1
|
Xu Y, Pei Y, Liu Z, Tan P, Liu R, Chu L, Zhang Y, Wang W, Wang H. Discovery of novel DPP4 inhibitory peptides from egg yolk by machine learning and molecular docking: In vitro and in vivo validation. Food Chem 2025; 476:143412. [PMID: 39961267 DOI: 10.1016/j.foodchem.2025.143412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025]
Abstract
DPP4 inhibitors could treat T2DM. Low-cost and accessible egg yolk protein (EYP) has the potential to produce highly bioactive peptides. Therefore, this study was to explore the novel DPP4 inhibitory peptide in EYP. The optimal protease (alcalase and pepsin) was screened using virtual enzymatic digestion. 61 potential peptides were filtered by ultrafiltration, LC-MS/MS, activity prediction and physicochemical property calculations. Then peptides RYHFPEGL, EYF, KFL, YKF and AAQEKIRYW were obtained by machine learning, BIOPEP database and molecular docking. AAQEKIRYW had outstanding hypoglycemia efficacy by in vitro cellular assay and mice plasma assay, with IC50 36.65 μM. Molecular docking and MD revealed that AAQEKIRYW-DPP4 complex was stably bound to S1 and S2' pockets of protein through hydrophilic (hydrogen bonding and electrostatic interactions) and hydrophobic interactions. It will provide a new insight for high-value utilization of EYP and a reference for the efficient screening and mechanism resolution of highly active peptides.
Collapse
Affiliation(s)
- Yujie Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Yiqiao Pei
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Zhifu Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Peng Tan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Lulu Chu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ye Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Wenjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
2
|
Shahidi F, Saeid A. Bioactivity of Marine-Derived Peptides and Proteins: A Review. Mar Drugs 2025; 23:157. [PMID: 40278278 DOI: 10.3390/md23040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The marine environment, covering over 70% of the Earth's surface, serves as a reservoir of bioactive molecules, including peptides and proteins. Due to the unique and often extreme marine conditions, these molecules exhibit distinctive structural features and diverse functional properties, making them promising candidates for therapeutic applications. Marine-derived bioactive peptides, typically consisting of 3 to 40 amino acid residues-though most commonly, 2 to 20-are obtained from parent proteins through chemical or enzymatic hydrolysis, microbial fermentation, or gastrointestinal digestion. Like peptides, protein hydrolysates from collagen, a dominant protein of such materials, play an important role. Peptide bioactivities include antioxidant, antihypertensive, antidiabetic, antimicrobial, anti-inflammatory, anticoagulant, and anti-cancer effects as well as immunoregulatory and wound-healing activities. These peptides exert their effects through mechanisms such as enzyme inhibition, receptor modulation, and free radical scavenging, among others. Fish, algae, mollusks, crustaceans, microbes, invertebrates, and marine by-products such as skin, bones, and viscera are some of the key marine sources of bioactive proteins and peptides. The advancements in the extraction and purification processes, e.g., enzymatic hydrolysis, ultrafiltration, ion-exchange chromatography, high-performance liquid chromatography (HPLC), and molecular docking, facilitate easy identification and purification of such bioactive peptides in greater purity and activity. Despite their colossal potential, their production, scale-up, stability, and bioavailability are yet to be enhanced for industrial applications. Additional work needs to be carried out for optimal extraction processes, to unravel the mechanisms of action, and to discover novel marine sources. This review emphasizes the enormous scope of marine-derived peptides and proteins in the pharmaceutical, nutraceutical, cosmeceutical, and functional food industries, emphasizing their role in health promotion and risk reduction of chronic diseases.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Abu Saeid
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
3
|
El-Naggar NEA, Sarhan EM, Ibrahim AA, Abo-Elwafa AH, Yahia AM, Salah A, Maher RM, Wagdy M, El-Sherbeny GA, El-Sawah AA. One-step green synthesis of collagen nanoparticles using Ulva fasciata, network pharmacology and functional enrichment analysis in hepatocellular carcinoma treatment. Int J Biol Macromol 2025; 294:139244. [PMID: 39753167 DOI: 10.1016/j.ijbiomac.2024.139244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
Collagen nanoparticles (collagen-NPs) possess numerous applications owing to their minimal immunogenicity, non-toxic nature, excellent biodegradability and biocompatibility. This study presents a novel sustainable technique for one-step green synthesis of hydrolyzed fish collagen-NPs (HFC-NPs) using a hot-water extract of Ulva fasciata biomass. HFC-NPs were characterized using TEM, FTIR, XRD, ζ-potential analyses, etc. TEM revealed hollow spherical nanoparticles exhibiting an average diameter of 27.25 nm. Face-centered central composite design was employed to maximize the HFC-NPs yield. The highest HFC-NPs yield was 13.05 mg/mL, which was achieved when the initial pH level was 7, incubation period was 72 h, and HFC concentration was 15 mg/mL. Thereafter, the possibility of using HFC-NPs as a biosafe drug carrier for doxorubicin (DOX) was tested in-vitro. Interestingly, both HFC-NPs and DOX-loaded HFC-NPs showed anticancer activity against hepatocellular carcinoma 'HCC'. In silico protein-protein interaction (PPI), network pharmacology, and functional pathway enrichment analysis of the common predicted HFC and HCC core targets suggested the involvement of PI3K-Akt, JAK-STAT, TNF, and/or Toll-like receptor signaling pathways in the HFC anti-HCC effect. In conclusion, our in vitro and in silico analyses demonstrated the HFC-NPs therapeutic efficacy against HCC, reflecting their promising potential in the development of novel anticancer drugs for HCC treatment.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| | - Eman M Sarhan
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abeer A Ibrahim
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Afaf Hany Abo-Elwafa
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Alaa M Yahia
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Alyaa Salah
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Rola M Maher
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Merna Wagdy
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | | - Asmaa A El-Sawah
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Wang J, Li F, Li W, Li Y, Zhang J, Qin S. Progress in Preparation Technology and Functional Research On Marine Bioactive Peptides. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:42. [PMID: 39907808 DOI: 10.1007/s10126-024-10401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025]
Abstract
Marine bioactive peptides are a class of peptides derived from marine organisms that can optimize the body's metabolic environment and benefit the body's health. These peptides have attracted increasing amounts of attention due to their wide range of health-promoting effects. Additionally, they have the potential to ameliorate diseases such as hypertension, diabetes, influenza viruses, and inflammation and can be used as functional foods or nutritional supplements for the purpose of treating or alleviating diseases. This paper reviews the recent research progress on marine bioactive peptides, focusing on their production technologies and functions in biomaterials and drug development.
Collapse
Affiliation(s)
- Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, Shandong, China
| | - Fengcheng Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, Shandong, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Yantai Center of Technology Innovation for Coastal Zone Biological Resource Utilization, Yantai, Shandong, 264003, P. R. China
| | - Yueming Li
- Qingdao Langyatai Group Co., Ltd, Qingdao, 266404, China
| | - Jian Zhang
- Qingdao Langyatai Group Co., Ltd, Qingdao, 266404, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
- Yantai Center of Technology Innovation for Coastal Zone Biological Resource Utilization, Yantai, Shandong, 264003, P. R. China.
| |
Collapse
|
5
|
Hamdi M, Kilari BP, Mudgil P, Nirmal NP, Ojha S, Ayoub MA, Amin A, Maqsood S. Bioactive peptides with potential anticancer properties from various food protein sources: status of recent research, production technologies, and developments. Crit Rev Biotechnol 2025:1-22. [PMID: 39757011 DOI: 10.1080/07388551.2024.2435965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 01/07/2025]
Abstract
Recently, bioactive peptides, from natural resources, have attracted remarkable attention as nutraceutical treasures and the health benefits of their consumption have extensively been studied. Therapies based on bioactive peptides have been recognized as an innovative and promising alternative method for dangerous diseases such as cancer. Indeed, there has been enormous interest in nutraceuticals and bioactive-based chemopreventive molecules as a potential opportunity to manage chronic diseases, including cancer at different stages, rather than the traditionally used therapies. The relative safety and efficacy of these peptides in targeting only the tumor cells without affecting the normal cells make them attractive alternatives to existing pharmaceuticals for the treatment, management, and prevention of cancer, being able to act as potential physiological modulators of metabolism during their intestinal digestion. Novel bioactive peptides derived from food sources can be beneficial as anticancer nutraceuticals and provide a basis for the pharmaceutical development of food-derived bioactive peptides. Bioactive peptides can be generated through different protein hydrolysis methods and purified using advanced chromatographic techniques. Moreover, establishing bioactive peptides' efficacy and mechanism of action can provide alternative methods for cancer prevention and management. Most of the research on anticancer peptides is carried out on cell lines with very limited research being investigated in animal models or human clinical models. In this context, this review article comprehensively discusses anticancer peptides': production, isolation, therapeutic strategies, mechanism of action, and application in cancer therapy.
Collapse
Affiliation(s)
- Marwa Hamdi
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bhanu Priya Kilari
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Priti Mudgil
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Shreesh Ojha
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, United Arab Emirates
| | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
6
|
Cao H, Zeng Y, Yuan X, Wang JK, Tay CY. Waste-to-resource: Extraction and transformation of aquatic biomaterials for regenerative medicine. BIOMATERIALS ADVANCES 2025; 166:214023. [PMID: 39260186 DOI: 10.1016/j.bioadv.2024.214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The fisheries and aquaculture industry are known for generating substantial waste or by-products, often underutilized, or relegated to low-value purposes. However, this overlooked segment harbors a rich repository of valuable bioactive materials of which have a broad-spectrum of high-value applications. As the blue economy gains momentum and fisheries expand, sustainable exploitation of these aquatic resources is increasingly prioritized. In this review, we present a comprehensive overview of technology-enabled methods for extracting and transforming aquatic waste into valuable biomaterials and their recent advances in regenerative medicine applications, focusing on marine collagen, chitin/chitosan, calcium phosphate and bioactive-peptides. We discuss the inherent bioactive qualities of these "waste-to-resource" aquatic biomaterials and identify opportunities for their use in regenerative medicine to advance healthcare while achieving the Sustainable Development Goals.
