1
|
Kim HJ, Kim HJ, Hong H, Choi M, Ismail A, Mun D, Kim Y, Kim GD, Jo C. Utilizing drip metabolites and predictive modeling for non-destructive freshness assessment in pork loin. NPJ Sci Food 2025; 9:55. [PMID: 40268971 PMCID: PMC12019311 DOI: 10.1038/s41538-025-00421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
This study validated the use of pork drip metabolites for non-destructive freshness prediction. The pork loin was vacuum-packaged and stored for 27 days at 4 °C. The pH, drip loss, total aerobic bacterial counts (TAB), microbial composition and drip metabolites were examined. LASSO and Random Forest (RF) were selected and used for variable selection, while Ridge regression and Support Vector Regression were utilized to develop predictive models. Validation was performed using leave-one-out cross-validation. LASSO and RF selected 13 and 10 metabolites, respectively. The metabolites selected by each method were trained using Ridge regression and SVR. Each of the four trained models achieved R2 values of over 0.9. In the validation step, the model trained by Ridge regression using drip metabolites selected through LASSO showed the lowest RMSE value of 0.283 log CFU/g. Therefore, selected drip metabolites can be used to predict TAB and microbial composition of pork loin through mathematical modeling.
Collapse
Affiliation(s)
- Hyun-Jun Kim
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Hye-Jin Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heesang Hong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minwoo Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Azfar Ismail
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daye Mun
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gap-Don Kim
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Cheorun Jo
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Hao J, Shi Y, Xu C, Bai J, Wang H, Zhao Y, Zhao B, Wang S, Sun A, Qiao X. Different effects of super-chilling and chilling storage on pork spoilage: Insights from dynamic microbial community changes and metabolic profiles. Int J Food Microbiol 2025; 434:111153. [PMID: 40088522 DOI: 10.1016/j.ijfoodmicro.2025.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Super-chilling can extend the shelf life of high-oxygen modified atmosphere packaged (MAP) pork from 14 to 56 days compared to conventional chilling storage. The spoilage of raw pork may result from the growth of microorganisms, which ultimately release undesirable metabolites. To investigate this, the microbial and metabolic characteristics of super-chilled MAP pork were determined using 16S rRNA sequencing and untargeted metabolomics based on UHPLC-MS/MS. Dominant spoilage bacteria identified in super-chilled MAP pork (Leuconostoc, Trueperella, Carnobacterium, and Massilia) differ from those in the chilling MAP pork (Brochothrix, Pseudomonas, and Serratia). Metabolomics analysis shows that the different metabolites (DMs) in the super-chilling group contained more lipids and lipid-like molecules, while the DMs in the chilling group contained more organic acids and derivatives. WGCNA reveals that most metabolites in super-chilled MAP pork are correlated to Leuconostoc and Trueperella. According to the KEGG analysis, twenty-nine metabolic pathways were discovered as potential mechanisms underlying the spoilage of super-chilled MAP pork, encompassing lipid, amino acid, and nucleotide metabolism. Random forest analysis identified 63 critical metabolites as spoilage biomarkers, in which 43 metabolites (containing amino acids, lipids, hypoxanthine, xanthine, and nicotinic acid et al.) and 18 metabolites (containing IMP, lactate, and carbohydrate and their phosphorylated products) may be metabolites and substrates of these spoilage bacteria, respectively. This study provides new insights into the changes in microbial and metabolic characteristics that occur during the spoilage of super-chilled MAP pork.
Collapse
Affiliation(s)
- Jingyi Hao
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068 Beijing, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, 100083 Beijing, China
| | - Yuxuan Shi
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068 Beijing, China
| | - Chenchen Xu
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068 Beijing, China
| | - Jing Bai
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068 Beijing, China
| | - Hui Wang
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068 Beijing, China
| | - Yan Zhao
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068 Beijing, China
| | - Bing Zhao
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068 Beijing, China.
| | - Shouwei Wang
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068 Beijing, China.
| | - Aidong Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, 100083 Beijing, China
| | - Xiaoling Qiao
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, 100068 Beijing, China
| |
Collapse
|
3
|
Chen L, Ryu R, Kuuliala L, Somrani M, Walgraeve C, Demeestere K, Devlieghere F. Modeling the growth and volatile metabolite production of spoilage-causing Brochothrix thermosphacta on solid meat substrates under modified atmospheres. Int J Food Microbiol 2025; 434:111150. [PMID: 40068438 DOI: 10.1016/j.ijfoodmicro.2025.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
Spoilage microorganisms including Brochothrix thermosphacta are associated with various volatile organic compounds (VOCs) and off-odors in meat. Modified atmosphere packaging (MAP) limits microbial growth and affects metabolic activities. However, the exact impact of gas compositions on B. thermosphacta still remains unclear, especially regarding the direct relationship between its growth and VOC accumulation. This study thus aimed to investigate and model these behaviors by growing B. thermosphacta on solid pork simulation media under different packaging atmospheres. Five O2/CO2/N2 ratios (v/v%: air, 0/0/100, 60/40/0, 5/40/55, 0/40/60) were examined to study the synergy of MAP gases on the aerobic/anaerobic metabolism of B. thermosphacta. The quantities of VOCs (ppbv) were fitted against respective bacterial numbers (log CFU/g) of different individual samples assessed at regular storage intervals. Results suggest that VOCs including acetoin, ethanol, benzaldehyde, and 3-methyl-1-butanol are the major metabolites of B. thermosphacta. Under air, the observable increase of multiple VOCs started at 5.9-6.6 log CFU/g and was closely correlated with microbial growth. In contrast, 100 % N2 caused low acetoin levels and high ethanol emission because of shifting to an anaerobic metabolism. Under high-CO2 atmospheres, concentrations of most VOCs were reduced, likely linked to limited microbial counts. Through this study, predictive modeling offers novel insights into the impact of the atmosphere on bacterial growth and VOC production. This helps to fully understand microbial spoilage and contributes to the development of suitable meat storage strategies.
