1
|
Santos IL, Amante ER, da Cruz Rodrigues AM, da Silva LHM. Amazonian natural products used as functional food and medicine. Food Chem 2025; 478:143656. [PMID: 40068256 DOI: 10.1016/j.foodchem.2025.143656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 04/06/2025]
Abstract
The use of natural products for therapeutic purposes is a common practice since the beginning of time, as it was already known that they contained biological components beneficial to health, which also justifies the growing demand for products made from Amazonian raw materials. The accessibility to information and an aggressive marketing favored the consumption of these products globally. However, the legislation in different countries on how to obtain plant raw materials, process them and subsequently sell them can leave gaps and doubts leading the consumer to make mistakes. This may interfere with an efficient inspection by official control agencies, also leading to inappropriate consumption. This exploratory study investigated chemical properties of natural products from Amazonian sources sold on the Web in several countries, as well as the prevailing norms, in order to contribute to the safety of consumption for this type of products.
Collapse
Affiliation(s)
- Ivone Lima Santos
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil
| | - Edna Regina Amante
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil..
| | - Antonio Manoel da Cruz Rodrigues
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil
| | - Luiza Helena Meller da Silva
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil
| |
Collapse
|
2
|
Rios-Mera JD, Arteaga H, Ruiz R, Saldaña E, Tello F. Amazon Fruits as Healthy Ingredients in Muscle Food Products: A Review. Foods 2024; 13:2110. [PMID: 38998616 PMCID: PMC11241114 DOI: 10.3390/foods13132110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
When looking for new ingredients to process red meat, poultry, and fish products, it is essential to consider using vegetable resources that can replace traditional ingredients such as animal fat and synthetic antioxidants that may harm health. The Amazon, home to hundreds of edible fruit species, can be a viable alternative for new ingredients in processing muscle food products. These fruits have gained interest for their use as natural antioxidants, fat replacers, colorants, and extenders. Some of the fruits that have been tested include açai, guarana, annatto, cocoa bean shell, sacha inchi oil, and peach palm. Studies have shown that these fruits can be used as dehydrated products or as liquid or powder extracts in doses between 250 and 500 mg/kg as antioxidants. Fat replacers can be added directly as flour or used to prepare emulsion gels, reducing up to 50% of animal fat without any detrimental effects. However, oxidation problems of the gels suggest that further investigation is needed by incorporating adequate antioxidant levels. In low doses, Amazon fruit byproducts such as colorants and extenders have been shown to have positive technological and sensory effects on muscle food products. While evidence suggests that these fruits have beneficial health effects, their in vitro and in vivo nutritional effects should be evaluated in muscle food products containing these fruits. This evaluation needs to be intended to identify safe doses, delay the formation of key oxidation compounds that directly affect health, and investigate other factors related to health.
Collapse
Affiliation(s)
- Juan D. Rios-Mera
- Instituto de Investigación de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Jaén, Jaén 06800, Peru; (J.D.R.-M.); (H.A.)
| | - Hubert Arteaga
- Instituto de Investigación de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Jaén, Jaén 06800, Peru; (J.D.R.-M.); (H.A.)
| | - Roger Ruiz
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru;
| | - Erick Saldaña
- Sensory Analysis and Consumer Study Group, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Moquegua 18001, Peru;
| | - Fernando Tello
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru;
| |
Collapse
|
3
|
Schuh L, Salgado LA, Piau TB, Silveira AP, Leal C, Romera LF, Radicchi MA, Santos MKMS, Falcao L, Grisolia CK, Gris EF, Muehlmann LA, Báo SN, Mello VC. Integrating Natural Deep Eutectic Solvents into Nanostructured Lipid Carriers: An Industrial Look. Pharmaceuticals (Basel) 2024; 17:855. [PMID: 39065706 PMCID: PMC11280234 DOI: 10.3390/ph17070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The industries are searching for greener alternatives for their productions due to the rising concern about the environment and creation of waste and by-products without industrial utility for that specific line of products. This investigation describes the development of two stable nanostructured lipid carriers (NLCs): one is the formulation of a standard NLC, and the other one is the same NLC formulation associated with a natural deep eutectic solvent (NaDES). The research presents the formulation paths of the NLCs through completeness, which encompass dynamic light scattering (DLS), zeta potential tests, and pH. Transmission electron microscopy (TEM) and confocal microscopy were performed to clarify the morphology. Cytotoxicity tests with zebrafish were realized, and the results are complementary to the in vitro outcomes reached with fibroblast L132 tests by the MTT technique and the zymography test. Infrared spectroscopy and X-ray diffractometry tests elucidated the link between the physicochemical characteristics of the formulation and its behavior and properties. Different cooling techniques were explored to prove the tailorable properties of the NLCs for any industrial applications. In conclusion, the compiled results show the successful formulation of new nanocarriers based on a sustainable, eco-friendly, and highly tailorable technology, which presents low cytotoxic potential.
Collapse
Affiliation(s)
- Luísa Schuh
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | - Luane Almeida Salgado
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | - Tathyana Benetis Piau
- Laboratory of Genetic Toxicology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (T.B.P.); (C.K.G.)
| | - Ariane Pandolfo Silveira
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | - Caio Leal
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | - Luís Felipe Romera
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | - Marina Arantes Radicchi
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | | | - Leila Falcao
- Inaturals SAS, 2 Bis, Impasse Henri Mouret, 84000 Avignon, France;
| | - Cesar Koppe Grisolia
- Laboratory of Genetic Toxicology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (T.B.P.); (C.K.G.)
| | - Eliana Fortes Gris
- Faculty of Ceilândia, University of Brasília, Brasília 72220-275, DF, Brazil; (E.F.G.); (L.A.M.)
| | - Luis Alexandre Muehlmann
- Faculty of Ceilândia, University of Brasília, Brasília 72220-275, DF, Brazil; (E.F.G.); (L.A.M.)
