1
|
Chen Y, Cao J, Ye B, Shen Y, Liu L. Inhibition mechanism against hemoglobin oxidation of volatile pyrroles from Maillard reaction. Food Chem 2025; 480:143870. [PMID: 40120302 DOI: 10.1016/j.foodchem.2025.143870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
This study aimed to investigate the antioxidant mechanisms of Maillard reaction-derived volatile pyrroles - 2-acetylpyrrole (2AP), N-methylpyrrole (NMP) and pyrrole-2-carboxaldehyde (2PC) on hemoglobin (Hb) oxidation. The findings revealed that during 4-days storage, the 2AP group showed lower carbonyl and dimerised tyrosine contents of Hb than the untreated Hb group, and 2AP preserved the conformation of heme porphyrin in Hb through microenvironmental polarity modulation. In stark contrast, NMP exhibited pro-oxidative properties with accelerated protein aggregation, while 2PC exhibited a biphasic effect - suppressing Hb oxidation initially but accelerating it subsequently - this late-stage oxidation was attributed to its enhanced Hb surface hydrophilicity. Generally, the inhibition activity of the three pyrroles is closely related to the position of the substituents in the pyrrole ring and the availability of electrons. This study provided a basis for investigating the antioxidant properties and applications of Maillard reaction-derived volatile small molecules in fresh meat preservation.
Collapse
Affiliation(s)
- Yanbo Chen
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jiarong Cao
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Bo Ye
- Liaoning Agricultural Development Service Center, Cemetery Street No.7-1, Liaoning 110032, China
| | - Yixiao Shen
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ling Liu
- The College of Food Science, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
2
|
Parvez AK, Jubyda FT, Karmakar J, Jahan A, Akter NE, Ayaz M, Kabir T, Akter S, Huq MA. Antimicrobial potential of biopolymers against foodborne pathogens: An updated review. Microb Pathog 2025; 204:107583. [PMID: 40228749 DOI: 10.1016/j.micpath.2025.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Biopolymers are natural polymers produced by the cells of living organisms such as plants, animals, microbes, etc. As these natural molecules possess antimicrobial activities against pathogens, they can be a suitable candidate for antimicrobials combating drug-resistant microorganisms including food-borne pathogens. Plant-derived biopolymers such as cellulose, starch, pullulans; microbes-derived chitosan, poly-L-lysine; animal-derived collagen, gelatin, spongin, etc. are proven to possess antimicrobial properties. They exert their antimicrobial activity against food-borne pathogens namely Salmonella typhi, Vibrio cholerae, Bacillus cereus, Clostridium perfringens, E. coli, Campylobacter jejuni, Staphylococcus aureus, etc. As antimicrobial resistance becomes a global phenomenon and threatens the effective prevention and treatment of infections caused by pathogens, biopolymers could be a promising candidate/substitute for conventional antimicrobials available in markets. Biopolymers can have detrimental effects on microbial cells such as disruption of the cell walls and cell membranes; damage to the DNA caused by strand breakage, unwinding, or cross-linking resulting in impeded DNA transcription and replication; lowering the amount of energy required for metabolic processes by compromising the proton motive force. Biopolymers also interfere with the quorum sensing mechanism and biofilm formation of microbes and modulate the host immune system by downregulating mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways resulting in the decreased production of pro-inflammatory cytokines. Furthermore, conjugating these biopolymers with other antimicrobial agents could be a promising approach to control multidrug-resistant foodborne pathogens. This review provides an overview of the various sources of biopolymers with special reference to their antimicrobial applications, especially against foodborne pathogens, and highlights their antimicrobial mechanisms.
Collapse
Affiliation(s)
| | - Fatema Tuz Jubyda
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Joyoshrie Karmakar
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Airen Jahan
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Nayeem-E Akter
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mohammed Ayaz
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Tabassum Kabir
- M Abdur Rahim Medical College Hospital, Dinajpur, Bangladesh
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Md Amdadul Huq
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
3
|
Worku BM, Shibeshi NT, Zhiyuan T, Cho JY, Eun JB. Encapsulated essential oils in protein-polysaccharide biopolymers: characteristics and applications in the biomedical and food industries. Food Sci Biotechnol 2025; 34:851-869. [PMID: 39974853 PMCID: PMC11833031 DOI: 10.1007/s10068-024-01724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 02/21/2025] Open
Abstract
The application of essential oils in the biomedical and food industries has sparked considerable interest, owing to their innate biological activities, multifaceted functional properties, and potential health benefits. Besides, their volatile nature and sensitivity to environmental factors pose challenges to their stability and efficacy in industrial applications. Recent literature indicates that encapsulation within natural biopolymers is an effective strategy for enhancing the functionality and application potential of essential oils. Thus, this review discusses the common proteins and polysaccharides utilized for encapsulation, the techniques employed for encapsulating essential oils, and the biological properties of essential oils encapsulated in protein-polysaccharide biopolymers, along with their applications in the biomedical and food industries. In general, this review provides valuable insights for researchers, underscoring the importance of these research domains in further enhancing the functional properties and industrial applications of encapsulated essential oils.
Collapse
Affiliation(s)
- Bethlehem Mekasha Worku
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, Gwangju, South Korea
| | - Nurelegne Tefera Shibeshi
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tian Zhiyuan
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, Gwangju, South Korea
| | - Jeong-Yong Cho
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, Gwangju, South Korea
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, Gwangju, South Korea
| |
Collapse
|
4
|
Juárez Méndez ME, Palma Ramírez D, García Zaleta DS, Neri Espinoza KA, López Benítez A, del Ángel López D, Morales García SS, Willcock H. A Strategy Towards the Valorization of Aloe Vera Rinds to Obtain Crystalline Cellulose: Pretreatment Effects and Elemental Analysis. Polymers (Basel) 2025; 17:553. [PMID: 40006215 PMCID: PMC11858968 DOI: 10.3390/polym17040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Although crystalline nanocellulose (CNCs) can be extracted from different resources, the employed pretreatments, which disrupt the inter- and intramolecular physical interactions, depend on the biomass sources. This study aims to valorize Aloe Vera (AV) rinds into cellulose and crystalline nanocellulose (CNC) employing two approaches during hydrolysis: sulfuric acid (CNCSA) and citric acid (CNCCA) after 30, 60, and 90 min of reaction. The effects of pretreatments and hydrolysis time on the functional groups and hydrogen bonding in biomass are discussed. Crystalline structure (polymorph type), crystallinity, thermal stability, morphology, particle size, and metal presence are also analyzed. A transformation from type I into II polymorph was achieved, where the intermolecular interactions governing cellulose were increased in CNCSA and were almost maintained in CNCCA. Properties based on the structure, thermal properties, particle size, and metal presence indicate that the CNCSA30 and CNCCA90 samples displayed potential application as reinforcement agents for other types of polymers having no more melting points of 160 and 220 °C, respectively.
Collapse
Affiliation(s)
- Mayra Elizabeth Juárez Méndez
- Department of Chemical and Biochemical Engineering, Tecnológico Nacional de México (TecNM), Ciudat Madero 89460, Tamaulipas, Mexico;
| | - Diana Palma Ramírez
- Department of Polymers and Nanomaterials, Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo (UPIIH), Instituto Politécnico Nacional (IPN), San Agustín Tlaxiaca 42162, Hidalgo, Mexico; (K.A.N.E.); (A.L.B.)
| | - David Salvador García Zaleta
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa 86690, Tabasco, Mexico;
| | - Karen A. Neri Espinoza
- Department of Polymers and Nanomaterials, Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo (UPIIH), Instituto Politécnico Nacional (IPN), San Agustín Tlaxiaca 42162, Hidalgo, Mexico; (K.A.N.E.); (A.L.B.)
| | - Acela López Benítez
- Department of Polymers and Nanomaterials, Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo (UPIIH), Instituto Politécnico Nacional (IPN), San Agustín Tlaxiaca 42162, Hidalgo, Mexico; (K.A.N.E.); (A.L.B.)
| | - Deyanira del Ángel López
- Department of Nanostructured Materials, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Altamira, Instituto Politécnico Nacional (IPN), Altamira 89600, Tamaulipas, Mexico;
| | - Sandra Soledad Morales García
- Department of Pollution Prevention and Control, Centro Mexicano para la Producción más Limpia (CMPL), Instituto Politécnico Nacional (IPN), Mexico City 07340, Mexico;
| | - Helen Willcock
- Department of Materials, Loughborough University, Loughborough LE11 3TT, UK;
| |
Collapse
|
5
|
Elhassan E, Omolo CA, Gafar MA, Ismail EA, Ibrahim UH, Khan R, Lesouhaitier M, Kubes P, Govender T. Multifunctional hyaluronic acid-based biomimetic/pH-responsive hybrid nanostructured lipid carriers for treating bacterial sepsis. J Biomed Sci 2025; 32:19. [PMID: 39930418 PMCID: PMC11812216 DOI: 10.1186/s12929-024-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION The application of biomimetic and stimuli-responsive nanocarriers displays considerable promise in improving the management of bacterial sepsis and overcoming antimicrobial resistance. Therefore, the study aimed to synthesize a novel hyaluronic acid-lysine conjugate (HA-Lys) and to utilize the attributes of the synthesized HA-Lys with Tocopherol succinate (TS) and Oleylamine (OLA) in the formulation of multifunctional biomimetic pH-responsive HNLCs loaded with vancomycin (VCM-HNLCs), to combat bacterial sepsis. METHODS A novel hyaluronic acid-lysine conjugate (HA-Lys) was synthesized and characterized using FTIR and 1H NMR spectroscopy. Vancomycin-loaded hybrid nanosystems (VCM-HNLCs) were prepared through hot homogenization ultrasonication and evaluated for particle size, polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE%). In vitro biocompatibility was assessed via MTT assay and red blood cell hemolysis test. The binding affinity to TLR2 and TLR4 was measured using microscale thermophoresis (MST). Drug release was evaluated using the dialysis bag method. Antimicrobial activity against MRSA and efflux pump inhibition were also determined. Efficacy was demonstrated in an MRSA-induced sepsis mice model. RESULTS The VCM-HNLCs, produced via hot homogenization ultrasonication, exhibited particle size (PS), polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE%) of 110.77 ± 1.692 nm, 0.113 ± 0.022, - 2.92 ± 0.210 mV, and 76.27 ± 1.200%, respectively. In vitro, biocompatibility was proven by hemolysis and cytotoxicity studies. The VCM-HNLCs demonstrated targetability to human Toll-like receptors (TLR 2 and 4) as validated by microscale thermophoresis (MST). VCM-HNLCs showed a twofold reduction in MIC values at physiological pH compared to the bare VCM against S. aureus and MRSA for 48 h. While at pH 6.0, MIC values were reduced by fourfold in the first 24 h and by eightfold in the subsequent 48 and 72 h against tested strains. Furthermore, VCM-HNLCs showed inhibitory effects against MRSA efflux pumps, reactive oxygen species (ROS), and lipopolysaccharide (LPS)-induced hyperinflammation. In an MRSA-induced sepsis mice model, VCM-HNLCs demonstrated superior efficacy compared to free VCM, significantly eliminated bacteria and improved survival rates. CONCLUSIONS Overall, these results highlight the potential of VCM-HNLCs as novel multifunctional nanocarriers to combat antimicrobial resistance (AMR) and enhance sepsis outcomes.
