1
|
Zhou J, Wang M, Grimi N, Dar BN, Calvo-Lerma J, Barba FJ. Research progress in microalgae nutrients: emerging extraction and purification technologies, digestive behavior, and potential effects on human gut. Crit Rev Food Sci Nutr 2024; 64:11375-11395. [PMID: 37489924 DOI: 10.1080/10408398.2023.2237586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Microalgae contain a diverse range of high-value compounds that can be utilized directly or fractionated to obtain components with even greater value-added potential. With the use of microalgae for food and medical purposes, there is a growing interest in their digestive properties and impact on human gut health. The extraction, separation, and purification of these components are key processes in the industrial application of microalgae. Innovative technologies used to extract and purify microalgal high-added-value compounds are key for their efficient utilization and evaluation. This review's comprehensive literature review was performed to highlight the main high-added-value microalgal components. The technologies for obtaining bioactive compounds from microalgae are being developed rapidly, various innovative, efficient, green separation and purification technologies are emerging, thus helping in the scaling-up and subsequent commercialization of microalgae products. Finally, the digestive behavior of microalgae nutrients and their health effects on the human gut microbiota were discussed. Microalgal nutrients exhibit favorable digestive properties and certain components have been shown to benefit gut microbes. The reality that must be faced is that multiple processes are still required for microalgae raw materials to final usable products, involving energy, time consumption and loss of ingredients, which still face challenges.
Collapse
Affiliation(s)
- Jianjun Zhou
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Min Wang
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Nabil Grimi
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Compiègne, France
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Kashmir, India
| | - Joaquim Calvo-Lerma
- Instituto Universitario de Ingeniería para el Desarrollo (IU-IAD), Universitat Politècnica de València, Valencia, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
2
|
Kang N, Kim EA, Park A, Heo SY, Heo JH, Lee WK, Ryu YK, Heo SJ. Antiviral Activity of Chlorophyll Extracts from Tetraselmis sp., a Marine Microalga, Against Zika Virus Infection. Mar Drugs 2024; 22:397. [PMID: 39330278 PMCID: PMC11433109 DOI: 10.3390/md22090397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Recent advancements in the large-scale cultivation of Tetraselmis sp. in Korea have enabled year-round production of this marine microalgae. This study explores the potential industrial applications of Tetraselmis sp. biomass by investigating the antiviral properties of its extracts and primary components. The antiviral effects of Tetraselmis sp. extracts were evaluated in Zika virus (ZIKV)-infected cells. Following extensive isolation and purification, the main compounds were characterized using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) analyses. Their antiviral activities were confirmed using in vitro and in silico tests. Tetraselmis sp. extracts reduced infectious viral particles and non-structural protein 1 messenger RNA levels in ZIKV-infected cells without inducing cytotoxicity. Additionally, they modulated the interferon-mediated immune system responses. Tetraselmis sp. extracts are composed of four main chlorophylls: chlorophyll a, chlorin e6-131-152-dimethyl-173-phytyl ester, hydroxychlorophyll a, and hydroxypheophytin a. Among them, chlorophyll a, chlorin e6-131-152-dimethyl-173-phytyl ester, and hydroxypheophytin showed the antiviral activities in ZIKV-infected cells and molecular docking simulations predicted interactions between these chlorophylls and ZIKV. Our findings suggest that Tetraselmis sp. chlorophyll extracts exert antiviral effects against ZIKV and could serve as potential therapeutic candidates against ZIKV infection.
Collapse
Affiliation(s)
- Nalae Kang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.); (W.-K.L.); (Y.-K.R.)
| | - Eun-A Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.); (W.-K.L.); (Y.-K.R.)
| | - Areumi Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.); (W.-K.L.); (Y.-K.R.)
| | - Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.); (W.-K.L.); (Y.-K.R.)
| | - Jun-Ho Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.); (W.-K.L.); (Y.-K.R.)
| | - Won-Kyu Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.); (W.-K.L.); (Y.-K.R.)
| | - Yong-Kyun Ryu
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.); (W.-K.L.); (Y.-K.R.)
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.); (W.-K.L.); (Y.-K.R.)