Collapse
Affiliation(s)
- Huaqi Cao
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Yuanjin Zeng
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Xueyu Yuan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore; Center for Sustainable Materials (SusMat), Nanyang Technological University, Singapore 637553, Singapore; Nanyang Environment & Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore 637141, Singapore.
| |
Collapse
|
7
|
Feng Y, Li HP. Optimizing collagen-based biomaterials for periodontal regeneration: clinical opportunities and challenges. Front Bioeng Biotechnol 2024; 12:1469733. [PMID: 39703793 PMCID: PMC11655217 DOI: 10.3389/fbioe.2024.1469733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
Periodontal disease (PD) is a chronic inflammatory condition that affects the teeth and their supporting tissues, ultimately culminating in tooth loss. Currently, treatment modalities, such as systemic and local administration of antibiotics, serve to mitigate the progression of inflammation yet fall short in restoring the original anatomical structure and physiological function of periodontal tissues. Biocompatible material-based tissue engineering seems to be a promising therapeutic strategy for treating PD. Collagen, a component of the extracellular matrix commonly used for tissue engineering, has been regarded as a promising biogenic material for tissue regeneration owing to its high cell-activating and biocompatible properties. The structural and chemical similarities between collagen and components of the oral tissue extracellular matrix render it a promising candidate for dental regeneration. This review explored the properties of collagen and its current applications in periodontal regeneration. We also discussed the recent progression in collagen therapies and preparation techniques. The review also scrutinizes the pros and cons associated with the application of collagen-based biomaterials in PD treatment, aiming to pave the way for future applications of collagen-based biomaterials in the management of PD.
Collapse
Affiliation(s)
- Ye Feng
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong-Peng Li
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| |
Collapse
|
8
|
Yao W, Zhang Y, Zhang G. Marine peptides as potential anti-aging agents: Preparation, characterization, mechanisms of action, and future perspectives. Food Chem 2024; 460:140413. [PMID: 39033641 DOI: 10.1016/j.foodchem.2024.140413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Aging is a universal biological process characterized by a decline in physiological functions, leading to increased susceptibility to diseases. With global aging trends, understanding and mitigating the aging process is paramount. Recent studies highlight marine peptides as promising bioactive substances with potential anti-aging properties. This review critically examines the potential of marine peptides as novel food ingredients in anti-aging, exploring their sources, preparation methods, physicochemical properties, and the underlying mechanisms through which they impact the aging process. Marine peptides exhibit significant potential in targeting aging, extending lifespan, and enhancing healthspan. They act through mechanisms such as reducing oxidative stress and inflammation, modulating mitochondrial dysfunction, inducing autophagy, maintaining extracellular matrix homeostasis, and regulating longevity-related pathways. Despite challenges in stability, bioavailability, and scalability, marine peptides offer significant potential in health, nutraceuticals, and pharmaceuticals, warranting further research and development in anti-aging.
Collapse
Affiliation(s)
- Wanzi Yao
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yifeng Zhang
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Gaiping Zhang
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University, Zhengzhou 450046, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China.
| |
Collapse
|
9
|
Wang Y, Gu L, Zhang H, Wang J, Wang X, Li Y, Chai S, Xu C. Therapeutic potential of mackerel-derived peptides and the synthetic tetrapeptide TVGF for sleep disorders in a light-induced anxiety zebrafish model. Front Pharmacol 2024; 15:1475432. [PMID: 39600360 PMCID: PMC11589825 DOI: 10.3389/fphar.2024.1475432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Anxiety-like insomnia is a known risk factor for the onset and worsening of certain neurological diseases, including Alzheimer's disease. Due to the adverse effects of current anti-insomnia medications, such as drug dependence and limited safety, researchers are actively exploring natural bioactive compounds to mitigate anxiety-like insomnia with fewer side effects. Mackerel (Pneumatophorus japonicus), a traditional Chinese medicine, is known for its tonic effects and is commonly used to treat neurasthenia. The use of mackerel protein extract has been shown to effectively improve symptoms of light-induced anxiety-like insomnia in a zebrafish model. Methods This study examines the effects of mackerel bone peptides (MW < 1 kDa, MBP1) and the synthetic peptide Thr-Val-Gly-Phe (TVGF) on light-induced anxiety-like insomnia in zebrafish. The evaluation is conducted through behavioral observation, biochemical marker analysis, and gene transcriptome profiling. Results MBP1 significantly alleviated abnormal hyperactivity and restored neurotransmitter levels (dopamine and γ-aminobutyric acid) to normal. Moreover, it mitigated oxidative stress by reducing reactive oxygen species production and malonaldehyde levels, while enhancing antioxidant enzyme activities (superoxide dismutase and catalase). This was further attributed to the regulation of lipid accumulation and protein homeostasis. Furthermore, MBP1 ameliorated sleep disturbances primarily by restoring normal expression levels of genes involved in circadian rhythm (per2 and sik1) and visual function (opn1mw2, zgc:73075, and arr3b). Molecular docking analysis indicated that TVGF exhibited good affinity for receptors linked to sleep disturbances, including IL6, HTR1A, and MAOA. TVGF exhibited sedative effects in behavioral assays, mainly mediated by regulating the normal expression of genes associated with circadian rhythm (cry1bb, cry1ba, per2, per1b and sik1), visual function (opn1mw1, gnb3b, arr3b, gnat2), purine metabolism (pnp5a), and stress recovery (fkbp5). Discussion These findings suggest that MBP1 and TVGF could be promising therapies for light-induced anxiety-like insomnia in humans, offering safer alternatives to current medications. Additionally, the regulation of genes related to circadian rhythm and visual perception may be a key mechanism by which MBP1 and TVGF effectively relieve anxiety-like insomnia.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lei Gu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haijing Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Junbao Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- R&D department, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- R&D department, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China
- R&D department, National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, China
| | - Yu Li
- Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shiwei Chai
- Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- R&D department, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- R&D department, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China
- R&D department, National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, China
| |
Collapse
|
10
|
Vijayanand M, Guru A, Shaik MR, Hussain SA, Issac PK. Assessing the therapeutic potential of KK14 peptide derived from Cyprinus Carpio in reducing intercellular ROS levels in oxidative Stress-Induced In vivo zebrafish larvae model: An integrated bioinformatics, antioxidant, and neuroprotective analysis. J Biochem Mol Toxicol 2024; 38:e70027. [PMID: 39467211 DOI: 10.1002/jbt.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
H2O2 is a significant reactive oxygen species (ROS) that hinders redox-mediated processes and contributes to oxidative stress and neurodegenerative disorders. Oxidative stress causes impairment of cell macromolecules, which results in cell dysfunction and neurodegeneration. Alzheimer's disease and other neurodegenerative diseases are serious conditions linked to oxidative stress. Antioxidant treatment approaches are a novel and successful strategy for decreasing neurodegeneration and reducing oxidative stress. This study explored the antioxidant and neuroprotective characteristics of KK14 peptide synthesized from LEAP 2B (liver-expressed antimicrobial peptide-2B) derived from Cyprinus carpio L. Molecular docking studies were used to assess the antioxidant properties of KK14. The peptide at concentrations 5-45 μM was examined by using in vitro and in vivo assessment. Analysis was done on the developmental and neuroprotective potential of KK14 peptide treatment in H2O2-exposed zebrafish larvae which showed Nonlethal deformities. KK14 improves antioxidant enzyme activity like catalase and superoxide dismutase. Furthermore, it reduces neuronal damage by lowering lipid peroxidation and nitric oxide generation while increasing acetylcholinesterase activity. It improved the changes in swimming behavior and the cognitive damage produced by exposure to H2O2. To further substantiate the neuroprotective potential of KK14, intracellular ROS levels in zebrafish larvae were assessed. This led to a reduction in ROS levels and diminished lipid peroxidation. The KK14 has upregulated the antioxidant genes against oxidative stress. Overall, this study proved the strong antioxidant activity of KK14, suggesting its potential as a strong therapeutic option for neurological disorders caused by oxidative stress.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Jo DM, Khan F, Park SK, Ko SC, Kim KW, Yang D, Kim JY, Oh GW, Choi G, Lee DS, Kim YM. From Sea to Lab: Angiotensin I-Converting Enzyme Inhibition by Marine Peptides-Mechanisms and Applications. Mar Drugs 2024; 22:449. [PMID: 39452857 PMCID: PMC11509120 DOI: 10.3390/md22100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
To reveal potent ACE inhibitors, researchers screen various bioactive peptides from several sources, and more attention has been given to aquatic sources. This review summarizes the recent research achievements on marine peptides with ACE-inhibitory action and application. Marine peptides are considered excellent bioactives due to their large structural diversity and unusual bioactivities. The mechanisms by which these marine peptides inhibit ACE include competitive binding to ACEs' active site, interfering with ACE conformational changes, and avoiding the identification of substrates. The unique 3D attributes of marine peptides confer inhibition advantages toward ACE activity. Because IC50 values of marine peptides' interaction with ACE are low, structure-based research assumes that the interaction between ACE and peptides increased the therapeutic application. Numerous studies on marine peptides focused on the sustainable extraction of ACE-inhibitory peptides produced from several fish, mollusks, algae, and sponges. Meanwhile, their potential applications and medical benefits are worth investigating and considering. Due to these peptides exhibiting antioxidant, antihypertensive, and even antimicrobial properties simultaneously, their therapeutic potential for cardiovascular disease and other illnesses only increases. In addition, as marine peptides show better pharmacological benefits, they have increased absorption rates and low toxicity and could perhaps be modified for better stability and bioefficacy. Biotechnological advances in peptide synthesis and formulation have greatly facilitated the generation of peptide-based ACE inhibitors from marine sources, which subsequently offer new treatment models. This article gives a complete assessment of the present state of knowledge about marine organism peptides as ACE inhibitors. In addition, it emphasizes the relevance of additional investigation into their mechanisms of action, the optimization of manufacturing processes, and assessment in in vivo, preclinical, and clinical settings, underlining the urgency and value of this study. Using marine peptides for ACE inhibition not only broadens the repertory of bioactive compounds but also shows promise for tackling the global health burden caused by cardiovascular diseases.
Collapse
Affiliation(s)
- Du-Min Jo
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Seul-Ki Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea;
| | - Seok-Chun Ko
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Kyung Woo Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Dongwoo Yang
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Ji-Yul Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Gun-Woo Oh
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Grace Choi
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Dae-Sung Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
12
|
Du C, Gong H, Zhao H, Wang P. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes. Food Chem 2024; 453:139587. [PMID: 38781909 DOI: 10.1016/j.foodchem.2024.139587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Bioactive peptides (BAPs) represent a unique class of peptides known for their extensive physiological functions and their role in enhancing human health. In recent decades, owing to their notable biological attributes such as antioxidant, antihypertensive, antidiabetic, and anti-inflammatory activities, BAPs have received considerable attention. Simulated gastrointestinal digestion (SGD) is a technique designed to mimic physiological conditions by adjusting factors such as digestive enzymes and their concentrations, pH levels, digestion duration, and salt content. Initially established for analyzing the gastrointestinal processing of foods or their constituents, SGD has recently become a preferred method for generating BAPs. The BAPs produced via SGD often exhibit superior biological activity and stability compared with those of BAPs prepared via other methods. This review offers a comprehensive examination of the recent advancements in BAP production from foods via SGD, addressing the challenges of the method and outlining prospective directions for further investigation.
