1
|
Will R, Rein C, Frank J, Malan J. High heterogeneity in the size distribution of the micellar fraction from in vitro digestions: sample preparation and reporting recommendations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3406-3415. [PMID: 39764577 PMCID: PMC11949856 DOI: 10.1002/jsfa.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND Understanding the size and surface charge (ζ-potential) of particles in the mixed micellar fraction produced by in vitro digestion is crucial to understand their cellular absorption and transport. The inconsistent presentation of micellar size data, often limited to average particle diameter, makes comparison of studies difficult. The present study aimed to assess different size data representations (mean particle diameter, relative intensity- or volume-weighted size distribution) to better understand physiological mixed micelle characteristics and to provide recommendations for size reporting and sample handling. RESULTS Dietary compounds (RRR-α-tocopherol, retinyl-palmitate, β-carotene, curcumin and naringenin) underwent a simplified in vitro digestion, whereas foods (spinach and red cabbage) were subjected to both a simplified and the INFOGEST 2.0 digestions. Dynamic light scattering was used to measure size and surface charge of the mixed micelles. A significant percentage of particles above the 200 nm filter cut-off was observed, indicating aggregation and dynamic size changes in the mixed micellar fraction. Freezing of the mixed micelles notably enhanced the aggregation. CONCLUSION The determination of particle size in polydisperse mixed micellar fractions is challenging, and relying solely on average particle diameter can be misleading. Especially in more polydisperse samples, parameters such as polydispersity index and volume-weighted distribution should accompany average particle diameter data. To minimize the effect of freezing on particle size, we recommend filtering the digesta after storage (freezing), as this leads to similar size distribution compared to mixed micellar fraction measured directly after digestion. © 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Roman Will
- Department of Food BiofunctionalityUniversity of HohenheimStuttgartGermany
| | - Claudia Rein
- Department of Food BiofunctionalityUniversity of HohenheimStuttgartGermany
| | - Jan Frank
- Department of Food BiofunctionalityUniversity of HohenheimStuttgartGermany
| | - Johanita Malan
- Department of Food TechnologyFulda University of Applied SciencesFuldaGermany
| |
Collapse
|
2
|
Li Z, Zhong S, Meshram N, Kopec RE. The dose-response effect of lecithin on carotenoid bioaccessibility and Caco-2 cell uptake. Food Chem 2025; 468:142347. [PMID: 39689495 DOI: 10.1016/j.foodchem.2024.142347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/16/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024]
Abstract
Previous results have been mixed as to whether the emulsifying agent lecithin increases carotenoid bioaccessibility and Caco-2 cellular uptake. The dose-response effect of lecithin (0-5 mg) on carotenoid bioaccessibility and Caco-2 cellular uptake was investigated in vitro using a mixture of β-carotene, lycopene, lutein, zeaxanthin and astaxanthin. Resulting micelles were incubated with Caco-2 cells for 4 h. Carotenoids in chyme, micelle, and cellular fractions were quantitated using HPLC-DAD and HPLC-MS/MS. Lecithin-micelle interactions were visualized using confocal microscopy. A lecithin dose of 1 mg improved carotenoid bioaccessibility ∼2× and led to increased Caco-2 cell uptake of the carotenes tested, but no change in xanthophylls tested, as compared to the control group (P < 0.05). Doses of lecithin ≥3 mg did not improve carotenoid bioaccessibility or Caco-2 cell uptake and produced oil droplet aggregation. These results suggest that limited doses of lecithin should be investigated in relation to maximizing carotenoid bioavailability in humans.
Collapse
Affiliation(s)
- Ziqi Li
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, United States
| | - Siqiong Zhong
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, United States
| | - Nishita Meshram
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, United States
| | - Rachel E Kopec
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, United States; Foods for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
3
|
Lin Y, McClements DJ, Zhang J, Ke L, He Y, Xiao J, Cao Y, Liu X. In vitro digestive behavior of emulsifier-stabilized excipient emulsions affects the bioaccessibility of flavonoids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2146-2157. [PMID: 39468933 DOI: 10.1002/jsfa.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 08/22/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Flavonoids, found in common vegetables and fruits, have health benefits that are often limited by their low bioavailability. Excipient emulsions provide an effective strategy to overcome these obstacles. However, the nature of the emulsifier used to formulate excipient emulsions and the chemical structure of the flavonoids both affect the bioaccessibility of the flavonoids. RESULTS The purpose of this study was to investigate the impact of the interfacial properties of excipient emulsions on the in vitro gastrointestinal fate of representative structural flavonoids (quercetin, kaempferol, and apigenin) through the INFOGEST method. Tween 80 (TW80) (a nonionic surfactant) was more effective at reducing the oil-water interfacial tension than whey protein isolate (WPI) (a protein-based emulsifier) or octenyl succinic anhydride (OSA)-modified starch (MS) (a polysaccharide-based emulsifier). Moreover, TW80 created excipient emulsions with smaller oil droplets, which were more resistant to oral and gastric conditions. The WPI-emulsions underwent severe flocculation in the gastric phase, leading to an appreciable increase in particle size (from 220 to 3000 nm). The TW80-coated oil droplets were more digestible than WPI- or MS-coated ones. This was attributed to the larger lipid surface area for lipase attachment. The bioaccessibility of quercetin, kaempferol, and apigenin was also affected by emulsifiers: TW 80 (25% to 45%) > WPI (14% to 29%) ≈ MS (15% to 25%). Flavonoid bioaccessibility appeared to be related to their molecular properties. CONCLUSION This study provides guidance for the design of effective excipient emulsions to enhance the bioavailability of flavonoids. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanping Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | | | - Junlin Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liang Ke
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yi He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
4
|
Chen C, Yu W, Kou X, Niu Y, Ji J, Shao Y, Wu S, Liu M, Xue Z. Recent advances in the effect of simulated gastrointestinal digestion and encapsulation on peptide bioactivity and stability. Food Funct 2025; 16:1634-1655. [PMID: 39943857 DOI: 10.1039/d4fo04447a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Food-derived bioactive peptides have garnered significant attention from researchers due to their specific biological functions, including antihypertensive, antioxidant, antidiabetic, anticancer, anti-inflammatory, and anti-osteoporosis properties. Despite extensive in vitro research, the bioactivity of these peptides may be compromised in the gastrointestinal tract due to enzymatic hydrolysis before reaching the bloodstream or target cells. Therefore, understanding the fate of bioactive peptides during digestion is crucial before advancing to clinical trials and commercial applications. To exert their health-promoting effects, these peptides must maintain their bioactivity throughout digestion. Encapsulation has emerged as a promising strategy for protecting peptides in the gastrointestinal tract. This review examines the effects of in vitro simulated gastrointestinal digestion on peptide bioactivity and stability, highlighting recent research on encapsulation strategies designed to enhance their gastrointestinal stability. Furthermore, the review addresses existing research gaps and suggests future research directions to advance our understanding and the application of bioactive peptides.