Collapse
Affiliation(s)
- Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Mathieu Lesouhaitier
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
6
|
Aboamer MA, Almutairi AR, Alassaf A, Alqahtani TM, Almutairi TF, Saijari GN, Mohamed NAR. Innovative and Eco-Friendly Natural Fiber Composites for Dental Impression Materials: A Study on Wheat Bran Reinforcement. Polymers (Basel) 2025; 17:476. [PMID: 40006138 PMCID: PMC11860029 DOI: 10.3390/polym17040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
This study addresses the high cost of traditional dental impression materials by introducing a novel composite material reinforced with wheat bran powder, aiming to reduce expenses while maintaining suitable mechanical performance. Tensile and compression test specimens were prepared according to the ASTM D412 and ASTM D575 standards, respectively, to evaluate the mechanical properties of the pure elastomer and the wheat-bran-reinforced composite. Comparative t-tests were conducted to analyze the tensile and compression strengths of both materials, focusing on their cost-effectiveness and suitability for dental applications. The results demonstrate that the wheat-bran-reinforced composite exhibits compression strength (105 MPa) comparable to that of the pure elastomer while offering controlled deformation and enhanced stiffness under compression. Although the composite shows reduced tensile strength (7 MPa vs. 11 MPa), its performance remains adequate for applications requiring moderate tensile properties. Notably, the new material reduces costs by approximately 50%, making it an economical and sustainable alternative for dental impression materials. This innovation aligns with sustainable practices by incorporating natural fibers and offers dentists a cost-effective solution without compromising on performance.
Collapse
Affiliation(s)
- Mohamed A. Aboamer
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (M.A.A.)
| | - Abdulmajeed Rasheed Almutairi
- Department of Biomedical Engineering, Medical City Support Services Management, King Khaled University, Abha 61421, Saudi Arabia
| | - Ahmad Alassaf
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (M.A.A.)
| | - Tarek M. Alqahtani
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (M.A.A.)
| | - Turki F. Almutairi
- Department of Oral, Maxillofacial and Diagnostic Sciences, College of Dentistry, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ghazwan Najdat Saijari
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Nader A. Rahman Mohamed
- Biomedical Technology Department, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Biomedical Engineering Department, Faculty of Engineering, Misr University for Science and Technology (MUST), Giza 12568, Egypt
| |
Collapse
|
7
|
Murugan G, Khan A, Priyadarshi R, Nilsuwan K, Benjakul S, Rhim JW. Smart packaging films based on gelatin/κ-carrageenan integrated with gromwell root extract rich in shikonin and carbon dots for real-time monitoring of shrimp freshness. J Food Sci 2025; 90:e70011. [PMID: 39898964 DOI: 10.1111/1750-3841.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Multifunctional pH-responsive gelatin/κ-carrageenan (GC) blend films containing gromwell (Lithospermum erythrorhizon [LE]) root ethanolic extract (LE-EE) rich in shikonin or shikonin rich extract (SRE) and carbon dots (LE carbon dots [LE-CDs]) were prepared and characterized. The hydrothermal method was adopted for the synthesis of LE-CDs, which displayed a blue color under UV light. The obtained LE-CDs possessed exceptional UV barrier, antioxidant and antimicrobial activities. The enhanced activities were recorded when the level of LE-CDs upsurged (p < 0.05). Transmission electron microscopic (TEM) and Fourier transform infrared (FTIR) results revealed the typical morphology and chemical composition of LE-CDs. LE-CDs of 1 and 3% (w/w) were incorporated as the active fillers along with SRE into the GC blend film by the solvent casting method. Developed films showed a slight decrease in tensile and water vapor barrier properties with the inclusion of both additives. Color and opaqueness of the film became darker as the additives were incorporated, whereas the thermal property was greatly enhanced. Film containing 3% LE-CDs blocked UV-A and UV-B by 93.30 and 99.81%, respectively. GC/SRE/3%CD film exhibited strong radical scavenging and antibacterial activities against Listeria monocytogenes and Escherichia coli, in which the growth was terminated after 12 h. Film had a pH-dependent color change, depending on various pH levels (2-12). Shrimp freshness could be monitored as indicated by the shift to bluish color after 48 h. Therefore, this finding indicated that incorporating biomass-derived CDs and natural colorants into biopolymer films, especially GC blend films, could offer diverse strategies for maintaining safety and prolonging shelf life in response to the growing need for smart packaging for food applications.
Collapse
Affiliation(s)
- Gokulprasanth Murugan
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Krisana Nilsuwan
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
8
|
Atalayin Ozkaya C, Ertan B, Kaftan Ocal G, Armagan G, Gungor G, Demirbilek M, Tezel H, Notaro V, Scotti N, Baldi A. Polyhydroxybutyrate as a Novel Biopolymer for Dental Restorative Materials: Biological and Morphological Analysis. Polymers (Basel) 2025; 17:313. [PMID: 39940515 PMCID: PMC11820636 DOI: 10.3390/polym17030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Polyhydroxybutyrate (PHB) is a biopolymer produced by bacteria. This study aimed to implement the production process of experimental medical-grade PHB and to evaluate its morphology and biocompatibility compared to conventional resin-based composites (RBCs). PHB raw material was produced via biological process and then the membrane was generated via electrospinning specifically for this study and imaged with Micro-Computed Tomography (Micro-CT) and scanning electron microscopy (SEM). MTS assay was used to assess the cytotoxicity of PHB compared to other materials. Test groups included two packable resin composites (Point 4-Kerr, G-aenial anterior-GC), two flowable resin composites (Filtek Ultimate Flowable-3M ESPE, Nova Compo HF-Imicryl), a compomer (Nova Compomer-Imicryl), a fissure-sealant (Fissured Nova Plus-Imicryl), and the PHB membrane (Innovaplast Biotechnology Inc., Eskisehir, Turkey). A control group consisting of cells without any test material was also produced. To perform the MTS assay, disc-shaped specimens of the aforementioned materials were prepared and then incubated with mouse fibroblast cells (L929) for 24 and 48 h. Micro-CT and SEM images revealed a homogeneous and fibrillary structure of the PHB. MTS assay revealed the highest cell viability in the PHB, Nova Compomer, and Fissured Nova Plus groups after 24 h. PHB and Nova Compomer showed the highest viability rates at 48 h while other RBCs had rates below 25% (p < 0.05). Considering the cell viability data and its fibrillary structure, from a biological point of view, PHB seems a promising biopolymer that might have applications in the field of dental restorative materials.
Collapse
Affiliation(s)
- Cigdem Atalayin Ozkaya
- Department of Restorative Dentistry, School of Dentistry, Ege University, Izmir 35040, Turkey or (C.A.O.); (B.E.); (H.T.)
| | - Beliz Ertan
- Department of Restorative Dentistry, School of Dentistry, Ege University, Izmir 35040, Turkey or (C.A.O.); (B.E.); (H.T.)
| | - Gizem Kaftan Ocal
- Department of Biochemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey;
| | - Guliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey;
| | - Gokhan Gungor
- Innovaplast Biotechnology Inc., Eskisehir 26040, Turkey;
| | - Murat Demirbilek
- Department of Biology, Polatli Faculty of Arts and Sciences, Ankara Haci Bayram Veli University, Ankara 06900, Turkey;
| | - Huseyin Tezel
- Department of Restorative Dentistry, School of Dentistry, Ege University, Izmir 35040, Turkey or (C.A.O.); (B.E.); (H.T.)
| | - Vincenzo Notaro
- Department of Surgical Sciences-Prosthetic Dentistry, Dental School, University of Turin, 10129 Turin, Italy; (V.N.); (A.B.)
| | - Nicola Scotti
- Department of Surgical Sciences-Prosthetic Dentistry, Dental School, University of Turin, 10129 Turin, Italy; (V.N.); (A.B.)
| | - Andrea Baldi
- Department of Surgical Sciences-Prosthetic Dentistry, Dental School, University of Turin, 10129 Turin, Italy; (V.N.); (A.B.)
| |
Collapse
|
9
|
Kuchaiyaphum P, Amornsakchai T, Chotichayapong C, Saengsuwan N, Yordsri V, Thanachayanont C, Batpo P, Sotawong P. Pineapple stem starch-based films incorporated with pineapple leaf carbon dots as functional filler for active food packaging applications. Int J Biol Macromol 2024; 282:137224. [PMID: 39505188 DOI: 10.1016/j.ijbiomac.2024.137224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Pineapple leaf waste, a byproduct of agricultural processes, was used as a novel raw material to synthesize carbon dots (CDs) through a simple hydrothermal method. The CDs were subsequently incorporated into pineapple stem starch (PSS)-based active food packaging films. The characterization of the CDs and PSS-CDs films was conducted using various techniques, including UV-light spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. The results revealed that the CDs measured 2.36 ± 0.33 nm and exhibited antioxidant and antibacterial activities. The addition of the CDs led to notable enhancements in both mechanical strength and UV-barrier properties. Thus, PSS-CDs packaging film was successfully prepared, with the incorporation of CDs enhancing the antioxidant and antimicrobial properties of the film, thereby extending the shelf-life of fresh pork.
