1
|
Ding D, Ye D, Pan LY, Zheng ZJ, Xu YF, Xu XY, Zheng M, Wang TM, Zhao Q, Ma BL. Hydroxypropyl trimethyl ammonium chloride chitosan (HACC)-modified protein nanoparticles enhance docetaxel oral delivery and exhibit potent in vitro anti-tumor and macrophage-activating effects. Int J Biol Macromol 2025; 305:141375. [PMID: 39988173 DOI: 10.1016/j.ijbiomac.2025.141375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
The antitumor drug docetaxel (DTX) has limited oral bioavailability. This study aimed to develop novel oral nanoparticles to enhance DTX's absorption and bioactivities. The nanoparticles (H-N-D) were prepared by inducing the self-assembly of a Coptis protein through heating, followed by modification using hydroxypropyl trimethyl ammonium chloride chitosan (HACC). H-N-D was characterized, its effects on DTX's pharmacokinetics and bioactivities were evaluated, and related mechanisms were explored. H-N-D exhibited a spherical morphology, a size of 174.9 ± 1.53 nm, a zeta potential of 19.81 ± 0.79 mV, and good stability in gastric and intestinal fluids. DTX had an encapsulation efficiency of 99.17 ± 0.57 % and a drug loading of 2.95 ± 0.40 %. DTX, originally a crystal, existed as an amorphous form in H-N-D and produces hydrogen bond interactions. H-N-D significantly enhanced DTX's solubility (4.6 times, p < 0.01), release (p < 0.01), metabolic stability (p < 0.05 or p < 0.01), uptake in Caco-2 cells (p < 0.01), and absorption in mouse gut sacs (p < 0.01). Pharmacokinetic studies in mice revealed a 235.2-fold increase in blood AUC0-12 h and enhanced colon, liver, and lung distribution (4.8, 277.4, and 66.8-fold, respectively). H-N-D demonstrated superior cytotoxicity against HepG2 (IC50 reduction, p < 0.01) and MCF-7 cells (IC50 reduction, p < 0.01) compared to free DTX. Additionally, H-N-D induced tumor necrosis factor-α and nitric oxide release in macrophages and exhibited antioxidant activity in concentration-dependent manners. In conclusion, H-N-D significantly improved DTX's oral bioavailability and bioactivities, offering a promising strategy for oral DTX delivery.
Collapse
Affiliation(s)
- Ding Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dan Ye
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling-Yun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhang-Jin Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Fan Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Yi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Ming Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Zhao
- Department of Pharmacy, Jing'an District Zhabei Central Hospital, Shanghai 200070, China.
| | - Bing-Liang Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Li H, Zeng S, Zhou L. Biocompatible nanogels with tunable size and tailorable properties: A simple synthesis by self-assembly and disulfide crosslinking of amphiphilic hyperbranched peach gum polysaccharide. Int J Biol Macromol 2025; 309:143083. [PMID: 40222536 DOI: 10.1016/j.ijbiomac.2025.143083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Polysaccharide nanogels (NGs) have shown considerable promise in a multitude of fields, owing to their compelling synergistic attributes. Despite this, simple synthesis of polysaccharide NGs that possess uniform and adjustable sizes, tailored properties, and superior biocompatibility remains a significant challenge. Natural peach gum polysaccharide (PGP), renowned for its outstanding biocompatibility and hyperbranched macromolecular structure, stands out as an excellent candidate for NGs preparation, though it has not yet been explored for this purpose. Herein, we present a facile and effective strategy for preparing PGP-based NGs (PGP-NGs) by leveraging the self-assembly and disulfide crosslinking techniques, without using any surfactants. The resultant PGP-NGs exhibit good aqueous dispersibility, enhanced colloidal stability, high biocompatibility and tunable size. Moreover, our strategy enables the direct creation of functional PGP-NGs to accommodate diverse applications by simultaneously modifying PGP with lipoic acid (LA) and other functional molecules, as confirmed by the synthesis of fluorescent PGP-RB-NGs in this study. These PGP-RB-NGs, with their bright fluorescence, efficient cellular internalization and low cytotoxicity, are promising for cell imaging applications. Additionally, the preparation of doxorubicin hydrochloride (DOX)-loaded PGP-NGs can be readily achieved through our strategy. This study thereby provides an effective strategy for constructing robust PGP-based NGs.
Collapse
Affiliation(s)
- Hong Li
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Sihua Zeng
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Li Zhou
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
3
|
Yang J, Lin J, Chen X, Li C, Wang Y, Xie J. Tailored strategies based on polysaccharide structural and functional properties for nutrients delivery in inflammatory bowel disease. Carbohydr Polym 2025; 351:123129. [PMID: 39779033 DOI: 10.1016/j.carbpol.2024.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025]
Abstract
Many food nutrients suffer from a series of limitations such as poor water solubility, low stability and inadequate bioavailability. These challenges can be effectively improved by food-based delivery systems (FDSs). FDSs are a series of functional carriers developed based on food-borne macromolecules. Natural polysaccharides are widely used in FDSs due to their good bioactivity, functional properties, and biocompatibility. The complex structural and physicochemical properties of polysaccharides have led to the extremely diverse development of FDSs based on polysaccharides. This review summarizes the application of natural polysaccharides from different sources in the development of different types of FDSs and their functional properties. It also emphasizes the feasibility and theoretical strategies to tailor satisfactory properties (shape, size, surface charge and targeting properties) of polysaccharides-based oral delivery systems (PODS) based on the diverse structural characteristics (e.g., solubility, ion type, molecular weight) and bioactivities of polysaccharides. PODS are designed to meet the diverse requirements in term of stability, toxicity, adhesion, cellular uptake, retention time and release behavior. This review also discusses the advantages of PODS in addressing nutrient deficiencies in gastrointestinal environment, with a focus on their role in nutritional interventions for inflammatory bowel disease. This review contributed to the development for novel PODS with specific demand.
Collapse
Affiliation(s)
- Jun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Jieqiong Lin
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
Huang R, Song H, Li S, Guan X. Selection strategy for encapsulation of hydrophilic and hydrophobic ingredients with food-grade materials: A systematic review and analysis. Food Chem X 2025; 25:102149. [PMID: 39867216 PMCID: PMC11758843 DOI: 10.1016/j.fochx.2024.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025] Open
Abstract
Various lipid and biopolymer-based nanocarriers have been developed to encapsulate food ingredients. The selection of nanocarrier type, preparation techniques, and loading methods should consider the compatibility of nutrient properties, nanocarrier composition, and product requirements. This review focuses on the loading methods for hydrophilic and hydrophobic substances, along with a detailed exploration of nanocarrier categorization, composition, and preparation methods. Both lipid-based and biopolymer-based nanoparticles exhibit the capability to encapsulate hydrophilic or hydrophobic substances. Liposomes and nanoemulsions allow simultaneous encapsulation of hydrophilic and hydrophobic ingredients, while solid lipid nanoparticles and nanostructured lipid carriers are suited for hydrophobic ingredients. The three-dimensional network structure of nanogels can efficiently load hydrophilic substances, while the functional groups in polysaccharides improve the loading capacity of hydrophobic substances through intermolecular interactions. As for protein nanoparticles, the selection of proteins with solubility characteristics analogous to the bioactives is crucial to achieve high encapsulation efficiency.
