1
|
da Rosa SDVF, de Oliveira Vilela AL, Alves MVP, Cardoso MDG, Vieira LFA, Ferreira AMO, da Silva LM. Allelopathic activity of coffee extracts: implications for germination and initial growth in select weeds and polyploidy in Lactuca sativa L. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:250-262. [PMID: 39625234 DOI: 10.1080/15287394.2024.2434952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Coffee beans contain compounds with allelopathic activity, such that some beans that do not meet quality standards might rather be used to obtain a natural herbicide which consequently might be employed to control undesired plants and avoid economic losses. Thus, the objectives of this study were: (1) to investigate the allelopathic effect of different concentrations of green (GC) and roasted (RC) coffee extracts on the inhibition of germination and initial growth of Lactuca sativa L. Bidens pilosa L. and Cyperus rotundus L. and (2) determine the induction of changes in the cell cycle of L. sativa L. and (3) quantify some compounds in the GC and RC extracts with possible allelopathic effects. Seeds and tubers were sown on germination paper, moistened with water or different concentrations of extracts, stored in transparent plastic boxes, and maintained in a germination chamber. Caffeine was found at higher concentrations of 79.768 and 15.532 g/L in GC and RC extracts, respectively. In general, RC extract for L. sativa L. and GC for B. pilosa L. diminished germination parameters. For C. rotundus L. GC extract decreased growth regardless of the concentration. An increased frequency of cell cycle alterations was observed in the root cells of L. sativa L. This study is the first to report that the studied extracts possess allelopathic potential, as they are effective in reducing germination and/or initial growth of weed species and L. sativa L. as well as inducing alterations in the cell cycle of L. sativa L.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leonardo M da Silva
- Department of Ecology and Conservation, Federal University of Lavras, Lavras, MG, Brazil
| |
Collapse
|
2
|
García-Gurrola A, Martínez AL, Wall-Medrano A, Olivas-Aguirre FJ, Ochoa-Ruiz E, Escobar-Puentes AA. Phytochemistry, Anti-cancer, and Anti-diabetic Properties of Plant-Based Foods from Mexican Agrobiodiversity: A Review. Foods 2024; 13:4176. [PMID: 39767118 PMCID: PMC11675762 DOI: 10.3390/foods13244176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) and cancer are significant contributors to morbidity and mortality worldwide. Recent studies have increasingly highlighted the potential of phytochemicals found in plants and plant-based foods for preventing and treating these chronic diseases. Mexico's agrobiodiversity provides a valuable resource for phytochemistry. This review presents an examination of essential phytochemicals found in plants and foods within Mexican agrobiodiversity that have shown promising anti-cancer and anti-diabetic properties, including their roles as antioxidants, insulin sensitizers, and enzyme inhibitors. Notable compounds identified include flavonoids (such as quercetin and catechins), phenolic acids (chlorogenic, gallic, and caffeic acids), methylxanthines (like theobromine), xanthones (such as mangiferin), capsaicinoids (capsaicin), organosulfur compounds (like alliin), and various lipids (avocatins). Although these phytochemicals have shown promise in laboratory and animal studies, there is a significant scarcity of clinical trial data involving humans, underscoring an important area for future research.
Collapse
Affiliation(s)
- Adriana García-Gurrola
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Ana Laura Martínez
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Abraham Wall-Medrano
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Ciudad Juaez 32300, Chihuahua, Mexico; (A.W.-M.); (F.J.O.-A.)
| | - Francisco J. Olivas-Aguirre
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Ciudad Juaez 32300, Chihuahua, Mexico; (A.W.-M.); (F.J.O.-A.)
| | - Estefania Ochoa-Ruiz
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| | - Alberto A. Escobar-Puentes
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico; (A.G.-G.); (A.L.M.); (E.O.-R.)
| |
Collapse
|
3
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
4
|
Nurcholis W, Rahmadansah R, Astuti P, Priosoeryanto BP, Arianti R, Kristóf E. Comparative Analysis of Volatile Compounds and Biochemical Activity of Curcuma xanthorrhiza Roxb. Essential Oil Extracted from Distinct Shaded Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2682. [PMID: 39409552 PMCID: PMC11479211 DOI: 10.3390/plants13192682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024]
Abstract
The application of shade during plants' growth significantly alters the biochemical compounds of the essential oil (EO). We aimed to analyze the effect of shade on the volatile compounds and biochemical activities of EO extracted from Curcuma xanthorrhiza Roxb. (C. xanthorrhiza) plants. Four shading conditions were applied: no shading (S0), 25% (S25), 50% (S50), and 75% shade (S75). The volatile compounds of EO extracted from each shaded plant were analyzed by gas chromatography-mass spectrometry. The antioxidant, antibacterial, and antiproliferative activities of EO were also investigated. We found that shade application significantly reduced the C. xanthorrhiza EO yield but increased its aroma and bioactive compound concentration. α-curcumene, xanthorrhizol, α-cedrene, epicurzerenone, and germacrone were found in EO extracted from all conditions. However, β-bisabolol, curzerene, curcuphenol, and γ-himachalene were only detected in the EO of S75 plants. The EO of the shaded plants also showed higher antioxidant activity as compared to unshaded ones. In addition, the EO extracted from S75 exerted higher antiproliferative activity on HeLa cells as compared to S0. The EO extracted from S0 and S25 showed higher antibacterial activity against Gram-positive bacteria than kanamycin. Our results suggest that shade applications alter the composition of the extractable volatile compounds in C. xanthorrhiza, which may result in beneficial changes in the biochemical activity of the EO.
Collapse
Affiliation(s)
- Waras Nurcholis
- Tropical Biopharmaca Research Center, IPB University, Bogor 16151, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia;
| | - Rahmadansah Rahmadansah
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia;
| | - Puji Astuti
- Department of Biochemistry and Biomolecular Science, Faculty of Medicine, Universitas Tanjungpura, Pontianak 78124, Indonesia;
| | | | - Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.A.); (E.K.)