Collapse
Affiliation(s)
- Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Sampieri-Morán JM, Bravo-Alfaro DA, Uribe-Lam E, Luna-Barcenas G, Montiel-Sánchez M, Velasco-Rodríguez LDC, Acosta-Osorio AA, Ferrer M, García HS. Delivery of Magnolia bark extract in nanoemulsions formed by high and low energy methods improves the bioavailability of Honokiol and Magnolol. Eur J Pharm Biopharm 2025; 208:114627. [PMID: 39761833 DOI: 10.1016/j.ejpb.2025.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 02/23/2025]
Abstract
Honokiol (HK) and Magnolol (MG), isomers found in Magnolia officinalis bark extract (MBE), possess bioactive properties attributed to their biphenolic structure. However, their low polarity results in poor oral absorption, limiting their bioavailability. To enhance their systemic absorption after passing through the digestive tract, efficient carrier systems are essential. Nanoemulsions (NE) have been suggested to enhance their solubility in the oily core and enable passive diffusion through absorptive cells. Surfactants ensure stability by reducing surface tension between hydrophobic and hydrophilic compounds. In this study we report the preparation of NE containing HK and MG using high and low-energy methods (SNEDDS); we aimed to improve their absorption after oral administration. Results demonstrated that NE enhanced their bioavailability significantly. Compared to the free forms, HK bioavailability increased by 3.47 times, and MG by 3.03 times. SNEDDS further increased HK bioavailability by 3.98 times and MG by 7.97 times compared to their free forms.
Collapse
Affiliation(s)
- Jessica M Sampieri-Morán
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Diego A Bravo-Alfaro
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Qro. 76130, Mexico
| | - Esmeralda Uribe-Lam
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Qro. 76130, Mexico
| | - Gabriel Luna-Barcenas
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro. 76130, Mexico
| | - Mara Montiel-Sánchez
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Luz Del C Velasco-Rodríguez
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Andrés A Acosta-Osorio
- CONAHCYT-Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, UAM, Madrid, Spain.
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico.
| |
Collapse
|
6
|
Subhasri D, Leena MM, Moses JA, Anandharamakrishnan C. Factors affecting the fate of nanoencapsulates post administration. Crit Rev Food Sci Nutr 2024; 64:11949-11973. [PMID: 37599624 DOI: 10.1080/10408398.2023.2245462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Nanoencapsulation has found numerous applications in the food and nutraceutical industries. Micro and nanoencapsulated forms of bioactives have proven benefits in terms of stability, release, and performance in the body. However, the encapsulated ingredient is often subjected to a wide range of processing conditions and this is followed by storage, consumption, and transit along the gastrointestinal tract. A strong understanding of the fate of nanoencapsulates in the biological system is mandatory as it provides valuable insights for ingredient selection, formulation, and application. In addition to their efficacy, there is also the need to assess the safety of ingested nanoencapsulates. Given the rising research and commercial focus of this subject, this review provides a strong focus on their interaction factors and mechanisms, highlighting their prospective biological fate. This review also covers various approaches to studying the fate of nanoencapsulates in the body. Also, with emphasis on the overall scope, the need for a new advanced integrated common methodology to evaluate the fate of nanoencapsulates post-administration is discussed.
Collapse
Affiliation(s)
- D Subhasri
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tiruchirappalli, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
- CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Ministry of Science and Technology, Government of India, Industrial Estate PO, Thiruvananthapuram, INDIA
| |
Collapse
|
7
|
Valdivia-Culqui JE, Maicelo-Quintana JL, Cayo-Colca IS, Medina-Mendoza M, Castro-Alayo EM, Balcázar-Zumaeta CR. Oleogel Systems for Chocolate Production: A Systematic Review. Gels 2024; 10:561. [PMID: 39330164 PMCID: PMC11431030 DOI: 10.3390/gels10090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
In response to the growing demand for healthier food options, this review explores advances in oleogel systems as an innovative solution to reduce saturated fats in chocolates. Although appreciated for its flavor and texture, chocolate is high in calories, mainly due to cocoa butter (CB), which is rich in saturated fats. Oleogels, three-dimensional structures formed by structuring agents in edible oils, stand out in terms of mimicking saturated fats' physical and sensory properties without compromising the quality of chocolate. This study reviews how oleogels could improve chocolate's stability and sensory quality, exploring the potential of pectin-rich agro-industrial by-products as sustainable alternatives. It also explores the need for physicochemical evaluations of both oleogel and oleogel-based chocolate.
Collapse
Affiliation(s)
- Jheniffer E Valdivia-Culqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Jorge L Maicelo-Quintana
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Ilse S Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Marleni Medina-Mendoza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Efraín M Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - César R Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
- Programa de Doctorado en Ciencias Agrarias, Escuela de Posgrado, Universidad Nacional de Piura, Jr. Tacna 748, Piura 20002, Peru
| |
Collapse
|
8
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
9
|
Liu J, Bi J, Liu X, Liu D, Fogliano V, Dekker M, Verkerk R. Effect of pectin structure on the in vitro bioaccessibility of carotenoids in simulated juice model. Int J Biol Macromol 2024; 273:133098. [PMID: 38871101 DOI: 10.1016/j.ijbiomac.2024.133098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/29/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The impact of pectin structure on carotenoid bioaccessibility is still uncertain. This study aims to investigate how the different pectic polymers affected the bioaccessibility of carotenoids in a simulated juice model during static in vitro digestion. This study includes homogalacturonan (HG), which is a linear pectic polymer, rhamnogalacturonan-I (RG-I), which is a branched pectic polymer, and rhamnogalacturonan (RG), which is a diverse pectic polymer rich in RG-I, rhamnogalacturonan-II (RG-II), and xylogalacturonan domains. Juice models without pectin had the highest carotenoid bioaccessibility, suggesting pectin has negative effects on carotenoid bioaccessibility. During the intestinal phase, systems with HG showed the highest viscosity, followed by systems with RG and systems with RG-I. Systems with RG-I had lower carotenoid bioaccessibility than systems with HG and RG-II. Both the percentage of RG-I and the average side chain length of RG-I had negative correlations with carotenoid bioaccessibility. RG-I side chains with more arabinose and/or galactose might cause lower carotenoid bioaccessibility in this juice model system. This study offers valuable insights into the relationship between pectin structure and carotenoid bioaccessibility in a simulated juice model, highlighting the importance of considering pectin composition for maximizing carotenoid bioaccessibility and potential health benefits in fruit-based beverages.
Collapse
Affiliation(s)
- Jianing Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xuan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, the Chinese Academy of Agricultural sciences, Changji 831100, China.
| | - Dazhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Matthijs Dekker
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Ruud Verkerk
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| |
Collapse
|
10
|
Couëdelo L, Lennon S, Abrous H, Chamekh I, Bouju C, Griffon H, Vaysse C, Larvol L, Breton G. In Vivo Absorption and Lymphatic Bioavailability of Docosahexaenoic Acid from Microalgal Oil According to Its Physical and Chemical Form of Vectorization. Nutrients 2024; 16:1014. [PMID: 38613047 PMCID: PMC11013230 DOI: 10.3390/nu16071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Docosahexaenoic acid (DHA) is an essential fatty acid (FA) with proven pro-health effects, but improving its bioavailability is becoming a public health issue. The bioavailability of DHA from microalgal (A) oil has been comprehensively assessed, particularly in terms of the molecular structuring capabilities offered by A-oil. Here, we explored the impact of five DHA-rich formulas differing in terms of (i) molecular structure, i.e., ethyl ester (EE), monoglyceride (MG), or triglyceride (TG), and (ii) supramolecular form, i.e., emulsified TG or TG + phospholipids (PL blend) on the lymphatic kinetics of DHA absorption and the lipid characteristics of the resulting lipoproteins. We demonstrated in rats that the conventional A-DHA TG structure afforded more effective DHA absorption than the EE structure (+23%). Furthermore, the A-DHA MG and A-DHA emulsions were the better DHA vectors (AUC: 89% and +42%, respectively) due to improved lipolysis. The A-DHA MG and A-DHA emulsion presented the richest DHA content in TG (+40%) and PL (+50%) of lymphatic chylomicrons, which could affect the metabolic fate of DHA. We concluded that structuring A-DHA in TG or EE form would better serve for tissue and hepatic metabolism whereas A-DHA in MG and emulsion form could better target nerve tissues.
