1
|
de Oliveira Meira ACF, de Morais LC, Andrade BF, Setter C, Veríssimo LAA, de Carvalho CWP, Ramos EM, de Resende JV. Application of cellulose nanofibers as cryoprotective in frozen storage of chicken surimi-like material. Int J Biol Macromol 2025; 292:139160. [PMID: 39732224 DOI: 10.1016/j.ijbiomac.2024.139160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The application of cellulose nanofibers (CNF) as cryoprotectants in frozen foods has rarely been explored. In this study, the cryoprotective effect of CNF (2, 4 and 6 % w/w) on mechanically separated chicken meat (MSCM) surimi-like material was investigated, during frozen storage (5 and 60 days) under temperature fluctuation. Surimi-like without cryopreservation agents was more susceptible to protein oxidation due to ice recrystallization. The addition of 2 % w/w CNF attenuated the oxidation of myofibrillar proteins to the same extent as adding commercial cryoprotectants (sucrose, sorbitol and sodium tripolyphosphate). The surimi-like material containing 2 % CNF exhibited a high concentration of salt-soluble proteins (9.6 ± 1.1 mg/g), lower protein carbonylation (1.9 ± 0.3 nmol/mg) and few changes in the secondary structure of the myofibrillar proteins. In addition, this treatment minimized the percentage of water loss by thawing and cooking (30.2 ± 2.2 %), generating gels with a high water holding capacity (86.8 ± 1.6 %) and microstructure that was more homogeneous and less porous compared to the control (without cryoprotectants) and other treatments containing CNF. The cryoprotective efficacy of CNF was evident in surimi-like material, being an alternative compound to commercial cryoprotectants.
Collapse
Affiliation(s)
| | | | - Bruna Fernandes Andrade
- Federal University of Lavras, Department of Food Science, Lavras, Minas Gerais 37200-900, Brazil
| | - Carine Setter
- Federal University of Lavras, Department of Engineering, Lavras, Minas Gerais 37200-900, Brazil
| | | | | | - Eduardo Mendes Ramos
- Federal University of Lavras, Department of Food Science, Lavras, Minas Gerais 37200-900, Brazil
| | - Jaime Vilela de Resende
- Federal University of Lavras, Department of Food Science, Lavras, Minas Gerais 37200-900, Brazil.
| |
Collapse
|
2
|
Cheng Y, Yuqing H, Xiao L, Gao W, Kang X, Sui J, Cui B. Impact of starch amylose and amylopectin on the rheological and 3D printing properties of corn starch. Int J Biol Macromol 2024; 278:134403. [PMID: 39094882 DOI: 10.1016/j.ijbiomac.2024.134403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
This study evaluated the influence of the amylose and amylopectin on the physicochemical properties and printing performance of corn starch gels. Amylose in starch-based gels enhances their storage modulus and the support performance of printed products by promoting the formation of cross-linked gel structures and crystalline structures. However, the higher amylose content in starch gels makes extrusion difficult, resulting in intermittent extrusion in 3D printing. Despite the increased shear-thinning ability of high-amylose starch, its low water retention capacity leads to water loss and rough printed morphology. Additionally, starch with 72 % amylose content exhibits insufficient adhesive properties for effective layer bonding, negatively impacting structural integrity. While gels with 72 % and 56 % amylose content demonstrate higher viscosity and enhanced mechanical properties, their poor adhesion limits the quality of printed layers. Conversely, waxy starch gel demonstrates continuous extrusion and adhesion but lacks adequate support. The 27 % corn starch gel achieves the highest 3D printing accuracy at 88.12 %, suggesting an optimal amylose-amylopectin ratio for desired ink material performance. These findings enhance our understanding of the relationship between amylose content in starch and 3D printing performance, providing a theoretical basis for the development of starch-based printing products.
Collapse
Affiliation(s)
- Yue Cheng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - He Yuqing
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Li Xiao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xuemin Kang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jie Sui
- Shandong Academy of Agricultural Science, Jinan, Shandong 250131, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
3
|
Tian H, Chen X, Wu J, Wu J, Huang J, Cai X, Wang S. Nondestructive frozen protein ink: Antifreeze mechanism, processability, and application in 3D printing. Int J Biol Macromol 2024; 277:134009. [PMID: 39043288 DOI: 10.1016/j.ijbiomac.2024.134009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Antifreeze peptide (AFP) including in frozen protein ink is an inevitable trend because AFP can make protein ink suitable for 3D printing after freezing. AFP-based surimi ink (ASI) was firstly investigated, and the AFP significantly enhanced 3D printability of frozen surimi ink. The rheological and textural results of ASI show that the τ0, K, and n values are 321.14 Pa, 2.2259 × 105 Pa·sn, and 0.19, respectively, and the rupture strength of the 3D structure is up to 217.67 g. Circular dichroism, intermolecular force, and differential scanning calorimeter show ASI has more undenatured protein after freezing when compared that surimi ink (SI), which was denatured, and the α-helix changed to a β-sheet due to the destruction of hydrogen bonds and the exposure of hydrophobic groups. The water distribution, water holding capacity, and microstructure indicate that ASI effectively binds free water after freezing, while SI has weak water binding capacity and a large amount of free water is formed. ASI is suitable for 3D printing, and can print up to 40.0 mm hollow isolation column and 50.0 mm high Wuba which is not possible with SI. The application of AFP provides guidance for 3D printing frozen protein ink in food industry.
