVIRONMENTAL RESEARCH 2023; 231:116129. [PMID: 37187305 DOI: 10.1016/j.envres.2023.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
This research was aimed to evaluate the phytochemical profile, antifungal, anti-hyperglycemic, as well as antioxidant activity competence of different extracts of Athyrium asplenioides through in-vitro approach. The A. asplenioides crude methanol extract contained considerable quantity of pharmaceutically precious phytochemicals (saponins, tannins, quinones, flavonoid, phenols, steroid, and terpenoids) than others (acetone, ethyl acetate, and chloroform). Interestingly, the crude methanol extract showed remarkable antifungal activity against Candida species (C. krusei: 19.3 ± 2 mm > C. tropicalis: 18.4 ± 1 mm > C. albicans: 16.5 ± 1 mm > C. parapsilosis: 15.5 ± 2 mm > C. glabrate: 13.5 ± 2 mm > C. auris: 7.6 ± 1 mm) at a concentration of 20 mg mL-1. The crude methanol extract also showed remarkable anti-hyperglycemic activity on concentration basis. Surprisingly, remarkable free radicals scavenging potential against DPPH (76.38%) and ABTS (76.28%) free radicals at a concentration of 20 mg mL-1. According to the findings, the A. asplenioides crude methanol extract contains pharmaceutically valuable phytochemicals and may be useful for drug discovery.
Collapse
Affiliation(s)
- Mohammad Ahmad Wadaan
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia.
| | - Almohannad Baabbad
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Farooq Khan
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Mythili Saravanan
- Department of Pharmaceutical Sciences, North Carolina Central University, USA
| | - A Anderson
- Faculty of Science of Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
| |
Collapse
|
13
|
Choi J, Kong B, Bowker BC, Zhuang H, Kim WK. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals (Basel) 2023; 13:ani13081386. [PMID: 37106949 PMCID: PMC10135100 DOI: 10.3390/ani13081386] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Poultry meat is becoming one of the most important animal protein sources for human beings in terms of health benefits, cost, and production efficiency. Effective genetic selection and nutritional programs have dramatically increased meat yield and broiler production efficiency. However, modern practices in broiler production result in unfavorable meat quality and body composition due to a diverse range of challenging conditions, including bacterial and parasitic infection, heat stress, and the consumption of mycotoxin and oxidized oils. Numerous studies have demonstrated that appropriate nutritional interventions have improved the meat quality and body composition of broiler chickens. Modulating nutritional composition [e.g., energy and crude protein (CP) levels] and amino acids (AA) levels has altered the meat quality and body composition of broiler chickens. The supplementation of bioactive compounds, such as vitamins, probiotics, prebiotics, exogenous enzymes, plant polyphenol compounds, and organic acids, has improved meat quality and changed the body composition of broiler chickens.
Collapse
Affiliation(s)
- Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian C Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
Wu X, Chen B, Xiao J, Guo H. Different doses of UV-B radiation affect pigmented potatoes' growth and quality during the whole growth period. FRONTIERS IN PLANT SCIENCE 2023; 14:1101172. [PMID: 36818873 PMCID: PMC9929570 DOI: 10.3389/fpls.2023.1101172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION UltraViolet- Biological (UV-B) plays an important role in plant growth and the formation of nutrients, especially secondary metabolites. METHODS To investigate the phenotypic changes, physiological responses, and internal genes expression of potatoes under enhanced UV-B radiation, two Yunnan native pigmented potatoes varieties named "Huaxinyangyu" and "Jianchuanhong" were exposed to different UV-B doses during whole growth duration. RESULTS Pearson correlation analysis and principal component analysis showed that the agronomic characters (i.e. plant height, pitch, stem diameter, and root shoot ratio) of plants treated with low dose ultraviolet (T1) did not change significantly compared with the absence of ultraviolet radiation (CK), even unit yield increased slightly; Similarly, under low UV-B radiation, photosynthetic and physiological parameters (photosynthetic rate, stomatal conductance, respiration rate, and transpiration rate) of leaves were significantly increased. In addition, low-dose UV-B treatment promoted the synthesis of tuber nutrients (e.g. phenols, chlorogenic acids, flavonoids, vitamin C, anthocyanins) and increased the expression of structural genes for anthocyanin synthesis. The number of nutrients and gene expression in tubers raised by the "Huaxinyangyu" was the highest at 84 days, and "Jianchuanhong" was the highest at 72 days. However, the higher dose of UV-B radiation (T2) will cause greater damage to the pigmented potatoes plants, making the plants reduce the yield, and significantly reduce the tuber nutrients. DISCUSSION This study showed that proper ultraviolet radiation will not harm pigmented potatoes, but also improve their oxidative stress tolerance, increase the structure genes expression of anthocyanins and continuously synthesize beneficial substances to improve the yield and quality of potato tubers.