- Department of Biology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Wood PL, Wood MD, Kunigelis SC. Pilot Lipidomics Study of Copepods: Investigation of Potential Lipid-Based Biomarkers for the Early Detection and Quantification of the Biological Effects of Climate Change on the Oceanic Food Chain. Life (Basel) 2023; 13:2335. [PMID: 38137936 PMCID: PMC10744631 DOI: 10.3390/life13122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Maintenance of the health of our oceans is critical for the survival of the oceanic food chain upon which humanity is dependent. Zooplanktonic copepods are among the most numerous multicellular organisms on earth. As the base of the primary consumer food web, they constitute a major biomass in oceans, being an important food source for fish and functioning in the carbon cycle. The potential impact of climate change on copepod populations is an area of intense study. Omics technologies offer the potential to detect early metabolic alterations induced by the stresses of climate change. One such omics approach is lipidomics, which can accurately quantify changes in lipid pools serving structural, signal transduction, and energy roles. We utilized high-resolution mass spectrometry (≤2 ppm mass error) to characterize the lipidome of three different species of copepods in an effort to identify lipid-based biomarkers of copepod health and viability which are more sensitive than observational tools. With the establishment of such a lipid database, we will have an analytical platform useful for prospectively monitoring the lipidome of copepods in a planned long-term five-year ecological study of climate change on this oceanic sentinel species. The copepods examined in this pilot study included a North Atlantic species (Calanus finmarchicus) and two species from the Gulf of Mexico, one a filter feeder (Acartia tonsa) and one a hunter (Labidocerca aestiva). Our findings clearly indicate that the lipidomes of copepod species can vary greatly, supporting the need to obtain a broad snapshot of each unique lipidome in a long-term multigeneration prospective study of climate change. This is critical, since there may well be species-specific responses to the stressors of climate change and co-stressors such as pollution. While lipid nomenclature and biochemistry are extremely complex, it is not essential for all readers interested in climate change to understand all of the various lipid classes presented in this study. The clear message from this research is that we can monitor key copepod lipid families with high accuracy, and therefore potentially monitor lipid families that respond to environmental perturbations evoked by climate change.
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA
| | - Michael D. Wood
- Child and Adolescent Psychiatry, BC Children’s and Women’s Hospital & Provincial Health Services Authority, Vancouver, BC V5Z 4H4, Canada;
| | - Stan C. Kunigelis
- Imaging and Analysis Center, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA;
| |
Collapse
|
4
|
Cabrera-Capetillo CA, Castillo-Baltazar OS, Petriz-Prieto MA, Guzmán-López A, Valdovinos-García EM, Bravo-Sánchez MG. Simulation and Economic Analysis of the Biotechnological Potential of Biomass Production from a Microalgal Consortium. Mar Drugs 2023; 21:321. [PMID: 37367646 DOI: 10.3390/md21060321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The biomass of microalgae and the compounds that can be obtained from their processing are of great interest for various economic sectors. Chlorophyll from green microalgae has biotechnological applications of great potential in different industrial areas such as food, animal feed, pharmaceuticals, cosmetics, and agriculture. In this paper, the experimental, technical and economic performance of biomass production from a microalgal consortium (Scenedesmus sp., Chlorella sp., Schroderia sp., Spirulina sp., Pediastrum sp., and Chlamydomonas sp.) was investigated in three cultivation systems (phototrophic, heterotrophic and mixotrophic) in combination with the extraction of chlorophyll (a and b) on a large scale using simulation; 1 ha was established as the area for cultivation. In the laboratory-scale experimental stage, biomass and chlorophyll concentrations were determined for 12 days. In the simulation stage, two retention times in the photobioreactor were considered, which generated six case studies for the culture stage. Subsequently, a simulation proposal for the chlorophyll extraction process was evaluated. The highest microalgae biomass concentration was 2.06 g/L in heterotrophic culture, followed by mixotrophic (1.98 g/L). Phototrophic and mixotrophic cultures showed the highest chlorophyll concentrations of 20.5 µg/mL and 13.5 µg/mL, respectively. The simulation shows that higher biomass and chlorophyll production is attained when using the mixotrophic culture with 72 h of retention that we considered to evaluate chlorophyll production (a and b). The operating cost of the entire process is very high; the cultivation stage has the highest operating cost (78%), mainly due to the high energy consumption of the photobioreactors.