Collapse
Affiliation(s)
- Ruihan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, China
| |
Collapse
|
5
|
Guo X, Liu H, Hou R, Chen G, Xiao H, Liu L, Ciftci ON, Liu L. Design strategies of polysaccharide, protein and lipid-based nano-delivery systems in improving the bioavailability of polyphenols and regulating gut homeostasis. Int J Biol Macromol 2024; 283:137463. [PMID: 39547604 DOI: 10.1016/j.ijbiomac.2024.137463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Polyphenols are plant secondary metabolites that have attracted much attention due to their anti-inflammatory, antioxidant, and gut homeostasis promoting effects. However, food matrix interaction, poor solubility, and strong digestion and metabolism of polyphenols cause barriers to their absorption in the gastrointestinal tract, which further reduces bioavailability and limits polyphenols' application in the food industry. Nano-delivery systems composed of biocompatible macromolecules (polysaccharides, proteins and lipids) are an effective way to improve the bioavailability of polyphenols. Therefore, this review introduces the construction of biopolymer-based nano-delivery systems and their application in polyphenols, with emphasis on improving the solubility, stability, sustained release and intestinal targeting of polyphenols. In addition, there are possible positive effects of polyphenol-loaded nano-delivery systems on modulating gut microbiota and gut homeostasis, with particular emphasis on modulating intestinal inflammation, metabolic syndrome, and gut-brain axis. It is worth noting that the safety of bio-based nano-delivery systems still need to be further studied. In summary, the application of the bio-based nano-delivery system to deliver polyphenols provides insights for improving the bioavailability of polyphenols and for the treatment of potential diseases in the future.
Collapse
Affiliation(s)
- Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China
| | - Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ruyan Hou
- Anhui Agricultural University, School Tea & Food Science & Technololgy, State Key Lab Tea Plant Biolology & Utilizatilizaytion, Key Lab Food Nutrion & Safety, Hefei 230036, PR China
| | - Guijie Chen
- Anhui Agricultural University, School Tea & Food Science & Technololgy, State Key Lab Tea Plant Biolology & Utilizatilizaytion, Key Lab Food Nutrion & Safety, Hefei 230036, PR China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst 01003, USA
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
6
|
Guan X, Wang K, Wu Y, Xu J, Liu R, Xia Z, Shao Y, Lu Y. Structural characteristics and antioxidant activity of binary compounds formed by covalent modification of plant derived recombinant lactoferrin (OsrhLF) with four typical carbohydrates. Food Chem 2024; 467:142300. [PMID: 39637668 DOI: 10.1016/j.foodchem.2024.142300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Lactoferrin is crucial for the mammalian immune system, but the extraction of bovine lactoferrin (bLF) is low, and human lactoferrin in breast milk is costly. Although there are some reports on heterologous expression of lactoferrin, limited knowledge is available. In this study, structural characteristics and antioxidant activity of binary compounds formed by covalent modification of plant derived recombinant human lactoferrin (OsrhLF) with four typical carbohydrates including sodium alginate (SA), maltodextrin (Mal), pectin (Pec), and lactose (Lac). Results indicated that the structure of both bLF and OsrhLF unfolded, with side chain lysine or terminal amino acids forming CN bonds with aldehydes, altering their structure and improving stability and hydrophilicity. Compared with OsrhLF, the thermal denaturation temperatures of H-OsrhLF-Mal and H-OsrhLF-Lac increased by 56.8 °C and 58.4 °C, respectively. OsrhLF exhibited superior surface hydrophilicity and thermal stability compared to bLF, with Mal showing the most significant effect, aiding future functional food applications.
Collapse
Affiliation(s)
- Xiaoyan Guan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kexin Wang
- School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Yeting Wu
- College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Xu
- College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zixian Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education (Huazhong Agricultural University), Wuhan 430070, China.
| |
Collapse
|
7
|
Davtalab M, Naji-Tabasi S, Shahidi-Noghabi M, Martins AJ, Bourbon AI, Cerqueira MA. Pickering Emulsion Stabilized by Different Concentrations of Whey Protein-Cress Seed Gum Nanoparticles. Foods 2024; 13:3777. [PMID: 39682849 DOI: 10.3390/foods13233777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Nanoparticles based on food-grade materials are promising materials to develop Pickering emulsions for food applications. Initially, this study focuses on the development of nanoparticles through the utilization of a soluble complex of whey protein concentrate (WPC) and cress seed gum (CSG), which were modified by calcium chloride (CaCl2) as a cross-linker. The response surface methodology was used to investigate the impact of different concentrations of WPC (1-4% w/v), CSG (0-1% w/v), and CaCl2 (1-3 mM) on particle size, polydispersity index (PDI), and Zeta potential. The optimum conditions for the production of CSG-WPC nanoparticles (WPC-CSG NPs) were 0.31% (w/v) CSG, 1.75% (w/v) WPC, and 1.69 mM CaCl2, resulting in nanoparticles with average size of 236 nm and Zeta potential of -22 mV. Subsequently, oil-in-water (O/W) Pickering emulsions were produced with different concentrations of WPC-CSG NPs in optimum conditions. The contact angles of the WPC-CSG NPs were 41.44° and 61.13° at concentrations of 0.5% and 1%, respectively, showing that NPs are suitable for stabilizing O/W Pickering emulsions. Pickering emulsion viscosity rose from 80 to 500 mPa when nanoparticle concentration increased from 0.5% to 1%. Results also showed that WPC-CSG NPs enable stable O/W Pickering emulsions during storage and thermal treatment, confirming that protein-polysaccharide NPs can provide a sufficient steric hindrance.