Collapse
|
15
|
Gao J, Yang Z, Zhao C, Tang X, Jiang Q, Yin Y. A comprehensive review on natural phenolic compounds as alternatives to in-feed antibiotics. SCIENCE CHINA. LIFE SCIENCES 2022:10.1007/s11427-022-2246-4. [PMID: 36586071 DOI: 10.1007/s11427-022-2246-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 01/01/2023]
Abstract
Intensive livestock and poultry farming in China largely relied on the use of in-feed antibiotics until July 2020. The consequences of antibiotic overuse in animal feed include accumulation in animal products and the development of bacterial antibiotic resistance, both of which threaten food safety and human health. China has now completely banned the circulation of commercial feed containing growth-promoting drug additives (except Chinese herbal medicine). Therefore, alternatives to in-feed antibiotics in animal production are greatly needed. Natural phenolic compounds (NPCs) exist widely in plants and are non-toxic, non-polluting, highly reproducible, and leave little residue. Many natural flavonoids, phenolic acids, lignans, and stilbenes have polyphenol chemical structures and exhibit great potential as alternatives to antibiotics. In this review we delineate the characteristics of plant-derived NPCs and summarize their current applications as alternatives to in-feed antibiotics, aiming to provide new strategies for antibiotic-free feeding and promote the development of more sustainable animal husbandry practices.
Collapse
Affiliation(s)
- Jingxia Gao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhe Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Chongqi Zhao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
16
|
In Vitro Antioxidant Activities of Plant Polyphenol Extracts and Their Combined Effect with Flaxseed on Raw and Cooked Breast Muscle Fatty Acid Content, Lipid Health Indices and Oxidative Stability in Slow-Growing Sasso Chickens. Foods 2022; 12:foods12010115. [PMID: 36613331 PMCID: PMC9818817 DOI: 10.3390/foods12010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Adding flaxseed was found to decrease oxidative stability in feed and increase the antioxidant needs of chicken. This has also been associated with a decrease in the nutritional value and oxidative stability of meat if sufficient dietary antioxidants are not included. Furthermore, dietary flaxseed has been explored in fast-growing chickens as such studies are limited with slow-growing chickens. Thus, this study aimed to evaluate the effects of feeding plant polyphenol extracts as an antioxidant alongside flaxseed on fatty acid content, oxidative stability, and lipid health indices in breast muscle of slow-growing Sasso T451A dual-purpose chicken. A total of 126 chickens assigned to six groups (seven replicates of three) were fed on NC (control and no antioxidants), FS (75 g flaxseed and no antioxidants), VE8 (75 g flaxseed and 800 mg vitamin E), TS8 (75 g flaxseed and 800 mg Thymus schimperi), DA8 (75 g flaxseed and 800 mg Dodonaea angustifolia) and CD8 (75 g flaxseed and 800 mg Curcuma domestica) extract per kg diet. Feeding on CD8 and VE8 in raw and TS8, CD8 and VE8 diets in cooked breast muscle increased (p < 0.05) the C22:6n − 3 (DHA) and C20:5n − 3 (EPA) contents compared to the FS diet. Feeding FS increased (p < 0.05) the malondialdehyde (MDA) content in breast muscle, whereas TS8 in cooked and raw and CD8 and DA8 diets in raw breast muscle decreased it (p < 0.05). No added benefit was observed in feeding VE8 over plant extracts in terms of improving fatty acid composition and lipid health indices and reducing lipid oxidation in breast meat.