Collapse
Affiliation(s)
- Christian Ariel Cabrera-Capetillo
- Departamento de Posgrado, Doctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Antonio García Cubas #600 Pte., Colonia Alfredo V. Bonfil, Apartado Postal 57, Celaya 38010, Guanajuato, Mexico
| | | | - Moisés Abraham Petriz-Prieto
- División Académica Multidisciplinaria de Jalpa de Méndez (DAMJM), Universidad Juárez Autónoma de Tabasco (UJAT), Carret. Estatal Libre Villahermosa-Comalcalco Km. 27+000 s/n Ranchería Ribera Alta, Jalpa de Mendez C.P. 86205, Tabasco, Mexico
| | - Adriana Guzmán-López
- Departamento de Ingeniería Química, Tecnológico Nacional de México en Celaya, Antonio García Cubas #600 Pte., Colonia Alfredo V. Bonfil, Apartado Postal 57, Celaya 38010, Guanajuato, Mexico
| | - Esveidi Montserrat Valdovinos-García
- División Académica Multidisciplinaria de Jalpa de Méndez (DAMJM), Universidad Juárez Autónoma de Tabasco (UJAT), Carret. Estatal Libre Villahermosa-Comalcalco Km. 27+000 s/n Ranchería Ribera Alta, Jalpa de Mendez C.P. 86205, Tabasco, Mexico
| | - Micael Gerardo Bravo-Sánchez
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Antonio García Cubas #600 Pte., Colonia Alfredo V. Bonfil, Apartado Postal 57, Celaya 38010, Guanajuato, Mexico
| |
Collapse
|
5
|
Viera I, Herrera M, Roca M. Influence of food composition on chlorophyll bioaccessibility. Food Chem 2022; 386:132805. [PMID: 35509163 DOI: 10.1016/j.foodchem.2022.132805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Chlorophylls are ingested and effectively absorbed by our organism daily, but the effect of food composition on its bioaccessibility is unknown. Therefore, the present research analyses the chlorophyll bioaccessibility of ten commercial foods (guacamole, virgin olive oil, tortellini, basil hummus, creamed spinach, vegetable pasta, green tea chocolate, avocado and kiwi juices, and pesto sauce), selected based on their different nutritional (fat, fiber, protein, and carbohydrates) and chlorophyll composition and content. The most unexpected result was to correlate chlorophyll degradation during in vitro digestion with the salt content of the digested food. Surprisingly, independently of the foods' nutritional composition or the chlorophyll content, the chlorophyll profile after in vitro digestion was formed by 90% pheophytins and 10% chlorophylls and pheophorbides. Such a pattern can only be modified when the ingested food contains a high proportion of pheophorbides (˃20%) that prevailed up to the mixed micelles.
Collapse
Affiliation(s)
- Isabel Viera
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain.
| | - Marta Herrera
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain.
| | - María Roca
- Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain.
| |
Collapse
|
6
|
Guidance for formulating ingredients/products from Chlorella vulgaris and Arthrospira platensis considering carotenoid and chlorophyll bioaccessibility and cellular uptake. Food Res Int 2022; 157:111469. [DOI: 10.1016/j.foodres.2022.111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022]
|
7
|
do Nascimento TC, Pinheiro PN, Fernandes AS, Caetano PA, Jacob-Lopes E, Zepka LQ. Insights on the Bioaccessibility of Natural Pigments from Diatom Chaetoceros calcitrans. Molecules 2022; 27:3305. [PMID: 35630782 PMCID: PMC9147772 DOI: 10.3390/molecules27103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to investigate the bioaccessibility of carotenoids and chlorophylls from the biomass of microalgae Chaetoceros calcitrans. The samples were submitted to an in vitro digestion protocol, and the compounds were determined by HPLC-PDA-MS/MS. A total of 13 compounds were identified in all tests. After in vitro digestion, the relative bioaccessibility of carotenoids and chlorophylls ranged from 4 to 58%. The qualitative profile of carotenoids reflected the initial sample, with all-E-zeaxanthin (57.2%) being the most bioaccessible compound, followed by all-E-neochrome (31.26%), the latter being reported for the first time in the micellar fraction. On the other hand, among the chlorophylls only pheophytin a (15.01%) was bioaccessible. Furthermore, a chlorophyll derivative (Hydroxypheophytin a’) was formed after in vitro digestion. Considering all compounds, xanthophylls (12.03%) and chlorophylls (12.22%) were significantly (p < 0.05) more bioaccessible than carotenes (11.22%). Finally, the considerable individual bioaccessibilities found, especially for zeaxanthin, demonstrate the bioactive potential of this bioresource. However, the large reduction in the totality of compounds after in vitro digestion suggests that additional technological strategies should be explored in the future to increase the efficiency of micellarization and enhance its bioactive effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Leila Q. Zepka
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (T.C.d.N.); (P.N.P.); (A.S.F.); (P.A.C.); (E.J.-L.)