Collapse
Affiliation(s)
- Maryam Davtalab
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad 91895-157-356, Iran
| | - Sara Naji-Tabasi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad 91895-157-356, Iran
| | - Mostafa Shahidi-Noghabi
- Department of Green Technologies in Food Production and Processing, Research Institute of Food Science and Technology (RIFST), Mashhad 91895-157-356, Iran
| | - Artur J Martins
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Ana I Bourbon
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
8
|
Guo Y, Ma C, Xu Y, Du L, Yang X. Food Gels Based on Polysaccharide and Protein: Preparation, Formation Mechanisms, and Delivery of Bioactive Substances. Gels 2024; 10:735. [PMID: 39590091 PMCID: PMC11593672 DOI: 10.3390/gels10110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Hydrogels have a unique three-dimensional network that can create a good environment for the loading of functional compounds; hence, they have considerable potential in the delivery of bioactive substances. Natural macromolecular substances (proteins, polysaccharides) have the features of low toxicity, degradability, and biosafety; thus, they can be employed in the manufacture of hydrogels in the food sector. With its customizable viscoelastic and porous structure, hydrogels are believed to be good bioactive material delivery vehicles, which can effectively load polyphenols, vitamins, probiotics, and other active substances to prevent their influence from the external environment, thereby improving its stability. In this research, the common raw materials, preparation methods, and applications in the delivery of bioactive elements of food gels were examined; this study aimed at presenting new ideas for the development and utilization of protein-based food gels.
Collapse
Affiliation(s)
- Yong Guo
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China;
| | - Chao Ma
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Xu
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China;
| | - Lianxin Du
- Graduate School, Harbin Sport University, Harbin 150008, China;
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shandong Benefit Mankind Glycobiology Co., Ltd., Weihai 264200, China
| |
Collapse
|
9
|
Hu W, Xu X, Wang X, Ma T, Li Y, Qin X, Wei J, Chen S. Effect of curdlan on the gel properties and interactions of whey protein isolate gels. Int J Biol Macromol 2024; 277:134161. [PMID: 39059535 DOI: 10.1016/j.ijbiomac.2024.134161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
This study investigated the influence of curdlan on the gel properties of whey protein isolate (WPI). Results demonstrated that curdlan significantly improved the water-holding capacity, gel strength and rheological properties of the WPI gels. Moreover, it promoted the unfolding of the molecular structures of WPI, which was manifested by the transition from α-helix to β-sheet, an increase in free sulfhydryl content and a decrease in surface hydrophobicity. Furthermore, 4 % curdlan promoted the formation of WPI with uniform and compact elastic gel network structures, primarily attributed to disulphide bonds, hydrogen bonds and hydrophobic interactions. However, when the addition of curdlan exceeds 4 %, excessive entanglement of curdlan chains and steric hindrance effects hinder the unfolding and folding of protein structures, weaken their interaction, result in a loose network structure and affect the gel properties. In conclusion, this study demonstrates that curdlan can effectively improve the gelling properties of WPI, suggesting its potential application in low-calorie gel-based dairy products.
Collapse
Affiliation(s)
- Wenmei Hu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi University, Nanning 530004, China
| | - Xindong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Xingyan Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi University, Nanning 530004, China
| | - Tinghong Ma
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi University, Nanning 530004, China
| | - Yuting Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi University, Nanning 530004, China
| | - Xianglin Qin
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi University, Nanning 530004, China
| | - Jibin Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi University, Nanning 530004, China
| | - Shan Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi University, Nanning 530004, China.
| |
Collapse
|
10
|
Li Y, Wu H, Deng S, Essawy H, Brosse N, Fan M, Du G, Chen X, Zhou X, Liao J. Novel hydroxyl-terminated hyperbranched polymer as a synergistic modifier with tannin for preparation of casein-based films with superior performance. Int J Biol Macromol 2024; 278:134672. [PMID: 39134199 DOI: 10.1016/j.ijbiomac.2024.134672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/18/2024]
Abstract
A hyperbranched poly (titanium oxide) (HBPTi) with hydroxyl terminal groups was synthesized via polycondensation reaction as a synergistic modifier with tannin to promote performance of casein-based composite film. The synergistic effects of HBPTis, acquiring different hyperbranched structures, with tannin on the microstructure, mechanical characteristics, barrier against water vapor, and thermal stability of casein-based film were investigated in this work. The tensile strength of the composite films increased from 7.6 MPa to 22.1 MPa, which accounts for 190.79 % increase after the addition of HBPTi compared to casein-tannin films modified with glycerol. The casein-tannin films with the help of HBPTi presented excellent water vapor permeation, thermal stability, and showed nearly 100 % UV absorption in the range 200-400 nm. Additionally, the microstructure of HBPTi modified casein-tannin films tend to be more compact due to the promoted interaction of casein-tannin composite aided by covalent bonding and/or other types of bonding between casein, tannin and HBPTi. Therefore, associative modification using such hyperbranched polymers and tannins provides extendable application value for casein-based films especially as food packaging materials and for other fields as well.
Collapse
Affiliation(s)
- Yitong Li
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Haizhu Wu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Shuangqi Deng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Hisham Essawy
- National Research Centre, Department of Polymers and Pigments, Dokki, Cairo 12622, Egypt
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherches sur le Matériau Bois (LERMaB), Faculté des Sciences et Technologies, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Mizi Fan
- College of Engineering, Design and Physical Science, Brunel University London, UB8 3PH Uxbridge, United Kingdom
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xinyi Chen
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China.
| | - Xiaojian Zhou
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China.
| | - Jingjing Liao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| |
Collapse
|
11
|
Hu Y, Zhou Y, Li K, Zhou D. Recent advances in near-infrared stimulated nanohybrid hydrogels for cancer photothermal therapy. Biomater Sci 2024; 12:4590-4606. [PMID: 39136645 DOI: 10.1039/d4bm00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nanomedicine has emerged as a promising avenue for advancing cancer treatment, but the challenge of mitigating its in vivo side effects necessitates the development of innovative structures and materials. Recent investigation has unveiled nanogels as particularly compelling candidates, characterized by a porous, three-dimensional network architecture that exhibits exceptional drug loading capacity. Beyond this, nanogels boast a substantial specific surface area and can be tailored with specific chemical functionalities. Consequently, nanogels are frequently engineered as a multi-modal synergistic platform for combating cancer, wherein photothermal therapy stands out due to its capacity to penetrate deep tissues and achieve localized tumor eradication through the application of elevated temperatures. In this review, we delve into the synthesis of diverse varieties of photothermal nanogels capable of controlled drug release triggered by either chemical or physical stimuli. It also summarizes their potential for synergistic integration with photothermal therapy alongside other therapeutic modalities to realize effective tumor ablation. Moreover, we analyze the primary mechanisms underlying the contribution of photothermal nanogels to cancer treatment while underscoring their adeptness in regulating therapeutic temperatures for repairing bone defects resulting from tumor-associated trauma. Envisioned as an auspicious strategy in the realm of cancer therapy, photothermal nanogels hold promise for furnishing controlled drug delivery and precise thermal ablation capabilities.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi Zhou
- Huanggang Central Hospital of Yangtze University, Huanggang, 438000, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Dong Zhou
- Engineering Research Centre for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
12
|
Sun F, Xiao Y, Kong L, Mu H, Wang X, Duan J. An "in control" hyaluronic acid nanogel with light-cleavable for rational use of antibiotics. Heliyon 2024; 10:e33287. [PMID: 39027455 PMCID: PMC11254603 DOI: 10.1016/j.heliyon.2024.e33287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
The consequences caused by bacterial resistance are becoming more and more serious. The rate of antibiotic development is far behind the rate of bacterial resistance, so it is urgent to develop a new drug system. In this study, photoresponsive nanogels based on hyaluronic acid were prepared and loaded with ciprofloxacin as a model molecule. The results showed that the nanogels had the advantages of high stability and good cytocompatibility. The inhibition effect of drug-loaded nanogels after light irradiation on the growth of Staphylococcus aureus and Salmonella typhimurium was significantly better than that before light irradiation, and ciprofloxacin could be released on demand and in control. This strategy is of great significance to reduce the unnecessary use of antibiotics and weaken bacterial resistance.