Collapse
Affiliation(s)
- Linyun Chen
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Raejeong Ryu
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Lotta Kuuliala
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Mariem Somrani
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Departamento de Ingeniera Agronómica, Instituto de Biotecnologa Vegetal, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
| | - Christophe Walgraeve
- Research group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Kristof Demeestere
- Research group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Shi Y, Zhao B, Hao J, Xu C, Bai J, Wang S, Zhao Y. Exploring the impact of cold and modified atmosphere packaging storage on prepared meat products: Temporal dynamics of the bacterial community and quality analysis. Meat Sci 2025; 225:109824. [PMID: 40220479 DOI: 10.1016/j.meatsci.2025.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
The objective of this paper is to study the impacts of modified atmosphere packaging (MAP) with different gas compositions (70 % O2/20 % CO2/10 % N2;80 % CO2/20 % N2) on quality and dynamic microbial changes of marinated pork chops during the storage period under super-chilled and cooling conditions. Compared with the shelf life of 14 days at 4 °C, the shelf life of prepared pork chops was extended to 56 days at -2 °C storage. The content of carbonyl groups, thiobarbituric acid reactive substances (TBARS), total volatile basic nitrogen (TVB-N), and total viable count (TVC) values were significantly reduced (P < 0.05). The super-chilled storage effectively delayed the oxidation of proteins and lipids. The 16srRNA gene amplicon sequencing results showed that the microbial communities of marinated pork chops between -2 °C and 4 °C storages showed a high similarity, except for Serratia, a specific spoilage bacteria in high O2 MAP storing at 4 °C. The gas composition significantly affected the bacterial communities in the different treatment groups (P < 0.05). The spoilage biomarkers in high O2 and high CO2 MAPs were Brochothrix and Leuconostoc, respectively. Significant differences were also observed between high O2 and high CO2 MAPs for the functional potentials based on KEGG, especially for carbohydrate and amino acid metabolism (P < 0.05). The results of this paper provide valuable information for the preservation strategies of prepared meat products.
Collapse
Affiliation(s)
- Yuxuan Shi
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China
| | - Bing Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China.
| | - Jingyi Hao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China
| | - Chenchen Xu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China
| | - Jing Bai
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China
| | - Shouwei Wang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China.
| | - Yan Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, 100068, Beijing, China
| |
Collapse
|
5
|
Yao K, Cai J, Pan D, Chen B, Fan J, Ren D, Xiao Y. The Overall Quality Changes of Chinese Sauced Ducks at Different Stages During Processing and Storage. Foods 2025; 14:834. [PMID: 40077537 PMCID: PMC11899615 DOI: 10.3390/foods14050834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
This study reveals the physicochemical, microbial, flavor, and sensory changes in sauced duck from the marinating phase to the end of storage, divided into six stages (stages A-F). The changes in color, total plate count, total volatile basic nitrogen, and thiobarbituric acid reactive substance at different stages were clarified. We utilized 16S rRNA gene sequencing, GC-IMS, and GC-MS to explore the changes in bacterial flora, fatty acid composition, and flavor characteristics. The dominant bacteria identified in stages A-C included Psychrobacter, Flavobacterium, and Pseudomonas, while Lactobacillus and Staphylococcus dominated during stages D-F. Aldehydes, esters, alcohols, and ketones emerged as the main flavor compounds. Several unsaturated fatty acids significantly (p < 0.05) decreased from stage A to stage F. The sensory quality of sauced duck improved. The potential reactions were determined, and correlation analysis of sauced duck samples across different stages was performed. 3-Methy-1-butanol could be a crucial indicator of sauced duck's overall quality. This research could support the treatment optimization of sauced duck products.
Collapse
Affiliation(s)
- Kaiyong Yao
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China;
- Lanhai Ecological Agriculture Co., Ltd., Hangzhou 311402, China
| | - Jie Cai
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China;
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| | - Daodong Pan
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Bindan Chen
- Zhejiang Guowei Technology Co., Ltd., Zhuji 311800, China;
| | - Jinghui Fan
- Institute of Animal Sciences, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China;
| | - Daxi Ren
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China;
| | - Yingping Xiao
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|
6
|
Wei L, Zhu S, Xiong G, Li J, Zhang W. Citric acid vapor-assisted crosslinking of zein/PEG composite nanofiber membrane embedded with nisin by electrospinning for the cooled goose meat preservation. Curr Res Food Sci 2025; 10:100983. [PMID: 39926038 PMCID: PMC11803153 DOI: 10.1016/j.crfs.2025.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/02/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
This study demonstrated the fabrication of zein/polyethylene glycol/nisin (zein/PEG/nisin) nanofiber membrane and cross-linked by citric acid vapor (zein/PEG/nisin/C). The distribution within the whole nanofiber membranes was monitored by scanning electron microscopy (SEM). Studies using thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) validated the effectiveness nisin encapsulation and molecular interactions. The water vapor permeability (WVP) and oxygen permeability (OP) of zein/PEG/nisin/C are 150.47 ± 7.14 (g m-2 24h) and 59.74 ± 3.10 (cm3 m-2 24h), respectively. Antibacterial experiments have shown that the antibacterial effect of zein/PEG/nisin/C on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) and the diameters of the bacteriostatic circle were 11.52 ± 0.44 mm and 10.67 ± 0.46 mm, respectively. During 10 days of the storage of the cooled fresh goose meat, compared with the control group, the pH of zein/PEG/nisin/C nanofiber membrane was 5.7, the concentration of the total volatile basic nitrogen (TVB-N) and the value of total viable count (TVC) and thiobarbituric acids (TBARS) are 11.28 mg/100g, 5.01 ± 0.69 log (CFU g-1), and 0.83 mg kg-1, respectively. These results point to the possibility of using functionalized nanofiber membranes for the cold fresh goose meat preservation facilitated by vaporized citric acid cross-linking.