| | - Sônia Nair Báo
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | - Victor Carlos Mello
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| |
Collapse
|
4
|
Duarte-Casar R, González-Jaramillo N, Bailon-Moscoso N, Rojas-Le-Fort M, Romero-Benavides JC. Five Underutilized Ecuadorian Fruits and Their Bioactive Potential as Functional Foods and in Metabolic Syndrome: A Review. Molecules 2024; 29:2904. [PMID: 38930969 PMCID: PMC11207112 DOI: 10.3390/molecules29122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The Ecuadorian Amazon harbors numerous wild and cultivated species used as food, many of which are underutilized. This review explores the bioactive potential of five such fruits-Borojó (Alibertia patinoi); Chonta (Bactris gasipaes); Arazá (Eugenia stipitata); Amazon grape (Pourouma cecropiifolia), a wild edible plant; and Cocona (Solanum sessiliflorum)-and their applications against metabolic syndrome. This study highlights their health-promoting ingredients and validates traditional medicinal properties, emphasizing their significance in improving health and mitigating the effects of the Western diet. These fruits, integral to Ecuadorian cuisine, are consumed fresh and processed. Chonta is widely cultivated but less prominent than in pre-Hispanic times, Borojó is known for its aphrodisiac properties, Cocona is traditional in northern provinces, Arazá is economically significant in food products, and Amazon grape is the least utilized and researched. The fruits are rich in phenolics (A. patinoi, E. stipitata) and carotenoids (B. gasipaes, E. stipitata), which are beneficial in controlling metabolic syndrome. This study advocates for more research and product development, especially for lesser-known species with high phenolic and anthocyanin content. This research underscores the economic, cultural, and nutritional value of these fruits, promoting their integration into modern diets and contributing to sustainable agriculture, cultural preservation, and public health through functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Rodrigo Duarte-Casar
- Tecnología Superior en Gestión Culinaria, Pontificia Universidad Católica del Ecuador Sede Manabí, Portoviejo 130103, Ecuador; (R.D.-C.); (M.R.-L.-F.)
| | - Nancy González-Jaramillo
- Maestría en Alimentos, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
| | - Natalia Bailon-Moscoso
- Facultad de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
| | - Marlene Rojas-Le-Fort
- Tecnología Superior en Gestión Culinaria, Pontificia Universidad Católica del Ecuador Sede Manabí, Portoviejo 130103, Ecuador; (R.D.-C.); (M.R.-L.-F.)
| | - Juan Carlos Romero-Benavides
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| |
Collapse
|
5
|
Llatas AY, Guzmán H, Tello F, Ruiz R, Vásquez J, Chiroque G, Mayta-Hancco J, Cruzado-Bravo MLM, Arteaga H, Saldaña E, Rios-Mera JD. Exploring Pijuayo ( Bactris gasipaes) Pulp and Peel Flours as Fat Replacers in Burgers: A Multivariate Study on Physicochemical and Sensory Traits. Foods 2024; 13:1619. [PMID: 38890851 PMCID: PMC11172120 DOI: 10.3390/foods13111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Meat products are known for their lipid profile rich in saturated fats and cholesterol, and also for the formation of oxidation compounds; therefore, a reduction in animal fat may result in a product less harmful to health. Pijuayo is an Amazon fruit known for its nutritional properties, such as its fiber and lipid content. For these reasons, it is an attractive fruit to replace animal fat in meat products. The present work used pijuayo pulp and peel flours to partially replace animal fat in beef-based burgers at 25% and 50% levels, considering sensory and physicochemical outcomes evaluated by Principal Component Analysis (PCA), Correspondence Analysis (CA) and Multiple Factor Analysis (MFA). Pijuayo flour affected the physicochemical characteristics evaluated by PCA, where the samples with greater fat replacement were characterized by a high carbohydrate content and instrumental yellowness. The minimal fat replacement did not abruptly affect the PCA's instrumental texture and color, proximal composition, yield properties, and lipid oxidation. The overall liking was greater in the 25% fat reduction treatments, even greater than the control, in which positive sensory attributes for liking were highlighted for those treatments. A small segment of consumers (11% of total consumers) preferred the treatment with greater replacement of fat with pijuayo peel flour, which these consumers tended to characterize as seasoned. However, this treatment had the lowest liking. The MFA showed that the sensory characteristics tender and tasty were strongly correlated with overall liking and were highlighted in the samples of 25% fat reduction, suggesting that the pijuayo improves the tenderness and flavor of reduced-fat burgers. Other inclusion levels between 25% and 50% of fat replacement could be explored, and optimization studies are needed. In addition, the sensory characteristics and flavor-enhancing compounds of the fruit, as well as the nutritional aspects of the inclusion of pijuayo, should be studied, such as the fatty acid profile. These characteristics will be informative to explore pijuayo as a fat replacer at a pilot scale and industrial scale.
Collapse
Affiliation(s)
- Alex Y. Llatas
- Instituto de Investigación de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Jaén, Jaén 06800, Peru; (A.Y.L.); (H.G.); (H.A.); (J.D.R.-M.)
| | - Heiner Guzmán
- Instituto de Investigación de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Jaén, Jaén 06800, Peru; (A.Y.L.); (H.G.); (H.A.); (J.D.R.-M.)
| | - Fernando Tello
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru; (R.R.); (J.V.)
| | - Roger Ruiz
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru; (R.R.); (J.V.)
| | - Jessy Vásquez
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru; (R.R.); (J.V.)
| | - Grisel Chiroque
- Escuela Profesional Industrias Alimentarias, Facultad de Ingeniería, Universidad Nacional de Barranca, Av. Toribio Luzuriaga Urb. La Florida 376, Barranca 150201, Peru;
| | - Jhony Mayta-Hancco
- Sensory Analysis and Consumer Study Group, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Moquegua 18001, Peru; (J.M.-H.); (E.S.)
| | - Melina L. M. Cruzado-Bravo
- Grupo de Investigación en Desarrollo, Calidad y Seguridad de Alimentos (GIDCSA), Escuela de Ingeniería Agroindustrial, Facultad de Ciencias Agrarias, Universidad Nacional Autónoma de Chota, Chota 06120, Peru;
| | - Hubert Arteaga
- Instituto de Investigación de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Jaén, Jaén 06800, Peru; (A.Y.L.); (H.G.); (H.A.); (J.D.R.-M.)
| | - Erick Saldaña
- Sensory Analysis and Consumer Study Group, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Moquegua 18001, Peru; (J.M.-H.); (E.S.)
| | - Juan D. Rios-Mera
- Instituto de Investigación de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Jaén, Jaén 06800, Peru; (A.Y.L.); (H.G.); (H.A.); (J.D.R.-M.)
| |
Collapse
|
6
|
dos Santos OV, do Rosário RC, Teixeira-Costa BE. Sources of Carotenoids in Amazonian Fruits. Molecules 2024; 29:2190. [PMID: 38792052 PMCID: PMC11123925 DOI: 10.3390/molecules29102190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epidemiological studies have shown that a diet rich in bioactive components significantly reduces cardiovascular disease incidence and mortality. In this sense, there is a need for meta-analytical research that confirms this phenomenon and increases specific knowledge about certain bioactive compounds such as carotenoids. Thus, this systematic review and meta-analysis aim to disseminate knowledge about the sources of carotenoids in fruit consumed in the north of Brazil which are outside the Brazilian trade balance. A systematic review and a meta-analysis following the PRISMA guidelines were conducted based on a random effects synthesis of multivariable-adjusted relative risks (RRs). Searches of seven sources were carried out, including PubMed, Science Direct from Elsevier, Web of Science, Scielo, Eric Research and Google Scholar databases. The systematic review was guided by a systematic review protocol based on the POT strategy (population, outcome and type of study) adapted for use in this research. Mendeley was a resource used to organize and manage references and exclude duplicates of studies selected for review. In this review, we present the potential bioactive compounds concentrated in little-known fruit species from the Amazon and their benefits. Consuming fruits that are rich in notable constituents such as carotenoids is important for the prevention of chronic non-communicable diseases through anti-inflammatory and anticoagulant properties, as well as antivirals, immunomodulators and antioxidants agents that directly affect the immune response.