Collapse
Affiliation(s)
- Pusita Kuchaiyaphum
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand.
| | - Taweechai Amornsakchai
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Chatrachatchaya Chotichayapong
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Nikorn Saengsuwan
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Visittapong Yordsri
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chanchana Thanachayanont
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Phitchaya Batpo
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Phatcharaporn Sotawong
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
10
|
El-Sherbiny MM, El-Hefnawy ME, Tayel AA. Innovative anticancer nanocomposites from Corchorus olitorius mucilage/chitosan/selenium nanoparticles. Int J Biol Macromol 2024; 282:137320. [PMID: 39515688 DOI: 10.1016/j.ijbiomac.2024.137320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Cancers are continuing to threaten human health globally; the achievement of effectual and biosafe anticancerous compounds is a precious goal. The extraction of Corchorus olitorius mucilage (Jm) and its usage for selenium nanoparticles (SeNPs) biosynthesis was projected. The innovative formulation of bioactive nanocomposites (NCs) from Jm/SeNPs and chitosan nanoparticles (Cht) was also proposed to apply these NCs as effectual anticancers against CaCo-2 and HeLa cancerous cells. The Jm/SeNPs biosynthesis (mean diameter = 6.45 nm) was innovatively achieved and confirmed using infrared and ultraviolet-visible analysis. The constructions of different NCs were done (N1: 2Jm/SeNPs:1Cht; N2: 1Jm/SeNPs:1Cht; and N3: 1Jm/SeNPs:2Cht) with mean particles' diameter of 88.41, 46.86 and 69.35 nm, respectively. The cytotoxicity assay of constructed NCs indicated their potentialities to suppress examined cells; N1 (negatively charged; -16.2 mV) was the most forceful with IC50 of 12.36 and 73.15 mg/L against CaCo-2 and HeLa cells, respectively. The scanning microscopy imaging of treated CaCo-2 cells with N1 of Cht/Jm/SeNPs indicated that the NCs led to remarkable apoptotic destructions of treated cells, including cell shrinkage, membrane blebbing, cytoplasmic vacuolization, cell debris and apoptotic indices. The innovative NCs from Cht/Jm/SeNPs are promisingly recommended as effectual, natural and bioactive anticancer formulations against human cancers.
Collapse
Affiliation(s)
| | - Mohamed E El-Hefnawy
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
11
|
Oliver-Cuenca V, Salaris V, Muñoz-Gimena PF, Agüero Á, Peltzer MA, Montero VA, Arrieta MP, Sempere-Torregrosa J, Pavon C, Samper MD, Crespo GR, Kenny JM, López D, Peponi L. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers (Basel) 2024; 16:3015. [PMID: 39518225 PMCID: PMC11548373 DOI: 10.3390/polym16213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Nowadays, plastic contamination worldwide is a concerning reality that can be addressed with appropriate society education as well as looking for innovative polymeric alternatives based on the reuse of waste and recycling with a circular economy point of view, thus taking into consideration that a future world without plastic is quite impossible to conceive. In this regard, in this review, we focus on sustainable polymeric materials, biodegradable and bio-based polymers, additives, and micro/nanoparticles to be used to obtain new environmentally friendly polymeric-based materials. Although biodegradable polymers possess poorer overall properties than traditional ones, they have gained a huge interest in many industrial sectors due to their inherent biodegradability in natural environments. Therefore, several strategies have been proposed to improve their properties and extend their industrial applications. Blending strategies, as well as the development of composites and nanocomposites, have shown promising perspectives for improving their performances, emphasizing biopolymeric blend formulations and bio-based micro and nanoparticles to produce fully sustainable polymeric-based materials. The Review also summarizes recent developments in polymeric blends, composites, and nanocomposite plasticization, with a particular focus on naturally derived plasticizers and their chemical modifications to increase their compatibility with the polymeric matrices. The current state of the art of the most important bio-based and biodegradable polymers is also reviewed, mainly focusing on their synthesis and processing methods scalable to the industrial sector, such as melt and solution blending approaches like melt-extrusion, injection molding, film forming as well as solution electrospinning, among others, without neglecting their degradation processes.
Collapse
Affiliation(s)
- Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Pedro Francisco Muñoz-Gimena
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Ángel Agüero
- Instituto Universitario de Tecnología de Materiales (IUTM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
| | - Mercedes A. Peltzer
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Victoria Alcázar Montero
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Jaume Sempere-Torregrosa
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Cristina Pavon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Maria Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Gema Rodríguez Crespo
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Jose M. Kenny
- STM Group, University of Perugia, Strada Pentima 4, 05100 Terni, Italy;
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| |
Collapse
|
12
|
Cerdá-Gandia R, Agüero Á, Arrieta MP, Fenollar O. Effect of Different Porous Size of Porous Inorganic Fillers on the Encapsulation of Rosemary Essential Oil for PLA-Based Active Packaging. Polymers (Basel) 2024; 16:2632. [PMID: 39339096 PMCID: PMC11435855 DOI: 10.3390/polym16182632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Essential oils are interesting active additives for packaging manufacturing as they can provide the final material with active functionalities. However, they are frequently volatile compounds and can be degraded during plastic processing. In this work Rosmarinus officinalis (RO) essential oil was encapsulated into Diatomaceous earth (DE) microparticles and into Halloysite nanotubes (HNTs) and further used to produce eco-friendly active packaging based on polylactic acid (PLA). PLA-based composites and nanocoposites films based on PLA reinforced with DE + RO and HNTs + RO, respectively, were developed by melt extrusion followed by cast-film, simulating the industrial processing conditions. As these materials are intended as active food packaging films, the obtained materials were fully characterized in terms of their mechanical, thermal and structural properties, while migration of antioxidant RO was also assessed as well as the compostability at laboratory scale level. Both DE and HNTs were able to protect the Rosmarinus officinalis (RO) from thermal degradation during processing, allowing to obtain films with antioxidant properties as demonstrated by the antioxidant assays after the materials were exposed for 10 days to a fatty food simulant. The results showed that incorporating Rosmarinus officinalis encapsulated in either DE or HNTs and the good dispersion of such particles into the PLA matrix strengthened its mechanical performance and sped up the disintegration under composting conditions of PLA, while allowing to obtain films with antioxidant properties of interest as antioxidant active food packaging materials.
Collapse
Affiliation(s)
- Raúl Cerdá-Gandia
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
- FAPERIN S.L. Av. de los Trabajadores, 27, 03430 Onil, Spain
| | - Ángel Agüero
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Octavio Fenollar
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| |
Collapse
|
13
|
Vanaraj R, Suresh Kumar SM, Mayakrishnan G, Rathinam B, Kim SC. A Current Trend in Efficient Biopolymer Coatings for Edible Fruits to Enhance Shelf Life. Polymers (Basel) 2024; 16:2639. [PMID: 39339103 PMCID: PMC11435994 DOI: 10.3390/polym16182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, biopolymer coatings have emerged as an effective approach for extending the shelf life of edible fruits. The invention of biopolymer coverings has emerged as an innovation for extending fruit shelf life. Natural polymers, like chitosan, alginate, and pectin, are used to create these surfaces, which have several uses, including creating a barrier that prevents water evaporation, the spread of living microbes, and respiratory movement. These biopolymer coatings' primary benefits are their environmental friendliness and lack of damage. This study highlights the advancements made in the creation and usage of biopolymer coatings, highlighting how well they preserve fruit quality, reduce post-harvest losses, and satisfy consumer demand for natural preservation methods. This study discusses the usefulness of the biopolymer coating in terms of preserving fruit quality, reducing waste, and extending the product's shelf life. Biopolymer coatings' potential as a sustainable solution for synthetic preservatives in the fruit sector is highlighted as are formulation process advances that combine natural ingredients and environmental implications. This essay focuses on the essential methods, such as new natural additives, as well as the environmental effect of biopolymer coatings, which are safe and healthy commercial alternatives.
Collapse
Affiliation(s)
- Ramkumar Vanaraj
- Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam 602105, India;
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Gopiraman Mayakrishnan
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan;
| | - Balamurugan Rathinam
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 Univ. Rd., Sec. 3, Douliu 64002, Taiwan
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
14
|
Yinda LEDO, Onanga R, Obiang CS, Begouabe H, Akomo-Okoue EF, Obame-Nkoghe J, Mitola R, Ondo JP, Atome GRN, Engonga LCO, Ibrahim, Setchell JM, Godreuil S. Antibacterial and antioxidant activities of plants consumed by western lowland gorilla (Gorilla gorilla gorilla) in Gabon. PLoS One 2024; 19:e0306957. [PMID: 39259705 PMCID: PMC11389915 DOI: 10.1371/journal.pone.0306957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/26/2024] [Indexed: 09/13/2024] Open
Abstract
Zoopharmacognosy is the study of the self-medication behaviors of non-human animals that use plant, animal or soil items as remedies. Recent studies have shown that some of the plants employed by animals may also be used for the same therapeutic purposes in humans. The aim of this study was to determine the antioxidant and antibacterial activity of Ceiba pentandra, Myrianthus arboreus, Ficus subspecies (ssp.) and Milicia excelsa bark crude extracts (BCE), plants consumed by western lowland gorillas (Gorilla gorilla gorilla) in Moukalaba-Doudou National Park (MDNP) and used in traditional medicine, and then to characterize their phytochemical compounds. DPPH (2,2-Diphenyl-1-Picrylhydrazyl), phosphomolybdenum complex and β-carotene bleaching methods were used to assess antioxidant activity. Antimicrobial susceptibility testing was performed using the diffusion method, while minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed using the microdilution method. The highest level of total phenolics was found in Myrianthus arboreus aqueous extract [385.83 ± 3.99 mg [gallic acid equivalent (GAE)/g]. Total flavonoid (134.46 ± 3.39) mg quercetin equivalent (QE)/100 g of extract] were highest in Milicia excelsa, tannin [(272.44 ± 3.39) mg tannic acid equivalent (TAE)/100 g of extract] in Myrianthus arboreus and proanthocyanidin [(404.33 ± 3.39) mg apple procyanidins equivalent (APE)/100 g of extract] in Ceiba pentandra. Ficus ssp. (IC50 1.34 ±3.36 μg/mL; AAI 18.57 ± 0.203) ethanolic BCE and Milicia excelsa (IC50 2.07 ± 3.37 μg/mL; AAI 12.03 ± 0.711) showed the strongest antioxidant activity. Myrianthus arboreus ethanolic BCE (73.25 ± 5.29) and Milicia excelsa aqueous BCE (38.67 ± 0.27) showed the strongest percentage of total antioxidant capacity (TAC). Ceiba pentandra ethanolic BCE (152.06 ± 19.11 mg AAE/g) and Ficus ssp aqueous BCE (124.33 ± 39.05 mg AAE/g) showed strongest relative antioxidant activity (RAA). The plant BCE showed antimicrobial activity against multidrug resistant (MDR) E. coli (DECs) isolates, with MICs varying from 1.56 to 50 mg/mL and inhibition diameters ranging from 7.34 ± 0.57 to 13.67 ± 0.57mm. Several families of compounds were found, including total phenolic compounds, flavonoids, tannins and proanthocyanidins were found in the plant BCEs. The plant BCEs showed antioxidant activities with free radical scavenging and antimicrobial activities against 10 MDR E. coli (DECs) isolates, and could be a promising novel source for new drug discovery.