Collapse
Affiliation(s)
- Han Tian
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Xu Chen
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Jiajie Wu
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, PR China; Fujian Anjoy Foods Co. Ltd., Xiamen 361022, PR China
| | - Xixi Cai
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| | - Shaoyun Wang
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
4
|
Xu Z, Zhao X, Yang W, Mei J, Xie J. Effect of magnetic nano-particles combined with multi-frequency ultrasound-assisted thawing on the quality and myofibrillar protein-related properties of salmon (Salmo salar). Food Chem 2024; 445:138701. [PMID: 38350203 DOI: 10.1016/j.foodchem.2024.138701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Multi-frequency ultrasound-assisted thawing (MUAT) has been proven to be an effective method of maintaining the quality of frozen food. The effects of magnetic nano-particles (MNPs) combined with MUAT and multi-frequency ultrasound-assisted sequential thawing (MUST) on water retention, myofibrillar protein (MP) structural characteristics, function characteristics, and MP aggregation and degradation of salmon (Salmo salar) were studied. The results showed that MNPs combined with multi-frequency ultrasound-assisted sequential thawing (MNPs-MUST) significantly improved the thawing rate and the retention of water and had better emulsifying and foaming properties. MNPs-MUST treatment reduced the oxidation and degradation of MP, increased sulfhydryl content, and protected the structure of MP. Confocal laser scanning microscopy (CLSM) indicated that the MP transformed into a filamentous polymer into more evenly distributed units, resulting in higher protein solubility, lower surface hydrophobicity, and lower protein turbidity. Therefore, MNPs combined with MUST has a potential application value in the thawing research of frozen salmon.
Collapse
Affiliation(s)
- Zhilong Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xin Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weihao Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| |
Collapse
|
5
|
Qiu L, Zhang M, Ghazal AF, Chu Z, Luo Z. Development of 3D printed k-carrageenan-based gummy candies modified by fenugreek gum: Correlating 3D printing performance with sol-gel transition. Int J Biol Macromol 2024; 265:130865. [PMID: 38490387 DOI: 10.1016/j.ijbiomac.2024.130865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Temperature-responsive inks were formulated using k-carrageenan, fenugreek gum (FG), rose extracts, and sugar, of which the first two were used as the gelling agents. The interactions among components in these mixed ink formulations were investigated. Sol-gel transition and rheological properties of these inks were also correlated with extrusion, shape formation, and self (shape)-supporting aspects of 3D printing. Results indicated that incorporating FG increased inks' gelation temperature from 39.7 °C to 44.7-49.6 °C, affecting the selection of printing temperature (e.g., 0 % FG: 40 °C, 0.15 % FG: 45 °C, 0.3 % FG-0.6 % FG: 50 °C). Inks in solution states with lower viscosity (<5 Pa·s) were amenable to ensure their smooth extrusion through the tip of the printing nozzle. A shorter sol-gel transition time (approximately 100 s) during the shape formation stage facilitated the solidification of inks after extrusion. The addition of FG significantly (p<0.05) improved the mechanical properties (elastic modulus, hardness, etc.) of the printed models, which facilitated their self-supporting behavior. Low field nuclear magnetic resonance indicated that the inclusion of FG progressively restricted water mobility, consequently reducing the water syneresis rate of the mixed inks by 0.86 %-3.6 %. FG enhanced hydrogen bonding interactions among the components of these mixed inks, and helped to form a denser network.
Collapse
Affiliation(s)
- Liqing Qiu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Ahmed Fathy Ghazal
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Zhaoyang Chu
- Golden Monkey Food Co., 466300 Shenqiu County, Henan Province, China
| | - Zhenjiang Luo
- Haitong Foods Ninghai Co., Ltd., 315000 Ninghai, Zhejiang, China
| |
Collapse
|
6
|
Sun Y, Huang X, Guo S, Wang Y, Feng D, Dong X, Qi H. Undaria pinnatifida gel inks for food 3D printing are developed based on the colloidal properties of Undaria pinnatifida slurry and protein/colloidal/starch substances. Int J Biol Macromol 2024; 261:129788. [PMID: 38290637 DOI: 10.1016/j.ijbiomac.2024.129788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Currently, people eat Undaria pinnatifida (UP) in a single way, and processing homogeneity is serious. However, UP has not gained any traction in the 3D printing industry to date. This study explored the incorporation of soy protein isolate (SPI), pea protein (PP), xanthan gum (XG), guar gum (GG), corn starch (CS), and potato starch (PS) into UP slurry liquid, the primary component of the study, to formulate a UP gel ink. The UP gel 3D printing ink system based on UP paste was established and characterized. The results show that hydrogen bonds are formed, and three-dimensional gel network structure is formed in all UP gel inks. UP gel inks containing high concentrations of SPI and GG exhibited good texture and rheological qualities and good 3D printing effect, with storage modulus (G') values of 8440.405 ± 3.893 and 8111.730 ± 3.585 Pa. The loss of modulus (G″) values were 1409.107 ± 3.524 and 1071.673 ± 3.669 Pa. Unfortunately, the properties of other UP gel inks are not suitable, resulting in poor 3D printing results. The food 3D printing method developed in this study provides valuable insights for expanding food 3D printing material choices and achieving high-value applications of UP.