Collapse
Affiliation(s)
- Orquidea Vasconcelos dos Santos
- Graduate Program in Food Science and Technology (PPGCTA), Technology Institute, Federal University of Pará, Belém 66075-110, Pará, Brazil;
| | - Rosely Carvalho do Rosário
- Graduate Program in Food Science and Technology (PPGCTA), Technology Institute, Federal University of Pará, Belém 66075-110, Pará, Brazil;
| | - Barbara E. Teixeira-Costa
- Institute of Health Sciences, Faculty of Nutrition, Federal University of Pará, Belém 66075-110, Pará, Brazil;
- Graduate Program in Biotechnology (PPGBIOTEC), Federal University of Amazonas, Manaus 69067-005, Amazonas, Brazil
- Department of Nutrition and Dietetics, Faculty of Nutrition Emília de Jesus Ferreiro, Federal Fluminense University, Niterói 24020-140, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Garcia CB, da Silva AV, de Carvalho IAS, do Nascimento WF, Ramos SLF, Rodrigues DP, Zucchi MI, Costa FM, Alves-Pereira A, Batista CEDA, Amaral DD, Veasey EA. Low Diversity and High Genetic Structure for Platonia insignis Mart., an Endangered Fruit Tree Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:1033. [PMID: 38611562 PMCID: PMC11013813 DOI: 10.3390/plants13071033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024]
Abstract
Platonia insignis is a fruit tree native to Brazil of increasing economic importance, with its pulp trading among the highest market values. This study aimed to evaluate the structure and genomic diversity of P. insignis (bacurizeiro) accessions from six locations in the Brazilian States of Roraima, Amazonas, Pará (Amazon biome), and Maranhão (Cerrado biome). A total of 2031 SNP markers were obtained using genotyping-by-sequencing (GBS), from which 625 outlier SNPs were identified. High genetic structure was observed, with most of the genetic variability (59%) concentrated among locations, mainly between biomes (Amazon and Cerrado). A positive and significant correlation (r = 0.85; p < 0.005) was detected between genetic and geographic distances, indicating isolation by distance. The highest genetic diversity was observed for the location in the Cerrado biome (HE = 0.1746; HO = 0.2078). The locations in the Amazon biome showed low genetic diversity indexes with significant levels of inbreeding. The advance of urban areas, events of burning, and expansion of agricultural activities are most probably the main factors for the genetic diversity reduction of P. insignis. Approaches to functional analysis showed that most of the outlier loci found may be related to genes involved in cellular and metabolic processes.
Collapse
Affiliation(s)
- Caroline Bertocco Garcia
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Allison Vieira da Silva
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| | | | | | | | | | | | - Flaviane Malaquias Costa
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| | | | | | | | - Elizabeth Ann Veasey
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| |
Collapse
|
8
|
Amorim IS, Amorim DS, Godoy HT, Mariutti LRB, Chisté RC, da Silva Pena R, Bogusz Junior S, Chim JF. Amazonian palm tree fruits: From nutritional value to diversity of new food products. Heliyon 2024; 10:e24054. [PMID: 38288015 PMCID: PMC10823109 DOI: 10.1016/j.heliyon.2024.e24054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
The rapid growth of the world population has increased the demand for new food sources, constituting a major challenge concerning the maximum use of existing food resources. The fruits of Amazonian palm trees have excellent nutritional composition and bioactive compounds. This review highlights four fruits of Amazonian palm trees that are still little explored by the food industry: açai (Euterpe oleracea), pupunha (Bactris gasipaes), buriti (Mauritia flexuosa), and tucumã (Astrocaryum aculeatum). This paper aims to inspire new ideas for researching and developing products for the food industry. It also explores the impacts of Amazonian palm fruits on health, highlighting their role in disease prevention through their nutritional effects.
Collapse
Affiliation(s)
- Isabelly Silva Amorim
- Center for Chemical, Pharmaceutical and Food Sciences – Federal University of Pelotas, 96010-900, Pelotas, Rio Grande do Sul, Brazil
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Danyelly Silva Amorim
- Center for Chemical, Pharmaceutical and Food Sciences – Federal University of Pelotas, 96010-900, Pelotas, Rio Grande do Sul, Brazil
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Helena Teixeira Godoy
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Renan Campos Chisté
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), 66075-110, Belém, Pará, Brazil
| | - Rosinelson da Silva Pena
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), 66075-110, Belém, Pará, Brazil
| | - Stanislau Bogusz Junior
- University of Sao Paulo (USP), Sao Carlos Institute of Chemistry (IQSC), 13566-590, Sao Carlos, Sao Paulo, Brazil
| | - Josiane Freitas Chim
- Center for Chemical, Pharmaceutical and Food Sciences – Federal University of Pelotas, 96010-900, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Almeida CDORPD, Martinez RM, Souza VRD, Lima TPB, Nascimento BA, Noblat GDA, Abreu GM, Pereira AD, Figueiredo MS, Teodoro AJ. Effects of Supplementation of Murici ( Byrsonima crassifolia) and Taperebá ( Spondias mombin) Pulp Extracts on Food Intake, Body Parameters, and Oxidative Stress Markers in Healthy Rats. J Med Food 2024; 27:47-59. [PMID: 38156814 DOI: 10.1089/jmf.2022.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
This study evaluates the effects of supplementation of murici (Byrsonima crassifolia) and taperebá (Spondias mombin) pulp extracts on dietary intake, body composition, biochemical parameters, and markers of oxidative stress. Two experiments were conducted with a total of 80 healthy male Wistar rats and a 30-day supplementation. In the first experiment, animals were divided into control (C) group, murici group 50 mg/(kg⸱day) (50Mu), murici group 100 mg/(kg⸱day) (100Mu), and murici group 200 mg/(kg⸱day) (200Mu). In the second experiment, animals were divided into C group, taperebá group 50 mg/(kg⸱day) (50Tap), taperebá group 100 mg/(kg⸱day) (100Tap), and taperebá group 200 mg/(kg⸱day) (200Tap). Results showed lower feed intake in 50Mu, 100Mu, and 100Tap groups (13%, 12%, and 10%, respectively, P < .05) and lower body fat in 200Mu, 100Tap, and 200Tap groups (16.0%, 29.1%, and 27.1%, respectively, P < .05). Only the 100Tap group showed reduced adipose tissue content (30.4%; P < .05). Increased plasma antioxidant capacity was observed at all doses for both fruits. Taperebá supplementation reduced ferrous oxidation-xylenol orange levels (50Tap: 8.4%, 100Tap: 16.1%, 200Tap: 24.3%; P < .05) and increased thiol levels (50Tap: 39%, 100Tap: 31%; P < .05). Serum thiobarbituric acid reactive substances levels were reduced in all groups receiving taperebá (50Tap: 77.7%, 100Tap: 73.1%, 200Tap: 73.8%; P < .05) and murici (50Mu: 44.5%, 100Mu: 34%, 200Mu: 43%; P < .05). Therefore, it is suggested that the inclusion of these fruits in the diet can contribute to health maintenance and disease prevention, through their effects on controlling food intake, improving body composition, and in combating oxidative stress.