- Universitas Muhammadiyah Bangka Belitung, Pangkalpinang 33684, Indonesia
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (R.A.); (E.K.)
| |
Collapse
|
5
|
Savić IM, Savić Gajić IM, Gajić DG. Optimization of the Microwave-Assisted Extraction of Caffeine from Roasted Coffee Beans. Foods 2024; 13:2333. [PMID: 39123525 PMCID: PMC11312167 DOI: 10.3390/foods13152333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to develop a fast procedure for caffeine extraction from roasted coffee beans. The microwave-assisted extraction was carried out in the microwave oven with an operating frequency of 2450 MHz. The response surface methodology based on a Box-Behnken design was used to model and optimize the extraction process. Among the analyzed extraction parameters (factors), the influence of extraction time (2-6 min), liquid-to-solid ratio (5-15 mL/g), and microwave power (336-595 W) were considered, while the yield of extracted caffeine was observed as the response of the system. Water was used as the solvent of choice for the extraction of caffeine. The optimum conditions were as follows: extraction time, 2 min; liquid-to-solid ratio, 15 mL/g; and microwave power, 500 W. In this optimized condition, the expected extraction yield of caffeine was 1.01 g/100 g dry weight (value confirmed by experimental assays). The total energy consumed of 1.7 kWh/100 g of purified caffeine indicated a more energy-efficient procedure by about 1200-15,000 times than the reported procedures. This study showed that caffeine can be quantitatively extracted from roasted coffee beans through a green approach and that the isolated caffeine has a high purity degree, which was confirmed by the UHPLC-ESI-MS/MS method. With this quality, isolated caffeine could be further used as an active ingredient in the food industry, while for pharmaceutical purposes, it must be further purified.
Collapse
Affiliation(s)
- Ivan M. Savić
- Faculty of Technology in Leskovac, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Ivana M. Savić Gajić
- Faculty of Technology in Leskovac, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Dragoljub G. Gajić
- School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia;
- Jakako Doo, Hadži-Đerina 16, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Mohamed SIA, Elsayed GH, El Shaffai A, Yahya SMM, Mettwally WSA. In-vitro study of cytotoxic and apoptotic potential of Thalassia hemprichii (Ehren.) Asch. And Enhalus acoroides (L.f.) Royle against human breast cancer cell line (MCF-7) with correlation to their chemical profile. BMC Complement Med Ther 2024; 24:244. [PMID: 38915036 PMCID: PMC11194981 DOI: 10.1186/s12906-024-04512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Breast cancer is the most common type of cancer diagnosed in women. Finding novel therapeutic agents with significant cytotoxic action and minimal adverse impact on normal cells becomes crucial. Today, natural anticancer agents present an unconventional method of treating cancer, either as a curative or preventative agent, with considerable concern for marine organisms. METHODS The anticancer effect of the alcoholic extract of different Red Sea Seagrasses on MCF-7 human breast cancer cell line has been investigated. Seagrasses were collected from Wadi El Gamal, Red Sea and extracted. Qualitative HPLC analysis was performed on the extracts for the identification of their active biomarkers. This study was aimed to explore the cytotoxic impact of Thalassia hemprichii (Ehren.) and Enhalus acoroides (L.f.) Royle on MCF-7 and their mode of action. Their anti-proliferative effects on cancer cells were performed using Neutral red assay. On the other hand, their apoptotic effect and their capacity to induce cell cycle arrest were investigated by flow cytometry assay. The effect of Seagrasses on the mitochondrial membrane potential (ΔψM) was studied by using JC-1 mitochondrial membrane potential assay kit in Seagrasses treated cancer cells to Δψ Caspases 3/7activity was examined using the colorimetric method. Gene expression analysis and quantitative real time RT-PCR for the sea grasses on MCF-7 was performed. Immune-blotting technique for Bcl-2 and p53 was investigated. RESULTS HPLC analysis demonstrated that the extracts contained mainly flavonoids and polyphenols such as Caffeic acid, Chlorogenic acids, catechin and kaempferol that might be responsible for these anticancer effects. Seagrasses alcoholic crude extract markedly suppressed the growth and expansion of MCF-7 cells concentration-dependently with no toxicity against normal human skin fibroblast HSF. Thalassia hemprichii and Enhalus acoroides trigger mode of cell death primarily via apoptosis as confirmed by the flow cytometry. Additionally, they have ability to induce G0/S cell cycle arrest in MCF-7. The data showed the depletion in mitochondrial membrane potential (ΔψM) in the treated cells dose-dependently Caspases 3/7activities markedly increased following 24 h treatment. Finally, Gene expression analysis showed a marked reduction in Bcl-2, Survivin and CDC2 gene expression levels and a significant increase in the expression of p53 and CC2D1A as compared to control cells. CONCLUSION In summary, the Methanolic extract of seagrass, Thalassia hemperchii and Enhalus ocoroides are able to induce concentration-dependent cytotoxic effects in human MCF-7 cells through intrinsic pathway of apoptosis in MCF-7 cells. This study reveals the beneficial importance of sea grasses as a source of anticancer agents. Further in vivo study is recommended for the active isolated biomolecules.