Collapse
Affiliation(s)
- Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Huawei Zhao
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
13
|
Vijayanand M, Issac PK, Velayutham M, Shaik MR, Hussain SA, Guru A. Exploring the neuroprotective potential of KC14 peptide from Cyprinus carpio against oxidative stress-induced neurodegeneration by regulating antioxidant mechanism. Mol Biol Rep 2024; 51:990. [PMID: 39287730 DOI: 10.1007/s11033-024-09905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Oxidative stress, a condition characterized by excessive production of reactive oxygen species (ROS), can cause significant damage to cellular macromolecules, leading to neurodegeneration. This underscores the need for effective antioxidant therapies that can mitigate oxidative stress and its associated neurodegenerative effects. KC14 peptide derived from liver-expressed antimicrobial peptide-2 A (LEAP 2 A) from Cyprinus carpio L. has been identified as a potential therapeutic agent. This study focuses on the antioxidant and neuroprotective properties of the KC14 peptide is to evaluate its effectiveness against oxidative stress and neurodegeneration. METHODS The antioxidant capabilities of KC14 were initially assessed through in silico docking studies, which predicted its potential to interact with oxidative stress-related targets. Subsequently, the peptide was tested at concentrations ranging from 5 to 45 µM in both in vitro and in vivo experiments. In vivo studies involved treating H2O2-induced zebrafish larvae with KC14 peptide to analyze its effects on oxidative stress and neuroprotection. RESULTS KC14 peptide showed a protective effect against the developmental malformations caused by H2O2 stress, restored antioxidant enzyme activity, reduced neuronal damage, and lowered lipid peroxidation and nitric oxide levels in H2O2-induced larvae. It enhanced acetylcholinesterase activity and significantly reduced intracellular ROS levels (p < 0.05) dose-dependently. Gene expression studies showed up-regulation of antioxidant genes with KC14 treatment under H2O2 stress. CONCLUSIONS This study highlights the potent antioxidant activity of KC14 and its ability to confer neuroprotection against oxidative stress can provide a novel therapeutic agent for combating neurodegenerative diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Manikandan Velayutham
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| |
Collapse
|
14
|
Darbandi A, Elahi Z, Dadgar-Zankbar L, Ghasemi F, Kakavandi N, Jafari S, Darbandi T, Ghanavati R. Application of microbial enzymes in medicine and industry: current status and future perspectives. Future Microbiol 2024; 19:1419-1437. [PMID: 39269849 PMCID: PMC11552484 DOI: 10.1080/17460913.2024.2398337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Microbes are a major source of enzymes due to their ability to be mass-cultivated and genetically modified. Compared with plant and animal enzymes, microbial enzymes are more stable and active. Enzymes are generally classified into six classes based on their reaction, substrate specificity and mechanism of action. In addition to their application in medicine for treating diseases, these compounds are used as anti-inflammatory, thrombolytic and digestive agents. However, challenges such as immunogenicity, tissue specificity and short in vivo half-life make clinical trials complex. Enzymes are metabolic catalysts in industry and their production and extraction must be optimized to preserve profitability due to rising demand. The present review highlights the increasing importance of bacterial enzymes in industry and medicine and explores methods for their production, extraction and purification.
Collapse
Affiliation(s)
- Atieh Darbandi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghasemi
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Kakavandi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Jafari
- Department of Medical Microbiology & Virology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Talieh Darbandi
- Department of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roya Ghanavati
- School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| |
Collapse
|
15
|
Davoudi M, Gavlighi HA, Javanmardi F, Benjakul S, Nikoo M. Antimicrobial peptides derived from food byproducts: Sources, production, purification, applications, and challenges. Compr Rev Food Sci Food Saf 2024; 23:e13422. [PMID: 39245910 DOI: 10.1111/1541-4337.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
Food wastes can be a valuable reservoir of bioactive substances that can serve as natural preservatives in foods or as functional ingredients with potential health benefits. The antimicrobial properties of protein hydrolysates, especially antimicrobial peptides (AMPs) derived from food byproducts (FBs), have been extensively explored. These protein fragments are defined by their short length, low molecular weight, substantial content of hydrophobic and basic amino acids, and positive net charge. The intricate mechanisms by which these peptides exert their antimicrobial effects on microorganisms and pathogens have been elaborately described. This review also focuses on techniques for producing and purifying AMPs from diverse FBs, including seafood, livestock, poultry, plants, and dairy wastes. According to investigations, incorporating AMPs as additives and alternatives to chemical preservatives in food formulations and packaging materials has been pursued to enhance both consumer health and the shelf life of foods and their products. However, challenges associated with the utilization of AMPs derived from food waste depend on their interaction with the food matrix, acceptability, and commercial viability. Overall, AMPs can serve as alternative safe additives, thereby ensuring the safety and prolonging the storage duration of food products based on specific regulatory approvals as recommended by the respective safety authorities.
Collapse
Affiliation(s)
- Mahshad Davoudi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| |
Collapse
|
16
|
Liu X, Zhang L, Lai B, Li J, Zang J, Ma L. Harnessing Protein Hydrolysates and Peptides for Hyperuricemia Management: Insights into Sources, Mechanisms, Techniques, and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18758-18773. [PMID: 39161084 DOI: 10.1021/acs.jafc.4c03605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Hyperuricemia (HUA) is a metabolic disorder characterized by an imbalance in uric acid production and excretion, frequently leading to gout and various chronic conditions. Novel bioactive compounds offer effective alternatives for managing HUA, reducing side effects of traditional medications. Recent studies have highlighted the therapeutic potential of protein hydrolysates and peptides in managing HUA. This review focuses on preparing and applying protein hydrolysates to treat HUA and explores peptides for xanthine oxidase inhibition. Particularly, we discuss their origins, enzymatic approaches, and mechanisms of action in detail. The review provides an updated understanding of HUA pathogenesis, current pharmacological interventions, and methodologies for the preparation, purification, identification, and assessment of these compounds. Furthermore, to explore the application of protein hydrolysates and peptides in the food industry, we also address challenges and propose solutions related to the safety, bitterness, oral delivery, and the integration of artificial intelligence in peptide discovery. Bridging traditional pharmacological approaches and innovative dietary interventions, this study paves the way for future research and development in HUA management, contributing to the utilization of proteins from different food sources. In conclusion, protein hydrolysates and peptides show significant promise as safe agents and dietary interventions for preventing and treating HUA.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Boyin Lai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liyan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
17
|
Du J, Xiao M, Sudo N, Liu Q. Bioactive peptides of marine organisms: Roles in the reduction and control of cardiovascular diseases. Food Sci Nutr 2024; 12:5271-5284. [PMID: 39139935 PMCID: PMC11317662 DOI: 10.1002/fsn3.4183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 08/15/2024] Open
Abstract
Cardiovascular diseases (CVDs) affect the quality of life or are fatal in the worst cases, resulting in a significant economic and social burden. Therefore, there is an urgent need to invent functional products or drugs for improving patient health and alleviating and controlling these diseases. Marine bioactive peptides reduce and control CVDs. Many of the predisposing factors triggering CVDs can be alleviated by consuming functional foods containing marine biopeptides. Therefore, improving CVD incidence through the use of effective biopeptide foods from marine sources has attracted increasing interest and attention. This review reports information on bioactive peptides derived from various marine organisms, focusing on the process of the separation, purification, and identification of biological peptides, biological characteristics, and functional food for promoting cardiovascular health. Increasing evidence shows that the bioactivity and safety of marine peptides significantly impact their storage, purification, and processing. It is feasible to develop further strategies involving functional foods to treat CVDs through effective safety testing methods. Future work should focus on producing high-quality marine peptides and applying them in the food and drug industry.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina
- Suzhou Health‐originated Bio‐technology, Ltd.SuzhouChina
| | - Miao Xiao
- Suzhou Health‐originated Bio‐technology, Ltd.SuzhouChina
| | - Naomi Sudo
- Suzhou Health‐originated Bio‐technology, Ltd.SuzhouChina
| | - Qinghua Liu
- Suzhou Health‐originated Bio‐technology, Ltd.SuzhouChina
- Wisdom Lake Academy of PharmacyXi'an Jiaotong‐Liverpool UniversitySuzhouChina
| |
Collapse
|
18
|
Hu YY, Xiao S, Zhou GC, Chen X, Wang B, Wang JH. Bioactive peptides in dry-cured ham: A comprehensive review of preparation methods, metabolic stability, safety, health benefits, and regulatory frameworks. Food Res Int 2024; 186:114367. [PMID: 38729727 DOI: 10.1016/j.foodres.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Dry-cured hams contain abundant bioactive peptides with significant potential for the development of functional foods. However, the limited bioavailability of food-derived bioactive peptides has hindered their utilization in health food development. Moreover, there is insufficient regulatory information regarding bioactive peptides and related products globally. This review summarizes diverse bioactive peptides derived from dry-cured ham and by-products originating from various countries and regions. The bioactivity, preparation techniques, bioavailability, and metabolic stability of these bioactive peptides are described, as well as the legal and regulatory frameworks in various countries. The primary objectives of this review are to dig deeper into the functionality of dry-cured ham and provide theoretical support for the commercialization of bioactive peptides from food sources, especially the dry-cured ham.
Collapse
Affiliation(s)
- Yao-Yao Hu
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Xiao
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Gui-Cheng Zhou
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuan Chen
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Bo Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| | - Ji-Hui Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| |
Collapse
|
19
|
Yang J, Wang Z, Liang X, Wang W, Wang S. Multifunctional polypeptide-based hydrogel bio-adhesives with pro-healing activities and their working principles. Adv Colloid Interface Sci 2024; 327:103155. [PMID: 38631096 DOI: 10.1016/j.cis.2024.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Wound healing is a complex physiological process involving hemostasis, inflammation, proliferation, and tissue remodeling. Therefore, there is an urgent need for suitable wound dressings for effective and systematical wound management. Polypeptide-based hydrogel bio-adhesives offer unique advantages and are ideal candidates. However, comprehensive reviews on polypeptide-based hydrogel bio-adhesives for wound healing are still lacking. In this review, the physiological mechanisms and evaluation parameters of wound healing were first described in detail. Then, the working principles of hydrogel bio-adhesives were summarized. Recent advances made in multifunctional polypeptide-based hydrogel bio-adhesives involving gelatin, silk fibroin, fibrin, keratin, poly-γ-glutamic acid, ɛ-poly-lysine, serum albumin, and elastin with pro-healing activities in wound healing and tissue repair were reviewed. Finally, the current status, challenges, developments, and future trends of polypeptide-based hydrogel bio-adhesives were discussed, hoping that further developments would be stimulated to meet the growing needs of their clinical applications.