Collapse
Affiliation(s)
| | - Raquel Martins Martinez
- Food and Nutrition Security Program, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Bruna Almeida Nascimento
- Emília de Jesus Ferreiro College of Nutrition, Nutrition and Dietetic Department, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Gabriel de Alcantara Noblat
- Emília de Jesus Ferreiro College of Nutrition, Nutrition and Dietetic Department, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Giovanna Menezes Abreu
- Nutrition Science Program, Nutrition and Dietetic Department, Fluminense Federal University, Rio de Janeiro, Brazil
| | | | - Mariana Sarto Figueiredo
- Integrated Center of Food and Nutrition, Nutrition and Dietetic Department, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Anderson Junger Teodoro
- Integrated Center of Food and Nutrition, Nutrition and Dietetic Department, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Palacio de Araujo C, Medeiros Simões I, Lins Monteiro Rosa T, de Mello T, Bravim Canal G, Ferreira A, Bestete de Oliveira JP, Romais Schmildt E, Lopes JC, da Silva de Souza T, Otoni WC, Pinheiro PF, Moreira Novaes FJ, Gonçalves FG, dos Santos AR, Sobreira Alexandre R. Functional Fruit Trees from the Atlantic and Amazon Forests: Selection of Potential Chestnut Trees Rich in Antioxidants, Nutrients, and Fatty Acids. Foods 2023; 12:4422. [PMID: 38137226 PMCID: PMC10743210 DOI: 10.3390/foods12244422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 12/24/2023] Open
Abstract
The Amazon rainforest and the biodiversity hotspot of the Atlantic Forest are home to fruit trees that produce functional foods, which are still underutilized. The present study aimed to select potential functional nut donor trees from two Brazilian chestnuts, by evaluating the nutritional and antioxidant composition of the nuts and the fatty acid profile of the oil. The nutritional characteristics, antioxidants, oil fatty acid profile, and X-ray densitometry of the nuts were evaluated, as well as the characterization of leaf and soil nutrients for each parent tree. The nut oil was evaluated through Brix (%), mass (g), yield (%), and the fatty acid profile. For L. pisonis, the most nutritious nuts were produced by L. pisonis tree 4 (N > P > K > Mg > Ca > Zn > Fe) and L. pisonis tree 6 (P > Ca > Mg > Mn > Zn > Cu > Fe), and for the species L. lanceolata, L. lanceolata tree 6 (N > P > Ca > Mg > Zn > Fe > Cu) and L. lanceolata tree 2 (P > K > Mg > Zn > Cu). In L. pisonis, the highest production of anthocyanins, DPPH, total phenolics, and flavonoids was obtained from the nuts of L. pisonis tree 4 as well as for L. lanceolata, from L. lanceolata tree 1, except for flavonoids. The Brix of the oil from the nuts of both species showed no difference between the trees and the fatty acid profile with a similar amount between saturated (48-65%) and unsaturated (34-57%) fatty acids. Both species have nuts rich in nutrients and antioxidant compounds and can be considered unconventional functional foods. The data collected in the present study confirm that the nuts of these species can replace other foods as a source of selenium.
Collapse
Affiliation(s)
- Caroline Palacio de Araujo
- Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo/UFES, Alto Universitário, s/n, Alegre 29500-000, ES, Brazil
| | - Ingridh Medeiros Simões
- Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo/UFES, Alto Universitário, s/n, Alegre 29500-000, ES, Brazil
| | - Thuanny Lins Monteiro Rosa
- Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo/UFES, Alto Universitário, s/n, Alegre 29500-000, ES, Brazil
| | - Tamyris de Mello
- Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo/UFES, Alto Universitário, s/n, Alegre 29500-000, ES, Brazil
| | - Guilherme Bravim Canal
- Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo/UFES, Alto Universitário, s/n, Alegre 29500-000, ES, Brazil
| | - Adésio Ferreira
- Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo/UFES, Alto Universitário, s/n, Alegre 29500-000, ES, Brazil
| | | | - Edilson Romais Schmildt
- North University Center of Espírito Santo, Federal University of Espírito Santo/UFES, Rodovia Governador Mário Covas, Km 60, São Mateus 29932-540, ES, Brazil
| | - José Carlos Lopes
- Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo/UFES, Alto Universitário, s/n, Alegre 29500-000, ES, Brazil
| | - Tércio da Silva de Souza
- Federal Institute of Espírito Santo, Campus Alegre, BR 482, Km 47, Rive District, Alegre 29500-000, ES, Brazil
| | - Wagner Campos Otoni
- Federal University of Viçosa/UFV, Av. Peter Henry Rolfs, s/n, Viçosa 36570-900, MG, Brazil
| | | | | | - Fabricio Gomes Gonçalves
- Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo/UFES, Alto Universitário, s/n, Alegre 29500-000, ES, Brazil
| | - Alexandre Rosa dos Santos
- Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo/UFES, Alto Universitário, s/n, Alegre 29500-000, ES, Brazil
| | - Rodrigo Sobreira Alexandre
- Center of Agricultural Sciences and Engineering, Federal University of Espírito Santo/UFES, Alto Universitário, s/n, Alegre 29500-000, ES, Brazil
| |
Collapse
|
11
|
Lima RS, de Carvalho APA, Conte-Junior CA. Health from Brazilian Amazon food wastes: Bioactive compounds, antioxidants, antimicrobials, and potentials against cancer and oral diseases. Crit Rev Food Sci Nutr 2023; 63:12453-12475. [PMID: 35875893 DOI: 10.1080/10408398.2022.2101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Brazilian Amazon contains over 30,000 plant species and foods rich in bioactive compounds such as terpenes, phenolic acids, alkaloids, and flavonoids, of potential health benefits (antioxidant, antimicrobial, antiparasitic, anticancer, gastroprotection, prebiotic effects, among others). The existence of residues from non-edible parts of plants (leaves, roots, stems, branches, barks) or fruit wastes (peel, bagasse, seeds) in the agri-food industry and its supply chain is an important challenge in food loss and waste management. In this critical review several Amazon species, focusing on extracts/essential oils from nonedible parts or wastes, were analyzed in terms of phytochemicals, biological activity, and underlying mechanisms. We hope this review emphasizes the importance of Amazon's sustainability initiatives on population health due to the potential shown against cancer, infectious diseases, and prevention of oral diseases. It is urgent to think about the conversion of amazon food wastes and co-products into high-added-value raw materials to develop novel drugs, food packaging systems, or nutraceutical foods.