Collapse
Affiliation(s)
- Lanlan Wei
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuaijie Zhu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Guoyuan Xiong
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Yi Z, Xiao X, Cai W, Ding Z, Ma J, Lv W, Yang H, Xiao Y, Wang W. Unraveling the spoilage characteristics of refrigerated pork using high-throughput sequencing coupled with UHPLC-MS/MS-based non-targeted metabolomics. Food Chem 2024; 460:140797. [PMID: 39128367 DOI: 10.1016/j.foodchem.2024.140797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The spoilage of refrigerated pork involves nutrient depletion and the production of spoilage metabolites by spoilage bacteria, yet the microbe-metabolite interactions during this process remain unclear. This study employed 16S rRNA high-throughput sequencing and non-targeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to reveal the core microbiota and metabolite profiles of pork during refrigeration. A total of 45 potential biomarkers were screened through random forest model analysis. Metabolic pathway analysis indicated that eleven pathways, including biogenic amine metabolism, pentose metabolism, purine metabolism, pyrimidine metabolism, phospholipid metabolism, and fatty acid degradation, were potential mechanisms of pork spoilage. Correlation analysis revealed nine metabolites-histamine, tyramine, tryptamine, D-gluconic acid, UDP-d-glucose, xanthine, glutamine, phosphatidylcholine, and hexadecanoic acid-as spoilage biomarkers, with Pseudomonas, Serratia, and Photobacterium playing significant roles. This study provides new insights into the changes in microbial and metabolic characteristics during the spoilage of refrigerated pork.
Collapse
Affiliation(s)
- Zhengkai Yi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Cai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| | - Jiele Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Pius Bassey A, Zhang Y, Wu H, Yang J, Zhu Y, Xie S, Wang Y, Liu X. Untargeted metabolomics unravels the effects of ginkgolide B-producing Lactiplantibacillus plantarum and co-induced fermentation of ginkgo kernel juice and their underlying vascular endothelial cell protection activity. Food Res Int 2024; 197:115168. [PMID: 39593379 DOI: 10.1016/j.foodres.2024.115168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
The objective of this study was to investigate the fermentation mechanism of ginkgo kernel juice (GKJ) under unfermented (Group A), Ginkgolide B (GB)-producing Lactiplantibacillus plantarum fermented (Group B), and co-induced fermented (Group C) conditions. The conditions were optimized and further evaluated for their vascular endothelial cell protective effects in vitro. The co-induced fermented GKJ group extensively promoted GB and total phenol contents, reaching 109.94 and 599.57 μg/mL, respectively. While pH declined from 5.90 to 3.42 during fermentation, the highest total viable count (8.85 log CFU/mL) was detected at 16 h in the L. plantarum group. The co-induced group recorded the highest total phenol contents (594.05 μg/mL) and markedly induced the survival rate, reactive oxygen species formation, and lactate dehydrogenase assay cytotoxicity of H2O2-induced human umbilical vein endothelial cells. An untargeted metabolomics analysis identified 2633 metabolites in the groups. The principal component and orthogonal partial least squares discriminant score plots showed a clear metabolite distinction among the fermentation groups. From the Kyoto Encyclopedia of Genes and Genomes analysis, 309 differential accumulated metabolites (DAMs) were up-regulated and 604 were down-regulated in the A vs. B group, while 702 downregulated and 304 upregulated DAMs were exhibited in the B vs. C group. These DAMs were primarily lipids and lipid-like molecules, organic acids and their derivatives, organoheterocyclic compounds, organic oxygen compounds, benzenoids, phenylpropanoids and polyketides, and unclassified compounds at the superclass level. Overall, the results indicated that L. plantarum and co-induced fermentation improved the cell protection efficacy of GKJ, showing excellent potential for drug delivery applications.