Collapse
Affiliation(s)
- Yihan Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Huang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Sainan Guo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuze Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Dingding Feng
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hang Qi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Shi H, Zhang M, Mujumdar AS. 3D/4D printed super reconstructed foods: Characteristics, research progress, and prospects. Compr Rev Food Sci Food Saf 2024; 23:e13310. [PMID: 38369929 DOI: 10.1111/1541-4337.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Super reconstructed foods (SRFs) have characteristics beyond those of real system in terms of nutrition, texture, appearance, and other properties. As 3D/4D food printing technology continues to be improved in recent years, this layered manufacturing/additive manufacturing preparation technology based on food reconstruction has made it possible to continuously develop large-scale manufacture of SRFs. Compared with the traditional reconstructed foods, SRFs prepared using 3D/4D printing technologies are discussed comprehensively in this review. To meet the requirements of customers in terms of nutrition or other characteristics, multi-processing technologies are being combined with 3D/4D printing. Aspects of printing inks, product quality parameters, and recent progress in SRFs based on 3D/4D printing are assessed systematically and discussed critically. The potential for 3D/4D printed SRFs and the need for further research and developments in this area are presented and discussed critically. In addition to the natural materials which were initially suitable for 3D/4D printing, other derivative components have already been applied, which include hydrogels, polysaccharide-based materials, protein-based materials, and smart materials with distinctive characteristics. SRFs based on 3D/4D printing can retain the characteristics of deconstruction and reconstruction while also exhibiting quality parameters beyond those of the original material systems, such as variable rheological properties, on-demand texture, essential printability, improved microstructure, improved nutrition, and more appealing appearance. SRFs with 3D/4D printing are already widely used in foods such as simulated foods, staple foods, fermented foods, foods for people with special dietary needs, and foods made from food processingbyproducts.
Collapse
Affiliation(s)
- Hao Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| |
Collapse
|
8
|
Li B, Zhong M, Sun Y, Liang Q, Shen L, Qayum A, Rashid A, Rehman A, Ma H, Ren X. Recent advancements in the utilization of ultrasonic technology for the curing of processed meat products: A comprehensive review. ULTRASONICS SONOCHEMISTRY 2024; 103:106796. [PMID: 38350241 PMCID: PMC10876906 DOI: 10.1016/j.ultsonch.2024.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Curation meat products involves multiple stages, including pre-curing processing (thawing, cleaning, and cutting), curing itself, and post-curing processing (freezing, and packaging). Ultrasound are nonthermal processing technology widely used in food industry. This technology is preferred because it reduces the damages caused by traditional processing techniques on food, while simultaneously improving the nutritional properties and processing characteristics of food. The utilization of ultrasonic-assisted curing technology has attracted significant attention within the realm of meat product curing, encouraging extensive research efforts. In terms of curing meat products, ultrasonic-assisted curing technology has been widely studied due to its advantages of accelerating the curing speed, reducing nutrient loss, and improving the tenderness of cured meats. Therefore, this article aims to comprehensively review the application and mechanism of ultrasound technology in various stages of meat product curing. Furthermore, it also elaborates the effects of ultrasonic-assisted curing on the tenderness, water retention, and flavor substances of the meat products during the curing process. Besides, the implication of the ultrasound in the processing of meat curation plays a potent role together with other technologies or methods. The use of ultrasound technology in the process of meat curation was analyzed, which might be a theoretical insight for the industrialization prospects of the meat product.
Collapse
Affiliation(s)
- Biao Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Lipeng Shen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
9
|
Zhang R, Yuan J, Zhang W, Zeng X. Effects of ultrasound-assisted intermittent tumbling on the quality of cooked ham through modifying muscle structure and protein extraction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1030-1038. [PMID: 37721428 DOI: 10.1002/jsfa.12989] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Tumbling treatment is widely used in the production of cooked ham. However, traditional intermittent tumbling (IT) treatment is time-consuming. To enhance the tumbling efficiency, high-intensity ultrasound was used to assist IT treatment (UIT). RESULTS UIT treatment reduced the tumbling time and significantly improved the water holding capacity, tenderness, sliceability and texture of cooked ham compared to IT treatment. Furthermore, more violent destruction of meat tissue was exhibited in the UIT treatment. This change facilitated extraction of more salt-soluble protein, which in turn welded meat pieces tightly and improved the quality of the cooked ham. CONCLUSION UIT treatment could accelerate the tumbling process and enhance the quality of cooked ham. These results may provide guidance on effective strategies for a high-quality meat production process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruyu Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiayi Yuan
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xianming Zeng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Pan Y, Sun Q, Liu Y, Wei S, Han Z, Zheng O, Ji H, Zhang B, Liu S. Investigation on 3D Printing of Shrimp Surimi Adding Three Edible Oils. Foods 2024; 13:429. [PMID: 38338564 PMCID: PMC10855127 DOI: 10.3390/foods13030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Three-dimensional (3D) printing provides a new method for innovative processing of shrimp surimi. However, there still exists a problem of uneven discharge during the 3D printing of surimi. The effects of different amounts of lard oil (LO), soybean oil (SO), and olive oil (OO) (0%, 2%, 4%, and 6%, respectively) added to shrimp surimi on the 3D printability of surimi were evaluated. The findings showed that with the increase in the added oil, the rheological properties, texture properties, water-holding capacity (WHC), and water distribution of surimi with the same kind of oil were significantly improved; the printing accuracy first increased and then decreased; and the printing stability showed an increasing trend (p < 0.05). The surimi with 4% oil had the highest printing adaptability (accuracy and stability). Different kinds of oil have different degrees of impact on the physical properties of surimi, thereby improving 3D-printing adaptability. Among all kinds of oil, LO had the best printing adaptability. In addition, according to various indicators and principal component analysis, adding 4% LO to shrimp surimi gave the best 3D-printing adaptability. But from the aspects of 3D printing properties and nutrition, adding 4% SO was more in line with the nutritional needs of contemporary people.