Collapse
Affiliation(s)
- Shimaa I A Mohamed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, ElBuhous St. 12622, Dokki, Dokki, Giza, 12622, Egypt.
| | - Ghada H Elsayed
- Hormones Department, Medical Research and Clinical Studies Institute and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, ElBuhous St. 12622, Dokki, Cairo, Giza, Egypt
| | - Amgad El Shaffai
- Nature Conservation Sector, Egyptian Environmental Affairs Agency (EEAA), Ministry of Environment, Cairo, Egypt
| | - Shaymaa M M Yahya
- Hormones Department, Medical Research and Clinical Studies Institute and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, ElBuhous St. 12622, Dokki, Cairo, Giza, Egypt
| | - Walaa S A Mettwally
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, ElBuhous St. 12622, Dokki, Dokki, Giza, 12622, Egypt
| |
Collapse
|
7
|
Cruz MAAS, Coimbra PPS, Araújo-Lima CF, Freitas-Silva O, Teodoro AJ. Hybrid Fruits for Improving Health-A Comprehensive Review. Foods 2024; 13:219. [PMID: 38254523 PMCID: PMC10814314 DOI: 10.3390/foods13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Several species of hybrid fruits, such as citrus, grapes, blueberries, apples, tomatoes, and lingonberries among others, have attracted scientific attention in recent years, especially due to their reported antioxidant and anti-inflammatory properties. The bagasse, leaves, bark, and seeds of these hybrid fruits have large amounts of polyphenols, such as flavonoids, which act as potent antioxidants. Several studies have been carried out in cellular models of neurotoxicity of the extract of these fruits, to document the beneficial effects for human health, as well as to prove its antiproliferative effect in cancer cells. In the present review, through a synthesis of existing information in the scientific literature, we demonstrate that hybrid fruits are a source of antioxidant and bioactive compounds, which act in the inhibition of diseases such as cancer, diabetes, and inflammatory and neurodegenerative diseases, and consequently improving human health.
Collapse
Affiliation(s)
- Marta A. A. S. Cruz
- Food and Nutrition Program, Functional Foods Laboratory, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, RJ, Brazil;
| | - Pedro P. S. Coimbra
- Laboratory of Environmental Mutagenesis, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, RJ, Brazil; (P.P.S.C.); (C.F.A.-L.)
- Laboratory of Pharmaceutical and Technological Innovation, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, RJ, Brazil
| | - Carlos F. Araújo-Lima
- Laboratory of Environmental Mutagenesis, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, RJ, Brazil; (P.P.S.C.); (C.F.A.-L.)
- Laboratory of Pharmaceutical and Technological Innovation, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, RJ, Brazil
| | | | - Anderson J. Teodoro
- Food and Nutrition Program, Functional Foods Laboratory, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, RJ, Brazil;
- Integrated Food and Nutrition Center, Department of Nutrition and Dietetics, Fluminense Federal University, Niterói 24020-140, RJ, Brazil
| |
Collapse
|
8
|
Hammad AM, Alzaghari LF, Alfaraj M, Al-Shawaf L, Sunoqrot S. Nanoassemblies from the aqueous extract of roasted coffee beans modulate the behavioral and molecular effects of smoking withdrawal-induced anxiety in female rats. Drug Deliv Transl Res 2023; 13:1967-1982. [PMID: 37069327 DOI: 10.1007/s13346-023-01331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/19/2023]
Abstract
Antioxidant-rich plant extracts have demonstrated tremendous value as inflammatory modulators and as nanomaterial precursors. Chronic cigarette smoking alters neurotransmitter systems, particularly the glutamatergic system, and produces neuroinflammation. This study aimed to investigate the behavioral and molecular correlates of cigarette smoking withdrawal-induced anxiety-like behavior in rats, and whether these effects could be mitigated by the administration of antioxidant nanoassemblies prepared by spontaneous oxidation of dark-roasted Arabica coffee bean aqueous extracts. Four experimental groups of female Sprague-Dawley rats were randomly assigned to: (i) a control group that was only exposed to room air, (ii) a COF group that was administered 20 mg/kg of the coffee nanoassemblies by oral gavage, (iii) a SMOK group that was exposed to cigarette smoke and was given an oral gavage of distilled water, (iv) and a SMOK + COF group that was exposed to cigarette smoke and administered 20 mg/kg of the coffee nanoassemblies. Animals were exposed to cigarette smoke for 2 h per day, five days per week, with a 2-day withdrawal period each week. At the end of the 4th week, rats began receiving either distilled water or the coffee nanoassemblies before being exposed to cigarette smoke for 21 additional days. Weekly behavioral tests revealed that cigarette smoking withdrawal exacerbated anxiety, while the administration of the coffee nanoassemblies reduced this effect. The effect of cigarette smoking on astroglial glutamate transporters and nuclear factor kappa B (NF-κB) expression in brain subregions was also measured. Smoking reduced the relative mRNA and protein levels of the glutamate transporter 1 (GLT-1) and the cystine/glutamate antiporter (xCT), and increased the levels of NF-κB, but these effects were attenuated by the coffee nanoassemblies. Thus, administration of the antioxidant nanoassemblies decreased the negative effects of cigarette smoke, which included neuroinflammation, changes in glutamate transporters' expression, and a rise in anxiety-like behavior.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Lujain F Alzaghari
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Malek Alfaraj
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Laith Al-Shawaf
- Department of Psychology, University of Colorado, Colorado Springs, CO, 80309, USA
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan.
| |
Collapse
|
9
|
Febrianto NA, Zhu F. Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chem 2023; 412:135489. [PMID: 36716620 DOI: 10.1016/j.foodchem.2023.135489] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Emerging processing methods have been applied in coffee bean processing for improved sensory quality. The processes focus on optimizing the fermentation process of the coffee cherries and beans. This involves various pathways, including the formation of volatiles, flavor precursors and organic acids and the reduction in the concentrations of bioactive compounds. Comprehensive information regarding the effect of these emerging processes on the chemical, biological and sensory properties of the coffee beans is summarized. Emerging processes affected the coffee bean to various degrees depending on the raw material and the method used. The emerging methods promoted the reduction of bioactives such as caffeine and phenolics in coffee beans. Substantial improvement of these processes is needed to obtain coffee beans with improved biological activities. Effort to simplify the methods and optimize the post-fermentation process is crucial for the methods to be easily accessible by the producers and to produce defect-free coffee beans.