Collapse
Affiliation(s)
| | - Richard Onanga
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville, Gabon
| | - Cédric Sima Obiang
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Herman Begouabe
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | | | - Judicaël Obame-Nkoghe
- Unity of Vector Ecology, Interdisciplinary Medical Research Center of Franceville, Franceville, Gabon
| | - Roland Mitola
- Laboratory of Biology, University of Science and Technology of Masuku, Franceville, Gabon
| | - Joseph-Privat Ondo
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Guy-Roger Ndong Atome
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Louis-Clément Obame Engonga
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Ibrahim
- Laboratory of Biology, University of Science and Technology of Masuku, Franceville, Gabon
| | - Joanna M Setchell
- Department of Anthropology, Université de Durham, Durham, United Kingdom
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, CHU de Montpellier, UMR MIVEGEC (IRD, CNRS, Université de Montpelier), Montpellier, France
| |
Collapse
|
15
|
Upadhyay P, Zubair M, Roopesh MS, Ullah A. An Overview of Advanced Antimicrobial Food Packaging: Emphasizing Antimicrobial Agents and Polymer-Based Films. Polymers (Basel) 2024; 16:2007. [PMID: 39065324 PMCID: PMC11281112 DOI: 10.3390/polym16142007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The food industry is increasingly focused on maintaining the quality and safety of food products as consumers are becoming more health conscious and seeking fresh, minimally processed foods. However, deterioration and spoilage caused by foodborne pathogens continue to pose significant challenges, leading to decreased shelf life and quality. To overcome this issue, the food industry and researchers are exploring new approaches to prevent microbial growth in food, while preserving its nutritional value and safety. Active packaging, including antimicrobial packaging, has gained considerable attention among current food packaging methods owing to the wide range of materials used, application methods, and their ability to protect various food products. Both direct and indirect methods can be used to improve food safety and quality by incorporating antimicrobial compounds into the food packaging materials. This comprehensive review focuses on natural and synthetic antimicrobial substances and polymer-based films, and their mechanisms and applications in packaging systems. The properties of these materials are compared, and the persistent challenges in the field of active packaging are emphasized. Specifically, there is a need to achieve the controlled release of antimicrobial agents and develop active packaging materials that possess the necessary mechanical and barrier properties, as well as other characteristics essential for ensuring food protection and safety, particularly bio-based packaging materials.
Collapse
Affiliation(s)
| | | | | | - Aman Ullah
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (P.U.); (M.Z.); (M.S.R.)
| |
Collapse
|
16
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
17
|
Pandita G, de Souza CK, Gonçalves MJ, Jasińska JM, Jamróz E, Roy S. Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. Int J Biol Macromol 2024; 269:132067. [PMID: 38710257 DOI: 10.1016/j.ijbiomac.2024.132067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Nowadays food safety and protection are a growing concern for food producers and food industry. The stability of food-grade materials is key in food processing and shelf life. Pickering emulsions (PEs) have gained significant attention in food regimes owing to their stability enhancement of food specimens. PE can be developed by high and low-energy methods. The use of PE in the food sector is completely safe as it uses solid biodegradable particles to stabilize the oil in water and it also acts as an excellent carrier of essential oils (EOs). EOs are useful functional ingredients, the inclusion of EOs in the packaging film or coating formulation significantly helps in the improvement of the shelf life of the packed food item. The highly volatile nature, limited solubility and ease of oxidation in light of EOs restricts their direct use in packaging. In this context, the use of PEs of EOs is suitable to overcome most of the challenges, Therefore, recently there have been many papers published on PEs of EOs including active packaging film and coatings and the obtained results are promising. The current review amalgamates these studies to inform about the chemistry of PEs followed by types of stabilizers, factors affecting the stability and different high and low-energy manufacturing methods. Finally, the review summarizes the recent advancement in PEs-added packaging film and their application in the enhancement of shelf life of food.
Collapse
Affiliation(s)
- Ghumika Pandita
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | | | | | - Joanna Maria Jasińska
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka 122, PL-30-149 Kraków, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Kraków, Poland
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
18
|
Kumar M, Mahmood S, Chopra S, Bhatia A. Biopolymer based nanoparticles and their therapeutic potential in wound healing - A review. Int J Biol Macromol 2024; 267:131335. [PMID: 38604431 DOI: 10.1016/j.ijbiomac.2024.131335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Nanoparticles (NPs) have been extensively investigated for their potential in nanomedicine. There is a significant level of enthusiasm about the potential of NPs to bring out a transformative impact on modern healthcare. NPs can serve as effective wound dressings or delivery vehicles due to their antibacterial and pro-wound-healing properties. Biopolymer-based NPs can be manufactured using various food-grade biopolymers, such as proteins, polysaccharides, and synthetic polymers, each offering distinct properties suitable for different applications which include collagen, polycaprolactone, chitosan, alginate, and polylactic acid, etc. Their biodegradable and biocompatible nature renders them ideal nanomaterials for applications in wound healing. Additionally, the nanofibers containing biopolymer-based NPs have shown excellent anti-bacterial and wound healing activity like silver NPs. These NPs represent a paradigm shift in wound healing therapies, offering targeted and personalized solutions for enhanced tissue regeneration and accelerated wound closure. The current review focuses on biopolymer NPs with their applications in wound healing.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
19
|
Xie D, Ma H, Xie Q, Guo J, Liu G, Zhang B, Li X, Zhang Q, Cao Q, Li X, Ma F, Li Y, Guo M, Yin J. Developing active and intelligent biodegradable packaging from food waste and byproducts: A review of sources, properties, film production methods, and their application in food preservation. Compr Rev Food Sci Food Saf 2024; 23:e13334. [PMID: 38563107 DOI: 10.1111/1541-4337.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Food waste and byproducts (FWBP) are a global issue impacting economies, resources, and health. Recycling and utilizing these wastes, due to processing and economic constraints, face various challenges. However, valuable components in food waste inspire efficient solutions like active intelligent packaging. Though research on this is booming, its material selectivity, effectiveness, and commercial viability require further analysis. This paper categorizes FWBP and explores their potential for producing packaging from both animal and plant perspectives. In addition, the preparation/fabrication methods of these films/coatings have also been summarized comprehensively, focusing on the advantages and disadvantages of these methods and their commercial adaptability. Finally, the functions of these films/coatings and their ultimate performance in protecting food (meat, dairy products, fruits, and vegetables) are also reviewed systematically. FWBP provide a variety of methods for the application of edible films, including being made into coatings, films, and fibers for food preservation, or extracting active substances directly or indirectly from them (in the form of encapsulation) and adding them to packaging to endow them with functions such as barrier, antibacterial, antioxidant, and pH response. In addition, the casting method is the most commonly used method for producing edible films, but more film production methods (extrusion, electrospinning, 3D printing) need to be tried to make up for the shortcomings of the current methods. Finally, researchers need to conduct more in-depth research on various active compounds from FWBP to achieve better application effects and commercial adaptability.
Collapse
Affiliation(s)
- Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
20
|
Firdaus S, Ahmad F, Zaidi S. Preparation and characterization of biodegradable food packaging films using lemon peel pectin and chitosan incorporated with neem leaf extract and its application on apricot fruit. Int J Biol Macromol 2024; 263:130358. [PMID: 38412939 DOI: 10.1016/j.ijbiomac.2024.130358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
The present study aims to develop and characterize biodegradable packaging films from lemon peel-derived pectin and chitosan incorporated with a bioactive extract from neem leaves. The films (PCNE) contained varying concentrations of neem leaf extract and were comprehensively assessed for their physical, optical, mechanical, and antimicrobial attributes. The thickness, moisture content, water solubility, and water vapor permeability of the biodegradable packaging films increased with the increasing concentration of neem leaf extract. Comparatively, the tensile strength of the films decreased by 42.05 % compared to the control film. The Scanning Electron Microscopy (SEM) confirmed that the resultant blended pectin-chitosan films showed a uniform structure without cracks. Furthermore, the analysis targeting Staphylococcus aureus and Aspergillus niger indicated that the films had potent antimicrobial activity. Based on these results, the optimum films were selected and subsequently applied on apricot fruits to increase their shelf life at ambient temperature. The findings, after examining factors such as colour, firmness, total soluble solids, shrinkage, weight loss, and appearance, concluded that the apricots coated by PCNE-5 had the most delayed signs of spoilage and increased their shelf life by 50 %. The results showed the potential applicability of lemon peel pectin-chitosan-neem leaf extract blend films in biodegradable food packaging.
Collapse
Affiliation(s)
- Sadia Firdaus
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Faizan Ahmad
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India..
| | - Sadaf Zaidi
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP, India..
| |
Collapse
|
21
|
Jasinski J, Völkl M, Wilde MV, Jérôme V, Fröhlich T, Freitag R, Scheibel T. Influence of the polymer type of a microplastic challenge on the reaction of murine cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133280. [PMID: 38141312 DOI: 10.1016/j.jhazmat.2023.133280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Due to global pollution derived from plastic waste, the research on microplastics is of increasing public interest. Until now, most studies addressing the effect of microplastic particles on vertebrate cells have primarily utilized polystyrene particles (PS). Other studies on polymer microparticles made, e.g., of polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), or poly (ethylene terephthalate) (PET), cannot easily be directly compared to these PS studies, since the used microparticles differ widely in size and surface features. Here, effects caused by pristine microparticles of a narrow size range between 1 - 4 µm from selected conventional polymers including PS, PE, and PVC, were compared to those of particles made of polymers derived from biological sources like polylactic acid (PLA), and cellulose acetate (CA). The microparticles were used to investigate cellular uptake and assess cytotoxic effects on murine macrophages and epithelial cells. Despite differences in the particles' properties (e.g. ζ-potential and surface morphology), macrophages were able to ingest all tested particles, whereas epithelial cells ingested only the PS-based particles, which had a strong negative ζ-potential. Most importantly, none of the used model polymer particles exhibited significant short-time cytotoxicity, although the general effect of environmentally relevant microplastic particles on organisms requires further investigation.