Collapse
Affiliation(s)
- Yanmo Pan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Bin Zhang
- College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
11
|
Sun Q, Kong B, Zheng O, Liu S, Dong X. Effect of protein structure changes during different power ultrasound thawing on emulsification properties of common carp (Cyprinus carpio) myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2023; 101:106719. [PMID: 38091741 PMCID: PMC10757250 DOI: 10.1016/j.ultsonch.2023.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
The impact of ultrasound thawing (UT) at different power (0 W, 100 W/0.132 W·cm-2, 300 W/1.077 W·cm-2, and 500 W/1.997 W·cm-2, namely WT, UT-100, UT-300, and UT-500) on protein structure, aggregation, and emulsifying properties of common carp (Cyprinus carpio) myofibrillar protein were investigated in the present study. The result showed that the reactive sulfhydryl content, total sulfhydryl content, protein solubility, and absolute potential of UT-300 samples were obviously higher than those of other thawed samples, while the turbidity of UT-300 samples was lower (P < 0.05), which indicated that proper UT power was beneficial to inhibit protein aggregation caused by thawing, while too low (100 W) or too high (500 W) ultrasonic power had poor effect. The Ca2+-ATPase activity and thermal stability of UT-300 samples were much higher than those of other thawed samples (P < 0.05), indicating that UT-300 inhibited myosin denaturation and thermal stability reduction of thawed products. The α-helix content of UT-300 samples was higher than that of other thawed samples, while the β-sheet content was significantly lower than that of other thawed samples (P < 0.05). The fluorescence intensity of UT-300 samples was higher than that of other thawed samples, and the λmax of UT-300 samples and UT-100 samples were lower than that of other thawed samples, which indicated that UT-300 could effectively inhibit the alteration of protein secondary structure and tertiary structure during thawing. The emulsifying activity of UT-300 samples was significantly higher than that of WT samples, and the droplet diameter of UT-300 samples was also lower than that of WT samples (P < 0.05), which indicated that UT-300 inhibited the decrease of emulsifying property during thawing. Overall, moderate ultrasonic power (300 W) could effectively inhibit the protein aggregation and structural changes during thawing, led to the decrease of emulsifying activity.
Collapse
Affiliation(s)
- Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
12
|
Zhu M, Xing Y, Zhang J, Li H, Kang Z, Ma H, Zhao S, Jiao L. Low-frequency alternating magnetic field thawing of frozen pork meat: Effects of intensity on quality properties and microstructure of meat and structure of myofibrillar proteins. Meat Sci 2023; 204:109241. [PMID: 37321052 DOI: 10.1016/j.meatsci.2023.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
The purpose of the study was to evaluate the changes in quality properties and microstructure of pork meat as well as structural variation in myofibrillar proteins (MPs) after low-frequency alternating magnetic field thawing (LF-MFT) with different intensities (1-5 mT). LF-MFT at 3-5 mT shortened the thawing time. LF-MFT treatment significantly influenced the quality properties of meat and notably improved the structure of MPs (P < 0.05), compared to atmosphere thawing (AT). Especially, among the thawing treatments, LF-MFT-4 (LF-MFT at 4 mT) had the lowest values of thawing loss and drip loss, and the least changes in the color and myoglobin content. Regarding the results of rheological properties and micrographs, an optimal gel structure and a more compact muscle fiber arrangement formed during LF-MFT-4. Moreover, LF-MFT-4 was beneficial for improving the conformation of MPs. Therefore, LF-MFT-4 reduced the deterioration of porcine quality by protecting MPs structure, indicating a potential use in the meat thawing industry.
Collapse
Affiliation(s)
- Mingming Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Province Engineering Technology Research Center of Animal Products Intensive Processing and Quality Safety Control, Henan Institute of Science and Technology, Xinxiang 453003, China; National Pork Processing Technology Research and Development Professional Center, Xinxiang 453003, China.
| | - Yi Xing
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Juan Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huijie Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhuangli Kang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shengming Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
13
|
Hu Q, Ma F, Wei H, Yang W, Deng S, Yu X, Huang T. Comparative investigation of various modification methods on Trachypenaeus Curvirostris surimi gel: Gelling properties, rheological behaviors and structure characteristics. J Texture Stud 2023; 54:582-594. [PMID: 37400374 DOI: 10.1111/jtxs.12785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/05/2023]
Abstract
The aim of this study was to compare the investigations of various contents of egg white protein (2.0%-8.0%, EWP), microbial transglutaminase (0.1%-0.4%, MTGase), and konjac glucomannan (0.5%-2.0%, KGM) on the gelling properties and rheological behavior of Trachypenaeus Curvirostris shrimp surimi gel (SSG), and assessed the modification mechanisms through the analysis of structure characteristics. The findings suggested that all modified SSG samples (expect SSG-KGM2.0% ) had the higher gelling properties and the denser network structure than those of unmodified SSG. Meanwhile, EWP could give SSG a better appearance than MTGase and KGM. Rheological results showed that SSG-EWP6% and SSG-KGM1.0% had the highest G' and G″, demonstrating that the formation of higher levels of elasticity and hardness. All modifications could increase gelation rates of SSG along with the reduction of G″ during the degeneration of protein. According to the FTIR results, three modification methods changed SSG protein conformation with the increasing α-helix and β-sheet contents and the decreasing of random coil content. LF-NMR results indicated that more free water could be transformed into immobilized water in the modified SSG gels, which contributed to improve the gelling properties. Furthermore, molecular forces showed that EWP and KGM could further increase the hydrogen bonds and hydrophobic interaction in SSG gels, while MTGase could induce the formation of more disulfide bonds. Thus, compared with another two modifications, EWP modified SSG gels showed the highest gelling properties.