Collapse
|
17
|
Response surface methodology optimization and HPLC-ESI-QTOF-MS/MS analysis on ultrasonic-assisted extraction of phenolic compounds from okra (Abelmoschus esculentus) and their antioxidant activity. Food Chem 2022; 405:134966. [PMID: 36436230 DOI: 10.1016/j.foodchem.2022.134966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
Abstract
Okra (Abelmoschus esculentus) has attracted a growing attention for its nutritional and medicinal values, while few studies focused on systemic study of okra polyphenols (OP). In order to obtain the maximum extracted efficiency, response surface methodology was used to optimize ultrasonic-assisted extraction conditions. The maximum TPC was 7.02 mg GAE/g dw under the condition of solid-liquid ratio 1:25, ethanol concentration 70 %, 40 min, and 142 W at 46 °C. Then 27 compounds in OP were identified by HPLC-ESI-QTOF-MS/MS, among which 7-hydroxycoumarin, scopoletin, luteolin and et al were firstly identified from okra. Furthermore, OP exhibited antioxidant activity in reducing power (FRAP, 9.77 mM Fe2+/g OP) and radical scavenging (DPPH, IC50 19.31 µg/mL; SARC, IC50 210.81 µg/ml). Moreover, OP significantly inhibited cell apoptosis and ROS generation, and alleviated oxidative damage in t-BHP induced HUVECs. Overall, our findings could provide perspective for further potential employments of okra as functional food.
Collapse
|
18
|
Zhang G, Guo F, Zeng M, Wang Z, Qin F, Chen J, Zheng Z, He Z. The immune-enhancing effect and in vitro antioxidant ability of different fractions separated from Colla corii asini. J Food Biochem 2022; 46:e14174. [PMID: 35415887 DOI: 10.1111/jfbc.14174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 12/29/2022]
Abstract
In this study, Colla corii asini (CCA) was fractionated into three fractions with different molecular weights using ultracentrifugation equipment. Components with a molecular weight of >10 kDa in F1 accounted for 81.90%, whereas that in F2 and F3 was 15.63% and 0.94%, respectively. The immunomodulatory activity of CCA fractions was investigated using RAW264.7 cell model and their antioxidant abilities were evaluated by 2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) and ferric-reducing antioxidant power (FRAP) assay. The results indicated that RAW264.7 cells treated with F1 released the highest level of nitric oxide, reactive oxygen species, interleukin-6, and tumor necrosis factor-α. The ABTS and FRAP value of F1 were 65.81% and 29.33 μM TE/L, respectively, which were 22.53%, 128.44% and 43.72%, 132.16% higher than that of F2 and F3, respectively. These results suggested that components with a molecular weight of >10 kDa in CCA had stronger immunomodulatory and antioxidant ability, which would help develop the health food based on CCA. PRACTICAL APPLICATIONS: Colla corii asini (CCA) is a famous protein-based traditional Chinese medicine and nutritional supplement. During the processing of CCA, the molecular weight (MW) of CCA collagen components changed dynamically due to the protein aggregation, degradation, and the Maillard reaction. Some studies have shown that the MW distribution of CCA was not uniform. However, the MW range of CCA components which has strong antioxidant and immunomodulatory activity is still not clear, and few studies have reported the mechanism of CCA's immunomodulatory activity and active ingredients. Therefore, it is important to figure out the characteristics of CCA components with stronger immunomodulatory and antioxidant ability, such as the MW distribution and chemical composition of CCA fractions. And this study will be great for the processing of CCA products which has better biological functions.