Collapse
Affiliation(s)
- Noor Ariefandie Febrianto
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Indonesian Coffee and Cocoa Research Institute (ICCRI), Jl. PB Sudirman No. 90 Jember, East Java, Indonesia
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
10
|
Olszewski G, Moniakowska A, Zhang D, Strumińska-Parulska D. On the radiotoxic 210Po in coffee beans worldwide and the impact of roasting and brewing on its extraction into beverages: from the experiments to 210Po content prediction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50198-50208. [PMID: 36790711 PMCID: PMC10104948 DOI: 10.1007/s11356-023-25840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/06/2023] [Indexed: 04/16/2023]
Abstract
We determined radiotoxic 210Po in roasted coffee beans from different regions worldwide, the beverages, and tried to create the prediction model of 210Po content based on its growth location. Additionally, the experiments on 210Po losses and extraction were performed to describe the actual exposure to 210Po. 210Po concentrations in coffee beans and brews tuned out low (maximally of 0.20 Bq∙kg-1 and 2.31 Bq∙L-1, respectively). We assessed the impact of the roasting process on 210Po content and its losses at a maximum of 56.7%. During infusion experiments, we estimated the extraction of 210Po to the coffee brew at a maximum of 40.6%. The amount of 210Po in the coffee brew depended on the infusion style and water type. We calculated the effective radiation doses from the coffee drink ingestion. Coffee drinking does not contribute significantly to the annual effective radiation dose worldwide.
Collapse
Affiliation(s)
- Grzegorz Olszewski
- Department of Health, Medicine and Caring Science, Division of Diagnostics and Specialist Medicine, Linköping University, 581 83, Linkoping, Sweden
- Environmental Chemistry and Radiochemistry Department, Faculty of Chemistry, University of Gdańsk, 80-308, 63, Gdansk, Wita Stwosza, Poland
| | - Aleksandra Moniakowska
- Environmental Chemistry and Radiochemistry Department, Faculty of Chemistry, University of Gdańsk, 80-308, 63, Gdansk, Wita Stwosza, Poland
| | - Dan Zhang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Dagmara Strumińska-Parulska
- Environmental Chemistry and Radiochemistry Department, Faculty of Chemistry, University of Gdańsk, 80-308, 63, Gdansk, Wita Stwosza, Poland.
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
11
|
Evaluation of regular and decaffeinated (un)roasted coffee beans using HPLC and multivariate statistical methods. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Silva CW, Zanardi KR, Grancieri M, Costa NMB, Trivillin LO, Viana ML, Silva PI, Costa AGV. Green coffee extract (Coffea canephora) improved the intestinal barrier and slowed colorectal cancer progression and its associated inflammation in rats. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Klikarová J, Česlová L. Targeted and Non-Targeted HPLC Analysis of Coffee-Based Products as Effective Tools for Evaluating the Coffee Authenticity. Molecules 2022; 27:7419. [PMID: 36364245 PMCID: PMC9655399 DOI: 10.3390/molecules27217419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/15/2023] Open
Abstract
Coffee is a very popular beverage worldwide. However, its composition and characteristics are affected by a number of factors, such as geographical and botanical origin, harvesting and roasting conditions, and brewing method used. As coffee consumption rises, the demands on its high quality and authenticity naturally grows as well. Unfortunately, at the same time, various tricks of coffee adulteration occur more frequently, with the intention of quick economic profit. Many analytical methods have already been developed to verify the coffee authenticity, in which the high-performance liquid chromatography (HPLC) plays a crucial role, especially thanks to its high selectivity and sensitivity. Thus, this review summarizes the results of targeted and non-targeted HPLC analysis of coffee-based products over the last 10 years as an effective tool for determining coffee composition, which can help to reveal potential forgeries and non-compliance with good manufacturing practice, and subsequently protects consumers from buying overpriced low-quality product. The advantages and drawbacks of the targeted analysis are specified and contrasted with those of the non-targeted HPLC fingerprints, which simply consider the chemical profile of the sample, regardless of the determination of individual compounds present.
Collapse
Affiliation(s)
| | - Lenka Česlová
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-53210 Pardubice, Czech Republic
| |
Collapse
|
14
|
Vieira IRS, Conte-Junior CA. Nano-delivery systems for food bioactive compounds in cancer: prevention, therapy, and clinical applications. Crit Rev Food Sci Nutr 2022; 64:381-406. [PMID: 35938315 DOI: 10.1080/10408398.2022.2106471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds represent a broad class of dietary metabolites derived from fruits and vegetables, such as polyphenols, carotenoids and glucosinolates with potential for cancer prevention. Curcumin, resveratrol, quercetin, and β-carotene have been the most widely applied bioactive compounds in chemoprevention. Lately, many approaches to encapsulating bioactive components in nano-delivery systems have improved biomolecules' stability and targeted delivery. In this review, we critically analyze nano-delivery systems for bioactive compounds, including polymeric nanoparticles (NPs), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes, niosomes, and nanoemulsions (NEs) for potential use in cancer therapy. Efficacy studies of the nanoformulations using cancer cell lines and in vivo models and updated human clinical trials are also discussed. Nano-delivery systems were found to improve the therapeutic efficacy of bioactive molecules against various types of cancer (e.g., breast, prostate, colorectal and lung cancer) mainly due to the antiproliferation and pro-apoptotic effects of tumor cells. Furthermore, some bioactive compounds have promised combination therapy with standard chemotherapeutic agents, with increased tumor efficiency and fewer side effects. These opportunities were identified and developed to ensure more excellent safety and efficacy of novel herbal medicines enabling novel insights for designing nano-delivery systems for bioactive compounds applied in clinical cancer therapy.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
15
|
Franca AS, Oliveira LS. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022; 11:foods11142064. [PMID: 35885305 PMCID: PMC9316316 DOI: 10.3390/foods11142064] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Current estimates place the amount of spent coffee grounds annually generated worldwide in the 6 million ton figure, with the sources of spent coffee grounds being classified as domestic (i.e., household), commercial (i.e., coffee houses, cafeterias and restaurants), and industrial (i.e., soluble and instant coffee industries). The majority of the produced spent coffee grounds are currently being inappropriately destined for landfills or to a form of energy recovery (e.g., incineration) as a refuse-derived fuel. The disposal of spent coffee in landfills allows for its anaerobic degradation with consequent generation and emission of aggressive greenhouse gases such as methane and CO2, and energy recovery processes must be considered an end-of-life stage in the lifecycle of spent coffee grounds, as a way of delaying CO2 emissions and of avoiding emissions of toxic organic volatile compounds generated during combustion of this type of waste. Aside from these environmental issues, an aspect that should be considered is the inappropriate disposal of a product (SCG) that presents unique thermo-mechanical properties and textural characteristics and that is rich in a diversity of classes of compounds, such as polysaccharides, proteins, phenolics, lipids and alkaloids, which could be recovered and used in a diversity of applications, including food-related ones. Therefore, researchers worldwide are invested in studying a variety of possible applications for spent coffee grounds and products thereof, including (but not limited to) biofuels, catalysts, cosmetics, composite materials, feed and food ingredients. Hence, the aim of this essay was to present a comprehensive review of the recent literature on the proposals for utilization of spent coffee grounds in food-related applications, with focus on chemical composition of spent coffee, recovery of bioactive compounds, use as food ingredients and as components in the manufacture of composite materials that can be used in food applications, such as packaging.