Collapse
Affiliation(s)
- Qiuyue Hu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Fuhao Ma
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Huamao Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xunxin Yu
- Zhejiang Tianhe Aquatic Products Co., Ltd., Wenling, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo, China
| |
Collapse
|
14
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. Physicochemical and structural changes of myofibrillar proteins in muscle foods during thawing: Occurrence, consequences, evidence, and implications. Compr Rev Food Sci Food Saf 2023; 22:3444-3477. [PMID: 37306543 DOI: 10.1111/1541-4337.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Myofibrillar protein (MP) endows muscle foods with texture and important functional properties, such as water-holding capacity (WHC) and emulsifying and gel-forming abilities. However, thawing deteriorates the physicochemical and structural properties of MPs, significantly affecting the WHC, texture, flavor, and nutritional value of muscle foods. Thawing-induced physicochemical and structural changes in MPs need further investigation and consideration in the scientific development of muscle foods. In this study, we reviewed the literature for the thawing effects on the physicochemical and structural characters of MPs to identify potential associations between MPs and the quality of muscle-based foods. Physicochemical and structural changes of MPs in muscle foods occur because of physical changes during thawing and microenvironmental changes, including heat transfer and phase transformation, moisture activation and migration, microbial activation, and alterations in pH and ionic strength. These changes are not only essential inducements for changes in spatial conformation, surface hydrophobicity, solubility, Ca2+ -ATPase activity, intermolecular interaction, gel properties, and emulsifying properties of MPs but also factors causing MP oxidation, characterized by thiols, carbonyl compounds, free amino groups, dityrosine content, cross-linking, and MP aggregates. Additionally, the WHC, texture, flavor, and nutritional value of muscle foods are closely related to MPs. This review encourages additional work to explore the potential of tempering techniques, as well as the synergistic effects of traditional and innovative thawing technologies, in reducing the oxidation and denaturation of MPs and maintaining the quality of muscle foods.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
15
|
Zhang Z, Shi W, Wang Y, Meng X, Dabbour M, Kumah Mintah B, Chen X, Chen X, He R, Ma H. Mono-frequency ultrasonic-assisted thawing of frozen goose meat: Influence on thawing efficiency, product quality and microstructure. ULTRASONICS SONOCHEMISTRY 2023; 98:106489. [PMID: 37354765 PMCID: PMC10320251 DOI: 10.1016/j.ultsonch.2023.106489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
This study aimed to investigate the influences of mono-ultrasound assisted thawing on the thawing efficiency, product quality and conformational characteristics of frozen goose meat. The thawing time, thawing loss, muscle quality, and microstructure of frozen goose meat were studied. The results displayed that ultrasonic-assisted thawing effectively reduced the thawing time by 45.37-57.58% compared with non-sonicated group, and significantly decreased the thawing loss. For the quality properties of goose meat tissue, ultrasound-assisted thawing with single-frequency of 50 kHz indicated a lower protein turbidity; meanwhile, hardness values were also significantly increased, and displayed a higher springiness, gumminess and chewiness of goose meat tissue. The microstructure analysis exhibited that the conformation of goose myofibrillar protein (MP) was modified following ultrasonic-assisted thawing, and became closer and more irregular. Therefore, ultrasound-assisted thawing treatments at 50 kHz mono-frequency (temperature 25℃) have a high potential application value in the thawing research of frozen goose meat, and lay a theoretical foundation for use in the meat process industries.
Collapse
Affiliation(s)
- Zhaoli Zhang
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Wangbin Shi
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yang Wang
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Xiangren Meng
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | | | - Xingyu Chen
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xi Chen
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
16
|
Wang C, Ma M, Wei Y, Zhao Y, Lei Y, Zhang J. Effects of CaCl 2 on 3D Printing Quality of Low-Salt Surimi Gel. Foods 2023; 12:foods12112152. [PMID: 37297396 DOI: 10.3390/foods12112152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In order to develop low-salt and healthy surimi products, we limited the amount of NaCl to 0.5 g/100 g in this work and studied the effect of CaCl2 (0, 0.5, 1.0, 1.5, and 2.0 g/100 g) on the 3D printing quality of low-salt surimi gel. The results of rheology and the 3D printing showed that the surimi gel with 1.5 g/100 g of CaCl2 added could squeeze smoothly from the nozzle and had good self-support and stability. The results of the chemical structure, chemical interaction, water distribution, and microstructure showed that adding 1.5 g/100 g of CaCl2 could enhance the water-holding capacity and mechanical strength (the gel strength, hardness, springiness, etc.) by forming an orderly and uniform three-dimensional network structure, which limited the mobility of the water and promoted the formation of hydrogen bonds. In this study, we successfully replaced part of the salt in surimi with CaCl2 and obtained a low-salt 3D product with good printing performance and sensory properties, which could provide theoretical support for the development of healthy and nutritious surimi products.