Collapse
Affiliation(s)
- Guowei Zhang
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengxian Guo
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zongping Zheng
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, China
| | - Zhiyong He
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Zhu W, Han M, Bu Y, Li X, Yi S, Xu Y, Li J. Plant polyphenols regulating myoglobin oxidation and color stability in red meat and certain fish: A review. Crit Rev Food Sci Nutr 2022; 64:2276-2288. [PMID: 36102134 DOI: 10.1080/10408398.2022.2122922] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Color is an essential criterion for assessing the freshness, quality, and acceptability of red meat and certain fish with red muscle. Myoglobin (Mb), one of the significant pigment substances, is the uppermost reason to keep the color of red meat. Their oxidation and browning are easy to occur throughout the storage and processing period. Natural antioxidants are substances with antioxidant activity extracted from plants, such as plant polyphenols. Consumers prefer natural antioxidants due to safety concerns and limitations on the use of synthetic antioxidants. In recent years, plant polyphenols have been widely used as antioxidants to slow down the deterioration of product quality due to oxidation. As natural antioxidants, it is necessary to strengthen the researches on the antioxidant mechanism of plant polyphenols to solve the discoloration of red meat and certain fish. A fundamental review of the relationship between Mb oxidation and color stability is discussed. The inhibiting mechanisms of polyphenols on lipid and Mb oxidation are presented and investigated. Meanwhile, this review comprehensively outlines applications of plant polyphenols in improving color stability. This will provide reference and theoretical support for the rational application of plant polyphenols in green meat processing.
Collapse
Affiliation(s)
- Wenhui Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Menglin Han
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Ying Bu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Yongxia Xu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| |
Collapse
|
20
|
Synergistic effect and disinfection mechanism of combined treatment with ultrasound and slightly acidic electrolyzed water and associated preservation of mirror carp (Cyprinus carpio L.) during refrigeration storage. Food Chem 2022; 386:132858. [DOI: 10.1016/j.foodchem.2022.132858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022]
|
21
|
Wang X, Qi Y, Zheng H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants (Basel) 2022; 11:antiox11061212. [PMID: 35740109 PMCID: PMC9220293 DOI: 10.3390/antiox11061212] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Polyphenols, which are probably the most important secondary metabolites produced by plants, have attracted tremendous attention due to their health-promoting effects, including their antioxidant, anti-inflammatory, antibacterial, anti-adipogenic, and neuro-protective activities, as well as health properties. However, due to their complicated structures and high molecular weights, a large proportion of dietary polyphenols remain unabsorbed along the gastrointestinal tract, while in the large intestine they are biotransformed into bioactive, low-molecular-weight phenolic metabolites through the residing gut microbiota. Dietary polyphenols can modulate the composition of intestinal microbes, and in turn, gut microbes catabolize polyphenols to release bioactive metabolites. To better investigate the health benefits of dietary polyphenols, this review provides a summary of their modulation through in vitro and in vivo evidence (animal models and humans), as well as their possible actions through intestinal barrier function and gut microbes. This review aims to provide a basis for better understanding the relationship between dietary polyphenols, gut microbiota, and host health.
Collapse
|
22
|
Li G, Yan N, Li G. The Effect of In Vitro Gastrointestinal Digestion on the Antioxidants, Antioxidant Activity, and Hypolipidemic Activity of Green Jujube Vinegar. Foods 2022; 11:foods11111647. [PMID: 35681396 PMCID: PMC9180043 DOI: 10.3390/foods11111647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
Healthy fruit vinegar has been extensively favored in China in recent years. As a new type of fruit vinegar developed by our laboratory, green jujube vinegar has the characteristics of good taste and rich nutrition. To study the effect of in vitro gastrointestinal digestion on the antioxidant and hypolipidemic activity of green jujube vinegar, so as to provide basic data for research and the development of healthy food antioxidants, including the total phenolic content (TPC), total flavonoid content (TFC), total acid content, and volatile acid content, were measured. The antioxidant activity was measured by using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) free radical scavenging methods and the ferric reducing antioxidant power assay (FRAP), and the hypolipidemic activity was measured by cholesterol adsorption and the sodium cholate adsorption capacities. The results show that gastric digestion significantly (p < 0.05) decreased the TPC, TFC, total acid content, and volatile acid content, for which the highest reductions were up to 54.17%, 72%, 88.83% and 82.35%, respectively. During intestinal digestion, the TFC remained at a high level and unchanged, and the TFC and volatile acid content significantly (p < 0.05) decreased by 72.66% and 89.05%, respectively. The volatile acid content did not significantly (p > 0.05) change within 2 h. The ABTS free radical scavenging ability and the reducing power free radical scavenging rate were correlated with the TPC, TFC, and total acid contents, and the DPPH free radical scavenging ability and cholesterol adsorption capacity were not. These findings suggest that green jujube vinegar can be a potential functional food for people’s use.