Collapse
Affiliation(s)
- Anthony Pius Bassey
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yu Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Han Wu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jilin Yang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yongsheng Zhu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shudong Xie
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ying Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoli Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
9
|
Niu X, Xu M, Han X, Han Q, Liu B, Cheng Y, Yun S, Cheng F, Feng C, Cao J. Characterization of free radical-mediated Pleurotus ostreatus polysaccharide-EGCG conjugates for chilled minced pork preservation. Int J Biol Macromol 2024; 277:133782. [PMID: 39084977 DOI: 10.1016/j.ijbiomac.2024.133782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
To improve the functions of Pleurotus ostreatus polysaccharide (POP), POP-EGCG conjugates were prepared using free radical graft polymerization reactions and were characterized using UV-vis, FT-IR, SEM, XRD, DSC, TG, particle size and potential, three-phase contact angle, and rheological tests; The antioxidant and antibacterial ability in vitro were detected. Moreover, effects of POP-EGCG on the quality of refrigerated minced pork were investigated. The results showed the optimal preparation conditions of POP-EGCG were 1 % POP, 1.3 % EGCG, 0.25 % Vc, 16 % concentration of H2O2, and reaction 17 h. The POP-EGCG showed the characteristic peak of EGCG and was a mesh honeycomb with rough and porous surface; It had higher crystallinity, increased particle size, but decreased thermal stability, solubility, and viscosity, and significantly enhanced antioxidant and antibacterial ability. The POP-EGCG effectively improved the sensory quality and inhibited lipid oxidation of chilled minced pork, and extended the shelf life of minced pork up to 9 days at 4 °C. Specifically, the TVB-N and TBARS of minced pork in the POP-EGCG group were respectively 14.93 mg/100 g and 0.9 mg MDA/kg, which were lower than the spoilage thresholds in the national standard. This study provides a theoretical basis for further development of natural antioxidants and antimicrobial agents.
Collapse
Affiliation(s)
- Xukai Niu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Mengyan Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoyue Han
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Qianxi Han
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Bo Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China.
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China.
| |
Collapse
|
10
|
Pius Bassey A, Pei Liu P, Chen J, Kabir Bako H, Frimpong Boateng E, Isaiah Ibeogu H, Ye K, Li C, Zhou G. Antibacterial efficacy of phenyllactic acid against Pseudomonas lundensis and Brochothrix thermosphacta and its synergistic application on modified atmosphere/air-packaged fresh pork loins. Food Chem 2024; 430:137002. [PMID: 37524609 DOI: 10.1016/j.foodchem.2023.137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/24/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Microbial contamination is a crucial problem that is difficult to solve for the meat industry. Therefore, this study explored the antibacterial efficacy of phenyllactic acid (PLA) against Pseudomonas lundensis (PL) and Brochothrix thermosphacta (BT) solely and in combination (PL + BT). It also provided insights into its synergistic preservation effect during inoculation in chilled (4 °C) fresh pork loins under air (AP) and modified atmosphere packaging (MAP). The minimum inhibitory concentration (MIC) of PLA was 10 mg/mL. Growth kinetics, scanning electron microscopy (SEM), zeta potential, and cell viability investigations showed that PLA treatment exhibited reduced bacterial growth, aided morphological alterations, and leakage in cell membrane integrity in vitro. Nonetheless, PLA and MAP (70 %N2/30 %CO2) showed an excellent synergistic antibacterial ability against spoilage indicators(total glucose, pH, TVB-N, and TBARS), bacterial counts than AP, without impairing organoleptic acceptability. These results demonstrate the broad antibacterial efficacy of PLA as a biopreservative for the meat industry.
Collapse
Affiliation(s)
- Anthony Pius Bassey
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Pei Pei Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Jiahui Chen
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Hadiza Kabir Bako
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Evans Frimpong Boateng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Henry Isaiah Ibeogu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| |
Collapse
|
11
|
Hai D, Guo B, Qiao M, Jiang H, Song L, Meng Z, Huang X. Evaluating the Potential Safety Risk of Plant-Based Meat Analogues by Analyzing Microbial Community Composition. Foods 2023; 13:117. [PMID: 38201145 PMCID: PMC10778452 DOI: 10.3390/foods13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Plant-based meat analogues offer an environmentally and scientifically sustainable option as a substitute for animal-derived meat. They contribute to reducing greenhouse gas emissions, freshwater consumption, and the potential risks associated with zoonotic diseases linked to livestock production. However, specific processing methods such as extrusion or cooking, using various raw materials, can influence the survival and growth of spoilage and pathogenic microorganisms, resulting in differences between plant-based meat analogues and animal meat. In this study, the microbial communities in five different types of plant-based meat analogues were investigated using high-throughput sequencing. The findings revealed a diverse range of bacteria, including Cyanobacteria, Firmicutes, Proteobacteria, Bacteroidota, Actinobacteriota, and Chloroflexi, as well as fungi such as Ascomycota, Basidiomycota, Phragmoplastophyta, Vertebrata, and Mucoromycota. Additionally, this study analyzed microbial diversity at the genus level and employed phenotype prediction to evaluate the relative abundance of various bacterium types, including Gram-positive and Gram-negative bacteria, aerobic, anaerobic, and facultative anaerobic bacteria, as well as potential pathogenic bacteria. The insights gained from this study provide valuable information regarding the microbial communities and phenotypes of different plant-based meat analogues, which could help identify effective storage strategies to extend the shelf-life of these products.
Collapse
Affiliation(s)
- Dan Hai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (B.G.); (M.Q.); (L.S.); (Z.M.)
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China;
- Henan Shuanghui Investment & Development Co., Ltd., Luohe 462000, China
- Henan Technology Innovation Center of Meat Processing and Research, Luohe 462000, China
| | - Baodang Guo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (B.G.); (M.Q.); (L.S.); (Z.M.)
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (B.G.); (M.Q.); (L.S.); (Z.M.)
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China;
- Henan Shuanghui Investment & Development Co., Ltd., Luohe 462000, China
- Henan Technology Innovation Center of Meat Processing and Research, Luohe 462000, China
| | - Haisheng Jiang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China;
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (B.G.); (M.Q.); (L.S.); (Z.M.)
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China;
- Henan Shuanghui Investment & Development Co., Ltd., Luohe 462000, China
- Henan Technology Innovation Center of Meat Processing and Research, Luohe 462000, China
| | - Ziheng Meng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (B.G.); (M.Q.); (L.S.); (Z.M.)