Collapse
Affiliation(s)
- Chaoye Wang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| | - Mengjie Ma
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| | - Yunfeng Zhao
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| | - Yongdong Lei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| |
Collapse
|
17
|
Exploring the mechanism of variation in 3D printing accuracy of cassava starch gels during freezing process. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Zhu J, Cheng Y, Ouyang Z, Yang Y, Ma L, Wang H, Zhang Y. 3D printing surimi enhanced by surface crosslinking based on dry-spraying transglutaminase, and its application in dysphagia diets. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
19
|
Investigation of 3D printing of apple and edible rose blends as a dysphagia food. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Lv Y, Lv W, Li G, Zhong Y. The research progress of physical regulation techniques in 3D food printing. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
21
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. A comprehensive review of the principles, key factors, application, and assessment of thawing technologies for muscle foods. Compr Rev Food Sci Food Saf 2023; 22:107-134. [PMID: 36318404 DOI: 10.1111/1541-4337.13064] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
For years, various thawing technologies based on pressure, ultrasound, electromagnetic energy, and electric field energy have been actively investigated to minimize the amount of drip and reduce the quality deterioration of muscle foods during thawing. However, existing thawing technologies have limitations in practical applications due to their high costs and technical defects. Therefore, key factors of thawing technologies must be comprehensively analyzed, and their effects must be systematically evaluated by the quality indexes of muscle foods. In this review, the principles and key factors of thawing techniques are discussed, with an emphasis on combinations of thawing technologies. Furthermore, the application effects of thawing technologies in muscle foods are systematically evaluated from the viewpoints of eating quality and microbial and chemical stability. Finally, the disadvantages of the existing thawing technologies and the development prospects of tempering technologies are highlighted. This review can be highly instrumental in achieving more ideal thawing goals.
Collapse
Affiliation(s)
- Yuanlv Zhang
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
22
|
Tian H, Yang F, Chen X, Guo L, Wu X, Wu J, Huang J, Wang S. Investigation and effect on 3D printing quality of surimi ink during freeze-thaw cycles by antifreeze peptides. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
23
|
Li H, Bai X, Li Y, Du X, Wang B, Li F, Shi S, Pan N, Zhang Q, Xia X, Kong B. The positive contribution of ultrasound technology in muscle food key processing and its mechanism-a review. Crit Rev Food Sci Nutr 2022; 64:5220-5241. [PMID: 36469643 DOI: 10.1080/10408398.2022.2153239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditional processing methods can no longer meet the demands of consumers for high-quality muscle food. As a green and non-thermal processing technology, ultrasound has the advantage of improving processing efficiency and reducing processing costs. Of these, the positive effect of power ultrasound in the processing of muscle foods is noticeable. Based on the action mechanism of ultrasound, the factors affecting the action of ultrasound are analyzed. On this basis, the effect of ultrasound technology on muscle food quality and its action mechanism and application status in processing operations (freezing-thawing, tenderization, marination, sterilization, drying, and extraction) is discussed. The transient and steady-state effects, mechanical effects, thermal effects, and chemical effects can have an impact on processing operations through complex correlations, such as improving the efficiency of mass and heat transfer. Ultrasound technology has been proven to be valuable in muscle food processing, but inappropriate ultrasound treatment can also have adverse effects on muscle foods. In the future, kinetic models are expected to be an effective tool for investigating the application effects of ultrasound in food processing. Additionally, the combination with other processing technologies can facilitate their intensive application on an industrial level to overcome the disadvantages of using ultrasound technology alone.
Collapse
Affiliation(s)
- Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fangfei Li
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
24
|
Shen D, Zhang M, Mujumdar AS, Li J. Advances and application of efficient physical fields in extrusion based 3D food printing technology. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Huang Y, Zhang M, Pattarapon P, Mujumdar AS. 4D
printing of mixed vegetable gel based on deformation and discoloration induced by acidification and dehydration. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yiwen Huang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation Jiangnan University Wuxi China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi China
| | - Phuhongsung Pattarapon
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation Jiangnan University Wuxi China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring Jiangnan University Wuxi China
| | - Arun S. Mujumdar
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- Department of Bioresource Engineering, Macdonald Campus McGill University Ste. Anne de Bellevue Quebec Canada
| |
Collapse
|
26
|
Aslam R, Alam MS, Kaur J, Panayampadan AS, Dar OI, Kothakota A, Pandiselvam R. Understanding the effects of ultrasound processng on texture and rheological properties of food. J Texture Stud 2022; 53:775-799. [PMID: 34747028 DOI: 10.1111/jtxs.12644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022]
Abstract
The demand for the production of high quality and safe food products has been ever increasing. Consequently, the industry is looking for novel technologies in food processing operations that are cost-effective, rapid and have a better efficiency over traditional methods. Ultrasound is well-known technology to enhance the rate of heat and mass transfer providing a high end-product quality, at just a fraction of time and energy normally required for conventional methods. The irradiation of foods with ultrasound creates acoustic cavitation that has been used to cause desirable changes in the treated products. The technology is being successfully used in various unit operations such as sterilization, pasteurization, extraction, drying, emulsification, degassing, enhancing oxidation, thawing, freezing and crystallization, brining, pickling, foaming and rehydration, and so forth. However, the high pressure and temperature associated with the cavitation process is expected to induce some changes in the textural and rheological properties of foods which form an important aspect of product quality in terms of consumer acceptability. The present review is aimed to focus on the effects of ultrasound processing on the textural and rheological properties of food products and how these properties are influenced by the process variables.