Collapse
Affiliation(s)
- Jiahao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Zhengyue Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P. R. China
| | - Xiaoben Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, P. R. China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR 999077, P. R. China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China.
| |
Collapse
|
20
|
Xie J, Chen S, Huan P, Wang S, Zhuang Y. A novel angiotensin I-converting enzyme inhibitory peptide from walnut (Juglans sigillata) protein hydrolysates and its evaluation in Ang II-induced HUVECs and hypertensive rats. Int J Biol Macromol 2024; 266:131152. [PMID: 38556230 DOI: 10.1016/j.ijbiomac.2024.131152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
This study aims to seek angiotensin-I-converting enzyme inhibitory (ACEi) peptides from walnut using different enzymatic hydrolysis, and further to validate the potent ACEi peptides identified and screened via peptidomics and in silico analysis against hypertension in spontaneously hypertensive rats (SHRs). Results showed that walnut protein hydrolysate (WPH) prepared by combination of alcalase and simulated gastrointestinal digestion exhibited high ACEi activity. WPH was separated via Sephadex-G25, and four peptides were identified, screened and verified based on their PeptideRanker score, structural characteristic and ACE inhibition. Interestingly, FDWLR showed the highest ACEi activity with IC50 value of 8.02 μg/mL, which might be related to its close affinity with ACE observed in molecular docking. Subsequently, high absorption and non-toxicity of FDWLR was predicted via in silico absorption, distribution, metabolism, excretion and toxicity. Furthermore, FDWLR exhibited positively vasoregulation in Ang II-induced human umbilical vein endothelial cells, and great blood pressure lowering effect in SHRs.
Collapse
Affiliation(s)
- Jinxiang Xie
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Shupeng Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Pengtao Huan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Shuguang Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| |
Collapse
|
21
|
Zheng K, Wu Y, Dai Q, Yan X, Liu Y, Sun D, Yu Z, Jiang S, Ma Q, Jiang W. Extraction, identification, and molecular mechanisms of α-glucosidase inhibitory peptides from defatted Antarctic krill (Euphausia superba) powder hydrolysates. Int J Biol Macromol 2024; 266:131126. [PMID: 38527682 DOI: 10.1016/j.ijbiomac.2024.131126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The objective of this study was to explore the potential of Antarctic krill-derived peptides as α-glucosidase inhibitors for the treatment of type 2 diabetes. The enzymolysis conditions of α-glucosidase inhibitory peptides were optimized by response surface methodology (RSM), a statistical method that efficiently determines optimal conditions with a limited number of experiments. Gel chromatography and LC-MS/MS techniques were utilized to determine the molecular weight (Mw) distribution and sequences of the hydrolysates. The identification and analysis of the mechanism behind α-glucosidase inhibitory peptides were conducted through conventional and computer-assisted techniques. The binding affinities between peptides and α-glucosidase were further validated using BLI (biolayer interferometry) assay. The results revealed that hydrolysates generated by neutrase exhibited the highest α-glucosidase inhibition rate. Optimal conditions for hydrolysis were determined to be an enzyme concentration of 6 × 103 U/g, hydrolysis time of 5.4 h, and hydrolysis temperature of 45 °C. Four peptides (LPFQR, PSFD, PSFDF, VPFPR) with strong binding affinities to the active site of α-glucosidase, primarily through hydrogen bonding and hydrophobic interactions. This study highlights the prospective utility of Antarctic krill-derived peptides in curtailing α-glucosidase activity, offering a theoretical foundation for the development of novel α-glucosidase inhibitors and related functional foods to enhance diabetes management.
Collapse
Affiliation(s)
- Kewei Zheng
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuanyuan Wu
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qingfei Dai
- Marine Science College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaojun Yan
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China; Marine Science College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu Liu
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Di Sun
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhongjie Yu
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuoqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qingbao Ma
- Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Wei Jiang
- Key Laboratory of Key Technical Factors in Zhejiang Seafood Health Hazards, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
22
|
Inbaraj BS, Lai YW, Chen BH. A comparative study on inhibition of lung cancer cells by nanoemulsion, nanoliposome, nanogold and their folic acid conjugates prepared with collagen peptides from Taiwan tilapia skin. Int J Biol Macromol 2024; 261:129722. [PMID: 38280696 DOI: 10.1016/j.ijbiomac.2024.129722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Valorization of fish processing waste to obtain value-added products such as collagen and bioactive peptides is a vital strategy to increase the economic value, reduce disposal problems, and prevent harmful impacts on both environment and health. This study aims to isolate two collagen peptides from Taiwan Tilapia skin and prepare 12 nanopeptides including nanoemulsion (NE), nanoliposome (NL), and nanogold (NG) without and with folic acid/chitosan (FA/CH) or FA ligand conjugation for comparison of their inhibition efficiency towards lung cancer cells A549 and normal lung cells MRC5. Acid-soluble collagen (yield, 21.58 %) was extracted using 0.5 M acetic acid and hydrolyzed to obtain two tilapia skin collagen peptides TSCP1 (482 Da) and TSCP2 (172 Da) respectively using 2.5 % and 12.5 % alcalase, with sample-to-water ratio at 1:30 (w/v), pH 8, temperature 50 °C, and hydrolysis time 6 h. Characterization of collagen peptides revealed the presence of type 1 collagen with a high amount of amino acids including glycine (32.6-33.1 %), alanine (13.6-14.0 %), proline (10.0-10.5 %), and hydroxyproline (7.3-7.6 %). TSCP1, TSCP2, and 12 nanopeptides showed a higher cytotoxicity towards A549 cells than MRC5 cells, with TSCP2 and its 6 nanopeptides exhibiting a lower IC50 compared to TSCP1 and its 6 nanopeptides. The mean particle size was 15.7, 33.6, and 16.0 nm respectively for TSCP2-NE, TSCP2-NL, and TSCP2-NG, but changed to 14.4, 36.3, and 17.9 nm following ligand conjugation with a shift in zeta potential from negative to positive for TSCP2-NE-FA/CH and TSCP2-NL-FA/CH. All nanopeptides were more effective than peptides in inhibiting the growth of A549 cells, with the lowest IC50 value being shown for TSCP2-NL-FA/CH (5.32 μg/mL), followed by TSCP2-NE-FA/CH (8.3 μg/mL), TSCP2-NE (22.4 μg/mL), TSCP2-NL (82.7 μg/mL), TSCP2-NG-FA (159.8 μg/mL), TSCP2-NG (234.0 μg/mL) and TSCP2 (359.7 μg/mL). Cell proportions of sub-G1, S, and G2/M phases increased dose-dependently, with a possible cell cycle arrest at G2/M phase. The proportion of necrotic cells was the highest for TSCP2, TSCP2-NE, TSCP2-NE-FA/CH, and TSCP2-NL, while that of late apoptotic cells dominated for TSCP2-NL-FA/CH, TSCP2-NG, and TSCP2-NG-FA. Similarly, TSCP2 and its 6 nanopeptides showed a dose-dependent rise in caspase-3, caspase-8, and caspase-9 activities for execution of apoptosis, with the ligand-conjugated nanopeptides being the most efficient, followed by nanopeptides and peptides. The outcome of this study demonstrated an effective strategy for valorization of Taiwan tilapia skin to obtain collagen peptides and their nanopeptides possessing anticancer activity and form a basis for in vivo study in the future.
Collapse
Affiliation(s)
| | - Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; Department of Nutrition, China Medical University, Taichung 404328, Taiwan.
| |
Collapse
|
23
|
Zhang X, Zhuang H, Wu S, Mao C, Dai Y, Yan H. Marine Bioactive Peptides: Anti-Photoaging Mechanisms and Potential Skin Protective Effects. Curr Issues Mol Biol 2024; 46:990-1009. [PMID: 38392181 PMCID: PMC10887644 DOI: 10.3390/cimb46020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/24/2024] Open
Abstract
Skin photoaging, resulting from prolonged exposure to ultraviolet radiation, is a form of exogenous aging that not only impacts the aesthetic aspect of the skin but also exhibits a strong correlation with the onset of skin cancer. Nonetheless, the safety profile of non-natural anti-photoaging medications and the underlying physiological alterations during the process of photoaging remain inadequately elucidated. Consequently, there exists a pressing necessity to devise more secure interventions involving anti-photoaging drugs. Multiple studies have demonstrated the noteworthy significance of marine biomolecules in addressing safety concerns related to anti-photoaging and safeguarding the skin. Notably, bioactive peptides have gained considerable attention in anti-photoaging research due to their capacity to mitigate the physiological alterations associated with photoaging, including oxidative stress; inflammatory response; the abnormal expression of matrix metalloproteinase, hyaluronidase, and elastase; and excessive melanin synthesis. This review provides a systematic description of the research progress on the anti-photoaging and skin protection mechanism of marine bioactive peptides. The focus is on the utilization of marine bioactive peptides as anti-photoaging agents, aiming to offer theoretical references for the development of novel anti-photoaging drugs and methodologies. Additionally, the future prospects of anti-aging drugs are discussed, providing an initial reference for further research in this field.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chen Mao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yaxi Dai
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
24
|
Wang P, Zhang Y, Hu J, Tan BK. Bioactive Peptides from Marine Organisms. Protein Pept Lett 2024; 31:569-585. [PMID: 39253911 DOI: 10.2174/0109298665329840240816062134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Marine organisms represent promising bioactive peptide resources with diverse biological activities such as antioxidant, antimicrobial, antihypertensive, anti-fatigue, and immunoregulatory activities. Despite many studies on marine bioactive peptides, there is a dearth of comprehensive review articles on the emerging trends that encompass the production techniques and the biological applications of marine bioactive peptides. In this review, we summarize the major research and findings related to marine bioactive peptides, encompassing aspects of their production, purification, biological activities, nanotechnology-based strategies, and their potential applications. Enzymatic hydrolysis currently stands out as the most commonly used method for producing marine bioactive peptides; the downstream purification process often includes a combination of multiple purification techniques. Due to their diverse biological properties, marine peptides have garnered considerable interest for industrial applications as active ingredients in the food, pharmaceutical, and cosmetics industries. Additionally, the incorporation of encapsulation strategies such as nano emulsion, nanoliposome, and microemulsions holds promise for significantly enhancing the bioavailability and bioactivity of marine peptides. Future research should also prioritize the systematic identification and validation of the potential health benefits of marine peptides by both in vitro and in vivo animal models, along with the conduct of human clinical trials.