Collapse
Affiliation(s)
- Leslie Couëdelo
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | | | - Hélène Abrous
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Ikram Chamekh
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Corentin Bouju
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Hugues Griffon
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Carole Vaysse
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | | | | |
Collapse
|
11
|
Saleh M, Salam MA, Capanoglu E. Encapsulation of Black Rice Bran Extract in a Stable Nanoemulsion: Effects of Thermal Treatment, Storage Conditions, and In Vitro Digestion. ACS OMEGA 2024; 9:12585-12595. [PMID: 38524420 PMCID: PMC10955592 DOI: 10.1021/acsomega.3c07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/25/2023] [Accepted: 01/23/2024] [Indexed: 03/26/2024]
Abstract
This study aimed to improve the dispersibility of phenolic compounds from black rice bran through the encapsulation process within nanoemulsion. The study focused on assessing the stability of the nanoemulsions, which were prepared using a combination of surfactants with distinct hydrophilic-lipophilic balance (HLB) values and sunflower oil under different thermal treatments and storage conditions. The study revealed a significant correlation between the mixed surfactant HLB value and the nanoemulsions properties, including average particle size, polydispersity index (PDI), and ζ-potential. Specifically, an increase in the HLB value was associated with a decrease in the initial average particle size. The encapsulated polyphenols exhibited remarkable stability over a storage period of up to 30 days at different temperatures with no significant changes observed in particle size or PDI. The study also investigated the impact of different ionic strengths (0.2, 0.5, and 1.00 mol L-1 NaCl) on the physical stability and antioxidant black rice bran extract nanoemulsion, and the results revealed that adding NaCl influenced the particle size and surface charge of the nanoemulsions. Total phenolic content and DPPH results demonstrated a significant impact of salt concentration on antioxidant properties, with varying trends observed among the HLB formulations. Furthermore, the behavior of the encapsulated extracts during digestion was examined, and their antioxidant activity was evaluated.
Collapse
Affiliation(s)
- Mohamed
N. Saleh
- Agricultural
Research Center, Food Technology Research
Institute, 3725004 Giza, Egypt
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Türkiye
| | | | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Türkiye
| |
Collapse
|
12
|
Cao Y, Wang Q, Lin J, Ding YY, Han J. Modulating in vitro digestion of whey protein cold-set emulsion gels via gel properties modification with gallic acid and EGCG. Food Res Int 2024; 175:113686. [PMID: 38129029 DOI: 10.1016/j.foodres.2023.113686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Gallic acid (GA) and epigallocatechin gallate (EGCG), cooperated at varied ratios (1:0, 3:1, 1:1, 1:3, and 0:1), were employed to modify gel properties of calcium induced-whey protein emulsion gel. The effects of GA/EGCG on emulsion morphology, as well as gel properties and in vitro digestive behavior of the emulsion gels were investigated. Compared with emulsions without phenolics, GA/EGCG induced slightly smaller particle size and stronger electrostatic repulsion between emulsion droplets. Moreover, GA/EGCG, notably at a ratio of 3:1, promoted electrostatic and hydrophobic interactions between protein molecules and the formation of a compact and filamentous gel microstructure, resulting in a remarkable increment in the gel strength (up to 106 %). Furthermore, in vitro oral digestion, dynamic gastric digestion (using an artificial gastric digestive system, AGDS), and intestinal digestion of the emulsion gels were simulated. Particle size and protein hydrolysis results revealed that GA/EGCG was prone to weaken the physical disintegration of gels, reduce protein hydrolysis, and enhance the stability of emulsified oil droplets during dynamic gastric digestion. As a consequence, delayed release of oil droplets was observed in the gels and more free fatty acids were released in the intestinal digestion, particularly in the gel with GA/EGCG (3:1). These findings would provide novel strategies for application of phenolic compounds in developing protein gel-based delivery systems.
Collapse
Affiliation(s)
- Yanyun Cao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Jinou Lin
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yin-Yi Ding
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
13
|
Azevedo MA, Cerqueira MA, Gonçalves C, Amado IR, Teixeira JA, Pastrana L. Encapsulation of vitamin D3 using rhamnolipids-based nanostructured lipid carriers. Food Chem 2023; 427:136654. [PMID: 37399642 DOI: 10.1016/j.foodchem.2023.136654] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
This work had as main objective to encapsulate vitamin D3 (VD3) into nanostructured lipid carriers (NLCs) using rhamnolipids as surfactant. Glycerol monostearate and medium chain triglycerides with 2.625 % of VD3 were used as lipid materials. The three formulations of NLCs with VD3 (NLCs + VD3) were composed by 99 % of aqueous phase, 1 % of lipid phase and 0.05 % of surfactant. The difference between them was the ratio of solid:liquid in lipid phase. The NLCs + VD3 sizes ranged between 92.1 and 108.1 nm. The most stable formulation maintaining their caracteristics for 60 days at 4 °C. The NLCs + VD3 cytotoxicity demonstrated that concentrations of 0.25 mg/mL or lower up had a good biocompatibility in vitro. During the in vitro digestion, formulations with lower sizes and higher content on solid lipid had higher lipolysis rate and consequently higher VD3 bioaccessibility. The rhamnolipids-based NLCs are a good option for the encapsulation of VD3.
Collapse
Affiliation(s)
- Maria A Azevedo
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Isabel R Amado
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
14
|
Zhu Y, Chen T, Feng T, Zhang J, Meng Z, Zhang N, Luo G, Wang Z, Pang Y, Zhou Y. Fabrication and Biological Activities of All-in-One Composite Nanoemulsion Based on Blumea balsamifera Oil-Tea Tree Oil. Molecules 2023; 28:5889. [PMID: 37570859 PMCID: PMC10420664 DOI: 10.3390/molecules28155889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Nanoemulsion is a new multi-component drug delivery system; the selection of different oil phases can give it special physiological activity, and play the role of "medicine and pharmaceutical excipients all-in-one". In this paper, we used glycyrrhizic acid as the natural surfactant, and Blumea balsamifera oil (BB) and tea tree oil (TTO) as the mixed oil phase, to obtain a new green functional composite nanoemulsion. Using the average particle size and polydispersion index (PDI) as the evaluation criteria, the effects of the oil ratio, oil content, glycyrrhizic acid concentration, and ultrasonic time on the nanoemulsion were systematically investigated. The stability and physicochemical properties and biological activities of BB-TTO NEs prepared via the optimum formulation were characterized. The optimal prescription was BB: TTO = 1:1, 5% oil phase, 0.7% glycyrrhizic acid, and 5 min ultrasonication time. The mean particle size, PDI, and zeta potential were 160.01 nm, 0.125, and -50.94 mV, respectively. The nanoemulsion showed non-significant changes in stability after centrifugation, dilution, and 120 days storage. These nanoemulsions were found to exhibit potential antibacterial and anti-inflammatory activities. The minimal inhibitory concentration (MIC) of BB-TTO NEs against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa is 2975 μg/mL, 2975 μg/mL, and 5950 μg/mL, respectively. A lower level of inflammatory cell infiltration and proportion of fibrosis were found in the synovial tissue of AIA rats treated with BB-TTO NEs. These findings demonstrate that the BB-TTO NEs produced in this study have significant potential for usage in antibacterial and anti-inflammatory areas.