| |
Collapse
|
8
|
The Role of Photo-Cycles in the Modulation of Growth and Biochemical Profile of Microalgae: Part I—Food Interest Compounds. Life (Basel) 2022; 12:life12030462. [PMID: 35330213 PMCID: PMC8952382 DOI: 10.3390/life12030462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this work was to evaluate the effect of different photo-cycles on the growth and biochemical profile of Scenedesmus obliquus CPCC05, focusing on food interest compounds. The photo-cycle conditions were separated into three groups: long-term photo-cycles (24:0, 22:2, 20:4, 18:6, 12:12, and 10:14 (h:h)), frequency photo-cycles (2, 4, 8, 12, 24, and 48 times per day (t/d)), and short photo-cycles (0.91:0.09, 0.83:0.17, 0.75:0.25, and 0.50:0.50 (s:s)) of light:dark, respectively. The results showed these microalgae can store enough energy to support cell growth for continuous periods of up to 2 h in the dark, without affecting the productivity of the process. This 2 h, when divided into 2 cycles per day (2 t/d), showed the best growth condition (3700 mg L−1), generation time (14.40 h), and maximum biomass productivity (21.43 mg L h−1). This photo-cycle of 2 t/d was also the best condition for the production of total sterols. However, the values of polyunsaturated fatty acids, lipid content, and amino acids obtained higher yields in the short photo-cycle of 0.75:0.25. Thus, the modulation of light cycles becomes an important tool for boosting and directing the production of target molecules in phototrophic cultures of microalgae.
Collapse
|
9
|
Demarco M, Oliveira de Moraes J, Matos ÂP, Derner RB, de Farias Neves F, Tribuzi G. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Xue Z, Li S, Yu W, Gao X, Zheng X, Yu Y, Kou X. Research advancement and commercialization of microalgae edible oil: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5763-5774. [PMID: 34148229 DOI: 10.1002/jsfa.11390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
The global food crisis has led to a great deal of attention being given to microalgal oil as a sustainable natural food source. This article provides an overview of the progress and future directions in promoting the commercialization of microalgal edible oils, including microalgal triglyceride accumulation, suitable edible oil culture strategies for high nutritional value, metabolic engineering, production, and downstream technologies. The integration of the production process, biosafety, and the economic sustainability of microalgal oil production are analyzed for their critical roles in the commercialization of microalgal edible oil to provide a theoretical and scientific basis for the comprehensive development and utilization of microalgal edible oil. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaohui Xue
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shihao Li
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Medicinal Plant Laboratory, Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xin Gao
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xu Zheng
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yue Yu
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaohong Kou
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Roca M, Pérez-Gálvez A. Metabolomics of Chlorophylls and Carotenoids: Analytical Methods and Metabolome-Based Studies. Antioxidants (Basel) 2021; 10:1622. [PMID: 34679756 PMCID: PMC8533378 DOI: 10.3390/antiox10101622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Chlorophylls and carotenoids are two families of antioxidants present in daily ingested foods, whose recognition as added-value ingredients runs in parallel with the increasing number of demonstrated functional properties. Both groups include a complex and vast number of compounds, and extraction and analysis methods evolved recently to a modern protocol. New methodologies are more potent, precise, and accurate, but their application requires a better understanding of the technical and biological context. Therefore, the present review compiles the basic knowledge and recent advances of the metabolomics of chlorophylls and carotenoids, including the interrelation with the primary metabolism. The study includes material preparation and extraction protocols, the instrumental techniques for the acquisition of spectroscopic and spectrometric properties, the workflows and software tools for data pre-processing and analysis, and the application of mass spectrometry to pigment metabolomics. In addition, the review encompasses a critical description of studies where metabolomics analyses of chlorophylls and carotenoids were developed as an approach to analyzing the effects of biotic and abiotic stressors on living organisms.
Collapse
Affiliation(s)
| | - Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain;
| |
Collapse
|
12
|
Viera I, Herrera M, Roca M. In Vitro Bioaccessibility Protocol for Chlorophylls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8777-8786. [PMID: 34328725 PMCID: PMC8389804 DOI: 10.1021/acs.jafc.1c02815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 05/24/2023]
Abstract
The daily ingestion of chlorophylls has been estimated at 50 g, but the knowledge about their bioaccessibility is limited. Different in vitro models have been utilized to estimate their potential bioavailability, but among other factors, the diversity of structures, chemical properties, and lability of chlorophylls hamper the investigations. By the first time, three extreme food matrices, one rich in fiber (vegetable puree), one rich in fat (virgin olive oil), and one liquid (fruit juice), have been assayed for chlorophyll bioaccessibility, controlling crucial variables. Chlorophyll polarity and food matrix were the determining factors, but surprisingly, chlorophyll bioaccessibility was affected during the application of the in vitro standardized protocol. Therefore, the present research has identified the reactions that can be biased during the estimation of chlorophyll bioaccessibility, defining a specific protocol in the function of chlorophyll structures.
Collapse
Affiliation(s)
- Isabel Viera
- Group of Chemistry and Biochemistry
of Pigments. Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas
(CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain
| | - Marta Herrera
- Group of Chemistry and Biochemistry
of Pigments. Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas
(CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain
| | - María Roca
- Group of Chemistry and Biochemistry
of Pigments. Food Phytochemistry Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas
(CSIC), University Campus, Building 46, Carretera de Utrera km. 1, Sevilla 41013, Spain
| |
Collapse
|