Collapse
Affiliation(s)
- Peixin Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bee Kang Tan
- Department of Cardiovascular Sciences and Diabetes Research Centre, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
25
|
Zhou Y, Zhang Y, Hong H, Luo Y, Li B, Tan Y. Mastering the art of taming: Reducing bitterness in fish by-products derived peptides. Food Res Int 2023; 173:113241. [PMID: 37803554 DOI: 10.1016/j.foodres.2023.113241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
Processed fish by-products are valuable sources of peptides due to their high protein content. However, the bitterness of these peptides can limit their use. This review outlines the most recent advancements and information regarding the reduction of bitterness in fish by-products derived peptides. The sources and factors influencing bitterness, the transduction mechanisms involved, and strategies for reducing bitterness are highlighted. Bitterness in peptides is mainly influenced by the source, preparation method, presence of hydrophobic amino acid groups, binding to bitter receptors, and amino acid sequence. The most widely utilized techniques for eliminating bitterness or enhancing taste include the Maillard reaction, encapsulation, seperating undesirable components, and bitter-blockers. Finally, a summary of the current challenges and future prospects in the domain of fish by-products derived peptides is given. Despite some limitations, such as residual bitterness and limited industrial application, there is a need for further research to reduce the bitterness of fish by-products derived peptides. To achieve this goal, future studies should focus on the technology of fish by-products derived peptide bitterness diminishment, with the aim of producing high-quality products that meet consumer expectations.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Zhang
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Hui Hong
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
26
|
Wang W, Lin H, Shen W, Qin X, Gao J, Cao W, Zheng H, Chen Z, Zhang Z. Optimization of a Novel Tyrosinase Inhibitory Peptide from Atrina pectinata Mantle and Its Molecular Inhibitory Mechanism. Foods 2023; 12:3884. [PMID: 37959003 PMCID: PMC10649063 DOI: 10.3390/foods12213884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
In order to realize the multi-level utilization of marine shellfish resources and to develop the potential biological activity of processing by-products of Atrina pectinata, gelatin was extracted from the mantle and the potential whitening effect of its enzymatic peptides was explored. Taking tyrosinase inhibitory activity as the evaluation index, the enzyme hydrolysate process was optimized by response-surface methodology, and the optimal enzyme hydrolysate conditions were as follows: pH 5.82, 238 min enzyme hydrolysate time, and temperature of 54.5 °C. Under these conditions, the tyrosinase inhibition activity of Atrina pectinata mantle gelatin peptide (APGP) was 88.6% (IC50 of 3.268 ± 0.048 mg/mL). The peptides obtained from the identification were separated by ultrafiltration and LC-MS/MS, and then four new peptides were screened by molecular docking, among which the peptide Tyr-Tyr-Pro (YYP) had the strongest inhibitory effect on tyrosinase with an IC50 value of 1.764 ± 0.025 mM. The molecular-docking results indicated that hydrogen bonding is the main driving force for the interaction of the peptide YYP with tyrosinase. From the Lineweaver-Burk analysis, it could be concluded that YYP is inhibitory to tyrosinase and exhibits a mixed mechanism of inhibition. These results suggest that YYP could be widely used as a tyrosinase inhibitor in whitening foods and pharmaceuticals.
Collapse
Affiliation(s)
- Wen Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Weiqiang Shen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhishu Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (W.W.); (X.Q.); (J.G.); (W.C.); (H.Z.); (Z.C.)
| |
Collapse
|
27
|
González-Chavarría I, Roa FJ, Sandoval F, Muñoz-Flores C, Kappes T, Acosta J, Bertinat R, Altamirano C, Valenzuela A, Sánchez O, Fernández K, Toledo JR. Chitosan Microparticles Enhance the Intestinal Release and Immune Response of an Immune Stimulant Peptide in Oncorhynchus mykiss. Int J Mol Sci 2023; 24:14685. [PMID: 37834146 PMCID: PMC10572396 DOI: 10.3390/ijms241914685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
The aquaculture industry is constantly increasing its fish production to provide enough products to maintain fish consumption worldwide. However, the increased production generates susceptibility to infectious diseases that cause losses of millions of dollars to the industry. Conventional treatments are based on antibiotics and antivirals to reduce the incidence of pathogens, but they have disadvantages, such as antibiotic resistance generation, antibiotic residues in fish, and environmental damage. Instead, functional foods with active compounds, especially antimicrobial peptides that allow the generation of prophylaxis against infections, provide an interesting alternative, but protection against gastric degradation is challenging. In this study, we evaluated a new immunomodulatory recombinant peptide, CATH-FLA, which is encapsulated in chitosan microparticles to avoid gastric degradation. The microparticles were prepared using a spray drying method. The peptide release from the microparticles was evaluated at gastric and intestinal pH, both in vitro and in vivo. Finally, the biological activity of the formulation was evaluated by measuring the expression of il-1β, il-8, ifn-γ, Ifn-α, and mx1 in the head kidney and intestinal tissues of rainbow trout (Oncorhynchus mykiss). The results showed that the chitosan microparticles protect the CATH-FLA recombinant peptide from gastric degradation, allowing its release in the intestinal portion of rainbow trout. The microparticle-protected CATH-FLA recombinant peptide increased the expression of il-1β, il-8, ifn-γ, ifn-α, and mx1 in the head kidney and intestine and improved the antiprotease activity in rainbow trout. These results suggest that the chitosan microparticle/CATH-FLA recombinant peptide could be a potential prophylactic alternative to conventional antibiotics for the treatment of infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Iván González-Chavarría
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Francisco J. Roa
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Felipe Sandoval
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Carolina Muñoz-Flores
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Tomas Kappes
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile; (T.K.); (K.F.)
| | - Jannel Acosta
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Romina Bertinat
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Claudia Altamirano
- Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362803, Chile;
| | - Ariel Valenzuela
- Laboratory of Fish Culture and Aquatic Pathology, Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Oliberto Sánchez
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| | - Katherina Fernández
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile; (T.K.); (K.F.)
| | - Jorge R. Toledo
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (I.G.-C.); (F.J.R.); (F.S.); (C.M.-F.); (J.A.); (R.B.); (O.S.)
| |
Collapse
|
28
|
Hafez Ghoran S, Taktaz F, Sousa E, Fernandes C, Kijjoa A. Peptides from Marine-Derived Fungi: Chemistry and Biological Activities. Mar Drugs 2023; 21:510. [PMID: 37888445 PMCID: PMC10608792 DOI: 10.3390/md21100510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides and peptides with unique structures and diverse biological activities. The present review covers the peptides from marine-derived fungi reported from the literature published from January 1991 to June 2023, and various scientific databases, including Elsevier, ACS publications, Taylor and Francis, Wiley Online Library, MDPI, Springer, Thieme, Bentham, ProQuest, and the Marine Pharmacology website, are used for a literature search. This review focuses on chemical characteristics, sources, and biological and pharmacological activities of 366 marine fungal peptides belonging to various classes, such as linear, cyclic, and depsipeptides. Among 30 marine-derived fungal genera, isolated from marine macro-organisms such as marine algae, sponges, coral, and mangrove plants, as well as deep sea sediments, species of Aspergillus were found to produce the highest number of peptides (174 peptides), followed by Penicillium (23 peptides), Acremonium (22 peptides), Eurotium (18 peptides), Trichoderma (18 peptides), Simplicillium (17 peptides), and Beauveria (12 peptides). The cytotoxic activity against a broad spectrum of human cancer cell lines was the predominant biological activity of the reported marine peptides (32%), whereas antibacterial, antifungal, antiviral, anti-inflammatory, and various enzyme inhibition activities ranged from 7% to 20%. In the first part of this review, the chemistry of marine peptides is discussed and followed by their biological activity.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (E.S.); (C.F.)
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (E.S.); (C.F.)
| | - Anake Kijjoa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
29
|
Hou NT, Chen BH. Preparation of Nanoemulsions with Low-Molecular-Weight Collagen Peptides from Sturgeon Fish Skin and Evaluation of Anti-Diabetic and Wound-Healing Effects in Mice. Pharmaceutics 2023; 15:2304. [PMID: 37765272 PMCID: PMC10536673 DOI: 10.3390/pharmaceutics15092304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
This study aims to isolate collagen peptides from waste sturgeon fish skin, and prepare nanoemulsions for studying their anti-diabetic and wound-healing effects in mice. Collagen peptides were extracted and purified by acetic acid with sonication, followed by two-stage hydrolysis with 0.1% pepsin and 5% flavourzyme, and ultrafiltration with 500 Da molecular weight (MW) cut-off dialysis membrane. Animal experiments were performed with collagen peptides obtained by pepsin hydrolysis (37 kDa) and pepsin plus flavourzyme hydrolysis (728 Da) as well as their nanoemulsions prepared at two different doses (100 and 300 mg/kg/day). The mean particle size of low-MW and low-dose nanoemulsion, low-MW and high-dose nanoemulsion, high-MW and low-dose nanoemulsion and high-MW and high-dose nanoemulsion was, respectively, 16.9, 15.3, 28.1 and 24.2 nm, the polydispersity index was 0.198, 0.215, 0.231 and 0.222 and zeta potential was -61.2, -63.0, -41.4 and -42.7 mV. These nanoemulsions were highly stable over a 90-day storage period (4 °C and 25 °C) and heating at 40-100 °C (0.5-2 h). Experiments in mice revealed that the low-MW and high-dose nanoemulsion was the most effective in decreasing fasting blood glucose (46.75%) and increasing wound-healing area (95.53%). Collectively, the sturgeon fish skin collagen peptide-based nanoemulsion is promising for development into a health food or wound-healing drug.
Collapse
Affiliation(s)
- Nian-Ting Hou
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
30
|
Zhang Y, Liu L, Zhang M, Li S, Wu J, Sun Q, Ma S, Cai W. The Research Progress of Bioactive Peptides Derived from Traditional Natural Products in China. Molecules 2023; 28:6421. [PMID: 37687249 PMCID: PMC10489889 DOI: 10.3390/molecules28176421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Traditional natural products in China have a long history and a vast pharmacological repertoire that has garnered significant attention due to their safety and efficacy in disease prevention and treatment. Among the bioactive components of traditional natural products in China, bioactive peptides (BPs) are specific protein fragments that have beneficial effects on human health. Despite many of the traditional natural products in China ingredients being rich in protein, BPs have not received sufficient attention as a critical factor influencing overall therapeutic efficacy. Therefore, the purpose of this review is to provide a comprehensive summary of the current methodologies for the preparation, isolation, and identification of BPs from traditional natural products in China and to classify the functions of discovered BPs. Insights from this review are expected to facilitate the development of targeted drugs and functional foods derived from traditional natural products in China in the future.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Min Zhang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Shani Li
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Jini Wu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| | - Qiuju Sun
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Shengjun Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Z.); (Q.S.)