Collapse
|
23
|
Chang L, Ding Y, Wang Y, Song Z, Li F, He X, Zhang H. Effects of Different Oligosaccharides on Growth Performance and Intestinal Function in Broilers. Front Vet Sci 2022; 9:852545. [PMID: 35433897 PMCID: PMC9011052 DOI: 10.3389/fvets.2022.852545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThis study was conducted to investigate the effects of different oligosaccharides on the growth performance and intestinal function in broilers.MethodsA total of 360 1-day-old yellow-feather chickens were randomly divided into 5 groups and fed with a basal diet supplemented with 50 mg/kg chlortetracycline (ANT), 3 g/kg isomalto-oligosaccharide (IMO), 3 g/kg raffinose oligosaccharide (RFO), and 30 mg/kg chitooligosaccharide (COS). The experiment lasted for 56 days, with 1–28 days as the starter phase and 29–56 days as the grower phase.ResultsThe results showed that dietary supplementation with RFO and COS significantly improved average daily gain (ADG) and average daily feed intake (ADFI) (p < 0.05). Relative to the control group, diets supplemented with oligosaccharides dramatically increased the level of serum IgM (RFO, COS), T-SOD (COS), and GSH-Px (IMO and RFO) and the expression of ZO-1(IMO) and claudin-1 (RFO) (p < 0.05). Adding antibiotics or oligosaccharides to the diet could remarkedly increase the villus height and villus height (VH)/crypt depth (CD) ratio of each group (p < 0.05). Through the ileum α-diversity analysis and comparison of OTU number in each group showed that the microbial richness of the IMO group increased in the starter phase, and that of the RFO and CSO group increased in the grower phase. Additionally, compared with the control group, IMO supplementation increased the level of ileum sIgA (p < 0.05) and the content of valeric acid (p < 0.05) in the cecum.ConclusionsIn summary, the addition of oligosaccharides in diet can improve the immune function and antioxidant capacity and improve intestinal health of broilers.
Collapse
Affiliation(s)
- Ling Chang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for High-quality Animal Products Production, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Yanan Ding
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for High-quality Animal Products Production, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Yushi Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for High-quality Animal Products Production, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for High-quality Animal Products Production, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Fei Li
- Guangxi Fufeng Agriculture and Animal Husbandry Group Co., Ltd., Nanning, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for High-quality Animal Products Production, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for High-quality Animal Products Production, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, China
| |
Collapse
|
24
|
Xiang XW, Wang R, Chen H, Chen YF, Shen GX, Liu SL, Sun PL, Chen L. Structural characterization of a novel marine polysaccharide from mussel and its antioxidant activity in RAW264.7 cells induced by H2O2. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Structural properties, antioxidant and hypoglycemic activities of polysaccharides purified from pepper leaves by high-speed counter-current chromatography. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Chang G, Cai C, Xiang Y, Fang X, Yang H. Extraction and Study of Hypoglycemic Constituents from Myrica rubra Pomace. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030846. [PMID: 35164115 PMCID: PMC8840098 DOI: 10.3390/molecules27030846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Myrica rubra pomace accounts for 20% of the fruit’s weight that is not utilized when it is juiced. The pomace contains bioactive phenolic substances such as anthocyanins and flavonoids. To improve the utilization value of Myrica rubra pomace, an optimized extraction method for the residual polyphenols was developed using response surface methodology (RSM). The resulting extract was analyzed by high performance liquid chromatography (HPLC), and the in vitro hypoglycemic activity and antioxidant activity of the polyphenolic compounds obtained were also investigated. The optimum extraction conditions (yielding 24.37 mg·g−1 total polyphenols content) were: extraction temperature 60 °C, ultrasonic power 270 W, ethanol concentration 53%, extraction time 57 min, and solid to liquid ratio 1:34. Four polyphenolic compounds were identified in the pomace extract by HPLC: myricitrin, cyanidin-O-glucoside, hyperoside, and quercitrin. DPPH and hydroxyl radical scavenging tests showed that the Myrica rubra polyphenols extract had strong antioxidant abilities. It is evident that the residual polyphenols present in Myrica rubra pomace have strong hypoglycemic activity and the juiced fruits can be further exploited for medicinal purposes.