Collapse
Affiliation(s)
- Rayssa S Lima
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Department of Biochemistry, Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Oliveira AS, Biano LS, Palmeira DN, de Almeida DR, Lopes-Ferreira M, Kohlhoff M, Sousa JAC, Brandão GC, Silva AMDOE, Grespan R, Camargo EA. Antinociceptive effect of Nephelium lappaceum L. fruit peel and the participation of nitric oxide, opioid receptors, and ATP-sensitive potassium channels. Front Pharmacol 2023; 14:1287580. [PMID: 38026962 PMCID: PMC10644719 DOI: 10.3389/fphar.2023.1287580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Nephelium lappaceum L. (Sapindaceae) is a plant known as rambutan. It is used for various purposes in traditional medicine. Objective: We aimed to evaluate the antinociceptive effects of the ethanol extract of the fruit peel of N. lappaceum (EENL), the mechanisms involved in these effects, and the acute toxicity in zebrafish. Methods: We performed chromatography coupled to mass spectrometry, acute toxicity assay in zebrafish, and evaluation in mice submitted to models of nociception and locomotor activity. Results: We identified (epi)-catechin, procyanidin B, and ellagic acid and its derivatives in EENL. We did not find any toxicity in zebrafish embryos incubated with EENL. The locomotor activity of mice submitted to oral pretreatment with EENL was not changed, but it reduced the abdominal constrictions induced by acetic acid, the licking/biting time in both the first and second phase of formalin testing and capsaicin testing, and carrageenan-induced paw mechanical allodynia. Oral pretreatment with EENL increased latency time in the hot plate test. This antinociceptive effect was significantly reversed by naloxone, L-arginine, and glibenclamide respectively showing the participation of opioid receptors, nitric oxide, and KATP channels as mediators of EENL-induced antinociception. Conclusion: EENL causes antinociception with the participation of opioid receptors, nitric oxide, and KATP channels, and is not toxic to zebrafish.
Collapse
Affiliation(s)
- Alan Santos Oliveira
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
| | - Laiza Santos Biano
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | - Mônica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), São Paulo, Brazil
| | - Markus Kohlhoff
- Oswaldo Cruz Foundation, René Rachou Institute, Belo Horizonte, Brazil
| | | | | | - Ana Mara de Oliveira e Silva
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Brazil
| | - Renata Grespan
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Brazil
| | - Enilton Aparecido Camargo
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
13
|
Menezes Silva JV, Silva Santos A, Araujo Pereira G, Campos Chisté R. Ultrasound-assisted extraction using ethanol efficiently extracted carotenoids from peels of peach palm fruits (Bactris gasipaes Kunth) without altering qualitative carotenoid profile. Heliyon 2023; 9:e14933. [PMID: 37089291 PMCID: PMC10114151 DOI: 10.1016/j.heliyon.2023.e14933] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Peach palm (Bactris gasipaes Kunth) is an amazonian fruit in which its peel has been appointed as a carotenoid-rich byproduct with biological properties. For analytical purposes, carotenoids are frequently extracted by non-green (use of toxic organic solvents) and time-consuming methods, which can affect the quality (carotenoid profile) and safety of extracts for direct food applications. We investigated herein the effect of different extraction methods on the individual carotenoid profile of extracts of peach palm peels by HPLC-DAD. Carotenoid extractions were carried out by maceration in mortar with pestle (with acetone or ethanol), magnetic stirring, shaker and ultrasound-assisted extraction (UAE) using ethanol. UAE provided the highest carotenoid contents (67 mg/100 g), followed by maceration with acetone and ethanol (63 and 52 mg/100 g, respectively), while the lowest contents were observed for the magnetic stirring and shaker extractions (44 mg/100 g), being (all-E)-β-carotene and a Z-isomer of γ-carotene accounted 54-73% of the carotenoid composition. HPLC-DAD data showed the same carotenoid profile regardless the extraction method, yet the percentage of Z-isomers of β-carotene was higher for the shaking (18%), UAE (17%) and magnetic stirring (15%) than for both maceration methods (7 and 8%, with acetone and ethanol, respectively). Thus, the tested extraction methods affected the total carotenoid contents, whereas the chromatographic profile did not change. Furthermore, a carotenoid-rich extract was effectively obtained by using ethanol associated with ultrasound technique (less time-consuming) instead of toxic and non-safe solvents.
Collapse
|
14
|
Corrêa PG, Moura LGS, Amaral ACF, Almeida MMHD, Souza FDCDA, Aguiar JPL, Aleluia RL, Silva JRDA. Evaluation of the Amazonian fruit Ambelania acida: Chemical and nutritional studies. J Food Sci 2023; 88:757-771. [PMID: 36633002 DOI: 10.1111/1750-3841.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
Ambelania acida is native to the Amazon region, with few published studies of its fruits. We examined the proximate composition of its fruits, including minerals, fatty acids, volatile organic compounds (VOCs), as well as its antioxidant capacity. The protein contents (2.61%) of the pulp and seeds (13.6%) were higher than observed in other taxa of the family or in other tropical fruits. Peel and pulp showed high contents of potassium, calcium, and magnesium, and the potassium content in the pulp was 1125 mg/100 g. The peel had higher contents of total phenolics, tannins, and ortho-diphenols than the pulp, as well as better antioxidant activity as evidenced by 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), and Fe2+ chelating activity assays. GC-MS analyses identified 42 VOCs in the peel and pulp, with more than 90% being classified as terpenes. Eleven types of fatty acids were identified in the lipid fractions of the peel, pulp, and seeds. Linoleic acid, an essential fatty acid for humans, was the principal fatty acid in the edible portion of the fruit, therefore, evidencing its nutritionally significant profile for the fruits when considering the relationship among polyunsaturated, saturated, and monounsaturated fatty acids. The information gathered here indicates that this native fruit is a healthy food source and its cultivation and consumption should be stimulated.