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; (L.L.); (M.Z.); (S.L.); (J.W.)
| |
Collapse
|
31
|
Ashaolu TJ, Le TD, Suttikhana I, Olatunji OJ, Farag MA. RETRACTED: Hemp bioactive peptides: Nutrition, functional properties and action mechanisms to maximize their nutraceutical applications and future prospects. Food Chem 2023; 414:135691. [PMID: 36808030 DOI: 10.1016/j.foodchem.2023.135691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). This review article has been retracted at the request of the Editor in Chief and authors. The article has been retracted as it duplicates several figures from a paper that had already appeared in Trends in Food Science & Technology, Volume 127, September 2022, Pages 303-318, without giving appropriate credit to this paper. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article falls short of the scientific quality requirement of the journal. The third author admits responsibility for the oversight and wishes to apologize to the readers and editors of Food Chemistry for the inconvenience. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
| | - Thanh-Do Le
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam
| | - Itthanan Suttikhana
- Department of Multifunctional Agriculture, Faculty of Agriculture and Technology, University of South Bohemia, České Budějovice, Czech Republic
| | - Opeyemi Joshua Olatunji
- African Genome Center, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
32
|
Zhu WY, Wang YM, Ge MX, Wu HW, Zheng SL, Zheng HY, Wang B. Production, identification, in silico analysis, and cytoprotection on H 2O 2-induced HUVECs of novel angiotensin-I-converting enzyme inhibitory peptides from Skipjack tuna roes. Front Nutr 2023; 10:1197382. [PMID: 37502715 PMCID: PMC10369073 DOI: 10.3389/fnut.2023.1197382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Background Exceeding 50% tuna catches are regarded as byproducts in the production of cans. Given the high amount of tuna byproducts and their environmental effects induced by disposal and elimination, the valorization of nutritional ingredients from these by-products receives increasing attention. Objective This study was to identify the angiotensin-I-converting enzyme (ACE) inhibitory (ACEi) peptides from roe hydrolysate of Skipjack tuna (Katsuwonus pelamis) and evaluate their protection functions on H2O2-induced human umbilical vein endothelial cells (HUVECs). Methods Protein hydrolysate of tuna roes with high ACEi activity was prepared using flavourzyme, and ACEi peptides were isolated from the roe hydrolysate using ultrafiltration and chromatography methods and identified by ESI/MS and Procise Protein/Peptide Sequencer for the N-terminal amino acid sequence. The activity and mechanism of action of isolated ACEi peptides were investigated through molecular docking and cellular experiments. Results Four ACEi peptides were identified as WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12), respectively. The affinity of WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) with ACE was -8.590, -9.703, -9.325, and -8.036 kcal/mol, respectively. The molecular docking experiment elucidated that the significant ACEi ability of WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) was mostly owed to their tight bond with ACE's active sites/pockets via hydrophobic interaction, electrostatic force and hydrogen bonding. Additionally, WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) could dramatically elevate the Nitric Oxide (NO) production and bring down endothelin-1 (ET-1) secretion in HUVECs, but also abolish the opposite impact of norepinephrine (0.5 μM) on the production of NO and ET-1. Moreover, WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) could lower the oxidative damage and apoptosis rate of H2O2-induced HUVECs, and the mechanism indicated that they could increase the content of NO and activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to decrease the generation of reactive oxygen species (ROS) and malondialdehyde (MDA). Conclusion WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) are beneficial ingredients for healthy products ameliorating hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Wang-Yu Zhu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhejiang Province, Zhoushan, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ming-Xue Ge
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hua-Wei Wu
- Ningbo Today Food Co., Ltd., Ningbo, China
| | - Shuo-Lei Zheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Huai-Yu Zheng
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhejiang Province, Zhoushan, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
33
|
Costa L, Sousa E, Fernandes C. Cyclic Peptides in Pipeline: What Future for These Great Molecules? Pharmaceuticals (Basel) 2023; 16:996. [PMID: 37513908 PMCID: PMC10386233 DOI: 10.3390/ph16070996] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclic peptides are molecules that are already used as drugs in therapies approved for various pharmacological activities, for example, as antibiotics, antifungals, anticancer, and immunosuppressants. Interest in these molecules has been growing due to the improved pharmacokinetic and pharmacodynamic properties of the cyclic structure over linear peptides and by the evolution of chemical synthesis, computational, and in vitro methods. To date, 53 cyclic peptides have been approved by different regulatory authorities, and many others are in clinical trials for a wide diversity of conditions. In this review, the potential of cyclic peptides is presented, and general aspects of their synthesis and development are discussed. Furthermore, an overview of already approved cyclic peptides is also given, and the cyclic peptides in clinical trials are summarized.
Collapse
Affiliation(s)
- Lia Costa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| |
Collapse
|
34
|
Zhao X, Cai B, Chen H, Wan P, Chen D, Ye Z, Duan A, Chen X, Sun H, Pan J. Tuna trimmings (Thunnas albacares) hydrolysate alleviates immune stress and intestinal mucosal injury during chemotherapy on mice and identification of potentially active peptides. Curr Res Food Sci 2023; 7:100547. [PMID: 37522134 PMCID: PMC10371818 DOI: 10.1016/j.crfs.2023.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
In this study, Tuna trimmings (Thunnas albacares) protein hydrolysate (TPA) was produced by alcalase. The anti-tumor synergistic effect and intestinal mucosa protective effect of TPA on S180 tumor-bearing mice treated with 5-fluorouracil (5-FU) chemotherapy were investigated. The results showed that TPA can enhance the anti-tumor effect of 5-FU chemotherapy, as evident by a significant reduction in tumor volume observed in the medium and high dose TPA+5-FU groups compared to the 5-FU group (p < 0.001). Moreover, TPA significantly elevated the content of total protein and albumin in all TPA dose groups (p < 0.01, p < 0.001), indicating its ability to regulate the nutritional status of the mice. Furthermore, histopathological studies revealed a significant increase in the height of small intestinal villi, crypt depth, mucosal thickness, and villi area in the TPA+5-FU groups compared to the 5-FU group (p < 0.05), suggesting that TPA has a protective effect on the intestinal mucosa. Amino acid analysis revealed that TPA had a total amino acid content of 66.30 g/100 g, with essential amino acids accounting for 30.36 g/100 g. Peptide molecular weight distribution analysis of TPA indicated that peptides ranging from 0.25 to 1 kDa constituted 64.54%. LC-MS/MS analysis identified 109 peptide sequences, which were predicted to possess anti-cancer and anti-inflammatory activities through database prediction. Therefore, TPA has the potential to enhance the antitumor effects of 5-FU, mitigate immune depression and intestinal mucosal damage induced by 5-FU. Thus, TPA could be serve as an adjuvant nutritional support for malnourished patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Xiangtan Zhao
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Bingna Cai
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou, 511458, China
| | - Hua Chen
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou, 511458, China
| | - Peng Wan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou, 511458, China
| | - Deke Chen
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou, 511458, China
| | - Ziqing Ye
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Ailing Duan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Xin Chen
- Foshan University, School of Environment and Chemical Engineering, Foshan, 528000, China
| | - Huili Sun
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Jianyu Pan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| |
Collapse
|
35
|
Choi JM, Vuppala S, Park MJ, Kim J, Jegal ME, Han YS, Kim YJ, Jang J, Jeong MH, Joo BS. Computer simulation approach to the identification of visfatin-derived angiogenic peptides. PLoS One 2023; 18:e0287577. [PMID: 37384629 PMCID: PMC10309634 DOI: 10.1371/journal.pone.0287577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Angiogenesis plays an essential role in various normal physiological processes, such as embryogenesis, tissue repair, and skin regeneration. Visfatin is a 52 kDa adipokine secreted by various tissues including adipocytes. It stimulates the expression of vascular endothelial growth factor (VEGF) and promotes angiogenesis. However, there are several issues in developing full-length visfatin as a therapeutic drug due to its high molecular weight. Therefore, the purpose of this study was to develop peptides, based on the active site of visfatin, with similar or superior angiogenic activity using computer simulation techniques.Initially, the active site domain (residues 181∼390) of visfatin was first truncated into small peptides using the overlapping technique. Subsequently, the 114 truncated small peptides were then subjected to molecular docking analysis using two docking programs (HADDOCK and GalaxyPepDock) to generate small peptides with the highest affinity for visfatin. Furthermore, molecular dynamics simulations (MD) were conducted to investigate the stability of the protein-ligand complexes by computing root mean square deviation (RSMD) and root mean square fluctuation(RMSF) plots for the visfatin-peptide complexes. Finally, peptides with the highest affinity were examined for angiogenic activities, such as cell migration, invasion, and tubule formation in human umbilical vein endothelial cells (HUVECs). Through the docking analysis of the 114 truncated peptides, we screened nine peptides with a high affinity for visfatin. Of these, we discovered two peptides (peptide-1: LEYKLHDFGY and peptide-2: EYKLHDFGYRGV) with the highest affinity for visfatin. In an in vitrostudy, these two peptides showed superior angiogenic activity compared to visfatin itself and stimulated mRNA expressions of visfatin and VEGF-A. These results show that the peptides generated by the protein-peptide docking simulation have a more efficient angiogenic activity than the original visfatin.