Collapse
Affiliation(s)
- Julia Jasinski
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Matthias Völkl
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Magdalena V Wilde
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Munich, Germany; Department of Earth and Environmental Sciences, Paleontology & Geobiology, LMU München, Munich, Germany
| | - Valérie Jérôme
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Munich, Germany
| | - Ruth Freitag
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Material Science (BayMAT), University of Bayreuth, Bayreuth, Germany; Bavarian Polymer Institute (BPI), University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
22
|
Demircan B, Velioglu YS. Revolutionizing single-use food packaging: a comprehensive review of heat-sealable, water-soluble, and edible pouches, sachets, bags, or packets. Crit Rev Food Sci Nutr 2023; 65:1497-1517. [PMID: 38117069 DOI: 10.1080/10408398.2023.2295433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Edible food packaging has emerged as a critical focal point in the discourse on sustainability, prompting the development of innovative solutions, notably in the realm of edible pouches. Often denoted as sachets, bags, or packets, these distinct designs have garnered attention owing to their water-soluble and heat-sealable attributes, tailored explicitly for single-use applications encompassing oils, instant or dry foods, and analogous products. While extant literature extensively addresses diverse facets of edible films, this review addresses a conspicuous void by presenting a consolidated and specialized overview dedicated to the intricate domain of edible pouches. Through a meticulous synthesis of current research, we aim to illuminate the trajectory of advancements made thus far, delving into critical aspects, including materials, production techniques, functional attributes, consumer perceptions, and regulatory considerations. By furnishing a comprehensive perspective on the potential, challenges, and opportunities inherent in edible pouches, our overarching aim is to stimulate collaborative endeavors in research, innovation, and exploration. In doing so, we aspire to catalyze the broader adoption of sustainable packaging solutions tailored to the exigencies of single-use applications.
Collapse
Affiliation(s)
- Bahar Demircan
- Department of Food Engineering, Ankara University, Ankara, Turkey
| | | |
Collapse
|
23
|
Annemer S, Ez-Zoubi A, Ez Zoubi Y, Satrani B, Stambouli H, Assouguem A, Ullah R, Bouayoun T, Fettoukh N, Farah A. Optimization and antifungal efficacy against brown rot fungi of combined Salvia rosmarinus and Cedrus atlantica essential oils encapsulated in Gum Arabic. Sci Rep 2023; 13:19548. [PMID: 37945688 PMCID: PMC10636173 DOI: 10.1038/s41598-023-46858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
The stability, sensitivity, and volatility of essential oils are some of their most serious limitations, and nanoencapsulation has been considered one of the most effective techniques for solving these problems. This research aimed to investigate the incorporation of Salvia rosmarinus Speen and Cedrus atlantica Manetti (MEO) essential oil mixture in Gum Arabic (GA) and to evaluate nanoencapsulation's ability to promote antifungal activity against two brown rot fungi responsible for wood decay Gloeophyllum trabeum and Poria placenta. The optimization of encapsulation efficiency was performed using response surface methodology (RSM) with two parameters: solid-to-solid (MEO/GA ratio) and solid-to-liquid (MEO/ethanol). The recovered powder characterization was followed by various techniques using a scanning electron microscope (SEM), X-ray diffractometry (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and thermo-gravimetric analysis (TGA). The optimal nanoencapsulating conditions obtained from RSM were ratios of MEO/GA of 1:10 (w/w) and MEO/ethanol of 10% (v/v), which provided the greatest encapsulation efficiency (87%). The results of SEM, XRD, DLS, FTIR, and TGA showed that the encapsulation of MEO using GA modified particle form and molecular structure and increased thermal stability. An antifungal activity assay indicated that an effective concentration of MEO had an inhibitory effect on brown rot fungi. It had 50% of the maximal effect (EC50) value of 5.15 ± 0.88 µg/mL and 12.63 ± 0.65 µg/mL for G. trabeum and P. placenta, respectively. Therefore, this product has a great potential as a natural wood preservative for sustainable construction and green building.
Collapse
Affiliation(s)
- Saoussan Annemer
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, University Sidi Mohammed Ben Abdellah, B P 2202, Fez, Morocco
| | - Amine Ez-Zoubi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, University Sidi Mohammed Ben Abdellah, B P 2202, Fez, Morocco
| | - Yassine Ez Zoubi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, University Sidi Mohammed Ben Abdellah, B P 2202, Fez, Morocco
- Biotechnology, Environmental Technology and Valorization of Bio-Resources Team, Department of Biology. Laboratory of Research and Development in Engineering Sciences Faculty of Sciences and Techniques Al-Hoceima, Abdelmalek Essaadi University, Tétouan, Morocco
| | - Badr Satrani
- Forestry Research Center - Rabat, Avenue Omar Ibn Al Khattab, BP 763, 10050, Rabat, Morocco
| | - Hamid Stambouli
- Forensic Sciences Institute of Royal Gendarmerie, Rabat-Institut, BP 6597, 10000, Rabat, Morocco
| | - Amine Assouguem
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, 30000, Fez, Morocco
- Department of Tourism and Culinary Management, Faculty of Economics, University of Food Technologies, 4000, Plovdiv, Bulgaria
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, 4545, Riyadh, Saudi Arabia
| | - Taoufik Bouayoun
- Forensic Sciences Institute of Royal Gendarmerie, Rabat-Institut, BP 6597, 10000, Rabat, Morocco
| | - Nezha Fettoukh
- Forensic Sciences Institute of Royal Gendarmerie, Rabat-Institut, BP 6597, 10000, Rabat, Morocco
| | - Abdellah Farah
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, University Sidi Mohammed Ben Abdellah, B P 2202, Fez, Morocco.
| |
Collapse
|
24
|
Ferreira-Anta T, Torres MD, Vilarino JM, Dominguez H, Flórez-Fernández N. Green Extraction of Antioxidant Fractions from Humulus lupulus Varieties and Microparticle Production via Spray-Drying. Foods 2023; 12:3881. [PMID: 37893773 PMCID: PMC10667999 DOI: 10.3390/foods12203881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The formulation of polymeric microparticles to encapsulate bioactive compounds from two hop varieties (Nugget and Perle) using sequential green extraction processes was performed. The technologies used were ultrasound-assisted extraction (UAE) and pressurized hot water (PHW) extraction. Liquid phases were analyzed for total phenolic content (~2%), antioxidant activity (IC50, DPPH: 3.68 (Nugget); 4.46 (Perle) g/L, TEAC (~4-5%), FRAP (~2-3%), and reducing power (~4%)), protein content (~1%), oligosaccharide content (~45%), and for structural features. The fractions obtained from UAE were selected to continue with the drying process, achieving the maximum yield at 120 °C (Perle) and 130 °C (Nugget) (~77%). Based on these results, the formulation of polymeric microparticles using mannitol as the carrier was performed with these fractions. The production yield (~65%), particle size distribution (Perle: 250-750 µm and Nugget: ~100 µm), and rheological features (30-70 mPa s at 0.1 s-1) were the parameters evaluated. The UAE extracts from hop samples processed using a sustainable aqueous treatment allowed the formulation of microparticles with a suitable yield, and morphological and viscosity properties adequate for potential food and non-food applications.
Collapse
Affiliation(s)
- Tania Ferreira-Anta
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Facultad de Ciencias, 32004 Ourense, Spain; (T.F.-A.); (M.D.T.); (N.F.-F.)
| | - María Dolores Torres
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Facultad de Ciencias, 32004 Ourense, Spain; (T.F.-A.); (M.D.T.); (N.F.-F.)
| | | | - Herminia Dominguez
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Facultad de Ciencias, 32004 Ourense, Spain; (T.F.-A.); (M.D.T.); (N.F.-F.)
| | - Noelia Flórez-Fernández
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Facultad de Ciencias, 32004 Ourense, Spain; (T.F.-A.); (M.D.T.); (N.F.-F.)
| |
Collapse
|
25
|
Annemer S, Ez zoubi Y, Satrani B, Stambouli H, Assouguem A, Ullah R, Ali EA, Ercisli S, Marc RA, Bouayoun T, Farah A. Simultaneous Hydrodistillation of Cedrus atlantica Manetti and Salvia rosmarinus Spenn: Optimization of Anti-Wood-Decay Fungal Activity Using Mixture Design Methodology. ACS OMEGA 2023; 8:27030-27043. [PMID: 37546586 PMCID: PMC10398857 DOI: 10.1021/acsomega.3c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
Chemical fungicides are often harmful to people and the environment because of their toxicity. The wood protection industry places a high priority on replacing them with natural products. Therefore, this investigation focused on developing a formulation of a binary combination of Salvia rosmarinus Spenn and Cedrus atlantica Manetti obtained by Simultaneous hydrodistillation to protect the wood from decay using a mixture design methodology. The chemical composition of essential oil was identified by gas chromatography coupled with mass spectrometry (GC/MS), and their anti-wood-decay fungal activity was assessed using the macrodilution method against four fungi responsible for wood decay: Coniophora puteana, Coriolus versicolor, Gloeophyllum trabeum, and Poria placenta. The results of GC/MS identified myrtenal as a new component appearing in all binary combinations. The optimum anti-wood-decay fungal activity was observed in a combination of 60% S. rosmarinus and 40% C. atlantica essential oils, providing an effective concentration for 50% of maximal effect (EC50) value of 9.91 ± 1.91 and 9.28 ± 1.55 μg/mL for C. puteana and C. versicolor, respectively. The highest anti-wood-decay fungal activity for G. trabeum and P. placenta was found in the combination of 55% of S. rosmarinus and 45% of C. atlantica essential oils, with EC50 values of 11.48 ± 3.73 and 22.619 ± 3.79 μg/mL, respectively. Combined simultaneous hydrodistillation improved the antifungal effect of these essential oils. These results could be used to improve antifungal activity and protect wood against wood-decay fungi.
Collapse
Affiliation(s)
- Saoussan Annemer
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah, B.P. 2202, Fez 30000, Morocco
| | - Yassine Ez zoubi
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah, B.P. 2202, Fez 30000, Morocco
- Biotechnology,
Environmental Technology and Valorization of Bio-Resources Team, Department
of Biology, Faculty of Sciences and Techniques Al-Hoceima, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Badr Satrani
- Forestry
Research Center - Rabat, Avenue Omar Ibn Al Khattab, B.P. 763, Rabat-Agdal 10050, Morocco
| | - Hamid Stambouli
- Institute
of Forensic Sciences of Gendarmerie Royal, Rabat-Institute, B.P. 6597, Rabat 6597, Morocco
| | - Amine Assouguem
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah, B.P. 2202, Fez 30000, Morocco
- Laboratory
of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, Fez 30000, Morocco
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 4545, Saudi Arabia
| | - Essam A. Ali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Romina Alina Marc
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 4545, Saudi Arabia
- Food
Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary
Medicine, 400372 Cluj-Napoca, Romania
- Technological
Transfer Center “CTT-BioTech”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Floreşti Street, No.