Collapse
|
16
|
Kim J, Nedwidek-Moore M, Kim K. Safest Roasting Times of Coffee To Reduce Carcinogenicity. J Food Prot 2022; 85:918-923. [PMID: 35226750 DOI: 10.4315/jfp-21-427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/18/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Roasting coffee results in not only the creation of carcinogens such as acrylamide, furan, and polycyclic aromatic hydrocarbons but also the elimination of carcinogens in raw coffee beans, such as endotoxins, preservatives, or pesticides, by burning off. However, it has not been determined whether the concentrations of these carcinogens are sufficient to make either light or dark roast coffee more carcinogenic in a living organism. An Ames test was conducted on light, medium, and dark roast coffee from three origins. We found that lighter roast coffee shows higher mutagenicity, which is reduced to the control level in dark roast coffee varieties, indicating that the roasting process is not increasing mutagenic potential but is beneficial to eliminating the existing carcinogens in raw coffee beans. This result suggests that dark roast coffee is safer and promotes further studies of the various carcinogens in raw coffee that have been burned off. HIGHLIGHTS
Collapse
Affiliation(s)
| | | | - Kitai Kim
- Department of Biochemistry, University of California, Los Angeles, Los Angeles, California 90095.,Virginia University of Integrative Medicine, Fairfax, Virginia 22031, USA
| |
Collapse
|
17
|
Trigonelline prevents kidney stone formation processes by inhibiting calcium oxalate crystallization, growth and crystal-cell adhesion, and downregulating crystal receptors. Biomed Pharmacother 2022; 149:112876. [PMID: 35367760 DOI: 10.1016/j.biopha.2022.112876] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
Trigonelline is the second most abundant bioactive alkaloid found in coffee. It is classified as a phytoestrogen with similar structure as of estradiol and exhibits an estrogenic effect. A previous study has reported that fenugreek seed extract rich with trigonelline can reduce renal crystal deposition in ethylene glycol-induced nephrolithiatic rats. However, direct evidence of such anti-lithogenic effects of trigonelline and underlying mechanisms have not previously been reported. Our study therefore addressed the protective effects and mechanisms of trigonelline against kidney stone-forming processes using crystallization, crystal growth, aggregation and crystal-cell adhesion assays. Also, proteomics was applied to identify changes in receptors for calcium oxalate monohydrate (COM), the most common stone-forming crystal, on apical membranes of trigonelline-treated renal tubular cells. The analyses revealed that trigonelline significantly reduced COM crystal size, number and mass during crystallization. Additionally, trigonelline dose-dependently inhibited crystal growth and crystal-cell adhesion, but did not affect crystal aggregation. Mass spectrometric protein identification showed the smaller number of COM crystal receptors on apical membranes of the trigonelline-treated cells. Western blotting confirmed the decreased levels of some of these crystal receptors by trigonelline. These data highlight the protective mechanisms of trigonelline against kidney stone development by inhibiting COM crystallization, crystal growth and crystal-cell adhesion via downregulation of the crystal receptors on apical membranes of renal tubular cells.
Collapse
|
18
|
Molecular Mechanisms of Coffee on Prostate Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3254420. [PMID: 35496060 PMCID: PMC9054433 DOI: 10.1155/2022/3254420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is one of the most common types of cancer among men, and coffee is associated with a reduced risk of developing PCa. Therefore, we aim to review possible coffee molecular mechanisms that contribute to PCa prevention. Coffee has an important antioxidant capacity that reduces oxidative stress, leading to a reduced mutation in cells. Beyond direct antioxidant activity, coffee stimulates phase II enzymatic activity, which is related to the detoxification of reactive metabolites. The anti-inflammatory effects of coffee reduce tissue damage related to PCa development. Coffee induces autophagy, regulates the NF-κB pathway, and reduces the expression of iNOS and inflammatory mediators, such as TNF-α, IL-6, IL-8, and CRP. Also, coffee modulates transcriptional factors and pathways. It has been shown that coffee increases testosterone and reduces sex hormone-binding globulin, estrogen, and prostate-specific antigen. Coffee also enhances insulin resistance and glucose metabolism. All these effects may contribute to protection against PCa development.