Collapse
Affiliation(s)
- Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Teng Chen
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Tingting Feng
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Zejing Meng
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
| | - Ning Zhang
- School of Acupuncture-Moxibustion and Tuina, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Gang Luo
- Key Laboratory of Medical Microbiology and Parasitology, Key Laboratory of Environmental Pollution Monitoringand Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
- Nano-Drug Technology Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yuxin Pang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China
| |
Collapse
|
15
|
Nicolescu A, Babotă M, Barros L, Rocchetti G, Lucini L, Tanase C, Mocan A, Bunea CI, Crișan G. Bioaccessibility and bioactive potential of different phytochemical classes from nutraceuticals and functional foods. Front Nutr 2023; 10:1184535. [PMID: 37575331 PMCID: PMC10415696 DOI: 10.3389/fnut.2023.1184535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
Nutraceuticals and functional foods are composed of especially complex matrices, with polyphenols, carotenoids, minerals, and vitamins, among others, being the main classes of phytochemicals involved in their bioactivities. Despite their wide use, further investigations are needed to certify the proper release of these phytochemicals into the gastrointestinal medium, where the bioaccessibility assay is one of the most frequently used method. The aim of this review was to gather and describe different methods that can be used to assess the bioaccessibility of nutraceuticals and functional foods, along with the most important factors that can impact this process. The link between simulated digestion testing of phytochemicals and their in vitro bioactivity is also discussed, with a special focus on the potential of developing nutraceuticals and functional foods from simple plant materials. The bioactive potential of certain classes of phytochemicals from nutraceuticals and functional foods is susceptible to different variations during the bioaccessibility assessment, with different factors contributing to this variability, namely the chemical composition and the nature of the matrix. Regardless of the high number of studies, the current methodology fails to assume correlations between bioaccessibility and bioactivity, and the findings of this review indicate a necessity for updated and standardized protocols.
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Lillian Barros
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Claudiu I. Bunea
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
16
|
D’Amico V, Gänzle M, Call L, Zwirzitz B, Grausgruber H, D’Amico S, Brouns F. Does sourdough bread provide clinically relevant health benefits? Front Nutr 2023; 10:1230043. [PMID: 37545587 PMCID: PMC10399781 DOI: 10.3389/fnut.2023.1230043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
During the last decade, scientific interest in and consumer attention to sourdough fermentation in bread making has increased. On the one hand, this technology may favorably impact product quality, including flavor and shelf-life of bakery products; on the other hand, some cereal components, especially in wheat and rye, which are known to cause adverse reactions in a small subset of the population, can be partially modified or degraded. The latter potentially reduces their harmful effects, but depends strongly on the composition of sourdough microbiota, processing conditions and the resulting acidification. Tolerability, nutritional composition, potential health effects and consumer acceptance of sourdough bread are often suggested to be superior compared to yeast-leavened bread. However, the advantages of sourdough fermentation claimed in many publications rely mostly on data from chemical and in vitro analyzes, which raises questions about the actual impact on human nutrition. This review focuses on grain components, which may cause adverse effects in humans and the effect of sourdough microbiota on their structure, quantity and biological properties. Furthermore, presumed benefits of secondary metabolites and reduction of contaminants are discussed. The benefits claimed deriving from in vitro and in vivo experiments will be evaluated across a broader spectrum in terms of clinically relevant effects on human health. Accordingly, this critical review aims to contribute to a better understanding of the extent to which sourdough bread may result in measurable health benefits in humans.
Collapse
Affiliation(s)
- Vera D’Amico
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lisa Call
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Benjamin Zwirzitz
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Stefano D’Amico
- Institute for Animal Nutrition and Feed, AGES–Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
17
|
Yu Y, Chen D, Lee YY, Chen N, Wang Y, Qiu C. Physicochemical and In Vitro Digestion Properties of Curcumin-Loaded Solid Lipid Nanoparticles with Different Solid Lipids and Emulsifiers. Foods 2023; 12:foods12102045. [PMID: 37238863 DOI: 10.3390/foods12102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller size and lower surface charge than TP-SLNs with a Cur encapsulation efficiency of 87.54-95.32% and the Rha-based SLNs exhibited a small size but low stability to pH decreases and ionic strength. Thermal analysis and X-ray diffraction results confirmed that the SLNs with different lipid cores showed varying structures, melting and crystallization profiles. The emulsifiers slightly impacted the crystal polymorphism of MLCD-SLNs but largely influenced that of TP-SLNs. Meanwhile, the polymorphism transition was less significant for MLCD-SLNs, which accounted for the better stabilization of particle size and higher encapsulation efficiency of MLCD-SLNs during storage. In vitro studies showed that emulsifier formulation greatly impacted on the Cur bioavailability, whereby T20-SLNs showed much higher digestibility and bioavailability than that of SQ- and Rha-SLNs possibly due to the difference in the interfacial composition. Mathematical modeling analysis of the membrane release further confirmed that Cur was mainly released from the intestinal phase and T20-SLNs showed a faster release rate compared with other formulations. This work contributes to a better understanding of the performance of MLCD in lipophilic compound-loaded SLNs and has important implications for the rational design of lipid nanocarriers and in instructing their application in functional food products.
Collapse
Affiliation(s)
- Yasi Yu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Dechu Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Nannan Chen
- Department of Nutrition and Food Hygiene, Guangzhou Medical University, Guangzhou 511436, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| |
Collapse
|
18
|
Milinčić DD, Salević-Jelić AS, Kostić AŽ, Stanojević SP, Nedović V, Pešić MB. Food nanoemulsions: how simulated gastrointestinal digestion models, nanoemulsion, and food matrix properties affect bioaccessibility of encapsulated bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:8091-8113. [PMID: 37021463 DOI: 10.1080/10408398.2023.2195519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Food nanoemulsions are known as very effective and excellent carriers for both lipophilic and hydrophilic bioactive compounds (BCs) and have been successfully used for controlled delivery and protection of BCs during gastrointestinal digestion (GID). However, due to sensitive and fragile morphology, BCs-loaded nanoemulsions have different digestion pathways depending on their properties, food matrix properties, and applied models for testing their digestibility and BCs bioaccessibility. Thus, this review gives a critical review of the behavior of encapsulated BCs into food nanoemulsions during each phase of GID in different static and dynamic in vitro digestion models, as well as of the influence of nanoemulsion and food matrix properties on BCs bioaccessibility. In the last section, the toxicity and safety of BCs-loaded nanoemulsions evaluated on in vitro and in vivo GID models have also been discussed. Better knowledge of food nanoemulsions' behavior in different models of simulated GI conditions and within different nanoemulsion and food matrix types can help to standardize the protocol for their testing aiming for researchers to compare results and design BCs-loaded nanoemulsions with better performance and higher targeted BCs bioaccessibility.
Collapse
Affiliation(s)
- Danijel D Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Ana S Salević-Jelić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Slađana P Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mirjana B Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Emulsion-Based Delivery Systems to Enhance the Functionality of Bioactive Compounds: Towards the Use of Ingredients from Natural, Sustainable Sources. Foods 2023; 12:foods12071502. [PMID: 37048323 PMCID: PMC10094036 DOI: 10.3390/foods12071502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
In recent years, the trend in the population towards consuming more natural and sustainable foods has increased significantly. This claim has led to the search for new sources of bioactive compounds and extraction methods that have less impact on the environment. Moreover, the formulation of systems to protect these compounds is also focusing on the use of ingredients of natural origin. This article reviews novel, natural alternative sources of bioactive compounds with a positive impact on sustainability. In addition, it also contains information on the most recent studies based on the use of natural (especially from plants) emulsifiers in the design of emulsion-based delivery systems to protect bioactive compounds. The properties of these natural-based emulsion-delivery systems, as well as their functionality, including in vitro and in vivo studies, are also discussed. This review provides relevant information on the latest advances in the development of emulsion delivery systems based on ingredients from sustainable natural sources.