Collapse
Affiliation(s)
- Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, China
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yao Xiao
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Kong
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haibo Mu
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xing Wang
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinyou Duan
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Hilal A, Florowska A, Domian E, Wroniak M. Binary Pea Protein-Psyllium Hydrogel: Insights into the Influence of pH and Ionic Strength on the Physical Stability and Mechanical Characteristics. Gels 2024; 10:401. [PMID: 38920947 PMCID: PMC11203367 DOI: 10.3390/gels10060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Food hydrogels, used as delivery systems for bioactive compounds, can be formulated with various food-grade biopolymers. Their industrial utility is largely determined by their physicochemical properties. However, comprehensive data on the properties of pea protein-psyllium binary hydrogels under different pH and ionic strength conditions are limited. The aim of this research was to evaluate the impact of pH (adjusted to 7, 4.5, and 3) and ionic strength (modified by NaCl addition to 0.15 and 0.3 M) on the physical stability, color, texture, microrheological, and viscoelastic properties of these hydrogels. Color differences were most noticeable at lower pH levels. Inducing hydrogels at pH 7 (with or without NaCl) and pH 4.5 and 3 (without NaCl) resulted in complete gel structures with low stability, low elastic and storage moduli, and low complex viscosity, making them easily spreadable. Lower pH inductions (4.5 and 3) in the absence of NaCl resulted in hydrogels with shorter linear viscoelastic regions. Hydrogels induced at pH 4.5 and 3 with NaCl had high structural stability, high G' and G" moduli, complex viscosity, and high spreadability. Among the tested induction conditions, pH 3 with 0.3 M NaCl allowed for obtaining a hydrogel with the highest elastic and storage moduli values. Adjusting pH and ionic strength during hydrogel induction allows for modifying and tailoring their properties for specific industrial applications.
Collapse
Affiliation(s)
- Adonis Hilal
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.F.); (M.W.)
| | - Anna Florowska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.F.); (M.W.)
| | - Ewa Domian
- Department of Food Engineering and Process Management, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Małgorzata Wroniak
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.F.); (M.W.)
| |
Collapse
|
14
|
Yu Z, Gao Y, Shang Z, Wang T, He X, Lei J, Tai F, Zhang L, Chen Y. A stable delivery system for curcumin: Fabrication and characterization of self-assembling acylated kidney bean protein isolate nanogels. Food Chem 2024; 443:138526. [PMID: 38290298 DOI: 10.1016/j.foodchem.2024.138526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
The construction of protein-based nano-gels as curcumin delivery system effectively enhances the stability and bioavailability of curcumin. In this study, acylation modification and self-assembly techniques were jointly employed to construct acylated kidney bean protein isolate (AKBPI)-nanogels. Optimal conditions for AKBPI-nanogels were determined to be pH 7, concentration of 2 mg/mL, and temperature at 90℃ for 30 min. The optimized AKBPI-nanogels exhibited excellent uniformity as evidenced by decreasing average particle size (137.35 nm) and polydispersity index (0.38). Acylation enhanced the intermolecular interactions within the nanogel by reducing the polarity of tyrosine microenvironment and free sulfhydryl groups. AKBPI-nanogels demonstrated remarkable characteristics in terms of pH sensitivity, salt concentration, and storage tolerance. The curcumin-loaded AKBPI-nanogels exhibited an encapsulation efficiency of 92.30 % and maintained high antioxidant activity. In simulated gastrointestinal digestion, AKBPI-nanogels facilitated the controlled release and higher bioavailability of curcumin. Therefore, AKBPI-nanogels can be a stable tool for delivering curcumin.
Collapse
Affiliation(s)
- Zhihui Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Houji Laboratory in Shanxi Province, Taiyuan 030031, Shanxi, China; Food Nutrition and Safety Institute, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Yating Gao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Ziqi Shang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Tengfei Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Xuli He
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jian Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Fei Tai
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Lixin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Food Nutrition and Safety Institute, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China.
| | - Yisheng Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Houji Laboratory in Shanxi Province, Taiyuan 030031, Shanxi, China; Food Nutrition and Safety Institute, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
15
|
Vigani B, Ianev D, Adami M, Valentino C, Ruggeri M, Boselli C, Icaro Cornaglia A, Sandri G, Rossi S. Porous Functionally Graded Scaffold prepared by a single-step freeze-drying process. A bioinspired approach for wound care. Int J Pharm 2024; 656:124119. [PMID: 38621616 DOI: 10.1016/j.ijpharm.2024.124119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Nowadays, chronic wounds are the major cause of morbidity worldwide and the healthcare costs related to wound care are a billion-dollar issue; chronic wounds involve a non-healing process that makes necessary the application of advanced wound dressings to promote skin integrity recovery. Functionally Graded Scaffolds (FGSs) are currently driving interest as promising candidates in mimicking the skin tissue environment and, thus, in enhancing a faster and more effective wound healing process. Aim of the present work was to design and develop a porous FGS based on κ-carrageenan (κCG) for the management of chronic skin wounds; a freeze-drying process was optimized to obtain in a single-step a three-layered FGS characterized by a pore size gradient functional to mimic the structure of native skin tissue. In addition to κCG, arginine and whey protein isolate were used as multifunctional agents for FGS preparation; these substances can not only intervene in some stages of wound healing but are able to establish non-covalent interactions with κCG, which were responsible for the production of layers with different pore size, water content capability and mechanical properties. Cell migration, adhesion and proliferation within the FGS structure were evaluated in vitro on fibroblasts and FGS wound healing potential was also studied in vivo on a murine model.