Collapse
Affiliation(s)
- Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Mohammed Shafiq Alam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jaspreet Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Afthab Saeed Panayampadan
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anjineyulu Kothakota
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
27
|
Ultrasound: A reliable method for regulating food component interactions in protein-based food matrices. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Kutlu N, Pandiselvam R, Kamiloglu A, Saka I, Sruthi NU, Kothakota A, Socol CT, Maerescu CM. Impact of ultrasonication applications on color profile of foods. ULTRASONICS SONOCHEMISTRY 2022; 89:106109. [PMID: 35939925 PMCID: PMC9364028 DOI: 10.1016/j.ultsonch.2022.106109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 05/20/2023]
Abstract
Food color is a feature that provides preliminary information about their preference or consumption. There are dominant pigments that determine the color of each food; the most important pigments are anthocyanins (red-purple color), chlorophylls (green color), carotenoids (yellow-orange color), and betalains (red color). These pigments can be easily affected by temperature, light, oxygen, or pH, thereby altering their properties. Therefore, while processing, it is necessary to prevent the deterioration of these pigments to the maximum possible extent. Ultrasonication, which is one of the emerging non-thermal methods, has multidimensional applications in the food industry. The present review collates information on various aspects of ultrasonication technology, its mechanism of action, influencing factors, and the competence of different ultrasonication applications (drying, irradiation, extraction, pasteurization, cooking, tempering, etc.) in preserving the color of food. It was concluded that ultrasonication treatments provide low-temperature processing at a short time, which positively influences the color properties. However, selecting optimum ultrasonic processing conditions (frequency, power, time, etc.) is crucial for each food to obtain the best color. The key challenges and limitations of the technique and possible future applications are also covered in the paper, serving as a touchstone for further research in this area.
Collapse
Affiliation(s)
- Naciye Kutlu
- Department of Food Processing, Bayburt University, Aydintepe, Bayburt 69500, Turkey
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671124, Kerala, India.
| | - Aybike Kamiloglu
- Department of Food Engineering, Bayburt University, Bayburt 69000, Turkey
| | - Irem Saka
- Department of Food Engineering, Ankara University, Ankara 06830, Turkey
| | - N U Sruthi
- Agricultural & Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | | | | |
Collapse
|
29
|
Chen X, Li X, Yang F, Wu J, Huang D, Huang J, Wang S. Effects and mechanism of antifreeze peptides from silver carp scales on the freeze-thaw stability of frozen surimi. Food Chem 2022; 396:133717. [PMID: 35863175 DOI: 10.1016/j.foodchem.2022.133717] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022]
Abstract
The objective of this work was to investigate the cryoprotective effects of antifreeze peptides obtained from silver carp scales (ScAFPs) on the freeze-thaw stability of surimi, and to explore the action mechanisms of ScAFPs on frozen surimi. The comprehensive analysis of ice crystal size, myofibril protein oxidation, water retention, surimi gel properties, and rheological properties of surimi after different freeze-thaw cycles were investigated. Results showed that frozen surimi treated with ScAFPs exhibited a higher Ca2+-ATPase activity, salt-soluble protein concentration and sulfhydryl group content, while lower surface hydrophobicity, carbonyl content and disulfide bond content. Moreover, the gel properties and water holding capacity of surimi and surimi gel were improved significantly by regulating the size of ice crystals during freeze-thaw process. These findings indicate that ScAFPs could serviced as a new food ingredient with anti-freezing function for frozen products.
Collapse
Affiliation(s)
- Xu Chen
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
| | - Xiaozhen Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
| | - Fujia Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Fujian Anjoy Foods Co. Ltd., Xiamen 361022, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Fujian Anjoy Foods Co. Ltd., Xiamen 361022, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
30
|
Application of Protein in Extrusion-Based 3D Food Printing: Current Status and Prospectus. Foods 2022; 11:foods11131902. [PMID: 35804718 PMCID: PMC9265415 DOI: 10.3390/foods11131902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Extrusion-based 3D food printing is one of the most common ways to manufacture complex shapes and personalized food. A wide variety of food raw materials have been documented in the last two decades for the fabrication of personalized food for various groups of people. This review aims to highlight the most relevant and current information on the use of protein raw materials as functional 3D food printing ink. The functional properties of protein raw materials, influencing factors, and application of different types of protein in 3D food printing were also discussed. This article also clarified that the effective and reasonable utilization of protein is a vital part of the future 3D food printing ink development process. The challenges of achieving comprehensive nutrition and customization, enhancing printing precision and accuracy, and paying attention to product appearance, texture, and shelf life remain significant.
Collapse
|
31
|
Ultrasonic-assisted flowing water thawing of frozen beef with different frequency modes: Effects on thawing efficiency, quality characteristics and microstructure. Food Res Int 2022; 157:111484. [DOI: 10.1016/j.foodres.2022.111484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/24/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022]
|
32
|
Ultrasonication as an emerging technology for processing of animal derived foods: A focus on in vitro protein digestibility. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Soltani Firouz M, Sardari H, Alikhani Chamgordani P, Behjati M. Power ultrasound in the meat industry (freezing, cooking and fermentation): Mechanisms, advances and challenges. ULTRASONICS SONOCHEMISTRY 2022; 86:106027. [PMID: 35569440 PMCID: PMC9112027 DOI: 10.1016/j.ultsonch.2022.106027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 06/01/2023]
Abstract
High intensity ultrasound (HIUS) has a wide range of applications in different sectors of food processing. It is a promising and emerging technology demonstrating the potential to promote food processes without or at least damage to the quality of products. Among the processes of the meat industry, freezing, thawing, cooking and fermentation are very sensitive and important, because they have significant effects on product quality and are also very energy and time consuming. This review paper provides an interpretation of high intensity ultrasound (HIUS) applications, a summary of recent outstanding published research and an overview of the freezing/thawing, cooking/frying and fermentation processes in meat and its products assisted by HIUS. The effects, benefits and drawbacks as well as the challenges ahead in the commercialization of this technology in the meat industry are studied. The research results confirmed that the use of HIUS in the meat freezing/thawing, cooking/frying and fermentation in combination with the corresponding processing methods demonstrates a great potential to promote the process, improve the general quality of the final product and reduce the time and energy required. However, many issues remain that require further research to address these challenges. These challenges and subsequent research that is useful for developing and increasing the efficiency of this technology have been reviewed. After the literature review, it is concluded that HIUS may be a useful technology for meat processing because of its significant effects on the quality factors and related process variables that leads to the preservation of the initial nutritional and sensory properties of meat and its products. Of course, research must be continued to eliminate the disadvantages or minimize the undesirable effects of this technology on the final product and to remove barriers to commercialization and optimization of this method.