Collapse
Affiliation(s)
- Pollyane Gomes Corrêa
- Chromatography Laboratory, Chemistry Department, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Ana Claudia Fernandes Amaral
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maíra Martins H de Almeida
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisca das Chagas do Amaral Souza
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, Amazonas, Brazil
| | - Jaime Paiva Lopes Aguiar
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, Amazonas, Brazil
| | - Renê Lemos Aleluia
- Laboratory of Plant Genetics and Toxicology, Department of Biological Sciences Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | | |
Collapse
|
15
|
Saleem U, Iman S, Ahmad B, Shah MA, Bibi S, Alqarni M, Khan MS, Shah GM, Khan H, Alhasani RH, Althobaiti NA, Albalawi AE. Antidepressant activity of phytochemicals of Mangifera indica seeds assisted by integrated computational analysis. Metab Brain Dis 2023; 38:483-505. [PMID: 35344129 DOI: 10.1007/s11011-022-00955-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/09/2022] [Indexed: 01/25/2023]
Abstract
Mangifera indica L., also known as mango, is a tropical fruit that belongs to the Anacardiaceae family and is prized for its juiciness, unique flavour, and worldwide popularity. The current study aimed to probe into antidepressant power (ADP) of MIS in animals and confirmation of ADP with in silico induced-fit molecular docking. The depression model was prepared by exposing mice to various stressors from 9:00 am to 2:00 pm during 42 days study period. MIS extract and fluoxetine were given daily for 30 min before exposing animals to stressors. ADP was evaluated by various behavioural tests and biochemical analysis. Results showed increased physical activity in mice under behavioural tests, plasma nitrite and malondialdehyde (MDA) levels and monoamine oxidase A (MAO-A) activity decreased dose-dependently in MIS treated mice and superoxide dismutases (SOD) levels increased in treated groups as compared to disease control. With the peculiar behaviour and significant interactions of the functional residues of target proteins with selected ligands along with the best absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, it is concluded that catechin could be the best MAO-A inhibitor at a binding energy of -8.85 kcal/mol, and two hydrogen bonds were generated with Cys406 (A) and Gly443 (A) residues of the active binding site of MAO-A enzyme. While catechin at -6.86 kcal/mol generated three hydrogen bonds with Ala263 (A) and Gly434 (A) residues of the active site of monoamine oxidase B (MAO-B) enzyme and stabilized the best conformation. Therefore, it is highly recommended to test the selected lead-like compound catechin in the laboratory with biological system analysis to confirm its activity as MAO-A and MAO-B inhibitors so it can be declared as one of the novel therapeutic options with anti-depressant activity. Our findings concluded that M. indica seeds could be a significant and alternative anti-depressant therapy.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafa Iman
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
- Department of Pharmacy, Hazara University, Mansehra, Pakistan.
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, Yunnan, China
- International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and South-East Asia, Yunnan University, Kunming, 650091, Yunnan, China
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Pharmacy, Hazara University, Mansehra, Pakistan
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Reem Hasaballah Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, 21961, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities, Shaqra University, Al-Quwaiiyah, Saudi Arabia
| | - Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
16
|
Serbin GM, Pinangé DSDB, Machado RM, Vasconcelos S, Amorim BS, Clement CR. Relationship between fruit phenotypes and domestication in hexaploid populations of biribá ( Annona mucosa) in Brazilian Amazonia. PeerJ 2023; 11:e14659. [PMID: 36710859 PMCID: PMC9879159 DOI: 10.7717/peerj.14659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/08/2022] [Indexed: 01/24/2023] Open
Abstract
Background Biribá (Annona mucosa Jacq.) is a fruit tree domesticated in Amazonia and has polyploid populations. The species presents ample phenotypic variation in fruit characteristics, including weight (100-4,000 g) and differences in carpel protrusions. Two cytotypes are recorded in the literature (2n = 28, 42) and genome size records are divergent (2C = 4.77, 5.42 and 6.00 pg). To decipher the role of polyploidy in the domestication of A. mucosa, we examined the relationships among phenotypic variation, chromosome number and genome size, and which came first, polyploidization or domestication. Methodology We performed chromosome counts of A. mucosa from central and western Brazilian Amazonia, and estimated genome size by flow cytometry. We performed phylogenetic reconstruction with publicly available data using a Bayesian framework, time divergence analysis and reconstructed the ancestral chromosome number for the genus Annona and for A. mucosa. Results We observed that variation in fruit phenotypes is not associated with variation in chromosome number and genome size. The most recent common ancestor of A. mucosa is inferred to be polyploid and diverged before domestication. Conclusions We conclude that, when domesticated, A. mucosa was already polyploid and we suggest that human selection is the main evolutionary force behind fruit size and fruit morphological variation in Annona mucosa.
Collapse
Affiliation(s)
- Giulia Melilli Serbin
- Postgraduate Program in Botany, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | | | | | | | - Bruno Sampaio Amorim
- Museu da Amazônia (MUSA), Manaus, Amazonas, Brazil
- Postgraduate Program in Biotechnology and Natural Resources of Amazonia, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | | |
Collapse
|
17
|
Soares SD, Santos OVD, Nascimento FCA, Pena RS. A review of the nutritional properties of different varieties and byproducts of peach palm ( Bactris gasipaes) and their potential as functional foods. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2127761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Stephanie Dias Soares
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará, Belém, Brazil
| | - Orquídea Vasconcelos Dos Santos
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará, Belém, Brazil
- Faculty of Nutrition, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | | | - Rosinelson da Silva Pena
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará, Belém, Brazil
- Faculty of Food Engineering, Institute of Technology, Federal University of Pará, Belém, Brazil
| |
Collapse
|
18
|
Ramirez DA, Carazzone C. Small molecules putative structure elucidation in endemic Colombian fruits: CFM-ID approach. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2147539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Daniel Arias Ramirez
- Chemistry, Department, Universidad de Los Andes, Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Bogotá, Colombia
- ICP-MS Spectrometry Laboratory, Deanship of Scientific Research-Faculty of Science, Universidad de Los Andes, Bogotá, Colombia
| | - Chiara Carazzone
- Chemistry, Department, Universidad de Los Andes, Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Bogotá, Colombia
| |
Collapse
|
19
|
de Cássia Spacki K, Corrêa RCG, Uber TM, Barros L, Ferreira ICFR, Peralta RA, de Fátima Peralta Muniz Moreira R, Helm CV, de Lima EA, Bracht A, Peralta RM. Full Exploitation of Peach Palm ( Bactris gasipaes Kunth): State of the Art and Perspectives. PLANTS (BASEL, SWITZERLAND) 2022; 11:3175. [PMID: 36432904 PMCID: PMC9696370 DOI: 10.3390/plants11223175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The peach palm (Bactris gasipaes Kunth) is a palm tree native to the Amazon region, with plantations expanding to the Brazilian Southwest and South regions. This work is a critical review of historical, botanical, social, environmental, and nutritional aspects of edible and nonedible parts of the plant. In Brazil, the importance of the cultivation of B. gasipaes to produce palm heart has grown considerably, due to its advantages in relation to other palm species, such as precocity, rusticity and tillering. The last one is especially important, as it makes the exploitation of peach palm hearts, contrary to what happens with other palm tree species, a non-predatory practice. Of special interest are the recent efforts aiming at the valorization of the fruit as a source of carotenoids and starch. Further developments indicate that the B. gasipaes lignocellulosic wastes hold great potential for being upcycled into valuable biotechnological products such as prebiotics, enzymes, cellulose nanofibrils and high fiber flours. Clean technologies are protagonists of the recovery processes, ensuring the closure of the product's life cycle in a "green" way. Future research should focus on expanding and making the recovery processes economically viable, which would be of great importance for stimulating the peach palm production chain.