Collapse
Affiliation(s)
- Barbara Vigani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daiana Ianev
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | | | - Caterina Valentino
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
16
|
Hadidi M, Tan C, Assadpour E, Jafari SM. Oilseed meal proteins: From novel extraction methods to nanocarriers of bioactive compounds. Food Chem 2024; 438:137971. [PMID: 37979261 DOI: 10.1016/j.foodchem.2023.137971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
The global demand for animal proteins is predicted to increase twofold by 2050. This has led to growing environmental and health apprehensions, thereby prompting the appraisal of alternative protein sources. Oilseed meals present a promising alternative due to their abundance in global production and inherent dietary protein content. The alkaline extraction remains the preferred technique for protein extraction from oilseed meals in commercial processes. However, the combination of innovative techniques has proven to be more effective in the recovery and functional modification of oilseed meal proteins (OMPs), resulting in improved protein quality and reduced allergenicity and environmental hazards. This manuscript explores the extraction of valuable proteins from sustainable sources, specifically by-products from the oil processing industry, using emerging technologies. Chemical structure, nutritional value, and functional properties of the main OMPs are evaluated with a particular focus on their potential application as nanocarriers for bioactive compounds.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Chen Tan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
17
|
Liu W, McClements DJ, Jin Z, Chen L. Design of colloid structure to realize gel salt reduction: a review. Crit Rev Food Sci Nutr 2024; 65:2281-2294. [PMID: 38560993 DOI: 10.1080/10408398.2024.2331565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Excessive consumption of salt is associated with increased incidence of cardiovascular diseases, hypertension, diabetes, and other health issues. However, it is challenging to find appropriate strategies that balance sensory qualities while achieving sodium reduction as salt plays a crucial role in providing desired appearance, texture, and taste. The impact of hydrocolloid properties (addition and type) on saltiness perception were reviewed. Additionally, considering the interactions between food components, both covalent and noncovalent, we propose designing specialized colloidal structures capable of binding sodium ions to enhance salt-taste perception. The effects of hydrocolloids on the physicochemical, structural, and sensory qualities of gel foods are then discussed. Finally, by addressing current issues with low-salt foods and consumer demands, we provide a future outlook for low-salt food development. The selection of suitable hydrocolloids and precise control of the addition are crucial considerations for achieving salt reduction. The interaction between hydrocolloids and other food components can be utilized to design specialized colloidal structures, thereby accomplishing gel-based salt reduction and enhancing properties. This review serves as a theoretical reference for developing healthy, nutritious, and flavorful low-salt foods that can aid in the prevention and mitigation of diseases associated with excessive salt consumption.
Collapse
Affiliation(s)
- Wenmeng Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Gan L, Huang X, He Z, He T. Exopolysaccharide production by salt-tolerant bacteria: Recent advances, current challenges, and future prospects. Int J Biol Macromol 2024; 264:130731. [PMID: 38471615 DOI: 10.1016/j.ijbiomac.2024.130731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Natural biopolymers derived from exopolysaccharides (EPSs) are considered eco-friendly and sustainable alternatives to available traditional synthetic counterparts. Salt-tolerant bacteria inhabiting harsh ecological niches have evolved a number of unique adaptation strategies allowing them to maintain cellular integrity and assuring their long-term survival; among these, producing EPSs can be adopted as an effective strategy to thrive under high-salt conditions. A great diversity of EPSs from salt-tolerant bacteria have attracted widespread attention recently. Because of factors such as their unique structural, physicochemical, and functional characteristics, EPSs are commercially valuable for the global market and their application potential in various sectors is promising. However, large-scale production and industrial development of these biopolymers are hindered by their low yields and high costs. Consequently, the research progress and future prospects of salt-tolerant bacterial EPSs must be systematically reviewed to further promote their application and commercialization. In this review, the structure and properties of EPSs produced by a variety of salt-tolerant bacterial strains isolated from different sources are summarized. Further, feasible strategies for solving production bottlenecks are discussed, which provides a scientific basis and direct reference for more scientific and rational EPS development.
Collapse
Affiliation(s)
- Longzhan Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Xin Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zhicheng He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
19
|
Sun X, Zhang Z, Li W, Tian H, Yuan L, Yang X. Stability of high internal-phase emulsions prepared from phycocyanin and small-molecule sugars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2917-2927. [PMID: 38036304 DOI: 10.1002/jsfa.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND The use of high internal-phase Pickering emulsions in the food industry is widespread due to their excellent stability and special rheological properties. Proteins are often used as food-grade Pickering stabilizers due to their safety and nutritious properties. Nowadays, the development and efficient utilization of novel proteins as Pickering stabilizers has become a new challenge. RESULTS Phycocyanin complexes with small-molecule sugars (SMS), formed as a result of non-thermal interactions, can serve as stabilizers for high internal-phase Pickering emulsions. The addition of SMS-enabled gel-like emulsions significantly reduced the amount of emulsifier used. When the SMS was sorbitol, the emulsion had excellent elastic properties and self-supporting ability and was stable during long-term storage, when subjected to centrifugation, and under different temperature conditions. The fluorescent property of phycocyanin was utilized to investigate the formation mechanism of the emulsion. Small-molecule sugars were able to form 'sugar-shell' structures on the surface of proteins to enhance the structural stability of proteins. Phycocyanin-SMS-stabilized emulsions provided superior protection for photosensitive and volatile substances. The retention rates of trans-resveratrol and n-hexane increased by 384.75% and 30.55%, respectively. CONCLUSION These findings will encourage the development of proteins that stabilize Pickering emulsions. They will also provide new ideas for protecting photosensitive and volatile substances. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaolin Sun
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Hongye Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
20
|
Shehzad Q, Liu Z, Zuo M, Wang J. The role of polysaccharides in improving the functionality of zein coated nanocarriers: Implications for colloidal stability under environmental stresses. Food Chem 2024; 431:136967. [PMID: 37604006 DOI: 10.1016/j.foodchem.2023.136967] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Zein has gained popularity over the past few years as an incredible food and bio-based materials. The potential functions and health benefits of zein microcapsules or micro-/nanoparticles in bioactive components delivery, structured emulsion, etc., have received great attention. However, the development has been limited by colloidal destabilization, especially when thermal processing is involved. There is a recent trend in developing zein-polysaccharide complexes (ZPCs), which has tremendously improved the performance of zein-based colloidal carrier systems or emulsions. Increasing our understanding of zein interactions and their contribution to the structure of various macromolecules can help us to develop novel biomaterials that can be used in food, agriculture, biomedicine, and cosmetics. In addition, these nanocarriers are suitable for the encapsulation and delivery of bioactive compounds which have positive perspective in food industry. Therefore, this article aimed to review recent advances in the ZPCs that can be applied to functional or health-promoting foods, with a focus on the characteristics of different ZPCs, factors and mechanisms affecting the stability (especially thermal stability) of these complexes, and their application in food industry as a carrier for BCs. Further, the stability of ZPCs based emulsions under processing and physiological environments, as well some typical effective methods are introduced. Also, the principal challenges and prospects were enumerated and discussed.