Collapse
Affiliation(s)
- Ji Myung Choi
- Lab-to-Medi CRO Inc., Seoul, Republic of Korea
- Department of Microbiology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Srimai Vuppala
- Department of Nanoenergy Engineering, Pusan National University, Busan, Republic of Korea
| | - Min Jung Park
- Lab-to-Medi CRO Inc., Seoul, Republic of Korea
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Jaeyoung Kim
- Department of Nanoenergy Engineering, Pusan National University, Busan, Republic of Korea
| | - Myeong-Eun Jegal
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
| | - Yu-Seon Han
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
| | - Yung-Jin Kim
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Joonkyung Jang
- Department of Nanoenergy Engineering, Pusan National University, Busan, Republic of Korea
| | - Min-Ho Jeong
- Department of Microbiology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Bo Sun Joo
- Lab-to-Medi CRO Inc., Seoul, Republic of Korea
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| |
Collapse
|
36
|
Yu D, Cui S, Chen L, Zheng S, Zhao D, Yin X, Yang F, Chen J. Marine-Derived Bioactive Peptides Self-Assembled Multifunctional Materials: Antioxidant and Wound Healing. Antioxidants (Basel) 2023; 12:1190. [PMID: 37371920 DOI: 10.3390/antiox12061190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptide self-assembling materials have received significant attention from researchers in recent years, emerging as a popular field in biological, environmental, medical, and other new materials studies. In this study, we utilized controllable enzymatic hydrolysis technology (animal proteases) to obtain supramolecular peptide self-assembling materials (CAPs) from the Pacific oyster (Crassostrea gigas). We conducted physicochemical analyses to explore the pro-healing mechanisms of CAPs on skin wounds in both in vitro and in vivo experiments through a topical application. The results demonstrated that CAPs exhibit a pH-responsive behavior for self-assembly and consist of peptides ranging from 550 to 2300 Da in molecular weight, with peptide chain lengths of mainly 11-16 amino acids. In vitro experiments indicated that CAPs display a procoagulant effect, free radical scavenging activity, and promote the proliferation of HaCaTs (112.74% and 127.61%). Moreover, our in vivo experiments demonstrated that CAPs possess the ability to mitigate inflammation, boost fibroblast proliferation, and promote revascularization, which accelerates the epithelialization process. Consequently, a balanced collagen I/III ratio in the repaired tissue and the promotion of hair follicle regeneration were observed. With these remarkable findings, CAPs can be regarded as a natural and secure treatment option with high efficacy for skin wound healing. The potential of CAPs to be further developed for traceless skin wound healing is an exciting area for future research and development.
Collapse
Affiliation(s)
- Dingyi Yu
- Marine College, Shandong University, Weihai 264209, China
| | - Shenghao Cui
- Marine College, Shandong University, Weihai 264209, China
| | - Liqi Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Shuang Zheng
- Marine College, Shandong University, Weihai 264209, China
| | - Di Zhao
- Marine College, Shandong University, Weihai 264209, China
| | - Xinyu Yin
- Marine College, Shandong University, Weihai 264209, China
| | - Faming Yang
- Marine College, Shandong University, Weihai 264209, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China
| |
Collapse
|
37
|
Rodríguez-Jiménez JMDJ, Montalvo-González E, López-García UM, Barros-Castillo JC, Ragazzo-Sánchez JA, García-Magaña MDL. Guamara and Cocuixtle: Source of Proteases for the Transformation of Shrimp By-Products into Hydrolysates with Potential Application. BIOLOGY 2023; 12:biology12050753. [PMID: 37237565 DOI: 10.3390/biology12050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Since the fruits of Bromelia pinguin and Bromelia karatas are rich in proteases, the aim of this research was to optimize the hydrolysis process of cooked white shrimp by-products due to the effect of these proteases. A robust Taguchi L16' design was used to optimize the hydrolysis process. Similarly, the amino acid profile by GC-MS and antioxidant capacity (ABTS and FRAP) were determined. The optimal conditions for hydrolysis of cooked shrimp by-products were pH 8.0, 30 °C, 0.5 h, 1 g of substrate and 100 µg/mL of B. karatas, pH 7.5, 40 °C, 0.5 h, 0.5 g substrate and 100 µg/mL enzyme extract from B. pinguin and pH 7.0, 37 °C, 1 h, 1.5 g substrate and 100 µg/mL enzyme bromelain. The optimized hydrolyzates of B. karatas B. pinguin and bromelain had 8 essential amino acids in their composition. The evaluation of the antioxidant capacity of the hydrolyzates under optimal conditions showed more than 80% inhibition of in ABTS radical, B. karatas hydrolyzates had better higher ferric ion reduction capacity with 10.09 ± 0.02 mM TE/mL. Finally, the use of proteolytic extracts from B. pinguin and B. karatas to optimize hydrolysis process allowed obtaining hydrolyzates of cooked shrimp by-products with potential antioxidant capacity.
Collapse
Affiliation(s)
- Juan Miguel de Jesús Rodríguez-Jiménez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Ulises Miguel López-García
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Julio César Barros-Castillo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| |
Collapse
|
38
|
Chi CF, Wang B. Marine Bioactive Peptides-Structure, Function and Application. Mar Drugs 2023; 21:md21050275. [PMID: 37233469 DOI: 10.3390/md21050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Marine organisms live in harsh marine habitats, causing them to have significantly different and more diverse proteins than those of terrestrial organisms [...].
Collapse
Affiliation(s)
- Chang-Feng Chi
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
39
|
Protective Effect of Peptides from Pinctada Martensii Meat on the H 2O 2-Induced Oxidative Injured HepG2 Cells. Antioxidants (Basel) 2023; 12:antiox12020535. [PMID: 36830093 PMCID: PMC9952140 DOI: 10.3390/antiox12020535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Pinctada martensii is a major marine pearl cultured species in southern China, and its meat is rich in protein, which is an excellent material for the preparation of bioactive peptides. In this study, the peptides from Pinctada martensii meat were prepared by simulated gastrointestinal hydrolysis, and after multistep purification, the structures of the peptides were identified, followed by the solid-phase synthesis of the potential antioxidant peptides. Finally, the antioxidant activities of the peptides were verified using HepG2 cells, whose oxidative stress was induced by hydrogen peroxide (H2O2). It was shown that the antioxidant peptide (S4) obtained from Pinctada martensii meat could significantly increase the cell viability of HepG2 cells. S4 could also scavenge reactive oxygen species (ROS) and reduce the lactate dehydrogenase (LDH) level. In addition, it could enhance the production of glutathione (GSH) and catalase (CAT) in HepG2 cells, as well as the expression of key genes in the Nrf2 signaling pathway. Three novel antioxidant peptides, arginine-leucine (RL), arginine-glycine-leucine (RGL), and proline-arginine (PR), were also identified. In conclusion, peptides from Pinctada martensii meat and three synthetic peptides (RGL, RL, PR) showed antioxidant activity and could have the potential to be used as antioxidant candidates in functional foods.
Collapse
|
40
|
Fernandes C, Ribeiro R, Pinto M, Kijjoa A. Absolute Stereochemistry Determination of Bioactive Marine-Derived Cyclopeptides by Liquid Chromatography Methods: An Update Review (2018-2022). Molecules 2023; 28:615. [PMID: 36677673 PMCID: PMC9867211 DOI: 10.3390/molecules28020615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cyclopeptides are considered as one of the most important classes of compounds derived from marine sources, due to their structural diversity and a myriad of their biological and pharmacological activities. Since marine-derived cyclopeptides consist of different amino acids, many of which are non-proteinogenic, they possess various stereogenic centers. In this respect, the structure elucidation of new molecular scaffolds obtained from natural sources, including marine-derived cyclopeptides, can become a very challenging task. The determination of the absolute configurations of the amino acid residues is accomplished, in most cases, by performing acidic hydrolysis, followed by analyses by liquid chromatography (LC). In a continuation with the authors' previous publication, and to analyze the current trends, the present review covers recently published works (from January 2018 to November 2022) regarding new cyclopeptides from marine organisms, with a special focus on their biological/pharmacological activities and the absolute stereochemical assignment of the amino acid residues. Ninety-one unreported marine-derived cyclopeptides were identified during this period, most of which displayed anticancer or antimicrobial activities. Marfey's method, which involves LC, was found to be the most frequently used for this purpose.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Ricardo Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
41
|
Villaró S, Jiménez-Márquez S, Musari E, Bermejo R, Lafarga T. Production of enzymatic hydrolysates with in vitro antioxidant, antihypertensive, and antidiabetic properties from proteins derived from Arthrospira platensis. Food Res Int 2023; 163:112270. [PMID: 36596181 DOI: 10.1016/j.foodres.2022.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
The microalga Arthrospira platensis BEA 005B was produced using 80 m2 (9 m3) raceway photobioreactors achieving a biomass productivity of 28.2 g·m-2·day-1 when operating the reactors in semi-continuous mode (0.33 day-1). The produced biomass was rich in proteins (58.1 g·100 g-1) and carbohydrates (25.6 g·100 g-1); the content of phycocyanins and allophycocyanins was 115.4 and 36.9 mg·g-1, respectively. Ultrasounds and high-pressure homogenisation allowed recovering approximately 90% of the initial protein content of the biomass; however, the energetic requirements of the former (∼100 kJ·kg-1) were significantly lower than those of high-pressure homogenisation (∼200 kJ·kg-1). An in silico analysis revealed that papain and ficin would allow releasing a large number of bioactive peptides with antioxidant, antihypertensive (ACE-I and renin), and antidiabetic (DPP-IV, α-amylase, and α-glucosidase) properties. Both were assessed in vitro together with Alcalase and pepsin leading to the generation of enzymatic hydrolysates with in vitro bioactivity.
Collapse
Affiliation(s)
- Silvia Villaró
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almeria-CIEMAT, 04120 Almeria, Spain
| | | | - Evan Musari
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Ruperto Bermejo
- Department of Physical and Analytical Chemistry, University of Jaen, 23700 Linares, Spain
| | - Tomás Lafarga
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almeria-CIEMAT, 04120 Almeria, Spain.
| |
Collapse
|
42
|
Li J, Wang S, Wang H, Cao W, Lin H, Qin X, Chen Z, Gao J, Wu L, Zheng H. Effect of ultrasonic power on the stability of low-molecular-weight oyster peptides functional-nutrition W 1/O/W 2 double emulsion. ULTRASONICS SONOCHEMISTRY 2023; 92:106282. [PMID: 36584561 PMCID: PMC9830313 DOI: 10.1016/j.ultsonch.2022.106282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Ultrasonic-assisted treatment is an eco-friendly and cost-effective emulsification method, and the acoustic cavitation effect produced by ultrasonic equipment is conducive to the formation of stable emulsion. However, its effect on the underlying stability of low-molecular-weight oyster peptides (LOPs) functional-nutrition W1/O/W2 double emulsion has not been reported. The effects of different ultrasonic power (50, 75, 100, 125, and 150 W) on the stability of double emulsions and the ability to mask the fishy odor of LOPs were investigated. Low ultrasonic power (50 W and 75 W) treatment failed to form a well-stabilized double emulsion, and excessive ultrasound treatment (150 W) destroyed its structure. At an ultrasonic power of 125 W, smaller particle-sized double emulsion was formed with more uniform distribution, more whiteness, and a lower viscosity coefficient. Meanwhile, the cavitation effect generated by 125 W ultrasonic power improved storage, and oxidative stabilities, emulsifying properties of double emulsion by reducing the droplet size and improved sensorial acceptability by masking the undesirable flavor of LOPs. The structure of the double emulsion was further confirmed by optical microscopy and confocal laser scanning microscopy. The ultrasonic-assisted treatment is of potential value for the industrial application of double emulsion in functional-nutrition foods.