Collapse
Affiliation(s)
- Guoli Chang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (G.C.); (Y.X.)
| | - Chenggang Cai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (G.C.); (Y.X.)
- Correspondence: or (C.C.); or (H.Y.); Tel.: +86-571-8507-0393 (C.C.); +86-577-8668-9079 (H.Y.)
| | - Yannan Xiang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (G.C.); (Y.X.)
| | - Xiangjun Fang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310023, China;
| | - Hailong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Correspondence: or (C.C.); or (H.Y.); Tel.: +86-571-8507-0393 (C.C.); +86-577-8668-9079 (H.Y.)
| |
Collapse
|
27
|
Fan X, Jiang C, Dai W, Jing H, Du X, Peng M, Zhang Y, Mo L, Wang L, Chen X, Lou Z, Wang H. Effects of different extraction on the antibacterial and antioxidant activities of phenolic compounds of areca nut (husks and seeds). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Hu C, Gu L, Li M, Ji F, Sun W, Wang D, Peng W, Lin D, Liu Q, Dai H, Zhou H, Xu T. Dietary Supplementation With Didancao ( Elephantopus scaber L.) Improves Meat Quality and Intestinal Development in Jiaji Ducks. Front Vet Sci 2021; 8:753546. [PMID: 34722710 PMCID: PMC8548424 DOI: 10.3389/fvets.2021.753546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Didancao (Elephantopus scaber L.) has been used as a traditional herbal medicine and has exhibited a beneficial role in animal health. This study aimed to investigate the effects of dietary supplementation with E. scaber on growth performance, meat quality, intestinal morphology, and microbiota composition in ducks. A total of 480 Jiaji ducks (42 days old, male:female ratio = 1:1) were randomly assigned to one of four treatments. There were six replicates per treatment, with 20 ducks per replicate. The ducks in the control group (Con) were fed a basal diet; the three experimental groups were fed a basal diet supplementation with 30 (T1), 80 (T2), and 130 mg/kg (T3) of E. scaber. After a 48-day period of supplementation, growth performance, meat quality, intestinal morphology, and microbiota composition were evaluated. The results showed that no differences were observed in the final body weight, average daily feed intake, and average daily gain among the four groups. Compared with that in the Con group, the feed conversion in the T1 and T2 groups was increased significantly; the T2 group was shown to decrease the concentration of alanine aminotransferase in serum; the T3 group was lower than the Con group in the concentration of aspartate aminotransferase and was higher than the Con group in the concentration of high-density lipoprotein-cholesterol. The highest concentration of creatinine was observed in the T1 group. The T2 group was higher than the Con group in the contents of Phe, Ala, Gly, Glu, Arg, Lys, Tyr, Leu, Ser, Thr, Asp, and total amino acids in the breast muscle. Moreover, the T2 group was higher than the Con group in the contents of meat C18:2n−6 and polyunsaturated fatty acid. The concentration of inosinic acid in the T1, T2, and T3 groups was significantly higher than that in the Con group. However, the Con group was higher than the T2 or T3 group in the Zn content. The T2 group was lower than the Con group in the jejunal crypt depth. The T3 group was higher than the Con group in the ileal villus height and the ratio of villus height to crypt depth. In addition, the T3 group had a trend to significantly increase the abundance of Fusobacteria. Compared with the Con group, the T1 and T2 groups displayed a higher abundance of Subdoligranulum. Collectively, dietary supplementation with 80 mg/kg of E. scaber improves meat quality and intestinal development in ducks.