Collapse
Affiliation(s)
- Qayyum Shehzad
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing, China
| | - Zelong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China.
| | - Min Zuo
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
21
|
Liao W, Xiao S, Yang J, Shi X, Zheng Y. Multifunctional nanogel based on carboxymethyl cellulose interfering with cellular redox homeostasis enhances phycocyanobilin photodynamic therapy. Carbohydr Polym 2024; 323:121416. [PMID: 37940295 DOI: 10.1016/j.carbpol.2023.121416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/28/2023] [Accepted: 09/17/2023] [Indexed: 11/10/2023]
Abstract
The redox homeostasis defense mechanism of tumor cells is one of the prime reasons for the unsatisfactory effect of photodynamic therapy (PDT). So far, little attention has been paid to this obstacle. In this work, we reported a synthesizing simple yet versatile nanogel (BCPS), synthesized by cystamine dihydrochloride functionalized sodium carboxymethylcellulose (CMC-SS), bovine serum albumin, and Phycocyanobilin self-assembly. The BCPS reduced the levels of glutathione molecules by reacting with glutathione, thereby interfering with intracellular redox homeostasis and enhancing the sensitivity of tumor cells to PDT. The BCPS was shown to possess excellent serum stability, high blood compatibility, low toxic side effects, and higher reactive oxygen species (ROS) utilization. After irradiation, the BCPS could significantly increase intracellular ROS level by approximately 1.6-fold and decrease the IC50 to HeLa cells by approximately 1.5-fold, compared to the pre-functional drugs BCP. This proposed strategy, based on increasing the utilization rate of ROS in tumor cells is promising for application potentials in tumor therapy.
Collapse
Affiliation(s)
- Wenqiang Liao
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Siqi Xiao
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
22
|
Chaudhari AK, Das S, Dwivedi A, Dubey NK. Application of chitosan and other biopolymers based edible coatings containing essential oils as green and innovative strategy for preservation of perishable food products: A review. Int J Biol Macromol 2023; 253:127688. [PMID: 37890742 DOI: 10.1016/j.ijbiomac.2023.127688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Deterioration of perishable foods due to fungal contamination and lipid peroxidation are the most threatened concern to food industry. Different chemical preservatives have been used to overcome these constrains; however their repetitive use has been cautioned owing to their negative impact after consumption. Therefore, attention has been paid to essential oils (EOs) because of their natural origin and proven antifungal and antioxidant activities. Many EO-based formulations have been in use but their industrial-scale application is still limited, possibly due to its poor solubility, vulnerability towards oxidation, and aroma effect on treated foods. In this sense, active food packaging using biopolymers could be considered as promising approach. The biopolymers can enhance the stability and effectiveness of EOs through controlled release, thus minimizes the deterioration of foods caused by fungal pathogens and oxidation without compromising their sensory properties. This review gives a concise appraisal on latest advances in active food packaging, particularly developed from natural polymers (chitosan, cellulose, cyclodextrins etc.), characteristics of biopolymers, and current status of EOs. Then, different packaging and their effectiveness against fungal pathogens, lipid-oxidation, and sensory properties with recent previous works has been discussed. Finally, effort was made to highlights their safety and commercialization aspects towards market solutions.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh 233001, India.
| | - Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal 713104, India
| | - Awanindra Dwivedi
- National Centre for Disease Control, Ministry of Health and Family Welfare, New Delhi 110054, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
23
|
Xu W, Wu G, Jia Y, Yin Y, Ning Y, Li P, Li C, Luo D, Shah BR. Rheological and physicochemical properties of heat-induced ovalbumin gels in presence of sodium carboxymethyl cellulose. FOOD SCI TECHNOL INT 2023:10820132231205620. [PMID: 37822200 DOI: 10.1177/10820132231205620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In this study, the effect of sodium carboxymethylcellulose (CMC-Na) on the rheological and physicochemical properties of heat-induced ovalbumin (OVA) gels was evaluated. The OVA/CMC-Na composite gels were prepared by heat-induced (85 °C, pH 7.0) a mixture of CMC-Na (0, 0.2, 0.4, 0.8 and 1%) and OVA. The results revealed that the addition of CMC-Na dramatically reduced the springiness and hardness of the composite gels, while slightly enhancing the intermolecular hydrogen bonding interactions, which facilitated the improvement of the softness of the gels. It can be observed by SEM that the added CMC-Na was stacked on the surface of the OVA, resulting in visible "linear bumps". All gel samples exhibited shear-thinning behavior. The apparent viscosity of the composite gels increased with the addition of CMC-Na, and the OVA gel with 1% CMC-Na showed the highest apparent viscosity and the lowest storage modulus (G'). Additionally, low field nuclear magnetic resonance (LF-NMR) measurements indicated that the increasing CMC-Na boosted the water mobility of the composite gel. This study offers a novel approach to the development of ovalbumin-based soft gel foods, especially for certain populations with swallowing difficulties.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Guanchen Wu
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Yongxian Jia
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Yongpeng Yin
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yuli Ning
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Penglin Li
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Cuiping Li
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Bakht Ramin Shah
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
24
|
Li M, Feng L, Xu Y, Nie M, Li D, Zhou C, Dai Z, Zhang Z, Zhang M. Rheological property, β-carotene stability and 3D printing characteristic of whey protein isolate emulsion gels by adding different polysaccharides. Food Chem 2023; 414:135702. [PMID: 36821919 DOI: 10.1016/j.foodchem.2023.135702] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Emulsion gels with unique structural and mechanical properties have promising applications in 3D food printing. The purpose of this paper was to investigate the rheological property, β-carotene stability and 3D printing characteristic of whey protein isolate (WPI) emulsion gels by adding guar gum (GG), locust bean gum (LBG), xanthan gum (XG) and gum arabic (GA). The results showed that all samples exhibited shear thinning behavior and elastic characteristic. XG could reduce water mobility and increase WHC of WPI emulsion gel. The disulfide bond was the main chemical molecular force of emulsion gels, and XG significantly increased the hydrophobic interactions. GG and LBG increased gel strength, hardness and gumminess, reduced springiness, cohesiveness and chewiness of emulsion gels. GG sample had the best printing performance, more uniform network structure and better stability of β-carotene. This study provided a theoretical basis for 3D printing functional food.