Collapse
|
19
|
Kimsa-Dudek M, Synowiec-Wojtarowicz A, Krawczyk A, Kosowska A, Kimsa-Furdzik M, Francuz T. The Apoptotic Effect of Caffeic or Chlorogenic Acid on the C32 Cells That Have Simultaneously Been Exposed to a Static Magnetic Field. Int J Mol Sci 2022; 23:ijms23073859. [PMID: 35409218 PMCID: PMC8999068 DOI: 10.3390/ijms23073859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/04/2022] Open
Abstract
The induction of apoptosis is one of the main goals of the designed anti-cancer therapies. In recent years, increased attention has been paid to the physical factors such as magnetic fields and to the natural bioactive compounds and the possibilities using them in medicine. Hence, the aim of this study was to evaluate the anti-tumor effect of caffeic or chlorogenic acid in combination with a moderate-strength static magnetic field on C32 melanoma cells by assessing the effect of both factors on the apoptotic process. The apoptosis of the C32 cells was evaluated using a flow cytometry analysis. The expression of the apoptosis-associated genes was determined using the RT-qPCR technique. The caspase activity and the concentration of the oxidative damage markers were also measured. It was found that phenolic acids and a static magnetic field trigger the apoptosis of the C32 cells and also affect the expression of the genes encoding the apoptosis regulatory proteins. In conclusion, our study indicated that both of the phenolic acids and a static magnetic field can be used supportively in the treatment of melanoma and that caffeic acid is more pro-apoptotic than chlorogenic acid.
Collapse
Affiliation(s)
- Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200 Sosnowiec, Poland; (A.S.-W.); (A.K.)
- Correspondence: ; Tel.: +48-32-364-11-72
| | - Agnieszka Synowiec-Wojtarowicz
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200 Sosnowiec, Poland; (A.S.-W.); (A.K.)
| | - Agata Krawczyk
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jednosci 8, 41-200 Sosnowiec, Poland; (A.S.-W.); (A.K.)
| | - Agnieszka Kosowska
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (A.K.); (M.K.-F.); (T.F.)
| | - Małgorzata Kimsa-Furdzik
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (A.K.); (M.K.-F.); (T.F.)
| | - Tomasz Francuz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (A.K.); (M.K.-F.); (T.F.)
| |
Collapse
|
20
|
Pérez-Beltrán YE, Rivera-Iñiguez I, Gonzalez-Becerra K, Pérez-Naitoh N, Tovar J, Sáyago-Ayerdi SG, Mendivil EJ. Personalized Dietary Recommendations Based on Lipid-Related Genetic Variants: A Systematic Review. Front Nutr 2022; 9:830283. [PMID: 35387194 PMCID: PMC8979208 DOI: 10.3389/fnut.2022.830283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/16/2022] [Indexed: 01/03/2023] Open
Abstract
Background Obesity and dyslipidemias are risk factors for developing cardiovascular diseases, the leading causes of morbidity and mortality worldwide. The pathogenesis of these diseases involves environmental factors, such as nutrition, but other aspects like genetic polymorphisms confer susceptibility to developing obesity and dyslipidemias. In this sense, nutrigenetics is being used to study the influence of genetic variations on the circulating lipid responses promoted by certain nutrients or foods to provide specific dietary strategies considering the genetic factors in personalized nutrition interventions. Objective To identify throughout a systematic review the potential nutrigenetic recommendations that demonstrate a strong interaction between gene-diet and circulating lipid variations. Methods This systematic review used the PRISMA-Protocol for manuscript research and preparation using PubMed and ScienceDirect databases. Human studies published in English from January 2010 to December 2020 were included. The main results were outcomes related to gene-diet interactions and plasmatic lipids variation. Results About 1,110 articles were identified, but only 38 were considered to fulfill the inclusion criteria established based on the reported data. The acquired information was organized based on gene-diet interaction with nutrients and components of the diet and dietary recommendation generated by each interaction: gene-diet interaction with dietary fats, carbohydrates or dietary fiber, gene-diet interaction with nutraceutical or dietary supplementation, and gene-diet interaction with proteins. Conclusion Findings included in this systematic review indicated that a certain percentage of dietary macronutrients, the consumption of specific amounts of polyunsaturated or monounsaturated fatty acids, as well as the ingestion of nutraceuticals or dietary supplements could be considered as potential strategies for the development of a wide range of nutrigenetic interventions since they have a direct impact on the blood levels of lipids. In this way, specific recommendations were identified as potential tools in developing precision diets and highlighted the importance of personalized nutrition. These recommendations may serve as a possible strategy to implement as dietary tools for the preventive treatment and control alterations in lipid metabolism. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021248816, identifier [CRD42021248816].
Collapse
Affiliation(s)
- Yolanda E. Pérez-Beltrán
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Instituto Nacional de México, Tepic, Mexico
| | - Ingrid Rivera-Iñiguez
- Departamento de Reproducción Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Karina Gonzalez-Becerra
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Instituto de Investigación en Genética Molecular, Universidad de Guadalajara, Guadalajara, Mexico
| | - Naomi Pérez-Naitoh
- Grupo de Investigación en Nutrición y Ciencias de los Alimentos, Departamento de Psicología, Educación y Salud, ITESO, Universidad Jesuita de Guadalajara, Tlaquepaque, Mexico
- Departamento de Salud, Universidad Iberoamericana (IBERO), Mexico City, Mexico
| | - Juscelino Tovar
- Department of Food Technology, Engineering, and Nutrition, Lund University, Lund, Sweden
| | - Sonia G. Sáyago-Ayerdi
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Instituto Nacional de México, Tepic, Mexico
| | - Edgar J. Mendivil
- Grupo de Investigación en Nutrición y Ciencias de los Alimentos, Departamento de Psicología, Educación y Salud, ITESO, Universidad Jesuita de Guadalajara, Tlaquepaque, Mexico
- *Correspondence: Edgar J. Mendivil
| |
Collapse
|
21
|
Antibacterial, Antiradical and Antiproliferative Potential of Green, Roasted, and Spent Coffee Extracts. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phytochemical compositions of green coffee beans (GB), roasted coffee (RC), and the solid residue known as spent coffee grounds (SCG) have been associated with beneficial physiological effects. The objective of this study was to analyze the total phenolic compounds, antiradical scavenging ability, antibacterial activity, and antiproliferative activity on cancer cells of aqueous and ethanolic extracts of GB, RC, and SCG samples. The total phenolic content was quantified by Folin–Ciocalteu assay, while the antiradical activity was evaluated by ABTS●+ and DPPH radical assays, antibacterial activity was determined using the microtiter broth dilution method, and antiproliferative activity was evaluated by MTT assay in lung carcinoma cells (A549) and cervical cancer cells (C33A); furthermore, apoptosis and cell cycle arrest were evaluated by flow cytometry. Ethanolic extracts of RC and SCG showed the highest content of total phenols. The SCG ethanolic extract exhibited the lowest inhibitory capacity 50 (IC50) values for free radicals. The SCG extracts also had the lowest MIC values in bacteria. In antiproliferative assays, SCG extracts exhibited a significant decrease in viability in both cell lines, as well as increased apoptotic cells and promoted cell cycle arrest. The higher content of total phenols and antiradical activity of SCG ethanolic extracts was related to their antiproliferative activity in cancer cells, as well as their antibacterial activity against clinical isolates; therefore, the utilization of SCG adds value to an abundant and inexpensive residue.