Collapse
Affiliation(s)
- Júlia Teixé-Roig
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| | - Gemma Oms-Oliu
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| | | | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida—Agrotecnio Center, 25198 Lleida, Spain
| |
Collapse
|
20
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Effect of the Emulsifier Used in Dunaliella salina-Based Nanoemulsions Formulation on the β-Carotene Absorption and Metabolism in Rats. Mol Nutr Food Res 2023; 67:e2200492. [PMID: 36708270 DOI: 10.1002/mnfr.202200492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Indexed: 01/29/2023]
Abstract
SCOPE Microalgae such as Dunaliella salina are a potential sustainable source of natural β-carotene due to their fast growth and high adaptability to environmental conditions. This work aims to evaluate the effect of the incorporation of β-carotene from this alga into different emulsifier-type nanoemulsions (soybean lecithin [SBL], whey protein isolate [WPI], sodium caseinate [SDC]) on its absorption, metabolization, and biodistribution in rats. METHODS AND RESULTS Nanoemulsions formulated with different emulsifiers at 8% concentration are obtained by five cycles of microfluidization at 130 mPa, then expose to an in vitro digestion or orally administer to rats. Feeding rats with nanoemulsions improves β-carotene uptake compared to control suspension, especially using SDC and WPI as emulsifiers. A greater presence of β-carotene and retinol in the intestine, plasma, and liver is observed, being the liver the tissue that shows the highest accumulation. This fact can be a consequence of the smaller droplets that protein-nanoemulsions present compared to that with SBL in the intestine of rats, which promote faster digestibility and higher β-carotene bioaccessibility (35%-50% more) according to the in vitro observations. CONCLUSIONS Nanoemulsions, especially those formulated with protein emulsifiers, are effective systems for increasing β-carotene absorption, as well as retinol concentration in different rat tissues.
Collapse
Affiliation(s)
- Júlia Teixé-Roig
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| | - Gemma Oms-Oliu
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| | - Isabel Odriozola-Serrano
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| |
Collapse
|
21
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Enhancing in vivo retinol bioavailability by incorporating β-carotene from alga Dunaliella salina into nanoemulsions containing natural-based emulsifiers. Food Res Int 2023; 164:112359. [PMID: 36737947 DOI: 10.1016/j.foodres.2022.112359] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/03/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The use of microalgae as a source of bioactive compounds has gained interest since they present advantages vs higher plants. Among them, Dunaliella salina is one of the best sources of natural β-carotene, which is the precursor of vitamin A. However, β-carotene shows reduced oral bioavailability due to its chemical degradation and poor absorption. The work aimed to evaluate the influence of the emulsifier and oil concentration on the digestive stability of Dunaliella Salina-based nanoemulsions and study their influence on the digestibility and the β-carotene bioaccessibility. In addition, the effect of the emulsifier nature on the absorption of β-carotene and its conversion to retinol in vivo was also investigated. Results showed that the coalescence observed in soybean lecithin nanoemulsion during the gastrointestinal digestion reduced the digestibility and β-carotene bioaccessibility. In contrast, whey protein nanoemulsion that showed aggregation in the gastric phase could be redispersed in the intestinal phase facilitating the digestibility and bioaccessibility of the compound. In vivo results confirmed that whey protein nanoemulsion increased the bioavailability of retinol to a higher extent (Cmax 685 ng/mL) than soybean lecithin nanoemulsion (Cmax 394 ng/mL), because of an enhanced β-carotene absorption.
Collapse
Affiliation(s)
- Júlia Teixé-Roig
- Department of Food Technology University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Gemma Oms-Oliu
- Department of Food Technology University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Isabel Odriozola-Serrano
- Department of Food Technology University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
22
|
Effects of coating layers chitosan/pectin on lipid stability and in vitro digestion of astaxanthin-loaded multilayer emulsions. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Zhao W, Wei Z, Xue C, Meng Y. Development of food-grade oleogel via the aerogel-templated method: Oxidation stability, astaxanthin delivery and emulsifying application. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Anal AK, Boonlao N, Ruktanonchai UR. Emulsion Systems Stabilized with Biopolymers to Enhance Oral Bioaccessibility and Bioavailability of Lipophilic Bioactive Compounds. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Zhang Y, Sun G, Li D, Xu J, McClements DJ, Li Y. Advances in emulsion-based delivery systems for nutraceuticals: Utilization of interfacial engineering approaches to control bioavailability. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:139-178. [DOI: 10.1016/bs.afnr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Duque-Soto C, Quintriqueo-Cid A, Rueda-Robles A, Robert P, Borrás-Linares I, Lozano-Sánchez J. Evaluation of Different Advanced Approaches to Simulation of Dynamic In Vitro Digestion of Polyphenols from Different Food Matrices-A Systematic Review. Antioxidants (Basel) 2022; 12:101. [PMID: 36670962 PMCID: PMC9854833 DOI: 10.3390/antiox12010101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Phenolic compounds have become interesting bioactive antioxidant compounds with implications for obesity, cancer and inflammatory gastrointestinal pathologies. As the influence of digestion and gut microbiota on antioxidant behavior is yet to be completely elucidated, and due to limitations associated to in vivo studies, dynamic in vitro gastrointestinal models have been promoted. A systematic review was conducted of different databases (PubMed, Web of Science and Scopus) following PRISMA guidelines to assess different dynamic digestion models and assay protocols used for phenolic compound research regarding bioaccesibility and interaction with colonic microbiota. Of 284 records identified, those including dynamic multicompartmental digestion models for the study of phenolic compound bioaccesibility, bioactivity and the effects of microbiota were included, with 57 studies meeting the inclusion criteria. Different conditions and experimental configurations as well as administered doses, sample treatments and microbiological assays of dynamic digestion studies on polyphenols were recorded and compared to establish their relevance for the dynamic in vitro digestion of phenolic compounds. While similarities were observed in certain experimental areas, a high variability was found in others, such as administered doses. A description of considerations on the study of the digestion of phenolic compounds is proposed to enhance comparability in research.
Collapse
Affiliation(s)
- Carmen Duque-Soto
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, 18071 Granada, Spain
| | - Alejandra Quintriqueo-Cid
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, 18071 Granada, Spain
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Ascensión Rueda-Robles
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, 18071 Granada, Spain
| | - Paz Robert
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
27
|
Sabet S, Kirjoranta SJ, Lampi AM, Lehtonen M, Pulkkinen E, Valoppi F. Addressing criticalities in the INFOGEST static in vitro digestion protocol for oleogel analysis. Food Res Int 2022; 160:111633. [DOI: 10.1016/j.foodres.2022.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
|
28
|
Gutiérrez-Luna K, Ansorena D, Cruz R, Astiasarán I, Casal S. Olive and echium oil gelled emulsions: simulated effect of processing temperature, gelling agent and in vitro gastrointestinal digestion on oxidation and bioactive compounds. Food Chem 2022; 402:134416. [DOI: 10.1016/j.foodchem.2022.134416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/29/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
|
29
|
Effect of Gum Acacia on the Intestinal Bioavailability of n-3 Polyunsaturated Fatty Acids in Rats. Biomolecules 2022; 12:biom12070975. [PMID: 35883531 PMCID: PMC9313134 DOI: 10.3390/biom12070975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Lipid emulsification is a technique that is being explored for improving the bioavailability of omega 3 (n-3) long chain (LC) fatty acid (FA). The nature of the emulsifiers can differently impact the lipid bioavailability via a modification of the lipolysis step. Among natural emulsifiers, gum acacia (GA), an indigestible polysaccharide, provides protective encapsulation of n-3 by forming a specifically crown-like shape around lipid drops, which could also impact the digestion step. Despite the interest in lipolysis rate, the impact of GA on lipid bioavailability has never been explored in a complete physiological context. Thus, we followed in a kinetics study the n-3 bioavailability in rat lymph, orally administered DHA-rich oil, formulated based on GA compared to the bulk phase form of the oil. The AUC values were significantly improved by +121% for total TG and by 321% for n-3 PUFA, specifically for EPA (+244%) and for DHA (+345%). Benefits of GA have also been related to the transport of FA in lymph, which was 2 h earlier (Tmax = 4 h), compared to the Tmax (6 h) obtained with the bulk phase oil. All the data showed that GA is one of the most favorable candidates of natural emulsifiers to improve n-3 bioavailability and their rate of absorption for health targets.