Collapse
Affiliation(s)
- Ming Li
- School of Food Biological Engineering, Jiangsu University, 212013 Zhenjiang, China; Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Lei Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China.
| | - Yayuan Xu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Meimei Nie
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Dajing Li
- School of Food Biological Engineering, Jiangsu University, 212013 Zhenjiang, China; Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China.
| | - Cunshan Zhou
- School of Food Biological Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Zhuqing Dai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Zhongyuan Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| |
Collapse
|
25
|
Dong S, Hu SM, Yu SJ, Zhou S, Zhou T. Soybean protein isolate/chitosan complex-rutin microcapsules. Int J Biol Macromol 2023:125323. [PMID: 37307973 DOI: 10.1016/j.ijbiomac.2023.125323] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Rutin is a flavonoid polyphenol with excellent biological activity, but due to its instability and poor water solubility, the utilization rate is reduced in vivo. Preparation of rutin microcapsules from soybean protein isolate (SPI) and chitosan hydrochloride (CHC) by composite coacervation can improve this restriction. The optimal preparation conditions were as follows: the volume ratio of CHC/SPI 1:8, pH 6, and total concentration of CHC and SPI 2 %. The rutin encapsulation rate and loading capacity of the microcapsules were 90.34 % and 0.51 % under optimal conditions. The SPI-CHC-rutin (SCR) microcapsules had a gel mesh structure and good thermal stability, and the system was stable and homogeneous after 12 d storage. During in vitro digestion, the release rates of SCR microcapsules in simulated gastric and intestinal fluids were 16.97 % and 76.53 %, respectively, achieving a targeted release of rutin in intestinal fluids; and the digested products were found to exhibit superior antioxidant activity to that of free rutin digests, indicating a good protection of microencapsulation on the bioactivity of rutin. Overall, SCR microcapsules developed in this study effectively enhanced the bioavailability of rutin. The present work provides a promising delivery system for natural compounds with low bioavailability and stability.
Collapse
Affiliation(s)
- Shuai Dong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shu-Min Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Si-Jia Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK; School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
26
|
Yang S, Wang F, Han H, Santos HA, Zhang Y, Zhang H, Wei J, Cai Z. Fabricated technology of biomedical micro-nano hydrogel. BIOMEDICAL TECHNOLOGY 2023; 2:31-48. [DOI: 10.1016/j.bmt.2022.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Ma X, Zhu X, Mu Y, Gao C, He W, Ran M, Cai L, Fan G, Ma G, Sun X. Fabrication of polydopamine reduced CuO nanoparticle-alginate composite nanogels for management of Pseudomonas synringae pv. tabaci in tobacco. PEST MANAGEMENT SCIENCE 2023; 79:1213-1224. [PMID: 36414610 DOI: 10.1002/ps.7298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The wildfire disease on tobacco can seriously hinder plants. Meanwhile, its pathogen, Pseudomonas syringae, can also infect over 200 plants and threat agriculture production. However, the disease usually occurs after summer rains which washes away most copper (Cu)-based bactericides, allowing the disease to invade. Therefore, we fabricate a new nanogel with high disease control and anti-erosion ability and study the effects of the reductant on the performance of the copper oxide nanoparticle (CuONP) composite nanogel. RESULTS Polydopamine (PDA) is a polycation for both in situ reduction of CuONP in alginate nanogels and for adjusting the copper ion (Cu2+ ) releasing rate in this work. The composite nanogel fabricated by PDA (PDA-CuONP@ALGNP@CTAC) had a higher Cu2+ releasing rate, damaging the pathogen membrane more efficiently, allowing for better disease control and plant growth promotion when compared to sodium borohydride (SBH)-fabricated nanogel (SBH-CuONP@ALGNP@CTAC) or the commercial bactericide, thiodiazole copper. The PDA-CuONP@ALGNP@CTAC had a high anti-erosion ability and could remain adhered to the leaf surface even after five rain event simulations. CONCLUSION The addition of polycations (like PDA) into CuONP composite nanogel could increase the Cu2+ releasing rate, resulting in improved disease management when compared to SBH-CuONP@ALGNP@CTAC or thiodiazole copper. The PDA containing gel had an improved anti-erosion ability and water resistance. This new composite nanogel has a high potential for wildfire disease control, improving agricultural production. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| | - Xin Zhu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yanling Mu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Changdan Gao
- College of Plant Protection, Southwest University, Chongqing, China
| | - Wenjie He
- College of Plant Protection, Southwest University, Chongqing, China
| | - Mao Ran
- Chongqing Tobacco Science Research Institute, Chongqing Company of China Tobacco Corporation, Chongqing, China
| | - Lin Cai
- Guizhou Key Laboratory for Tobacco Quality, Guizhou University, Guiyang, China
| | - Guangjin Fan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Guanhua Ma
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Hadidi M, Tan C, Assadpour E, Kharazmi MS, Jafari SM. Emerging plant proteins as nanocarriers of bioactive compounds. J Control Release 2023; 355:327-342. [PMID: 36731801 DOI: 10.1016/j.jconrel.2023.01.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The high prevalence of chronic illnesses, including cancer, diabetes, obesity, and cardiovascular diseases has become a growing concern for modern society. Recently, various bioactive compounds (bioactives) are shown to have a diversity of health-beneficial impacts on a wide range of disorders. But the application of these bioactives in food and pharmaceutical formulations is limited due to their poor water solubility and low bioaccessibility/bioavailability. Plant proteins are green alternatives for designing biopolymeric nanoparticles as appropriate nanocarriers thanks to their amphiphilic nature compatible with many bioactives and unique functional properties. Recently, emerging plant proteins (EPPs) are employed as nanocarriers for protection and targeted delivery of bioactives and also improving their stability and shelf-life. EPPs could enhance the solubility, stability, and bioavailability of bioactives by different types of delivery systems. In addition, the use of EPPs in combination with other biopolymers like polysaccharides was found to make a favorable wall material for food bioactives. This review article covers the various sources and importance of EPPs along with different encapsulation techniques of bioactives. Characterization of EPPs for encapsulation is also investigated. Furthermore, the focus is on the application of EPPs as nanocarriers for food bioactives.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
29
|
Ke C, Li L. Influence mechanism of polysaccharides induced Maillard reaction on plant proteins structure and functional properties: A review. Carbohydr Polym 2023; 302:120430. [PMID: 36604091 DOI: 10.1016/j.carbpol.2022.120430] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Plant proteins have high nutritional value, a wide range of sources and low cost. However, it is easily affected by the environmental factors of processing and lead the problem of poor functionality. These problems of plant proteins can be improved by the polysaccharides induced Maillard reaction. The interaction between proteins and polysaccharides through Maillard reaction can change the structure of proteins as well as improve the functional properties and biological activity. The products of Maillard reaction, such as reductone intermediates, heterocyclic compounds and melanoidins have certain antioxidant, antibacterial and other biological activities. However, heterocyclic amines, acrylamide, and products generated in the advanced stage of the Maillard reaction also have a negative impact, which may increase cytotoxicity and be associated with chronic diseases. Therefore, it is necessary to effectively control the process of Maillard reaction. This review focuses on the modification of plant proteins by polysaccharide-induced Maillard reaction and the effects of Maillard reaction on protein structure, functional properties and biological activity. It also points out how to accurately reflect the changes of protein structure in Maillard reaction. In addition, it also points out the application ways of plant protein-polysaccharide complexes in the food industry, for example, emulsifiers, delivery carriers of functional substances, and natural antioxidants due to their improved solubility, emulsifying, gelling and antioxidant properties. This review provides theoretical support for controlling Maillard reaction based on protein structure.