Collapse
Affiliation(s)
| | - Rúbia Carvalho Gomes Corrêa
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-900, Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Thaís Marques Uber
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rosely Aparecida Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | | | | | | | - Adelar Bracht
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Rosane Marina Peralta
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| |
Collapse
|
20
|
González-Jaramillo N, Bailon-Moscoso N, Duarte-Casar R, Romero-Benavides JC. Peach Palm ( Bactris gasipaes Kunth.): Ancestral Tropical Staple with Future Potential. PLANTS (BASEL, SWITZERLAND) 2022; 11:3134. [PMID: 36432863 PMCID: PMC9695847 DOI: 10.3390/plants11223134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
A pre-Columbian staple, Bactris gasipaes Kunth. is a palm tree domesticated around 4000 years ago, so appreciated that a Spanish chronicler wrote in 1545, "only their wives and children were held in higher regard" by the Mesoamerican natives. The peach palm is an integral part of the foodways and gastronomy of Ecuador, Colombia, Bolivia, Peru, Brazil, and other tropical American countries; meanwhile, it is almost unknown in the rest of the world, except for hearts of palm. Although abundant, the species faces anthropogenic threats. The purpose of this study is to describe and summarize the physicochemical, nutritional, and bioactive characteristics of the peach palm and its two main alimentary products: hearts of palm and fruits, highlighting the functional and antioxidant potential of the latter, showing both ancestral and modern uses. There is active research on peach palm products and coproducts that aim for better, more sustainable uses of its traditional and recently found properties. The review and presentation of studies on this strategically relevant species can motivate the protection of endangered populations and stimulate new lines of research to advance development in the food, pharmaceutical, and cosmetic industries, with fair trade, sustainable development goals, and adaptation to climate change in mind.
Collapse
Affiliation(s)
- Nancy González-Jaramillo
- Maestría en Alimentos, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| | - Natalia Bailon-Moscoso
- Facultad de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| | - Rodrigo Duarte-Casar
- Departamento de Turismo y Gastronomía, Facultad de Ciencias Administrativas y Económicas, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Juan Carlos Romero-Benavides
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| |
Collapse
|
21
|
Ramos SLF, Lopes MTG, Meneses C, Dequigiovanni G, de Macêdo JLV, Lopes R, Sebbenn AM, da Silva RF, de Jesus Pinto Fraxe T, Veasey EA. Natural Populations of Astrocaryum aculeatum Meyer in Amazonia: Genetic Diversity and Conservation. PLANTS (BASEL, SWITZERLAND) 2022; 11:2957. [PMID: 36365412 PMCID: PMC9655110 DOI: 10.3390/plants11212957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Astrocaryum aculeatum, a palm tree incipiently domesticated from upland ecosystems in the Brazilian Amazon, is especially adapted to anthropized areas. The pulp of the fruit, obtained by extractivism, is consumed fresh by the Amazonian population. The objective of the study is to evaluate the diversity and genetic structure of the natural populations of A. aculeatum, exploited by extractive farmers in Amazonas, Brazil, seeking to suggest conservation and management strategies for this species. A total of 218 plants were sampled in 15 populations in 14 municipalities in the state of Amazonas, evaluated by 12 microsatellite loci. A total of 101 alleles were observed. The means of the observed heterozygosities (HO = 0.6390) were higher than expected (HE = 0.557), with high levels of heterozygotes in the populations. The fixation index in the loci and populations was negative. The FST (0.07) and AMOVA showed moderate population structure. Bayesian analysis indicated the grouping k = 4 as the most adequate. There is a high genetic diversity in populations, with a moderate genetic structure due to possible historical events, which could be related to the process of subpopulation formation, possibly presenting three historical moments: before and after the beginning of deforestation and today. The conservation and management policies of this species must be carried out at a watershed level.