Collapse
Affiliation(s)
- Jinzhen Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuo Wang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hua Wang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wenhong Cao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haisheng Lin
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoming Qin
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongqin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jialong Gao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Leiyan Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Jiangxi 330045, China.
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
43
|
Mardani M, Badakné K, Farmani J, Aluko RE. Antioxidant peptides: Overview of production, properties, and applications in food systems. Compr Rev Food Sci Food Saf 2023; 22:46-106. [PMID: 36370116 DOI: 10.1111/1541-4337.13061] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022]
Abstract
In recent years, several studies have reported the beneficial effects of antioxidant peptides in delaying oxidation reactions. Thus, a growing number of food proteins have been investigated as suitable sources for obtaining these antioxidant peptides. In this study, some of the most critical developments in the discovery of peptidic antioxidants are discussed. Initially, the primary methods to release, purify, and identify these antioxidant peptides from various food-derived sources are reviewed. Then, computer-based screening methods of the available peptides are summarized, and methods to interpret their structure-activity relationship are illustrated. Finally, approaches to the large-scale production of these bioactive peptides are described. In addition, the applications of these antioxidants in food systems are discussed, and gaps, future challenges, and opportunities in this field are highlighted. In conclusion, various food items can be considered promising sources to obtain these novel antioxidant peptides, which present various opportunities for food applications in addition to health promotion. The lack of in-depth data on the link between the structure and activity of these antioxidants, which is critical for the prediction of possible bioactive amino acid sequences and their potency in food systems and in vivo conditions (rather than in vitro systems), requires further attention. Consequently, future collaborative research activities between the industry and academia are required to realize the commercialization objectives of these novel antioxidant peptides.
Collapse
Affiliation(s)
- Mohsen Mardani
- Department of Cereal and Industrial Plant Processing, Faculty of Food Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Katalin Badakné
- Department of Cereal and Industrial Plant Processing, Faculty of Food Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
44
|
Wei M, Qiu H, Zhou J, Yang C, Chen Y, You L. The Anti-Photoaging Activity of Peptides from Pinctada martensii Meat. Mar Drugs 2022; 20:md20120770. [PMID: 36547917 PMCID: PMC9788596 DOI: 10.3390/md20120770] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Long-term exposure to ultraviolet-B (UVB) can cause photoaging. Peptides from Pinctada martensii meat have been shown to have anti-photoaging activities, but their mechanism of action is rarely studied. In this study, Pinctada martensii meat hydrolysates (PME) were prepared by digestive enzymes and then separated by ultrafiltration and Sephadex G-25 gel filtration chromatography to obtain a purified fraction (G2). The fraction G2 was identified by ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS), and peptide sequences were synthesized by solid-phase synthesis. The mechanism of anti-photoaging activities was investigated using a human immortalised epidermal (HaCaT) cell model. Results showed that peptides from Pinctada martensii meat increased UVB-induced cell viability and reduced the contents of interstitial collagenase (MMP-1) and matrix lysing enzyme (MMP-3) in HaCaT cells. Furthermore, the fraction of G2 significantly downregulated the expression of p38, EKR, JNK, MMP-1, and MMP-3 in HaCaT cells. The peptide sequences Phe-His (FH), Ala-Leu (AL), Met-Tyr (MY), Ala-Gly-Phe (AGF), and Ile-Tyr-Pro (IYP) were identified and synthesized. Besides, FH reduced the contents of MMP-1 and MMP-3 in HaCaT cells, combining them effectively in molecular docking analysis. Thus, peptides from Pinctada martensii meat showed anti-photoaging activities and might have the potential to be used as an anti-photoaging agent in functional foods.
Collapse
Affiliation(s)
- Mengfen Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China
| | - Huamai Qiu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jie Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China
| | - Chenghao Yang
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Yifan Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Correspondence:
| |
Collapse
|
45
|
Wang L, Cui YR, Wang K, Fu X, Xu J, Gao X, Jeon YJ. Anti-inflammatory effect of fucoidan isolated from fermented Sargassum fusiforme in in vitro and in vivo models. Int J Biol Macromol 2022; 222:2065-2071. [PMID: 36208806 DOI: 10.1016/j.ijbiomac.2022.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
Abstract
Fucoidans possess potent anti-inflammatory effects. In the present study, the anti-inflammatory effect of the fucoidan (SFF-PS-F5) isolated from fermented Sargassum fusiforme was evaluated in vitro in RAW 264.7 macrophages and in vivo in zebrafish. The in vitro test results demonstrate that SFF-PS-F5 effectively inhibited nitric oxide (NO) production induced by lipopolysaccharides (LPS) in RAW 264.7 cells. SFF-PS-F5 effectively and concentration-dependently improved the viability of LPS-stimulated RAW 264.7 cells, and reduced the level of prostaglandin E2, interleukin-1 beta, tumor necrosis factor-alpha, and interleukin-6. Further results display that these effects were actioned by suppressing the expression of inducible nitric oxide synthase and cyclooxygenase-2 via regulating the nuclear factor kappa-B signaling pathway. The in vivo test results indicate that SFF-PS-F5 remarkably reduced reactive oxygen species, cell death, and NO levels in LPS-treated zebrafish. These results indicate that SFF-PS-F5 could inhibit both in vitro and in vivo inflammatory responses and suggest it is a functional ingredient in the functional food and cosmetic industries.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yong Ri Cui
- Kangmaichen Biotechnology Co., Ltd., Qingdao 266114, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
46
|
Peptidomics as a tool to analyze endogenous peptides in milk and milk-related peptides. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
47
|
Bioactive Peptides from Skipjack Tuna Cardiac Arterial Bulbs: Preparation, Identification, Antioxidant Activity, and Stability against Thermal, pH, and Simulated Gastrointestinal Digestion Treatments. Mar Drugs 2022; 20:md20100626. [PMID: 36286450 PMCID: PMC9604775 DOI: 10.3390/md20100626] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/04/2022] Open
Abstract
Cardiac arterial bulbs of Skipjack tuna (Katsuwonus pelamis) are rich in elastin, and its hydrolysates are high quality raw materials for daily cosmetics. In order to effectively utilizing Skipjack tuna processing byproducts-cardiac arterial bulbs and to prepare peptides with high antioxidant activity, pepsin was selected from six proteases for hydrolyzing proteins, and the best hydrolysis conditions of pepsin were optimized. Using ultrafiltration and chromatographic methods, eleven antioxidant peptides were purified from protein hydrolysate of tuna cardiac arterial bulbs. Four tripeptides (QGD, PKK, GPQ and GLN) were identified as well as seven pentapeptides (GEQSN, GEEGD, YEGGD, GEGER, GEGQR, GPGLM and GDRGD). Three out of them, namely the tripeptide PKK and the pentapeptides YEGGD and GPGLM exhibited the highest radical scavenging activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and superoxide anion assays. They also showed to protect plasmid DNA and HepG2 cells against H2O2-induced oxidative stress. Furthermore, they exhibited high stability under temperature ranged from 20-100 °C, pH values ranged from 3-11, and they simulated gastrointestinal digestion for 240 min. These results suggest that the prepared eleven antioxidant peptides from cardiac arterial bulbs, especially the three peptides PKK, YEGGD, and GPGLM, could serve as promising candidates in health-promoting products due to their high antioxidant activity and their stability.
Collapse
|
48
|
Ashokkumar V, Jayashree S, Kumar G, Aruna Sharmili S, Gopal M, Dharmaraj S, Chen WH, Kothari R, Manasa I, Hoon Park J, Shruthi S, Ngamcharussrivichai C. Recent developments in biorefining of macroalgae metabolites and their industrial applications - A circular economy approach. BIORESOURCE TECHNOLOGY 2022; 359:127235. [PMID: 35487449 DOI: 10.1016/j.biortech.2022.127235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The macroalgal industry is expanding, and the quest for novel ingredients to improve and develop innovative products is crucial. Consumers are increasingly looking for natural-derived ingredients in cosmetic products that have been proven to be effective and safe. Macroalgae-derived compounds have growing popularity in skincare products as they are natural, abundant, biocompatible, and renewable. Due to their high biomass yields, rapid growth rates, and cultivation process, they are gaining widespread recognition as potentially sustainable resources better suited for biorefinery processes. This review demonstrates macroalgae metabolites and their industrial applications in moisturizers, anti-aging, skin whitening, hair, and oral care products. These chemicals can be obtained in combination with energy products to increase the value of macroalgae from an industrial perspective with a zero-waste approach by linking multiple refineries. The key challenges, bottlenecks, and future perspectives in the operation and outlook of macroalgal biorefineries were also discussed.
Collapse
Affiliation(s)
- Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum wan, Bangkok 10330, Thailand.
| | - Shanmugam Jayashree
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai 600086, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - S Aruna Sharmili
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai 600086, India
| | - Mayakkannan Gopal
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya Suchani, (Bagla) Samba, J&K 181143, India
| | - Isukapatla Manasa
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai 600086, India
| | - Jeong Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, South Korea
| | | | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum wan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
49
|
Oral delivery of marine shellfish supramolecule peptides for skin wound healing. Colloids Surf B Biointerfaces 2022; 216:112592. [PMID: 35636327 DOI: 10.1016/j.colsurfb.2022.112592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 01/17/2023]
Abstract
Oral administration of peptides/proteins with superior efficacy and fewer side effects is the most advantageous route of administration. In this study, we utilized controllable enzymatic (animal protease) hydrolysis technology to prepare active polypeptide self-assembling supramolecular (APs) from marine shellfish meat to explore the functional mechanism of APs in in vitro and in vivo (oral administration) experiments . In vitro experiments revealed that APs with self-assembly tendency had multifunctional activities. In vivo experiments indicated that oral administration of naturally safe APs could inhibited inflammation, promoted fibroblast proliferation and revascularization, and accelerated the epithelialization process, thus favoring a balanced repair tissue collagen I/III ratio and the promotion of hair follicle regeneration to achieve scarless healing, which was also relevant to "skin-gut" axis. These results showed that APs, as demonstrated in this study, promoted dermal wound healing in mice and may be developed and used to treat skin wounds.
Collapse
|
50
|
Li J, Yang L, Li G, Liu S, Cao W, Lin H, Chen Z, Qin X, Huang J, Zheng H. Low-molecular-weight oyster peptides ameliorate cyclophosphamide-chemotherapy side-effects in Lewis lung cancer mice by mitigating gut microbiota dysbiosis and immunosuppression. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|