Collapse
Affiliation(s)
- Chengjun Hu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Mao Li
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Fengjie Ji
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiping Sun
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dingfa Wang
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiqi Peng
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dajie Lin
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Quanwei Liu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Haofu Dai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Tieshan Xu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
29
|
Effects of Fruit Maturity Stages on GC-FID Fatty Acid Profiles, Phenolic Contents, and Biological Activities of Eucalyptus marginata L. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5546969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to determine the impact of development stages of Eucalyptus marginata’s fruits on the fatty acid composition as well as on phenolic, flavonoid, and tannin contents of oils. Taking into account fruit maturity stages, vegetable oils have been evaluated for their biological potentials. Fatty acid profiles were quantified using gas chromatography (GC) coupled to a flame ionization detector (FID). The fatty acid profiles of oils obtained from mature fruits showed highest linoleic acid content (49.21%) and Z-vaccenic (C18:1n-7) + oleic (C18:1n-9) acids (22.40%) and a low content of linolenic acid (C18:3) (1.59%). On the other hand, the major saturated fatty acid compound found in the oil of immature Eucalyptus marginata fruits was palmitic acid (C16:0) with about 27%. Based on the Folin–Ciocalteau method, the obtained results revealed a significant difference in the contents of total polyphenols, flavonoids, and tannins according to the stage of fruit maturity (
). Furthermore, the detected antimicrobial potentials were related to the fruit maturity stage. While both veg\etable oils extracted from mature and immature Eucalyptus marginata fruits exhibited notable antibacterial activities against the species Staphylococcus aureus, Enterococcus faecalis, Serratia marcescens, and Escherichia coli, only the oils extracted from immature fruits exhibited an antifungal activity against Candida parapsilosis.
Collapse
|
30
|
Efenberger-Szmechtyk M, Gałązka-Czarnecka I, Otlewska A, Czyżowska A, Nowak A. Aronia melanocarpa (Michx.) Elliot, Chaenomeles superba Lindl. and Cornus mas L. Leaf Extracts as Natural Preservatives for Pork Meat Products. Molecules 2021; 26:molecules26103009. [PMID: 34070170 PMCID: PMC8158479 DOI: 10.3390/molecules26103009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the possibility of using Aronia melanocarpa, Chaenomeles superba, and Cornus mas leaf extracts as natural preservatives for pork meat products. Pork sausages were stored in modified atmosphere packaging (MAP) (80% N2 and 20% CO2) at 4 °C for 29 days. The total psychrotrophic counts (TPC) were determined during the storage period, along with the numbers of Enterobacteriaceae and lactic acid bacteria (LAB). The extracts improved the microbial quality of the meat products but to a lesser extent than sodium nitrate (III). They reduced the amounts of Enterobacteriaceae and LAB. The A.melanocarpa leaf extract showed the strongest preservative effect. The bacterial biodiversity of the meat products was investigated based on high-throughput sequencing of the 16S rRNA gene. Two predominant bacteria phyla were identified, Proteobacteria and Firmucutes, mostly consisting of genera Photobacterium, Brochothrix, and Carnobacterium. The extracts also influenced microbial community in sausages decreasing or increasing bacterial relative abundance. The extracts significantly inhibited lipid oxidation and improved the water-holding capacity of the meat, with C. superba extract showing the strongest influence. In addition, A. melanocarpa and C. superba improved the redness (a*) of the sausages. The results of this study show that A. melanocarpa, C. superba, and C. mas leaf extracts can extend the shelf life of meat products stored in MAP at 4 °C.