Collapse
|
30
|
Nanocarriers for β-Carotene Based on Milk Protein. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Sani MA, Tavassoli M, Azizi-Lalabadi M, Mohammadi K, McClements DJ. Nano-enabled plant-based colloidal delivery systems for bioactive agents in foods: Design, formulation, and application. Adv Colloid Interface Sci 2022; 305:102709. [PMID: 35640316 DOI: 10.1016/j.cis.2022.102709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/21/2022]
Abstract
Consumers are becoming increasingly aware of the impact of their dietary choices on the environment, animal welfare, and health, which is causing many of them to adopt more plant-based diets. For this reason, many sectors of the food industry are reformulating their products to contain more plant-based ingredients. This article describes recent research on the formation and application of nano-enabled colloidal delivery systems formulated from plant-based ingredients, such as polysaccharides, proteins, lipids, and phospholipids. These delivery systems include nanoemulsions, solid lipid nanoparticles, nanoliposomes, nanophytosomes, and biopolymer nanoparticles. The composition, size, structure, and charge of the particles in these delivery systems can be manipulated to create novel or improved functionalities, such as improved robustness, higher optical clarity, controlled release, and increased bioavailability. There have been major advances in the design, assembly, and application of plant-based edible nanoparticles within the food industry over the past decade or so. As a result, there are now a wide range of different options available for creating delivery systems for specific applications. In the future, it will be important to establish whether these formulations can be produced using economically viable methods and provide the desired functionality in real-life applications.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Tavassoli
- Student's Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
32
|
Zhang S, Xu X, Yang J, Ren J. Impact of Emulsifier Structure and Concentration on Lipolysis Dynamics and Curcumin Bioaccessibility in the Nanoemulsions Stabilized by Polyglycerol Fatty Acid Esters. FOOD BIOPHYS 2022; 17:575-585. [PMID: 35645654 PMCID: PMC9128773 DOI: 10.1007/s11483-021-09681-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/18/2021] [Indexed: 11/04/2022]
|
33
|
Zheng H, Chen B, Rao J. Nutraceutical potential of industrial hemp ( Cannabis sativa L.) extracts: physicochemical stability and bioaccessibility of cannabidiol (CBD) nanoemulsions. Food Funct 2022; 13:4502-4512. [PMID: 35348145 DOI: 10.1039/d1fo04433h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cannabidiol (CBD) is one of the most promising functional food ingredients, which displays a number of health benefits. However, its low solubility and bioavailability impede its applications in functional foods. Herein, we developed a food-grade CBD nanoemulsion system using medium chain triacylglycerides (MCT), canola oil (CO), or hemp seed oil (HSO) as the carrier oil to compare the physicochemical stability and bioaccessibility of CBD. Encouragingly, all formulations were well maintained for 90 days under the tested temperatures (4, 25 and 37 °C) and pH values (3.5 and 7.0). Quantitative analysis of CBD during storage using high performance liquid chromatography revealed that the light exposure and acidity of the solution are two important factors affecting the chemical stability of CBD. Moreover, improved bioaccessibility of CBD in all three nanoemulsion formulations compared to that of bulk oil forms was confirmed, and the long chain triacylglyceride (LCT)-based nanoemulsion was superior to the MCT-based counterpart.
Collapse
Affiliation(s)
- Huijuan Zheng
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Bingcan Chen
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Jiajia Rao
- Food Ingredients and Biopolymers Laboratory, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA.
| |
Collapse
|
34
|
Tan Y, Zhou H, McClements DJ. Application of static in vitro digestion models for assessing the bioaccessibility of hydrophobic bioactives: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Recent Advances in the Gastrointestinal Fate of Organic and Inorganic Nanoparticles in Foods. NANOMATERIALS 2022; 12:nano12071099. [PMID: 35407216 PMCID: PMC9000219 DOI: 10.3390/nano12071099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
Abstract
Inorganic or organic nanoparticles are often incorporated into foods to enhance their quality, stability, nutrition, or safety. When they pass through the gastrointestinal environment, the properties of these nanoparticles are altered, which impacts their biological effects and potential toxicity. Consequently, there is a need to understand how different kinds of nanoparticles behave within the gastrointestinal tract. In this article, the current understanding of the gastrointestinal fate of nanoparticles in foods is reviewed. Initially, the fundamental physicochemical and structural properties of nanoparticles are discussed, including their compositions, sizes, shapes, and surface chemistries. Then, the impact of food matrix effects and gastrointestinal environments on the fate of ingested nanoparticles is discussed. In particular, the influence of nanoparticle properties on food digestion and nutraceutical bioavailability is highlighted. Finally, future research directions are highlighted that will enable the successful utilization of nanotechnology in foods while also ensuring they are safe.
Collapse
|
36
|
Álvarez R, Giménez B, Mackie A, Torcello-Gómez A, Quintriqueo A, Oyarzun-Ampuero F, Robert P. Influence of the particle size of encapsulated chia oil on the oil release and bioaccessibility during in vitro gastrointestinal digestion. Food Funct 2022; 13:1370-1379. [PMID: 35044402 DOI: 10.1039/d1fo03688b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among vegetable oils, chia oil has been gaining interest in recent years due to its high linolenic acid content (ALA, 18:3 ω3). The aim of this work was to study the influence of the particle size of encapsulated purified chia oil (PCO) on the encapsulation efficiency and PCO release during in vitro digestion. PCO micro- and nano-sized particles with sodium alginate (SA) as an encapsulating agent (ME-PCO-SA and NE-PCO-SA) were designed by micro and nano spray-drying, respectively, applying a central composite plus star point experimental design. NE-PCO-SA showed a smaller particle size and higher encapsulation efficiency of PCO than ME-PCO-SA (0.16 μm vs. 3.5 μm; 98.1% vs. 92.0%). Emulsions (NE-PCO and ME-PCO) and particles (NE-PCO-SA and ME-PCO-SA) were subjected to in vitro static gastrointestinal digestion. ME-PCO and NE-PCO showed sustained oil release throughout the three phases of digestion (oral, gastric and intestinal phases), whereas the PCO release from ME-PCO-SA and NE-PCO-SA occurred mainly in the intestinal phase, showing the suitability of sodium alginate as an intestine-site release polymer. Nano-sized particles showed a significantly higher PCO release after in vitro digestion (NE-PCO-SA, 78.4%) than micro-sized particles (ME-PCO-SA, 69.8%), and also higher bioaccessibility of individual free fatty acids, such as C18:3 ω-3 (NE-PCO-SA, 23.6%; ME-PCO-SA, 7.9%), due to their greater surface area. However, when ME-PCO-SA and NE-PCO-SA were incorporated into yogurt, the PCO release from both particle systems after the digestion of the matrix was similar (NE-PCO-SA, 58.8%; ME-PCO-SA-Y, 61.8%), possibly because the calcium ions contained in the yogurt induced partial ionic gelation of SA, impairing the PCO release. Sodium alginate spray-dried micro and nanoparticles showed great potential for vehiculation of omega-3 rich oils in the design of functional foods.