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (B.G.); (M.Q.); (L.S.); (Z.M.)
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China;
- Henan Shuanghui Investment & Development Co., Ltd., Luohe 462000, China
- Henan Technology Innovation Center of Meat Processing and Research, Luohe 462000, China
| |
Collapse
|
12
|
Li P, Mei J, Xie J. The regulation of carbon dioxide on food microorganisms: A review. Food Res Int 2023; 172:113170. [PMID: 37689923 DOI: 10.1016/j.foodres.2023.113170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 09/11/2023]
Abstract
This review presents a survey of two extremely important technologies about CO2 with the effectiveness of controlling microorganisms - atmospheric pressure CO2-based modified atmosphere packaging (MAP) and high pressure CO2 non-thermal pasteurization (HPCD). CO2-based MAP is effectively in delaying the lag and logarithmic phases of microorganisms by replacing the surrounding air, while HPCD achieved sterilization by subjecting food to either subcritical or supercritical CO2 for some time in a continuous, batch or semi-batch way. In addition to the advantages of healthy, eco-friendly, quality-preserving, effective characteristic, some challenges such as the high drip loss and packaging collapse associated with higher concentration of CO2, the fuzzy mechanisms of oxidative stress, the unproven specific metabolic pathways and biomarkers, etc., in CO2-based MAP, and the unavoidable extraction of bioactive compounds, the challenging application in solid foods with higher efficiency, the difficult balance between optimal sterilization and optimal food quality, etc., in HPCD still need more efforts to overcome. The action mechanism of CO2 on microorganisms, researches in recent years, problems and future perspectives are summarized. When dissolved in solution medium or cellular fluids, CO2 can form carbonic acid (H2CO3), and H2CO3 can further dissociate into bicarbonate ions (HCO3-), carbonate (CO32-) and hydrogen cations (H+) ionic species following series equilibria. The action mode of CO2 on microorganisms may be relevant to changes in intracellular pH, alteration of proteins, enzyme structure and function, alteration of cell membrane function and fluidity, and so on. Nevertheless, the effects of CO2 on microbial biofilms, energy metabolism, protein and gene expression also need to be explored more extensively and deeply to further understand the action mechanism of CO2 on microorganisms.
Collapse
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|
13
|
Kim J, Kim BS. Exploring the Feasibility of 16S rRNA Short Amplicon Sequencing-Based Microbiota Analysis for Microbiological Safety Assessment of Raw Oyster. J Microbiol Biotechnol 2023; 33:1162-1169. [PMID: 37415086 PMCID: PMC10580894 DOI: 10.4014/jmb.2302.02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/06/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023]
Abstract
16S rRNA short amplicon sequencing-based microbiota profiling has been thought of and suggested as a feasible method to assess food safety. However, even if a comprehensive microbial information can be obtained by microbiota profiling, it would not be necessarily sufficient for all circumstances. To prove this, the feasibility of the most widely used V3-V4 amplicon sequencing method for food safety assessment was examined here. We designed a pathogen (Vibrio parahaemolyticus) contamination and/or V. parahaemolyticus-specific phage treatment model of raw oysters under improper storage temperature and monitored their microbial structure changes. The samples stored at refrigerator temperature (negative control, NC) and those that were stored at room temperature without any treatment (no treatment, NT) were included as control groups. The profiling results revealed that no statistical difference exists between the NT group and the pathogen spiked- and/or phage treated-groups even when the bacterial composition was compared at the possible lowest-rank taxa, family/genus level. In the beta-diversity analysis, all the samples except the NC group formed one distinct cluster. Notably, the samples with pathogen and/or phage addition did not form each cluster even though the enumerated number of V. parahaemolyticus in those samples were extremely different. These discrepant results indicate that the feasibility of 16S rRNA short amplicon sequencing should not be overgeneralized in microbiological safety assessment of food samples, such as raw oyster.
Collapse
Affiliation(s)
- Jaeeun Kim
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
14
|
Wang W, Yi Z, Cai W, Ma J, Yang H, Zhou M, Xiao X. Differences in Bacterial Communities of Retail Raw Pork in Different Market Types in Hangzhou, China. Foods 2023; 12:3357. [PMID: 37761065 PMCID: PMC10529276 DOI: 10.3390/foods12183357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Pork is widely consumed globally, and pigs' microbiota can potentially harbor foodborne pathogens. Contaminated pork in retail markets poses significant implications for food quality and safety. However, limited studies have compared pork microbiomes in various marketing environments. In this study, we utilized traditional microbial culture methods and high-throughput 16S rRNA sequencing to assess pathogen contamination and bacterial diversity in raw pork samples purchased from farmers' markets and two types of supermarkets (upscale and ordinary) in Hangzhou, China. Traditional microbial plate cultures identified E. coli and Salmonella spp. in 32.1% (27/84) and 15.5% (13/84) of the collected pork samples, respectively. Moreover, 12 out of 13 Salmonella strains were found in farmers' markets. The MIC results indicated a high prevalence of MDR strains, accounting for 51.9% in E. coli and 53.8% in Salmonella. The prevalence of NaClO tolerant strains was 33.3% and 92.3% for E. coli and Salmonella, respectively. Sequencing results indicated significantly higher microbial diversity in farmers' market samples compared to supermarket samples. Farmers' market pork samples exhibited a greater abundance of Acinetobacter, while Pseudomonas and Brochothrix were predominant in supermarket samples. The total abundance of pathogenic and spoilage bacteria was also higher for the farmers' market samples. Cross-contamination during market trading was evident through a high correlation between bacterial abundance in pork from different stalls within the same farmers' market. PICRUSt2 analysis identified significant differences in the average proportions of genes for carbohydrate, energy, and lipid metabolism from the farmers' markets, suggesting an exacerbation of microbial metabolic activity and increased perishability of pork in this environment. In conclusion, this study revealed variations in the characteristics of raw pork bacterial contamination across different types of retail stores, as well as differences in the composition and diversity of their respective bacterial communities.