Collapse
Affiliation(s)
- Magdalena Efenberger-Szmechtyk
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
- Correspondence:
| | - Ilona Gałązka-Czarnecka
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
| | - Agata Czyżowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
| | - Agnieszka Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
| |
Collapse
|
31
|
Li W, Li Z, Peng MJ, Zhang X, Chen Y, Yang YY, Zhai XX, Liu G, Cao Y. Oenothein B boosts antioxidant capacity and supports metabolic pathways that regulate antioxidant defense in Caenorhabditis elegans. Food Funct 2020; 11:9157-9167. [PMID: 33026384 DOI: 10.1039/d0fo01635g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oenothein B (OEB) has various biological functions, although few studies have focused on its effect on in vivo metabolic phenotypes. In the present study, the systematic antioxidant activity of OEB was evaluated both in vitro and in vivo, and the effect of OEB on metabolic pathways related to antioxidant capacity of Caenorhabditis elegans (C. elegans) was explored. Our findings indicate that OEB exhibits great antioxidant capacity and ability to scavenge free radicals and that OEB treatment can protect RAW 264.7 macrophages from oxidative damage by increasing superoxide dismutase (SOD) activity, catalase (CAT) activity and glutathione (GSH) content and the corresponding gene expression (sod2, cat, gpx1), while decreasing malonic dialdehyde (MDA) content. Moreover, OEB treatment significantly reduced ROS accumulation under oxidative stress conditions and increased glutathione peroxidase (GPx) activity and decreased MDA content in C. elegans. Metabolomics analysis revealed that sixteen out of forty-two significantly altered metabolites were selected as potential biomarkers related to alterations in the antioxidant status of worms, including metabolic pathways involved in amino acid metabolism, taurine and hypotaurine metabolism, lipid metabolism, and purine metabolism. Overall, our results provide new insights into the effects of OEB treatment on antioxidant capacity and metabolism that suggest that OEB could be a potentially good source of natural antioxidants.
Collapse
Affiliation(s)
- Wei Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Ziyin Li
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ming-Jun Peng
- Guangzhou Inspection of Food Control, Guangzhou 511400, China
| | - Xiaoying Zhang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Yunjiao Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Yu-Yu Yang
- Guangzhou Greencream Biotech Co., Ltd, Guangzhou 510663, China
| | | | - Guo Liu
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| |
Collapse
|
32
|
Li W, He ZQ, Zhang XY, Chen YJ, Zuo JJ, Cao Y. Proteome and Transcriptome Analysis of the Antioxidant Mechanism in Chicken Regulated by Eucalyptus Leaf Polyphenols Extract. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1384907. [PMID: 32617131 PMCID: PMC7313108 DOI: 10.1155/2020/1384907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/23/2020] [Accepted: 05/13/2020] [Indexed: 11/18/2022]
Abstract
Eucalyptus leaf polyphenols extract (EPE) has been proved to have various bioactivities, but few reports focus on its antioxidant mechanism in vivo. The purpose of this study was to elucidate the effect and mechanism of EPE dietary supplements on antioxidant capacity in chicken. A total of 216 chickens were randomly selected for a 40-day experiment. Four treatment groups received diets including the control diet only, the control diet + low EPE (0.6 g/kg), the control diet + moderate EPE (0.9 g/kg), and the control diet + high EPE (1.2 g/kg). Compared with control group, the glutathione peroxidase (GSH-Px) activity and glutathione (GSH) content in the breast muscle of the moderate EPE treatment group was significantly higher (p < 0.05), while the malonaldehyde (MDA) content in the moderate EPE group was reduced (p < 0.05). Moreover, proteomic and transcriptomic analyses of the breast muscle revealed that glutathione metabolism and the peroxisome were the two crucial metabolic pathways responsible for increased antioxidant capacity of the muscle. Accordingly, nine candidate genes and two candidate proteins were identified related to improved antioxidant status induced by EPE supplements. This research provides new insights into the molecular mechanism of antioxidant capacity in chickens treated with EPE dietary supplements.
Collapse
Affiliation(s)
- Wei Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Ze-qi He
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Xiao-Ying Zhang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Yun-Jiao Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| | - Jian-Jun Zuo
- College of Animal Science, South China Agriculture University, Guangzhou 510642, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou 510642, China
| |
Collapse
|