Collapse
Affiliation(s)
- Mahmoud Soltani Firouz
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.
| | - Hamed Sardari
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Peyman Alikhani Chamgordani
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Maryam Behjati
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| |
Collapse
|
34
|
Ibañez FC, Merino G, Marín-Arroyo MR, Beriain MJ. Instrumental and sensory techniques to characterize the texture of foods suitable for dysphagic people: A systematic review. Compr Rev Food Sci Food Saf 2022; 21:2738-2771. [PMID: 35481665 DOI: 10.1111/1541-4337.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
The interest to characterize texture-modified foods (TMFs) intended for people with oropharyngeal dysphagia (OD) has grown significantly since 2011. Several instrumental and sensory techniques have been applied in the analysis of these foods. The objective of the present systematic review was to identify the most appropriate techniques, especially for the food industry and clinical setting. The search was carried out in three online databases according to the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA). Across the multiple trials reviewed, Texture Profile Analysis and the Uniaxial Compression Test were most used as the instrumental technique for solid foods, and the Back Extrusion Test for fluid and semisolid foods. All trials used descriptive analysis as the sensory technique. However, the experimental conditions of the trials lacked standardization. Consequently, the results of the trials were not comparable. To properly characterize the texture of TMFs intended for OD by each technique, an international consensus is needed to establish standardized experimental conditions. Methods based on these techniques should also be validated by collaborative studies to verify repeatability, replicability, and reproducibility.
Collapse
Affiliation(s)
- Francisco C Ibañez
- Institute for Sustainability and Food Chain Innovation, Universidad Pública de Navarra, Pamplona, Spain
| | - Gorka Merino
- Institute for Sustainability and Food Chain Innovation, Universidad Pública de Navarra, Pamplona, Spain
| | | | - María José Beriain
- Institute for Sustainability and Food Chain Innovation, Universidad Pública de Navarra, Pamplona, Spain
| |
Collapse
|
35
|
Chen W, Ma H, Wang YY. Recent advances in modified food proteins by high intensity ultrasound for enhancing functionality: Potential mechanisms, combination with other methods, equipment innovations and future directions. ULTRASONICS SONOCHEMISTRY 2022; 85:105993. [PMID: 35367738 PMCID: PMC8983432 DOI: 10.1016/j.ultsonch.2022.105993] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 05/21/2023]
Abstract
High intensity ultrasound (HIU) is an efficient and green technology that has recently received enormous research attention for modification of food proteins. However, there are still several knowledge gaps in the possible mechanisms, synergistic effects of HIU with other strategies and improvement of HIU equipment that contribute to its application in the food industry. This review focuses on the recent research progress on the effects and potential mechanisms of HIU on the structure (including secondary and tertiary structure) and functionality (including solubility, emulsibility, foamability, and gelability) of proteins. Furthermore, the combination methods and innovations of HIU equipment for proteins modification in recent years are also detailed. Meanwhile, the possible future trends of food proteins modification by HIU are also considered and proposed.
Collapse
Affiliation(s)
- Wenqing Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Yao-Yao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
36
|
Cheng H, Bian C, Chu Y, Mei J, Xie J. Effects of Dual-Frequency Ultrasound-Assisted Thawing Technology on Thawing Rate, Quality Properties, and Microstructure of Large Yellow Croaker ( Pseudosciaena crocea). Foods 2022; 11:226. [PMID: 35053958 PMCID: PMC8775265 DOI: 10.3390/foods11020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
This research evaluated the effects of dual-frequency ultrasound-assisted thawing (UAT) on the thawing time, physicochemical quality, water-holding capacity (WHC), microstructure, and moisture migration and distribution of large yellow croaker. Water thawing (WT), refrigerated thawing (RT), and UAT (single-frequency: 28 kHz (SUAT-28), single-frequency: 40 kHz (SUAT-40), dual-frequency: 28 kHz and 40 kHz (DUAT-28/40)) were used in the current research. Among them, the DUAT-28/40 treatment had the shortest thawing time, and ultrasound significantly improved the thawing rate. It also retained a better performance from the samples, such as color, texture, water-holding capacity and water distribution, and inhibited disruption of the microstructure. In addition, a quality property analysis showed that the pH, total volatile basic nitrogen (TVB-N), and K value were the most desirable under the DUAT-28/40 treatment, as well as this being best for the flavor of the samples. Therefore, DUAT-28/40 treatment could be a possible thawing method because it improves the thawing rate and maintains the quality properties of large yellow croaker.
Collapse
Affiliation(s)
- Hao Cheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
| | - Chuhan Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
| | - Yuanming Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.C.); (C.B.); (Y.C.); (J.M.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
37
|
Huang Y, Zhang M, Pattarapon P. Reducing freeze-thaw drip loss of mixed vegetable gel by 3D printing porosity. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
|