Collapse
Affiliation(s)
- Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| | - Zhengkai Yi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| | - Wei Cai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China;
| | - Jiele Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| | - Min Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China;
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| |
Collapse
|
15
|
Overview of omics applications in elucidating the underlying mechanisms of biochemical and biological factors associated with meat safety and nutrition. J Proteomics 2023; 276:104840. [PMID: 36758853 DOI: 10.1016/j.jprot.2023.104840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Over the years, significant technological discoveries have facilitated the improvement of meat-related research. Recent studies of complex and interactive factors contributing to variations in meat safety are increasingly focused on data-driven omics approaches such as proteomics. This review highlighted omics advances in elucidating the biochemical and biological actions on meat safety. Also, the impacts of the nutritional characteristics of meat and meat products on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers. SIGNIFICANCE OF THE REVIEW: This review highlighted omics advances in elucidating underlying mechanisms of biochemical and biological factors associated with meat safety. Also, the impacts of meat proteins on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers.
Collapse
|
16
|
Mao T, Xia C, Zeng T, Xia Q, Zhou C, Cao J, He J, Pan D, Wang D. The joint effects of ultrasound and modified atmosphere packaging on the storage of sauced ducks. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Min H, An F, Wei T, Wang S, Ma P, Dai Y. Microbial community structure and biogenic amines content variations in chilled chicken during storage. Food Sci Nutr 2023; 11:627-638. [PMID: 36789075 PMCID: PMC9922133 DOI: 10.1002/fsn3.3122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to investigate the sensory indicators, biogenic amine contents, and bacterial community structure and diversity of chilled chicken stored at 4°C under aerobic conditions. Bacterial diversity and dominant bacteria were analyzed using high-throughput sequencing technique (HTS). The relationship between biogenic amine contents and microbial community structure was studied. The results showed that contents of putrescine and cadaverine increased significantly with storage time. Proteobacteria was absolutely dominant flora at the phylum level. The predominant spoilage bacteria found in chicken thighs were Pseudomonas, Acinetobacter, Aeromonas, Shewanella, and Yersinia, and the difference with chicken breasts was related to the presence of Myroides and absence of Yersinia. Myroides, Yersinia, and Shewanella were reported for the first time as an important contributor to the spoilage-related microflora. Bacterial diversity and richness indices showed fluctuating and decreasing trend with storage time. The redundancy analysis showed that the relative abundance of Pseudomonas, Yersinia, and Janthinobacterium was positively related to the contents of putrescine, cadaverine, and tyramine, while Shewanella and Aeromonas showed positive relationship with putrescine content. Furthermore, positive relationship of Myroides and Desulfovibrio with the contents of cadaverine and tyramine was proposed for the first time. The key findings of this study can provide experimental data for food safety monitoring during refrigerated storage and preservation for poultry meat products.
Collapse
Affiliation(s)
- Hong Min
- NMPA Key Laboratory for Testing Technology of Pharmaceutical MicrobiologyShaanxi Institute for Food and Drug ControlXi'anPeople's Republic of China
| | - Fengqiu An
- School of Environmental and Chemical EngineeringXi'an Polytechnic UniversityXi'anPeople's Republic of China
| | - Ting Wei
- School of Environmental and Chemical EngineeringXi'an Polytechnic UniversityXi'anPeople's Republic of China
| | - Song Wang
- Shaanxi Institute for Food and Drug ControlXi'anPeople's Republic of China
| | - Pengfei Ma
- Shaanxi Institute for Food and Drug ControlXi'anPeople's Republic of China
| | - Yong Dai
- Shaanxi Institute for Food and Drug ControlXi'anPeople's Republic of China
| |
Collapse
|
18
|
Meat and fish packaging and its impact on the shelf life – a review. ACTA VET BRNO 2023. [DOI: 10.2754/avb202392010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The shelf life of fresh meat and fish is highly dependent on packaging technologies. The aim of any packaging system for fresh flesh foods is to prevent or delay undesirable changes to the appearance, flavour, odour, and texture. Moreover, microbial contamination, together with lipid and protein oxidation, are major concerns for meat and products thereof in terms of food safety. Modified atmosphere packaging (MAP) is widely applied in the packaging of both meat and fish. This packaging technology extends shelf life and improves appearance; however, several variables must be considered, such as temperature control and differences in gas compositions in combination with different types of meat. This review provides an overview of the available information on packaging technologies, from the perspectives of their characteristics, application types, and effects on the shelf life of poultry, meat, and fish. Special attention is paid to the MAP and active packaging.