Collapse
Affiliation(s)
- Santiago Linorio Ferreyra Ramos
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Bairro Tiradentes, Itacoatiara 69100-000, AM, Brazil
| | - Maria Teresa Gomes Lopes
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Avenida Rodrigo Otávio Ramos, 3.000, Bairro Coroado, Manaus 69077-000, AM, Brazil
| | - Carlos Meneses
- Programa de Pós-Graduação em Ciências Agrárias, Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, Rua Baraúnas, 351, Bairro Universitário, Campina Grande 58429-500, PB, Brazil
| | - Gabriel Dequigiovanni
- Centro Universitário de Cascavel, Avenida Tito Muffato, 2317, Bairro Santa Cruz, Cascavel 85806-080, PR, Brazil
| | | | - Ricardo Lopes
- Campo Experimental da Embrapa Amazônia Ocidental, Embrapa Amazônia Ocidental, Km 29, AM 010, CP. 319, Manaus 9010-970, AM, Brazil
| | - Alexandre Magno Sebbenn
- Seção de Melhoramento e Conservação Genética Florestal, Instituto Florestal de São Paulo, Rua do Horto, 931, Bairro Horto Florestal, São Paulo 01059-970, SP, Brazil
| | - Rogério Freire da Silva
- Programa de Pós-Graduação em Ciências Agrárias, Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, Rua Baraúnas, 351, Bairro Universitário, Campina Grande 58429-500, PB, Brazil
| | - Therezinha de Jesus Pinto Fraxe
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Avenida Rodrigo Otávio Ramos, 3.000, Bairro Coroado, Manaus 69077-000, AM, Brazil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, Bairro São Dimas, Piracicaba 13418-900, SP, Brazil
| |
Collapse
|
22
|
Antibiotic Isoflavonoids, Anthraquinones, and Pterocarpanoids from Pigeon Pea (Cajanus cajan L.) Seeds against Multidrug-Resistant Staphylococcus aureus. Metabolites 2022; 12:metabo12040279. [PMID: 35448466 PMCID: PMC9030341 DOI: 10.3390/metabo12040279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
Cajanus cajan L. (pigeon pea, locally known in the Philippines as kadios) seed is a functional food with health benefits that extend beyond their nutritional value. C. cajan seeds contain highly diverse secondary metabolites with enriched beneficial properties, such as antibacterial, anticancer, and antioxidant activities. However, the antibacterial activities of secondary metabolites from Philippine-grown C. cajan, against multidrug-resistant Staphylococcus aureus have not been thoroughly described. Here, we investigated the in vitro antibacterial properties of C. cajan seed against multidrug-resistant S. aureus ATCC BAA-44 (MDRSA) and three other S. aureus strains (S. aureus ATCC 25923, S. aureus ATCC 6538, and coagulase-negative S. aureus) and, subsequently, identified the antibiotic markers against S. aureus strains using mass spectrometry. Secondary metabolites from C. cajan seeds were extracted using acetone, methanol, or 95% ethanol. Antibacterial screening revealed antibiotic activity for the C. cajan acetone extract. Bioassay-guided purification of the C. cajan acetone extract afforded three semi-pure high-performance liquid chromatography (HPLC) fractions exhibiting 32–64 µg/mL minimum inhibitory concentration (MIC) against MDRSA. Chemical profiling of these fractions using liquid chromatography mass spectrometry (LCMS) identified six compounds that are antibacterial against MDRSA. High-resolution mass spectrometry (HRMS), MS/MS, and dereplication using Global Natural Products Social Molecular Networking (GNPS)™, and National Institute of Standards and Technology (NIST) Library identified the metabolites as rhein, formononetin, laccaic acid D, crotafuran E, ayamenin A, and biochanin A. These isoflavonoids, anthraquinones, and pterocarpanoids from C. cajan seeds are potential bioactive compounds against S. aureus, including the multidrug-resistant strains.
Collapse
|
23
|
de Souza FG, de Araújo FF, Orlando EA, Rodrigues FM, Chávez DWH, Pallone JAL, Neri-Numa IA, Sawaya ACHF, Pastore GM. Characterization of Buritirana ( Mauritiella armata) Fruits from the Brazilian Cerrado: Biometric and Physicochemical Attributes, Chemical Composition and Antioxidant and Antibacterial Potential. Foods 2022; 11:786. [PMID: 35327209 PMCID: PMC8949527 DOI: 10.3390/foods11060786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
The buritirana is a little-explored species of the Arecaceae family. The biometric and physicochemical characteristics, nutritional and chemical composition and antioxidant and antibacterial potential of the buritirana fruit fractions were evaluated here for the first time. The fruits presented an oblong shape. The pulp represented 16.58% of the whole-fruit weight (10.07 g). The moisture, ash and soluble fiber contents were similar for the whole fraction without seed (WS) and pulp. Although the total carbohydrate content was the same for seed and peel (23.24 g·100 g-1), the seed showed higher protein and insoluble fiber contents. Except for glucose (1256.63 mg·100 g-1), the seed showed the highest concentrations of mono-, di- and oligosaccharides. Mineral content ranged from 0.43 to 800 mg·100 g-1 in all fractions. The peel fraction showed the highest content of vitamin C. The physicochemical results indicate the pulp and WS fraction have potential for the production of fruit-derived food products. Protocatechuic and quinic acids and epicatechin/catechin were found in all fractions. The assay antioxidant capacity DPPH, phenolic content and total flavonoids were higher in the pulp; TEAC and ORACHF values were lower in the seed. Volatile organic compounds were not identified, and the fractions did not show antibacterial activity.
Collapse
Affiliation(s)
- Florisvaldo Gama de Souza
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Fábio Fernandes de Araújo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Eduardo Adilson Orlando
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Fernando Morais Rodrigues
- Department of Food Science and Technology, Federal Institute of Education, Science and Technology of Tocantins, Paraíso of Tocantins 77600-000, TO, Brazil;
| | - Davy William Hidalgo Chávez
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil;
| | - Juliana Azevedo Lima Pallone
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Iramaia Angélica Neri-Numa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| |
Collapse
|
24
|
Machado APDF, Nascimento RDPD, Alves MDR, Reguengo LM, Marostica Junior MR. Brazilian tucumã-do-Amazonas (Astrocaryum aculeatum) and tucumã-do-Pará (Astrocaryum vulgare) fruits: bioactive composition, health benefits, and technological potential. Food Res Int 2022; 151:110902. [PMID: 34980419 DOI: 10.1016/j.foodres.2021.110902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 12/13/2021] [Indexed: 11/04/2022]
Abstract
Latin America has a wide range of native plants spread through its territory. The palms of the Astrocaryum genus are examples of crops occurring in Central and South America, including the large plant life in Brazil. Although not very well known, the Astrocaryum spp. possess edible and non-edible fractions with potential technological and medicinal uses, as evidenced by recent research. Two native Brazilian fruits, tucumã-do-Amazonas (Astrocaryum aculeatum) and tucumã-do-Pará (Astrocaryum vulgare), typically found in the north and northeast of the country, respectively, stand out for their high antioxidant capacity and rich content in bioactive compounds, mainly carotenoids and phenolic compounds. Accordingly, experimental studies indicate their potential to prevent and treat inflammatory and oxidative stress-related conditions, including cancer. The tucumã plants have also been suggested as tools in the industry, for example for biofuel production, activated carbon technology, and as alternative packaging. Considering the importance of bringing light to underestimated yet culturally relevant native crops with potential benefits for small and large communities, this review aims to present and discuss the characteristics, bioactive composition, health effects, and technological potential of tucumã-do-Amazonas and tucumã-do-Pará fruits.
Collapse
Affiliation(s)
- Ana Paula da Fonseca Machado
- University of Campinas, School of Food Engineering, 80 Monteiro Lobato Street, 13083-862 Campinas, São Paulo, Brazil.
| | | | - Mariana da Rocha Alves
- University of Campinas, School of Food Engineering, 80 Monteiro Lobato Street, 13083-862 Campinas, São Paulo, Brazil.
| | - Lívia Mateus Reguengo
- University of Campinas, School of Food Engineering, 80 Monteiro Lobato Street, 13083-862 Campinas, São Paulo, Brazil.
| | | |
Collapse
|