Collapse
Affiliation(s)
- Rudy Álvarez
- Dpto. Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile.
| | - Begoña Giménez
- Dpto. Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Ecuador 3769, Estación Central, Santiago, Chile
| | - Alan Mackie
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Amelia Torcello-Gómez
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Alejandra Quintriqueo
- Dpto. Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile.
| | - Felipe Oyarzun-Ampuero
- Departamento de Ciencia y Tecnología Farmacéutica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Paz Robert
- Dpto. Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile.
| |
Collapse
|
37
|
Optimized endogenous lipid concomitants in flaxseed oil by different oil extraction technologies: Their positive roles in emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Verkempinck S, Guevara-Zambrano J, Infantes-Garcia M, Naranjo M, Soliva-Fortuny R, Elez-Martínez P, Grauwet T. Gastric and small intestinal lipid digestion kinetics as affected by the gradual addition of lipases and bile salts. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Wang L, Yu X, Geng F, Cheng C, Yang J, Deng Q. Effects of tocopherols on the stability of flaxseed oil-in-water emulsions stabilized by different emulsifiers: Interfacial partitioning and interaction. Food Chem 2021; 374:131691. [PMID: 34883433 DOI: 10.1016/j.foodchem.2021.131691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 11/25/2021] [Indexed: 11/04/2022]
Abstract
The potential effects of tocopherols (100 μM in emulsions) on the physicochemical stability of whey protein isolate (WPI), soy lecithin (SL), or Tween 20 (TW) stabilized flaxseed oil (FO)-in-water emulsions were investigated. During the storage (18 days at 55 ℃), the particle size, microstructure, and multiple light scattering results showed WPI-stabilized emulsions exhibited better physical stability when tocopherols were added hydroperoxides and TBARS concentration in TW-stabilized emulsions were higher than those of SL or WPI, which were suppressed differently by tocopherols. Among homologues, δ-tocopherol was more effective in inhibiting lipid oxidation than α-tocopherol, which was related to the higher interface partitioning. Moreover, the increased interfacial tension indicated tocopherols, especially δ-tocopherol, were adsorbed on the interface and interacted with WPI or SL via hydrophobic or electrostatic interactions determined by isothermal titration calorimetry. Our results suggest tocopherols are more applicable in WPI emulsion systems to achieve steady-state delivery of ALA.
Collapse
Affiliation(s)
- Lei Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, Hubei, China
| | - Xiao Yu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Chen Cheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, Hubei, China
| | - Jing Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, Hubei, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, Hubei, China.
| |
Collapse
|
40
|
Tan Y, McClements DJ. Plant-Based Colloidal Delivery Systems for Bioactives. Molecules 2021; 26:molecules26226895. [PMID: 34833987 PMCID: PMC8625429 DOI: 10.3390/molecules26226895] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
The supplementation of plant-based foods and beverages with bioactive agents may be an important strategy for increasing human healthiness. Numerous kinds of colloidal delivery systems have been developed to encapsulate bioactives with the goal of improving their water dispersibility, chemical stability, and bioavailability. In this review, we focus on colloidal delivery systems assembled entirely from plant-based ingredients, such as lipids, proteins, polysaccharides, phospholipids, and surfactants isolated from botanical sources. In particular, the utilization of these ingredients to create plant-based nanoemulsions, nanoliposomes, nanoparticles, and microgels is covered. The utilization of these delivery systems to encapsulate, protect, and release various kinds of bioactives is highlighted, including oil-soluble vitamins (like vitamin D), ω-3 oils, carotenoids (vitamin A precursors), curcuminoids, and polyphenols. The functionality of these delivery systems can be tailored to specific applications by careful selection of ingredients and processing operations, as this enables the composition, size, shape, internal structure, surface chemistry, and electrical characteristics of the colloidal particles to be controlled. The plant-based delivery systems discussed in this article may be useful for introducing active ingredients into the next generation of plant-based foods, meat, seafood, milk, and egg analogs. Nevertheless, there is still a need to systematically compare the functional performance of different delivery systems for specific applications to establish the most appropriate one. In addition, there is a need to test their efficacy at delivering bioavailable forms of bioactives using in vivo studies.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
- Correspondence:
| |
Collapse
|
41
|
Octenyl succinate esterified gum arabic stabilized emulsions: Preparation, stability and in vitro gastrointestinal digestion. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Liu W, Luo X, Wang J, Li Y, Feng F, Zhao M. Digestive behavior of unemulsified triglycerides with different chain lengths: In vitro dynamic and static simulated digestion models. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Tan Y, Zhou H, Zhang Z, McClements DJ. Bioaccessibility of oil-soluble vitamins (A, D, E) in plant-based emulsions: impact of oil droplet size. Food Funct 2021; 12:3883-3897. [PMID: 33978004 DOI: 10.1039/d1fo00347j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We systematically investigated the impact of oil droplet diameter (≈0.15, 1.6, and 11 μm) on the bioaccessibility of three oil-soluble vitamins (vitamin A palmitate, vitamin D, and vitamin E acetate) encapsulated within soybean oil-in-water emulsions stabilized by quillaja saponin. Lipid digestion kinetics decreased with increasing droplet size due to the reduction in oil-water interfacial area. Vitamin bioaccessibility decreased with increasing droplet size from 0.15 to 11 μm: 87 to 39% for vitamin A; 76 to 44% for vitamin D; 77 to 21% for vitamin E. Vitamin bioaccessibility also decreased as their hydrophobicity and molecular weight increased, probably because their tendency to remain inside the oil droplets and/or be poorly solubilized by the mixed micelles increased. Hydrolysis of the esterified vitamins also occurred under gastrointestinal conditions: vitamin A palmitate (∼90%) and vitamin E acetate (∼3%). Consequently, the composition and structure of emulsion-based delivery systems should be carefully designed when creating vitamin-fortified functional food products.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Hualu Zhou
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Zhiyun Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA. and Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
44
|
Infantes-Garcia MR, Verkempinck SHE, Hendrickx ME, Grauwet T. Kinetic Modeling of In Vitro Small Intestinal Lipid Digestion as Affected by the Emulsion Interfacial Composition and Gastric Prelipolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4708-4719. [PMID: 33856215 DOI: 10.1021/acs.jafc.1c00432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This research evaluated the impact of the emulsion interfacial composition on in vitro small intestinal lipolysis kinetics with the inclusion of rabbit gastric lipase resulting in a gastric prelipolysis step. O/w emulsions contained 5% triolein (w/w) and 1% (w/w) of the following emulsifiers: sodium taurodeoxycholate, citrus pectin, soy protein isolate, soy lecithin, and tween 80. Emulsions were subjected to static in vitro digestion and diverse lipolysis species quantified via a HPLC-charged aerosol detector. Single-response modeling indicated that the kinetics of lipolysis in the small intestinal phase were impacted by the emulsion particle size at the beginning of this phase. Multiresponse modeling permitted the elucidation of the lipolysis mechanism under in vitro conditions. The final reaction scheme included enzymatic and chemical conversions. The modeling strategies used in this research allowed to gain more insights into the kinetics and mechanism of in vitro lipid digestion.