Collapse
|
19
|
Bassey AP, Boateng EF, Zhu Z, Zhou T, Nasiru MM, Guo Y, Dou H, Ye K, Li C, Zhou G. Volatilome evaluation of modified atmosphere packaged chilled and super-chilled pork loins using electronic nose and HS-GC-IMS integration. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Qiu M, Xiao X, Xiao Y, Ma J, Yang H, Jiang H, Dong Q, Wang W. Dynamic Changes of Bacterial Communities and Microbial Association Networks in Ready-to-Eat Chicken Meat during Storage. Foods 2022; 11:foods11223733. [PMID: 36429325 PMCID: PMC9689599 DOI: 10.3390/foods11223733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Ready-to-eat (RTE) chicken is a popular food in China, but its lack of food safety due to bacterial contamination remains a concern, and the dynamic changes of microbial association networks during storage are not fully understood. This study investigated the impact of storage time and temperature on bacterial compositions and microbial association networks in RTE chicken using 16S rDNA high-throughput sequencing. The results show that the predominant phyla present in all samples were Proteobacteria and Firmicutes, and the most abundant genera were Weissella, Pseudomonas and Proteus. Increased storage time and temperature decreased the richness and diversity of the microorganisms of the bacterial communities. Higher storage temperatures impacted the bacterial community composition more significantly. Microbial interaction analyses showed 22 positive and 6 negative interactions at 4 °C, 30 positive and 12 negative interactions at 8 °C and 44 positive and 45 negative interactions at 22 °C, indicating an increase in the complexity of interaction networks with an increase in the storage temperature. Enterobacter dominated the interactions during storage at 4 and 22 °C, and Pseudomonas did so at 22 °C. Moreover, interactions between pathogenic and/or spoilage bacteria, such as those between Pseudomonas fragi and Weissella viridescens, Enterobacter unclassified and Proteus unclassified, or those between Enterobacteriaceae unclassified and W.viridescens, were observed. This study provides insight into the process involved in RTE meat spoilage and can aid in improving the quality and safety of RTE meat products to reduce outbreaks of foodborne illness.
Collapse
Affiliation(s)
- Mengjia Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiele Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Q.D.); (W.W.)
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (Q.D.); (W.W.)
| |
Collapse
|
21
|
Wang J, Aziz T, Bai R, Zhang X, Shahzad M, Sameeh MY, Khan AA, Dablool AS, Zhu Y. Dynamic change of bacterial diversity, metabolic pathways, and flavor during ripening of the Chinese fermented sausage. Front Microbiol 2022; 13:990606. [PMID: 36267187 PMCID: PMC9577601 DOI: 10.3389/fmicb.2022.990606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Chinese fermented sausage is a famous fermented meat product with a complex microbiota that has a potential impact on flavor and quality. In this study, Lactobacillus plantarum MSZ2 and Staphylococcus xylosus YCC3 were used as starter cultures to investigate the change in bacterial diversity, metabolic pathways, and flavor compounds during the ripening process of fermented sausages. High-throughput sequencing technology and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS) were applied for characterizing the profiles of bacterial diversity, metabolic pathways, and flavor compounds in sausage samples on days 0, 6, and 12 during ripening. Results showed that Lactobacillus, Staphylococcus, Lactococcus, Leuconostoc, and Weissella were the most abundant bacterial genera found in the sausage samples during all stages of fermentation. Functional prediction reveals the abundance of 12 different metabolic pathways, the most important pathways are carbohydrate metabolism, nucleotide metabolism, lipid metabolism, and amino acid metabolism. A total of 63 volatile compounds were successfully identified in fermented sausage samples. Correlational analysis demonstrated that Staphylococcus and Leuconostoc were closely related to the formation of flavor compounds. Therefore, the present study may provide guidance for future use of microbiota to improve flavor, quality, and preservation of fermented sausages.
Collapse
Affiliation(s)
- Ji Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Tariq Aziz
- Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Pakistan
| | - Ruxue Bai
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Xin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Muhammad Shahzad
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Reading, United Kingdom
| | - Manal Y. Sameeh
- Chemistry Department, Faculty of Applied Sciences, Al-Leith University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Anas S. Dablool
- Department of Public Health, Health Sciences College Al-Leith, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
22
|
Hu H, Yong H, Zong S, Jin C, Liu J. Effect of chitosan/starch aldehyde-catechin conjugate composite coating on the quality and shelf life of fresh pork loins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5238-5249. [PMID: 35301727 DOI: 10.1002/jsfa.11877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fresh pork is susceptible to oxidation and spoilage. Edible coating containing antioxidant and antimicrobial agents can create moisture and oxygen barriers around pork and inhibit oxidation and microbial growth in the pork. In this study, chitosan in combination with starch aldehyde-catechin conjugate (SACC) was used as a novel edible coating material for preserving fresh pork loins at chilled storage (4 ± 1 °C) for 14 days. Effect of chitosan/SACC composite coating on the quality of pork loins including weight loss, colour, pH value, microbial spoilage, lipid oxidation, protein oxidation, texture and sensory attributes during chilled storage was determined. RESULTS Chitosan and SACC had synergistic antioxidant and antimicrobial actions. As compared with uncoated and chitosan coated pork loins, chitosan/SACC coated pork loins showed lower weight loss (7.16%), pH value (5.99), total viable count (7.11 log CFU g-1 ), total volatile base nitrogen content (130.2 mg kg-1 ), lipid oxidation level (0.47 mg malondialdehyde kg-1 ), protein oxidation level (0.047 mmol free thiol group g-1 ) and shear force (27.40 N) on day 14. Meanwhile, chitosan/SACC composite coating effectively maintained the colour, micro-structure and sensory attributes of pork loins throughout chilled storage period. The shelf life of pork loins was extended from 8 days (uncoated samples) to 14 days by chitosan/SACC composite coating. CONCLUSION Chitosan/SACC composite coating effectively retarded the oxidation and spoilage of pork loins during chilled storage. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huixia Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
23
|
Bassey AP, Chen Y, Boateng EF, Zhang Y, Diao X, Nasiru MM, Tang C, Ye K, Li C, Zhou G. Evaluation of physicochemical, microbiological, and sensory profiles of vacuum-packed cooked low-salt pork belly under refrigeration and room-temperature storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Microbial Evaluation of Ozone Water Combined with Ultrasound Cleaning on Crayfish ( Procambarus clarkii). Foods 2022; 11:foods11152314. [PMID: 35954082 PMCID: PMC9367870 DOI: 10.3390/foods11152314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
The effects of ozone water (OW) and ultrasound cleaning (UL) on microbial community diversity of crayfish were studied through microbial viable count and 16S rRNA gene sequencing. The results showed that compared with the control (CK), the ozone water combined with ultrasound cleaning (OCU) showed a significant reduction (p < 0.05) in total viable count (TVC), psychrophilic viable count (PVC), mesophilic viable count (MVC), Pseudomonas, hydrogen sulfide-producing bacteria (HSPB), molds and yeasts. Concretely, the TVC of the CK, OW, UL and OCU were 5.09, 4.55, 4.32 and 4.06 log CFU/g, respectively. The dominant bacterium in untreated crayfish was Chryseobacterium, and its relative abundance was reduced by combined treatment. Color measurement and sensory evaluation suggested that a satisfactory sensory experience could be obtained on the crayfish applied with OCU. In brief, OCU could be used as a cleaning strategy to control the microbial quality of crayfish and have no influence on its quality.