64, 400509 Cluj-Napoca, Romania
| | - Taoufik Bouayoun
- Institute
of Forensic Sciences of Gendarmerie Royal, Rabat-Institute, B.P. 6597, Rabat 6597, Morocco
| | - Abdellah Farah
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah, B.P. 2202, Fez 30000, Morocco
| |
Collapse
|
26
|
El-Sherbiny MM, Orif MI, El-Hefnawy ME, Alhayyani S, Al-Goul ST, Elekhtiar RS, Mahrous H, Tayel AA. Fabrication of bioactive nanocomposites from chitosan, cress mucilage, and selenium nanoparticles with powerful antibacterial and anticancerous actions. Front Microbiol 2023; 14:1210780. [PMID: 37547689 PMCID: PMC10402636 DOI: 10.3389/fmicb.2023.1210780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Natural bioactive alternatives are the utmost requests from researchers to provide biosafe and effectual health-guarding agents. The biopolymers chitosan nanoparticles (NCT), mucilage of cress seed (GCm; Lepidium sativum), and GCm-mediated selenium nanoparticles (GCm/SeNPs) were innovatively employed for fabricating novel bioactive natural nanocomposites (NCs) with elevated bioactivities as bactericidal (against Salmonella typhimurium and Staphylococcus aureus) and anticancer (against CaCo-2 and HeLa cells). The SeNPs were successfully generated with GCm, and different NCs formulations were fabricated from NCT:GCm/SeNPs amalgam ratios including T1, T2, and T3 with 2:1, 1:1, and 1:2 ratios, respectively. The infrared analysis of synthesized molecules appointed apparent physical interactions among interacted molecules. The average particles' sizes and charges of molecules/NCs were (12.7, 316.4, 252.8, and 127.3 nm) and (-6.9, +38.7, +26.2, and -25.8 mV) for SeNPs, T1, T2, and T3, respectively. The biocidal assessment of NCs indicated that T1 was the strongest antibacterial formulation, whereas T3 was the superior anticancer amalgam. These NCs formulations could exceed the biocidal potentialities of standard biocides. T1-NC could cause severe destructions/deformations in challenged S. typhimurium within 9 h, whereas T3-NCs induced apparent fluorescent apoptosis signs in treated HeLa cells. The prospective applications innovatively designed biocidal natural NCs that are recommended for controlling pathogenic bacteria and fighting cancerous cells.
Collapse
Affiliation(s)
- Mohsen M. El-Sherbiny
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed I. Orif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed E. El-Hefnawy
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Soha T. Al-Goul
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Rawan S. Elekhtiar
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Hoda Mahrous
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| |
Collapse
|
27
|
Zamora-Mendoza L, Gushque F, Yanez S, Jara N, Álvarez-Barreto JF, Zamora-Ledezma C, Dahoumane SA, Alexis F. Plant Fibers as Composite Reinforcements for Biomedical Applications. Bioengineering (Basel) 2023; 10:804. [PMID: 37508831 PMCID: PMC10376539 DOI: 10.3390/bioengineering10070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Plant fibers possess high strength, high fracture toughness and elasticity, and have proven useful because of their diversity, versatility, renewability, and sustainability. For biomedical applications, these natural fibers have been used as reinforcement for biocomposites to infer these hybrid biomaterials mechanical characteristics, such as stiffness, strength, and durability. The reinforced hybrid composites have been tested in structural and semi-structural biodevices for potential applications in orthopedics, prosthesis, tissue engineering, and wound dressings. This review introduces plant fibers, their properties and factors impacting them, in addition to their applications. Then, it discusses different methodologies used to prepare hybrid composites based on these widespread, renewable fibers and the unique properties that the obtained biomaterials possess. It also examines several examples of hybrid composites and their biomedical applications. Finally, the findings are summed up and some thoughts for future developments are provided. Overall, the focus of the present review lies in analyzing the design, requirements, and performance, and future developments of hybrid composites based on plant fibers.
Collapse
Affiliation(s)
- Lizbeth Zamora-Mendoza
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Instituto de Microbiología, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Fernando Gushque
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Sabrina Yanez
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Nicole Jara
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - José F Álvarez-Barreto
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Instituto de Microbiología, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Si Amar Dahoumane
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Avenue Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Instituto de Microbiología, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
28
|
Farghal HH, Nebsen M, El-Sayed MMH. Exploitation of expired cellulose biopolymers as hydrochars for capturing emerging contaminants from water. RSC Adv 2023; 13:19757-19769. [PMID: 37404314 PMCID: PMC10316353 DOI: 10.1039/d3ra02965d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023] Open
Abstract
Expired chemicals pose a potential environmental threat to humans and living organisms. Herein, we proposed a green approach whereby expired cellulose biopolymers were converted to hydrochar adsorbents and tested for removing the emerging pharmaceutical contaminants of fluoxetine hydrochloride and methylene blue from water. A thermally stable hydrochar was produced with an average particle size of 8.1 ± 1.94 nm and a mesoporous structure that exhibited a larger surface area than the expired cellulose by 6.1 times. The hydrochar was efficient in removing the two contaminants with efficiencies that reached above 90% under almost neutral pH conditions. Adsorption exhibited fast kinetics and regeneration of the adsorbent was successful. The adsorption mechanism was hypothesized in view of the Fourier Transform Infra-Red (FTIR) spectroscopy and pH effect measurements to be mainly electrostatic. A hydrochar/magnetite nanocomposite was also synthesized, and its adsorption behavior for both contaminants was tested and it revealed an enhanced percent removal relative to the bare hydrochar by 27.2% and 13.1% for FLX and MB, respectively. This work supports the strategies for zero waste management and the circular economy.
Collapse
Affiliation(s)
- Hebatullah H Farghal
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt +202-2795-7565 +202-2615-2564
| | - Marianne Nebsen
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr-El Aini Street 11562 Cairo Egypt
| | - Mayyada M H El-Sayed
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt +202-2795-7565 +202-2615-2564
| |
Collapse
|
29
|
Parcheta M, Sobiesiak M. Preparation and Functionalization of Polymers with Antibacterial Properties-Review of the Recent Developments. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4411. [PMID: 37374596 PMCID: PMC10304131 DOI: 10.3390/ma16124411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
The presence of antibiotic-resistant bacteria in our environment is a matter of growing concern. Consumption of contaminated drinking water or contaminated fruit or vegetables can provoke ailments and even diseases, mainly in the digestive system. In this work, we present the latest data on the ability to remove bacteria from potable water and wastewater. The article discusses the mechanisms of the antibacterial activity of polymers, consisting of the electrostatic interaction between bacterial cells and the surface of natural and synthetic polymers functionalized with metal cations (polydopamine modified with silver nanoparticles, starch modified with quaternary ammonium or halogenated benzene). The synergistic effect of polymers (N-alkylaminated chitosan, silver doped polyoxometalate, modified poly(aspartic acid)) with antibiotics has also been described, allowing for precise targeting of drugs to infected cells as a preventive measure against the excessive spread of antibiotics, leading to drug resistance among bacteria. Cationic polymers, polymers obtained from essential oils (EOs), or natural polymers modified with organic acids are promising materials in the removal of harmful bacteria. Antimicrobial polymers are successfully used as biocides due to their acceptable toxicity, low production costs, chemical stability, and high adsorption capacity thanks to multi-point attachment to microorganisms. New achievements in the field of polymer surface modification in order to impart antimicrobial properties were summarized.
Collapse
Affiliation(s)
- Monika Parcheta
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Skłodowskiej sq 3., 20 031 Lublin, Poland
| | - Magdalena Sobiesiak
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Skłodowskiej sq 3., 20 031 Lublin, Poland
| |
Collapse
|
30
|
Plohl O, Kokol V, Filipić A, Fric K, Kogovšek P, Fratnik ZP, Vesel A, Kurečič M, Robič J, Gradišnik L, Maver U, Zemljič LF. Screen-printing of chitosan and cationised cellulose nanofibril coatings for integration into functional face masks with potential antiviral activity. Int J Biol Macromol 2023; 236:123951. [PMID: 36898451 PMCID: PMC9995302 DOI: 10.1016/j.ijbiomac.2023.123951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Masks proved to be necessary protective measure during the COVID-19 pandemic, but they provided a physical barrier rather than inactivating viruses, increasing the risk of cross-infection. In this study, high-molecular weight chitosan and cationised cellulose nanofibrils were screen-printed individually or as a mixture onto the inner surface of the first polypropylene (PP) layer. First, biopolymers were evaluated by various physicochemical methods for their suitability for screen-printing and antiviral activity. Second, the effect of the coatings was evaluated by analysing the morphology, surface chemistry, charge of the modified PP layer, air permeability, water-vapour retention, add-on, contact angle, antiviral activity against the model virus phi6 and cytotoxicity. Finally, the functional PP layers were integrated into face masks, and resulting masks were tested for wettability, air permeability, and viral filtration efficiency (VFE). Air permeability was reduced for modified PP layers (43 % reduction for kat-CNF) and face masks (52 % reduction of kat-CNF layer). The antiviral potential of the modified PP layers against phi6 showed inhibition of 0.08 to 0.97 log (pH 7.5) and cytotoxicity assay showed cell viability above 70 %. VFE of the masks remained the same (~99.9 %), even after applying the biopolymers, confirming that these masks provided high level of protection against viruses.