Collapse
|
22
|
Quintana SE, Salas S, García-Zapateiro LA. Bioactive compounds of mango (Mangifera indica): a review of extraction technologies and chemical constituents. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6186-6192. [PMID: 34324201 DOI: 10.1002/jsfa.11455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/27/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Mango (Mangifera indica) has been recognized as a rich source of bioactive compounds with potential pharmaceutical and nutraceutical applications and has attracted increasing interest from research. Phytochemistry studies have demonstrated that phenolic compounds are one of the most important biologically active components of M. indica extracts. Ultrasound- and microwave-assisted extractions and supercritical fluids have been employed to obtain bioactive molecules, such as phenolic acids, terpenoids, carotenoids, and fatty acids. These phytochemicals exhibit antioxidant, antimicrobial, anti-inflammatory, and anticancer activity, and depending on the source (bark, leaves, seeds, flowers, or peel) and extraction method there will be differences in the structure and bioactivity. This review examines the bioactive compounds, extraction techniques, and biological function of different parts of M. indica of great importance as nutraceuticals and functional compounds with potential application as therapeutic agents and functional foods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Somaris E Quintana
- Research Group of Complex Fluid Engineering and Food Rheology, University of Cartagena, Cartagena, Colombia
| | - Stephanie Salas
- Research Group of Complex Fluid Engineering and Food Rheology, University of Cartagena, Cartagena, Colombia
| | - Luis A García-Zapateiro
- Research Group of Complex Fluid Engineering and Food Rheology, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
23
|
Bian X, Xie X, Cai J, Zhao Y, Miao W, Chen X, Xiao Y, Li N, Wu JL. Dynamic changes of phenolic acids and antioxidant activity of Citri Reticulatae Pericarpium during aging processes. Food Chem 2021; 373:131399. [PMID: 34717083 DOI: 10.1016/j.foodchem.2021.131399] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/05/2021] [Accepted: 10/11/2021] [Indexed: 01/31/2023]
Abstract
Citri reticulatae pericarpium (CRP) shows multiple bioactivities, including antioxidant, anti-tumor, and anti-inflammation. The folk proverb "CRP, the older, the better" means storing for longer time would improve its quality, which attributed to the influence of bioactive compounds. The aim of this work was to study which compounds are the factors that long storage would influence the quality of CRP. 161 compounds, including 65 flavonoids, 51 phenolic acids, 27 fatty acids, and 18 amino acids were identified through derivatization and non-derivatization liquid chromatography mass spectrometry approaches. Their dynamic changes indicated phenolic acids, which were reported to have various activities, were the main increased components. Furthermore, the representative phenolic acids were quantified and correlation analysis between their contents and antioxidant activity implicated they were the possible indicators that long storage would improve CRP quality. The results would provide basis for quality control of CRP during storage.
Collapse
Affiliation(s)
- Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Xinyi Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Jialing Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Yiran Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Wen Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Xiaolin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Ying Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China.
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China.
| |
Collapse
|
24
|
A Decade of Research on Coffee as an Anticarcinogenic Beverage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4420479. [PMID: 34567408 PMCID: PMC8460369 DOI: 10.1155/2021/4420479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 01/08/2023]
Abstract
Coffee consumption has been investigated as a protective factor against cancer. Coffee is a complex beverage that contains more than 1000 described phytochemicals, which are responsible for its pleasant taste, aroma, and health-promoting properties. Many of these compounds have a potential therapeutic effect due to their antioxidant, anti-inflammatory, antifibrotic, and anticancer properties. The roasting process affects the phytochemical content, and undesirable compounds may be formed. In recent years, there have been contradictory publications regarding the effect of coffee drinking and cancer. Therefore, this study is aimed at evaluating the association of coffee consumption with the development of cancer. In PubMed, until July 2021, the terms “Coffee and cancer” resulted in about 2150 publications, and almost 50% of them have been published in the last 10 years. In general, studies published in recent years have shown negative associations between coffee consumption and the risk or development of different types of cancer, including breast, prostate, oral, oral and pharyngeal, melanoma, skin and skin nonmelanoma, kidney, gastric, colorectal, endometrial, liver, leukemic and hepatocellular carcinoma, brain, and thyroid cancer, among others. In contrast, only a few publications demonstrated a double association between coffee consumption and bladder, pancreatic, and lung cancer. In this review, we summarize the in vitro and in vivo studies that accumulate epidemiological evidence showing a consistent inverse association between coffee consumption and cancer.