Collapse
Affiliation(s)
- Marcos R Infantes-Garcia
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - Sarah H E Verkempinck
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - Marc E Hendrickx
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| |
Collapse
|
45
|
Comunian TA, Drusch S, Brodkorb A. Advances of plant-based structured food delivery systems on the in vitro digestibility of bioactive compounds. Crit Rev Food Sci Nutr 2021; 62:6485-6504. [PMID: 33775182 DOI: 10.1080/10408398.2021.1902262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food researchers are currently showing a growing interest in in vitro digestibility studies due to their importance for obtaining food products with health benefits and ensuring a balanced nutrient intake. Various bioactive food compounds are sensitive to the digestion process, which results in a lower bioavailability in the gut. The main objective of structured food delivery systems is to promote the controlled release of these compounds at the desired time/place, in addition to protecting them during digestion processes. This review provides an overview of the influence of structured delivery systems on the in vitro digestive behavior. The main delivery systems are summarized, the pros and cons of different structures are outlined, and examples of several studies that optimized the use of these structured systems are provided. In addition, we have reviewed the use of plant-based systems, which have been of interest to food researchers and the food industry because of their health benefits, improved sustainability as well as being an alternative for vegetarian, vegan and consumers suffering from food allergies. In this context, the review provides new insights and comprehensive knowledge regarding the influence of plant-based structured systems on the digestibility of encapsulated compounds and proteins/polysaccharides used in the encapsulation process.
Collapse
Affiliation(s)
- Talita A Comunian
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| |
Collapse
|
46
|
Zhou H, Zheng B, McClements DJ. In Vitro Gastrointestinal Stability of Lipophilic Polyphenols is Dependent on their Oil-Water Partitioning in Emulsions: Studies on Curcumin, Resveratrol, and Quercetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3340-3350. [PMID: 33689331 DOI: 10.1021/acs.jafc.0c07578] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many lipophilic polyphenols have low bioavailability because of their poor solubility and chemical stability within the human gut. The encapsulation of these polyphenols within digestible lipid droplets can improve their solubility and stability. However, there is currently a poor understanding of how the molecular and physicochemical properties of specific polyphenols impact these characteristics. In this study, the factors influencing the solubility and stability of different polyphenols (curcumin, resveratrol, and quercetin) under simulated gastrointestinal conditions were examined when they were delivered in the form of soybean oil-in-water nanoemulsions containing quillaja saponin-coated droplets (d32 ≈ 0.15 μm; ζ = -63 mV; pH 5). The polyphenols were loaded into the lipid droplets using a pH-driven method, which is based on the pH-dependent electrical charge, oil-water partitioning, and water-solubility of these molecules. The encapsulation efficiency of all three polyphenols was relatively high (75-87%). However, their chemical stability under gastrointestinal conditions (i.e., the % remaining after exposure to gastrointestinal conditions) differed considerably: quercetin (44%), curcumin (92%), and resveratrol (100%). This effect was mainly attributed to the lower logD value of quercetin (2.17) than those of resveratrol (3.39) and curcumin (4.12). As a result, a high fraction (>50%) of quercetin was located within the aqueous gastrointestinal fluids, where it would be more prone to chemical degradation or precipitation. The fraction of the polyphenols solubilized in the gastrointestinal fluids (bioaccessibility) followed a different trend: curcumin (57%) < quercetin (73%) < resveratrol (76%). This effect was attributed to the chemical instability and/or binding of curcumin with other molecules in the simulated intestinal conditions. These results provide useful information for designing nanoemulsion-based delivery systems to improve the efficacy of lipophilic polyphenols.
Collapse
Affiliation(s)
- Hualu Zhou
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Bingjing Zheng
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|
47
|
Li C, Zhang R, Ma C, Shang H, McClements DJ, White JC, Xing B. Food-Grade Titanium Dioxide Particles Decreased the Bioaccessibility of Vitamin D 3 in the Simulated Human Gastrointestinal Tract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2855-2863. [PMID: 33625220 DOI: 10.1021/acs.jafc.0c06644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Food-grade titanium dioxide (E171) particles, as a "whiteness" additive, are often co-ingested with lipid-rich foods. Therefore, we explored the impact of E171 on lipid digestion and vitamin D3 (VD3) bioaccessibility encapsulated within oil-in-water emulsions in a simulated human gastrointestinal tract (GIT) model. VD3 bioaccessibility significantly decreased from 80 to 74% when raising E171 from 0 to 0.5 wt %. The extent of lipid digestion was reduced by E171 addition in a dose-dependent manner. VD3 bioaccessibility was positively correlated with the final amount of free fatty acids (FFAs) produced by lipid digestion (R2 = 0.95), suggesting that the reduction in VD3 bioaccessibility was due to the inhibition of lipid digestion by E171. Further experiments showed that E171 interacted with lipase and calcium ions, thereby interfering with lipid digestion. The findings of this study enhance our understanding toward the potential impact of E171 on the nutritional attributes of foods for human digestion health.
Collapse
Affiliation(s)
- Chunyang Li
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ruojie Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chuanxin Ma
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Heping Shang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
48
|
Tan Y, McClements DJ. Improving the bioavailability of oil-soluble vitamins by optimizing food matrix effects: A review. Food Chem 2021; 348:129148. [PMID: 33515946 DOI: 10.1016/j.foodchem.2021.129148] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
The potency of oil-soluble vitamins (vitamins A, D, E and K) in fortified foods can be improved by understanding how food matrices impact their bioavailability. In this review, the major food matrix effects influencing the bioavailability of oil-soluble vitamins are highlighted: oil content, oil composition, particle size, interfacial properties, and food additives. Droplet size and aggregation state in the human gut impact vitamin bioavailability by modulating lipid digestion, vitamin release, and vitamin solubilization. Vitamins in small isolated oil droplets typically have a higher bioavailability than those in large or aggregated ones. Emulsifiers, stabilizers, or texture modifiers can therefore affect bioavailability by influencing droplet size or aggregation. The dimensions of the hydrophobic domains in mixed micelles depends on lipid type: if the domains are too small, vitamin bioavailability is low. Overall, this review highlights the importance of carefully designing food matrices to improve vitamin bioavailability.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
49
|
Gallotti F, Lavoisier A, Turchiuli C, Lavelli V. Impact of Pleurotus ostreatus β-Glucans on Oxidative Stability of Active Compounds Encapsulated in Powders during Storage and In Vitro Digestion. Antioxidants (Basel) 2020; 9:E1219. [PMID: 33287121 PMCID: PMC7761643 DOI: 10.3390/antiox9121219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/02/2022] Open
Abstract
Polyunsaturated fatty acids and α-tocopherol were encapsulated in powders by spray drying using maltodextrins DE 12 as wall material and different emulsifiers (Tween®20, acacia gum or β-glucans-rich extracts from Pleurotus ostreatus). The aim was to study the effects of the surfactants on: (a) the oil droplet size distribution and α-tocopherol stability during in vitro digestion, and (b) the oxidative stability during 15 days of accelerated storage. Acacia gum sample had the most stable particle size distribution up to the gastric phase, but showed a significant α-tocopherol degradation prior to the intestinal stage. On the contrary, β-glucan-samples displayed a bimodal distribution in the oral and gastric phases but retained α-tocopherol up to the beginning of the intestinal stage. At the end of intestinal stage, no α-tocopherol was found in the samples. The storage study showed that β-glucans improved the oxidative stability of the powders, which displayed 82% α-tocopherol retention after 5 days under accelerated conditions (60 °C), corresponding to 310 days at 20 °C, while acacia gum and Tween® 20 did not delay α-tocopherol degradation. Results highlight the potential antioxidant activity of β-glucans used as emulsifying agents during in vitro digestion and accelerated aging conditions.
Collapse
Affiliation(s)
| | - Anaïs Lavoisier
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 91300 Massy, France; (A.L.); (C.T.)
| | - Christelle Turchiuli
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 91300 Massy, France; (A.L.); (C.T.)
- Department Chimie, Université Paris-Saclay, IUT d’Orsay, 91400 Orsay, France
| | - Vera Lavelli
- DeFENS, University of Milan, 20133 Milan, Italy;
| |
Collapse
|
50
|
Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Emulsifier type. Food Res Int 2020; 137:109739. [DOI: 10.1016/j.foodres.2020.109739] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023]
|