Collapse
Affiliation(s)
- Olivija Plohl
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Vanja Kokol
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Arijana Filipić
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Katja Fric
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Polona Kogovšek
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Zdenka Peršin Fratnik
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Alenka Vesel
- Jožef Stefan Institute, Department of Surface Engineering and Optoelectronics, Teslova 30, 1000 Ljubljana, Slovenia.
| | - Manja Kurečič
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Jure Robič
- Omega Air d.o.o Ljubljana, Cesta Dolomitskega odreda 10, 1000 Ljubljana, Slovenia.
| | - Lidija Gradišnik
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.
| | - Uroš Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.
| | - Lidija Fras Zemljič
- University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
31
|
Khan A, Priyadarshi R, Bhattacharya T, Rhim JW. Carrageenan/Alginate-Based Functional Films Incorporated with Allium sativum Carbon Dots for UV-Barrier Food Packaging. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
32
|
Farnad N, Farhadi K. Simple and complex coacervation methods for the nanoencapsulation of Rosa damascena mill L. anthocyanin in zein/potato starch: A new approach to enhance antioxidant and thermal properties. J Food Sci 2023; 88:1019-1032. [PMID: 36658670 DOI: 10.1111/1750-3841.16463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 01/21/2023]
Abstract
The structure and antioxidant properties of zein and potato starches as well as the stability of anthocyanins strongly depend on the pH. However, due to the stability of anthocyanins in at acidic medium, their encapsulation has been limited to low pHs. In the present work, an encapsulation of anthocyanins extracted from Rosa damascena mill L. (as a model) into zein, starch, and their binary mixtures by simple and complex coacervation methods over a wide range of pH (especially higher pHs), and different encapsulating agent doses and different initial volumes of anthocyanin were studied in order to obtain new conditions for the preservation of anthocyanins and to improve the antioxidant activities of zein and potato starches. High levels of antioxidant activity and encapsulation efficiency for zein/starch/anthocyanin nanocapsules and maximum antioxidant activity for zein/starch nanocapsules (without anthocyanin) were obtained at pHs 8 and 2, respectively. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray powder diffraction, and thermal gravimetric analysis techniques were used to analyze simple and complex coacervates biopolymer interactions, morphology, and thermal stability. The size of zein nanocapsules (283-366 nm) decreased in the range of 50-175 nm after the encapsulation of anthocyanin (pH 8), which makes them suitable for drug delivery processes. The prepared nanocapsules showed a high scavenging ability.
Collapse
Affiliation(s)
- Neda Farnad
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Khalil Farhadi
- Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.,Institute of Nanotechnology, Urmia University, Urmia, Iran
| |
Collapse
|
33
|
Grzebieniarz W, Biswas D, Roy S, Jamróz E. Advances in biopolymer-based multi-layer film preparations and food packaging applications. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes (Basel) 2023. [DOI: 10.3390/pr11020590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Food packaging systems are continually impacted by the growing demand for minimally processed foods, changing eating habits, and food safety risks. Minimally processed foods are prone to the growth of harmful microbes, compromising quality and safety. As a result, the need for improved food shelf life and protection against foodborne diseases alongside consumer preference for minimally processed foods with no or lesser synthetic additives foster the development of innovative technologies such as antimicrobial packaging. It is a form of active packaging that can release antimicrobial substances to suppress the activities of specific microorganisms, thereby improving food quality and safety during long-term storage. However, antimicrobial packaging continues to be a very challenging technology. This study highlights antimicrobial packaging concepts, providing different antimicrobial substances used in food packaging. We review various types of antimicrobial systems. Emphasis is given to the effectiveness of antimicrobial packaging in various food applications, including fresh and minimally processed fruit and vegetables and meat and dairy products. For the development of antimicrobial packaging, several approaches have been used, including the use of antimicrobial sachets inside packaging, packaging films, and coatings incorporating active antimicrobial agents. Due to their antimicrobial activity and capacity to extend food shelf life, regulate or inhibit the growth of microorganisms and ultimately reduce the potential risk of health hazards, natural antimicrobial agents are gaining significant importance and attention in developing antimicrobial packaging systems. Selecting the best antimicrobial packaging system for a particular product depends on its nature, desired shelf life, storage requirements, and legal considerations. The current review is expected to contribute to research on the potential of antimicrobial packaging to extend the shelf life of food and also serves as a good reference for food innovation information.
Collapse
|
35
|
Dat NM, Cong CQ, Hai ND, Huong LM, Nam NTH, Tinh DQ, Tai LT, An H, Duy MQ, Phong MT, Hieu NH. Facile Synthesis of Eco‐Friendly Silver@Graphene Oxide Nanocomposite for Optical Sensing. ChemistrySelect 2023. [DOI: 10.1002/slct.202204183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nguyen Minh Dat
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Che Quang Cong
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nguyen Duy Hai
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Le Minh Huong
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nguyen Thanh Hoai Nam
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Dang Quoc Tinh
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Ho Chi Minh City Medicine and Pharmacy University, 217 Hong Bang District 5 Ho Chi Minh City Vietnam
| | - Le Tan Tai
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Hoang An
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Mai Quoc Duy
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
- University of Science (HCMUS-VNU), 227 Nguyen Van Cu District 5 Ho Chi Minh City Vietnam
| | - Mai Thanh Phong
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nguyen Huu Hieu
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
36
|
Utilization of Food Waste and By-Products in the Fabrication of Active and Intelligent Packaging for Seafood and Meat Products. Foods 2023; 12:foods12030456. [PMID: 36765983 PMCID: PMC9914485 DOI: 10.3390/foods12030456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Research on the utilization of food waste and by-products, such as peels, pomace, and seeds has increased in recent years. The high number of valuable compounds, such as starch, protein, and bioactive materials in waste and by-products from food manufacturing industries creates opportunities for the food packaging industry. These opportunities include the development of biodegradable plastics, functional compounds, active and intelligent packaging materials. However, the practicality, adaptability and relevance of up-scaling this lab-based research into an industrial scale are yet to be thoroughly examined. Therefore, in this review, recent research on the development of active and intelligent packaging materials, their applications on seafood and meat products, consumer acceptance, and recommendations to improve commercialization of these products were critically overviewed. This work addresses the challenges and potential in commercializing food waste and by-products for the food packaging industry. This information could be used as a guide for research on reducing food loss and waste while satisfying industrial demands.
Collapse
|
37
|
Soozanipour A, Ejeian F, Boroumand Y, Rezayat A, Moradi S. Biotechnological advancements towards water, food and medical healthcare: A review. CHEMOSPHERE 2023; 312:137185. [PMID: 36368538 DOI: 10.1016/j.chemosphere.2022.137185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The global health status is highly affected by the growing pace of urbanization, new lifestyles, climate changes, and resource exploitation. Modern technologies pave a promising way to deal with severe concerns toward sustainable development. Herein, we provided a comprehensive review of some popular biotechnological advancements regarding the progress achieved in water, food, and medicine, as the most substantial fields related to public health. The emergence of novel organic/inorganic materials has brought about significant improvement in conventional water treatment techniques, anti-fouling approaches, anti-microbial agents, food processing, biosensors, drug delivery systems, and implants. Particularly, a growing interest has been devoted to nanomaterials and their application for developing novel structures or improving the characteristics of standard components. Also, bioinspired materials have been widely used to improve the performance, efficiency, accuracy, stability, safety, and cost-effectiveness of traditional systems. On the other side, the fabrication of innovative devices for precisely monitoring and managing various ecosystem and human health issues is of great importance. Above all, exceptional advancements in designing ion-selective electrodes (ISEs), microelectromechanical systems (MEMs), and implantable medical devices have altered the future landscape of environmental and biomedical research. This review paper aimed to shed light on the wide-ranging materials and devices that have been developed for health applications and mainly focused on the impact of nanotechnology in this field.
Collapse
Affiliation(s)
- Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Azam Rezayat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Sina Moradi
- School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia; Artificial Intelligence Centre of Excellence (AI CoE), NCSI Australia, Sydney, NSW, 2113, Australia.
| |
Collapse
|
38
|
Hu X, Lu C, Tang H, Pouri H, Joulin E, Zhang J. Active Food Packaging Made of Biopolymer-Based Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 16:279. [PMID: 36614617 PMCID: PMC9821968 DOI: 10.3390/ma16010279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Food packaging plays a vital role in protecting food products from environmental damage and preventing contamination from microorganisms. Conventional food packaging made of plastics produced from unrenewable fossil resources is hard to degrade and poses a negative impact on environmental sustainability. Natural biopolymers are attracting interest for reducing environmental problems to achieve a sustainable society, because of their abundance, biocompatibility, biodegradability, chemical stability, and non-toxicity. Active packaging systems composed of these biopolymers and biopolymer-based composites go beyond simply acting as a barrier to maintain food quality. This review provides a comprehensive overview of natural biopolymer materials used as matrices for food packaging. The antioxidant, water barrier, and oxygen barrier properties of these composites are compared and discussed. Furthermore, biopolymer-based composites integrated with antimicrobial agents-such as inorganic nanostructures and natural products-are reviewed, and the related mechanisms are discussed in terms of antimicrobial function. In summary, composites used for active food packaging systems can inhibit microbial growth and maintain food quality.
Collapse
Affiliation(s)
- Xuanjun Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Howyn Tang
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Hossein Pouri
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Etienne Joulin
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
39
|
Zhuikova Y, Zhuikov V, Varlamov V. Biocomposite Materials Based on Poly(3-hydroxybutyrate) and Chitosan: A Review. Polymers (Basel) 2022; 14:5549. [PMID: 36559916 PMCID: PMC9782520 DOI: 10.3390/polym14245549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
One of the important directions in the development of modern medical devices is the search and creation of new materials, both synthetic and natural, which can be more effective in their properties than previously used materials. Traditional materials such as metals, ceramics, and synthetic polymers used in medicine have certain drawbacks, such as insufficient biocompatibility and the emergence of an immune response from the body. Natural biopolymers have found applications in various fields of biology and medicine because they demonstrate a wide range of biological activity, biodegradability, and accessibility. This review first described the properties of the two most promising biopolymers belonging to the classes of polyhydroxyalkanoates and polysaccharides-polyhydroxybutyrate and chitosan. However, homopolymers also have some disadvantages, overcome which becomes possible by creating polymer composites. The article presents the existing methods of creating a composite of two polymers: copolymerization, electrospinning, and different ways of mixing, with a description of the properties of the resulting compositions. The development of polymer composites is a promising field of material sciences, which allows, based on the combination of existing substances, to develop of materials with significantly improved properties or to modify of the properties of each of their constituent components.