Collapse
|
25
|
Hutachok N, Koonyosying P, Pankasemsuk T, Angkasith P, Chumpun C, Fucharoen S, Srichairatanakool S. Chemical Analysis, Toxicity Study, and Free-Radical Scavenging and Iron-Binding Assays Involving Coffee ( Coffea arabica) Extracts. Molecules 2021; 26:molecules26144169. [PMID: 34299444 PMCID: PMC8304909 DOI: 10.3390/molecules26144169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
We aimed to analyze the chemical compositions in Arabica coffee bean extracts, assess the relevant antioxidant and iron-chelating activities in coffee extracts and instant coffee, and evaluate the toxicity in roasted coffee. Coffee beans were extracted using boiling, drip-filtered and espresso brewing methods. Certain phenolics were investigated including trigonelline, caffeic acid and their derivatives, gallic acid, epicatechin, chlorogenic acid (CGA) and their derivatives, p-coumaroylquinic acid, p-coumaroyl glucoside, the rutin and syringic acid that exist in green and roasted coffee extracts, along with dimethoxycinnamic acid, caffeoylarbutin and cymaroside that may be present in green coffee bean extracts. Different phytochemicals were also detected in all of the coffee extracts. Roasted coffee extracts and instant coffees exhibited free-radical scavenging properties in a dose-dependent manner, for which drip coffee was observed to be the most effective (p < 0.05). All coffee extracts, instant coffee varieties and CGA could effectively bind ferric ion in a concentration-dependent manner resulting in an iron-bound complex. Roasted coffee extracts were neither toxic to normal mononuclear cells nor breast cancer cells. The findings indicate that phenolics, particularly CGA, could effectively contribute to the iron-chelating and free-radical scavenging properties observed in coffee brews. Thus, coffee may possess high pharmacological value and could be utilized as a health beverage.
Collapse
Affiliation(s)
- Nuntouchaporn Hutachok
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.H.); (P.K.)
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.H.); (P.K.)
| | - Tanachai Pankasemsuk
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pongsak Angkasith
- Royal Project Foundation, Chiang Mai 50200, Thailand; (P.A.); (C.C.)
| | - Chaiwat Chumpun
- Royal Project Foundation, Chiang Mai 50200, Thailand; (P.A.); (C.C.)
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Salaya Campus, Mahidol University, Nakorn Pathom 70130, Thailand;
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.H.); (P.K.)
- Correspondence: ; Tel.: +66-5393-5322
| |
Collapse
|
26
|
Bosso H, Barbalho SM, de Alvares Goulart R, Otoboni AMMB. Green coffee: economic relevance and a systematic review of the effects on human health. Crit Rev Food Sci Nutr 2021; 63:394-410. [PMID: 34236263 DOI: 10.1080/10408398.2021.1948817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coffee is probably the most popular beverage after water and is an important component in diet and health since its consumption is high worldwide. Globally, it is the most relevant food commodity being just behind crude oil. Besides its pleasant flavor, it is an antioxidant source due to polyphenols, which are protective compounds against several diseases. This study aimed to evaluate the economic relevance and perform a systematic review of green coffee's effects on human health. Databases such as MEDLINE-PubMed, EMBASE, COCHRANE, and GOOGLE SCHOLAR were searched, and PRISMA guidelines were followed. Green coffee is considered a novel food product because consumers usually consume only roasted coffee. It can be marketed as such or as an extract. Due to the content of bioactive compounds, which are partially lost during the roasting process, the extracts are usually marketed concerning the potential regarding health effects. Green coffee can be used as dietary supplements, cosmetics, and pharmaceuticals, as a source of antioxidants. It can benefit human health, such as improvement in blood pressure, plasma lipids, and body weight (thus contributing to the improvement of risk components of Metabolic Syndrome). Moreover, benefits for cognitive functions may also be included.
Collapse
Affiliation(s)
- Henrique Bosso
- Medical school of São José do Rio Preto (FAMERP), Sao Jose do Rio Preto, Brazil
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil.,Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, São Paulo, Brazil.,School of Food and Technology of Marilia (FATEC), Marilia, São Paulo, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | | |
Collapse
|
27
|
Dong W, Chen Q, Wei C, Hu R, Long Y, Zong Y, Chu Z. Comparison of the effect of extraction methods on the quality of green coffee oil from Arabica coffee beans: Lipid yield, fatty acid composition, bioactive components, and antioxidant activity. ULTRASONICS SONOCHEMISTRY 2021; 74:105578. [PMID: 33965776 PMCID: PMC8121985 DOI: 10.1016/j.ultsonch.2021.105578] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 05/10/2023]
Abstract
In this study, ultrasonic/microwave-assisted extraction (UMAE), microwave-assisted extraction (UAE), ultrasound-assisted extraction (UAE), and pressurized liquid extraction (PLE) were applied to extract green coffee oil (GCO), and the physicochemical indexes, fatty acids, tocopherols, diterpenes, and total phenols as well as antioxidant activity of GCO were investigated and compared. The results indicated that the extraction yield of UMAE was the highest (10.58 ± 0.32%), while that of PLE was the lowest (6.34 ± 0.65%), and linoleic acid and palmitic acid were the major fatty acids in the GCO, ranging from 40.67% to 43.77% and 36.57% to 38.71%, respectively. A large proportion of fatty acids and phytosterols were not significantly influenced by the four extraction techniques. However, tocopherols, diterpenes, total phenols, and the free radical scavenging activity were significantly different among these four GCOs. Moreover, structural changes in the coffee residues were explored by scanning electron microscopy and Fourier transform infrared spectroscopy. Overall, the high antioxidant activity of GCO demonstrated that it can be used as a highly economical natural product in the food and agricultural industries.
Collapse
Affiliation(s)
- Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning, Hainan 571533, China.
| | - Qiyu Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, Xinjiang 832203, China
| | - Changqing Wei
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, Xinjiang 832203, China.
| | - Rongsuo Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning, Hainan 571533, China
| | - Yuzhou Long
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Ying Zong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning, Hainan 571533, China
| | - Zhong Chu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning, Hainan 571533, China
| |
Collapse
|