Collapse
|
25
|
Lei Y, Huang J, Cheng Y, Zhang Y, Huang T, Huang M. Changes in bacterial communities and the volatilome of braised chicken with different packaging stored at 4 ℃. Food Res Int 2022; 155:111056. [DOI: 10.1016/j.foodres.2022.111056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
|
26
|
Zhang Y, Ma X, Li X, Bi J, Zhang G, Hao H, Hou H. Study on microbial community and physicochemical properties of braised chicken during processing and storage microbial community of braised chicken. J Food Saf 2022. [DOI: 10.1111/jfs.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yanan Zhang
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| | - Xinxiu Ma
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| | - Xinyu Li
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| | - Jingran Bi
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| | - Gongliang Zhang
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| | - Hongshun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| | - Hongman Hou
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- Liaoning Key Lab for Aquatic Processing Quality and Safety Dalian Polytechnic University Dalian China
| |
Collapse
|
27
|
Identification of Potential Peptide Marker(s) for Evaluating Pork Meat Freshness via Mass Spectrometry-Based Peptidomics during Storage under Different Temperatures. Foods 2022; 11:foods11081144. [PMID: 35454731 PMCID: PMC9027284 DOI: 10.3390/foods11081144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
This study applied peptidomics to investigate potential biomarkers for evaluating pork-meat freshness. The spoilage time points of pork meat stored at −2, 4, 10, and 25 °C were defined by evaluating meat freshness indicators (color, total viable count, pH, and total volatile basic nitrogen). Peptide MVHMASKE was identified as a potential peptide marker via multivariate analysis. Pearson correlation revealed a negative correlation between intensity of MVHMASKE and total viable count/total volatile basic nitrogen. In addition, the correlation between peptide content and the change in pork-meat freshness was verified using real-life samples, and the content of MVHMASKE showed a significant decline during storage under 4 and 25 °C, correspondingly reflecting the change of pork meat from fresh to spoiled. This study provides favorable evidence to evaluate pork-meat freshness by monitoring the change of peptide MVHMASKE in content based on mass spectrometry-based peptidomics.
Collapse
|
28
|
Effects of Modified Atmosphere Packaging with Various CO2 Concentrations on the Bacterial Community and Shelf-Life of Smoked Chicken Legs. Foods 2022; 11:foods11040559. [PMID: 35206036 PMCID: PMC8870794 DOI: 10.3390/foods11040559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
The effects of modified atmosphere packaging (MAP) with various CO2 concentrations on the bacterial community and shelf-life of smoked chicken legs during 25 d of storage at 4 °C were evaluated herein. Four treatments were stored in pallets (PAL) and MAP under 20% (M20), 60% (M60), and 100% (M100) CO2, respectively. The results indicated that the MAP treatments provided the legs with higher redness and hardness and lower yellowness, luminance, and lipid oxidation, compared with the PAL treatment. In addition, the MAP treatments effectively inhibited the growth of viable bacteria, delayed bacterial spoilage, and extended the shelf-life of the samples. The M60 and M100 treatments had a better inhibition effect on bacteria. In terms of bacterial community, Carnobacterium, Pseudomonas, Brochothrix, and Lactococcus were the most predominant genera in the 25 d-stored MAP samples, with Carnobacterium maltaromaticum, Pseudomonas fragi, Shewanella baltica, and Lactococcus piscium being the dominant species. However, while the inhibition effects of the M60 and M100 treatments on the bacterial community at Day 25 were similar, the outer package of the M100 treatment collapsed. Overall, the M60 treatment may be a promising approach to improving the quality and extending the shelf-life of smoked chicken legs.
Collapse
|
29
|
Li Y, Zhou C, He J, Wu Z, Sun Y, Pan D, Tian H, Xia Q. Combining e-beam irradiation and modified atmosphere packaging as a preservation strategy to improve physicochemical and microbiological properties of sauced duck product. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|