Collapse
Affiliation(s)
| | - Vsevolod Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, Moscow 119071, Russia
| | | |
Collapse
|
40
|
Ferrari F, Striani R, Fico D, Alam MM, Greco A, Esposito Corcione C. An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers (Basel) 2022; 14:polym14245519. [PMID: 36559886 PMCID: PMC9787771 DOI: 10.3390/polym14245519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most innovative way to produce bioplastics involves the use of raw materials derived from wastes. Raw materials are of vital importance for human and animal health and due to their economic and environmental benefits. Among these, wood waste is gaining popularity as an innovative raw material for biopolymer manufacturing. On the other hand, the use of wastes as a source to produce biopolymers and biocomposites is still under development and the processing methods are currently being studied in order to reach a high reproducibility and thus increase the yield of production. This study therefore aimed to cover the current developments in the classification, manufacturing, performances and fields of application of bio-based polymers, especially focusing on wood waste sources. The work was carried out using both a descriptive and an analytical methodology: first, a description of the state of art as it exists at present was reported, then the available information was analyzed to make a critical evaluation of the results. A second way to employ wood scraps involves their use as bio-reinforcements for composites; therefore, the increase in the mechanical response obtained by the addition of wood waste in different bio-based matrices was explored in this work. Results showed an increase in Young's modulus up to 9 GPa for wood-reinforced PLA and up to 6 GPa for wood-reinforced PHA.
Collapse
|
41
|
Lu G, Yepremyen A, Tamim K, Chen Y, Brook MA. Ascorbic Acid-Modified Silicones: Crosslinking and Antioxidant Delivery. Polymers (Basel) 2022; 14:polym14225040. [PMID: 36433164 PMCID: PMC9693009 DOI: 10.3390/polym14225040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Vitamin C is widely used as an antioxidant in biological systems. The very high density of functional groups makes it challenging to selectively tether this molecule to other moieties. We report that, following protection of the enediol as benzyl ethers, the introduction of an acrylate ester at C1 is straightforward. Ascorbic acid-modified silicones were synthesized via aza-Michael reactions of aminoalkylsilicones with ascorbic acrylate. Viscous oils formed when the amine/acrylate ratios were <1. However, at higher amine/acrylate ratios with pendent silicones, a double reaction occurred to give robust elastomers whose modulus is readily tuned simply by controlling the ascorbic acid amine ratio that leads to crosslinks. Reduction with H2/Pd removed the benzyl ethers and led to increased crosslinking, and either liberated the antioxidant small molecule or produced antioxidant elastomers. These pro-antioxidant elastomers show the power of exploiting natural materials as co-constituents of silicone polymers.
Collapse
|
42
|
Yaashikaa PR, Senthil Kumar P, Karishma S. Review on biopolymers and composites - Evolving material as adsorbents in removal of environmental pollutants. ENVIRONMENTAL RESEARCH 2022; 212:113114. [PMID: 35331699 DOI: 10.1016/j.envres.2022.113114] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The presence of pollutants and toxic contaminants in water sources makes it unfit to run through. Though various conventional techniques are on deck, development of new technologies are vital for wastewater treatment and recycling. Polymers have been intensively utilized recently in many industries owing to their unique characteristics. Biopolymers resembles natural alternative to synthetic polymers that can be prepared by linking the monomeric units covalently. Despite the obvious advantages of biopolymers, few reviews have been conducted. This review focuses on biopolymers and composites as suitable adsorbent material for removing pollutants present in environment. The classification of biopolymers and their composites based on the sources, methods of preparation and their potential applications are discussed in detail. Biopolymers have the potentiality of substituting conventional adsorbents due to its unique characteristics. Biopolymer based membranes and effective methods of utilization of biopolymers as suitable adsorbent materials are also briefly elaborated. The mechanism of biopolymers and their membrane-based adsorption has been briefly reviewed. In addition, the methods of regeneration and reuse of used biopolymer based adsorbents are highlighted. The comprehensive content on fate of biopolymer after adsorption is given in brief. Finally, this review concludes the future investigations in recent trends in application of biopolymer in various fields in view of eco-friendly and economic perspectives.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
43
|
Evaluation of the effect of carboxy methyl cellulose edible coating containing Astragalus honey (Astragalus gossypinus) on the shelf-life of pistachio kernel. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Matyjasik W, Długosz O, Lis K, Banach M. Nanohybrids of oxides nanoparticles-chitosan and their antimicrobial properties. NANOTECHNOLOGY 2022; 33:435701. [PMID: 35820406 DOI: 10.1088/1361-6528/ac805e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Growing international problem with pathogens acquiring resistance to antibiotics is the reason for the search for bactericidal substances against which microorganisms cannot become resistant. The aim of this study was to synthesize inorganic-organic nanohybrids and obtain materials with antimicrobial effects. Chitosan (CS) was deposited on nanocomposite carriers such as calcium oxide with titanium dioxide (CaO-TiO2), magnesium oxide with titanium dioxide (MgO-TiO2) and copper(II) oxide with titanium dioxide (CuO-TiO2). The efficiency of the process was examined at varying concentrations of chitosan and temperature. The parameters for nanohybrids synthesis were selected based on the highest amount of nano-chitosan deposited on the nanohybrids-for each carrier, the process conditions were as follows: chitosan solution at 5 g l-1and 20 °C. The materials were obtained using these parameters and were used for microbiological tests againstE. coliATCC 25922,S. aureusATCC 25923 andC. albicansATCC 10231. The growth inhibitory activity of the obtained materials was qualitatively defined. These results suggest that the synthesized nanohybrids and nanocomposites exhibit biostatic action. The material with the broadest effect was the CuO-TiO2-CS hybrid, which had biostatic properties against all tested strains at a minimal concentration of 1250μg ml-1. Further research is required to find eco-friendly, non-toxic, and more effective antimicrobials with a broad action to prevent the acquisition of resistance.
Collapse
Affiliation(s)
- Wiktoria Matyjasik
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska St. 24, 31-155, Cracow, Poland
| | - Olga Długosz
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska St. 24, 31-155, Cracow, Poland
| | - Kinga Lis
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska St. 24, 31-155, Cracow, Poland
| | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska St. 24, 31-155, Cracow, Poland
| |
Collapse
|
45
|
Zhai G, Li L, Xiang H, Hu Z, Zhou J, Zhu M. Fascinating flame resistance of polycaprolactam copolymer containing
d
‐glucopyranose for melt‐spun flame retardant fibers. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gongxun Zhai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Lili Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Jialiang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai China
| |
Collapse
|
46
|
Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem 2022; 393:133416. [DOI: 10.1016/j.foodchem.2022.133416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 12/28/2022]
|
47
|
Lu J, Nie M, Li Y, Zhu H, Shi G. Design of composite nanosupports and applications thereof in enzyme immobilization: A review. Colloids Surf B Biointerfaces 2022; 217:112602. [PMID: 35660743 DOI: 10.1016/j.colsurfb.2022.112602] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022]
Abstract
Enzyme immobilization techniques have developed dramatically over the past several decades. Support materials are key in shaping the function of a specific immobilized enzyme. Although they have large specific surface areas and functional active sites, single-component nanomaterials and their surface chemical modification derivatives struggle to meet increasing demand. Thus, composite materials, compounds of two or more materials, have been developed and applied in efficient immobilization through advances in materials science. More methods have been developed and employed to design composite nanomaterials in recent years. These novel composite nanomaterials often show superior physical, chemical, and biological performance as supports in enzyme immobilization, among other applications. In this review, immobilization techniques and their supports are stated first and methods to design and fabricate composite nanomaterials as nanosupports are also shown in the following section. Applications of composite nanosupports in laccase immobilization are discussed as models in the later sections of the paper. This review is intended to help readers gain insight into the design principles of composite nanomaterials for immobilization supports.
Collapse
Affiliation(s)
- Jiawei Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Guoxin Union Energy Co., Ltd., Wuxi, Jiangsu Province 214203, People's Republic of China
| | - Mingfu Nie
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| | - Huilin Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Guoxin Union Energy Co., Ltd., Wuxi, Jiangsu Province 214203, People's Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
48
|
de Nadai Dias FJ, de Andrade Pinto SA, Rodrigues dos Santos A, Mainardi MDCAJ, Rischka K, de Carvalho Zavaglia CA. Resveratrol-loaded polycaprolactone scaffolds obtained by rotary jet spinning. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2022. [DOI: 10.1080/1023666x.2022.2068242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Francisco José de Nadai Dias
- Materials Manufacturing Engineering Department, School of Mechanical Engineering, State University of Campinas (UNICAMP), Campinas, Brazil
- School of Dentistry, Herminio Ometto University Center, Araras, Brazil
- Post-Graduate Dentistry Programs, School of Dentistry and Medicine São Leopoldo Mandic, Campinas, Brazil
| | - Stella Aparecida de Andrade Pinto
- Materials Manufacturing Engineering Department, School of Mechanical Engineering, State University of Campinas (UNICAMP), Campinas, Brazil
- School of Dentistry, Herminio Ometto University Center, Araras, Brazil
- Post-Graduate Dentistry Programs, School of Dentistry and Medicine São Leopoldo Mandic, Campinas, Brazil
| | | | | | - Klaus Rischka
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, Bereich Klebtechnik und Oberflächen, Bremen, Germany
| | | |
Collapse
|
49
|
Novais C, Molina AK, Abreu RMV, Santo-Buelga C, Ferreira ICFR, Pereira C, Barros L. Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2789-2805. [PMID: 35201759 PMCID: PMC9776543 DOI: 10.1021/acs.jafc.1c07533] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The looming urgency of feeding the growing world population along with the increasing consumers' awareness and expectations have driven the evolution of food production systems and the processes and products applied in the food industry. Although substantial progress has been made on food additives, the controversy in which some of them are still shrouded has encouraged research on safer and healthier next generations. These additives can come from natural sources and confer numerous benefits for health, beyond serving the purpose of coloring or preserving, among others. As limiting factors, these additives are often related to stability, sustainability, and cost-effectiveness issues, which justify the need for innovative solutions. In this context, and with the advances witnessed in computers and computational methodologies for in silico experimental aid, the development of new safer and more efficient natural additives with dual functionality (colorant and preservative), for instance by the copigmentation phenomena, may be achieved more efficiently, circumventing the current difficulties.
Collapse
Affiliation(s)
- Cláudia Novais
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adriana K. Molina
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rui M. V. Abreu
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santo-Buelga
- Grupo
de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia,
Campus Miguel de Unamuno s/n, Universidad
de Salamanca, 37007 Salamanca, Spain
| | - Isabel C. F. R. Ferreira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus
de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
50
|
Xiang XW, Wang R, Chen H, Chen YF, Shen GX, Liu SL, Sun PL, Chen L. Structural characterization of a novel marine polysaccharide from mussel and its antioxidant activity in RAW264.7 cells induced by H2O2. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|