Collapse
Affiliation(s)
- Chuxin Ke
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
30
|
Sharma N, Kabeer SW, Singh IP, Tikoo K. Cisplatin conjugation with an exopolysaccharide extracted from Lactobacillus gasseri potentiates its efficacy and attenuates its toxicity. Int J Biol Macromol 2023; 225:227-240. [PMID: 36354077 DOI: 10.1016/j.ijbiomac.2022.10.256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
The development of newer cisplatin analogs is constantly being investigated owing to its low solubility, poor pharmacokinetics, and dose-related toxicity. In order to address the limitations of current cisplatin therapy, the present study was undertaken. Cisplatin conjugation with an exopolysaccharide extracted from Lactobacillus gasseri (LG-EPS) showed remarkably enhanced and selective anticancer activity by targeting tumor cells overexpressing glucose transporter 1 (GLUT1). The EPS-cisplatin complex exhibited a 600-fold increase in aqueous solubility with a better pharmacokinetic profile (longer half-life) in comparison to cisplatin. Cell viability assay and western blotting demonstrated a strong correlation between the cytotoxicity profile and GLUT1 expressions in different cell lines. The concentration of DNA-bound platinum was also found to be significantly higher in EPS-cisplatin-treated cells. Quercetin, a competitive inhibitor of GLUTs, was shown to prevent this selective uptake of EPS-cisplatin complex. Surprisingly, EPS-cisplatin complex showed an exceptionally safer profile (4 times the maximum tolerated dose of cisplatin) in the acute toxicity study and was also more efficacious against the xenograft mice model. The study suggests that this green glycoconjugation can be an effective and safer strategy to broaden the therapeutic potential of anti-cancer drugs in general and cisplatin in particular.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Shaheen Wasil Kabeer
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
31
|
Hu D, Zhang Z, Li W, Qin X, Zhang R, Yuan L, Yang X. Promoting adsorption performance and mechanical strength in composite porous gel film. Int J Biol Macromol 2022; 223:1115-1125. [PMID: 36395927 DOI: 10.1016/j.ijbiomac.2022.11.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
Abstract
Starch is widely used to prepare biodegradable films due to its superior biocompatibility, low immunogenicity, and renewability. In this work, a novel K+/carrageenan porous-starch/casein gel film with high oil absorption was prepared using modified porous starch. Optimal gel stability and uniformity were obtained when adding 10 mg/mL k-carrageenan and 2 mg/mL K+ to 2 mg/mL microgels, with significantly reduced crystallinity and elasticity and increased tensile strength. The concentration of k-carrageenan was the main factor affecting gel strength and the hydrophilic and mechanical properties of the film. In addition, the film-forming solution showed excellent fluidity and spreading typical of non-Newtonian fluids. The film also exhibited a highly porous structure, as visualized by SEM and AFM, in line with a cumulative oil absorption rate of 87.5 % within 20 min, which was significantly higher than that obtained with glutinous rice starch. In conclusion, reinforcement of starch-based microgels as described in this study can maximize the film's adsorption performance and mechanical properties, with promising applications in skin care and beauty products.
Collapse
Affiliation(s)
- Dan Hu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China.
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong, Yantai 264003, PR China
| | - Xiaoxiao Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|
32
|
Xiao J, Li L, You H, Zhou S, Feng Y, You R. Silk nanofibrils/chitosan composite fibers with enhanced mechanical properties. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jiahui Xiao
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering Wuhan Textile University Wuhan China
| | - Liang Li
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering Wuhan Textile University Wuhan China
| | - Haining You
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering Wuhan Textile University Wuhan China
| | - Shunshun Zhou
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering Wuhan Textile University Wuhan China
| | - Yanfei Feng
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering Wuhan Textile University Wuhan China
| | - Renchuan You
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering Wuhan Textile University Wuhan China
| |
Collapse
|
33
|
Xu M, Li J, Wang Y, Liu J, Liu P, Wang Q, Che Z. Complex coacervation of soy protein isolate-limited enzymatic hydrolysates and sodium alginate: Formation mechanism and its application. Food Sci Nutr 2022; 10:4178-4188. [PMID: 36514769 PMCID: PMC9731524 DOI: 10.1002/fsn3.3009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/19/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022] Open
Abstract
The complex coacervation of soybean protein isolate and polysaccharide has been widely applied for preparing biopolymer materials like microcapsule. In this study, hydrolytic soy protein isolate (HSPI) was prepared by mild hydrolysis of soy protein isolate (SPI) with fungal protease 400 (F400). The degree of hydrolysis (DH) for the enzymatic products was controlled at 1%-5%. Emulsification, oxidation resistance, and thermal stability were used to evaluate the performances of HSPI with different DH. The results showed that the HSPI with the hydrolysis degree of 2% had the optimal property. Subsequently, the complex polymer of HSPI/SA was prepared by the coalescence reaction of HSPI and sodium alginate (SA). The turbidity curves manifested the optimal complex coacervation occurred at the ratio of 7:1 (HSPI:SA). Fourier transform infrared spectroscopy (FTIR) presented that the reaction involved electrostatic interactions between -NH3 + in HSPI and -COO- in SA. Isothermal titration calorimetry experiments indicated that the complex coacervation reactions of HSPI and SA arose spontaneously. The microencapsulation by complex coacervation of HSPI and SA was further produced for embedding sweet orange oil. The thermogravimetric analysis (TGA) result revealed that the microencapsulation system of HSPI/SA had a better heat resistance than that using the SPI/SA complex polymer.
Collapse
Affiliation(s)
- Min Xu
- School of Food and BioengineeringXihua UniversityChengduChina
| | - Jiayi Li
- School of Food and BioengineeringXihua UniversityChengduChina
| | - Ying Wang
- School of Food and BioengineeringXihua UniversityChengduChina
| | - Jiamin Liu
- School of Food and BioengineeringXihua UniversityChengduChina
| | - Ping Liu
- School of Food and BioengineeringXihua UniversityChengduChina
| | - Qin Wang
- Department of Nutrition & Food scienceUniversity of MarylandCollege ParkMarylandUSA
| | - Zhenming Che
- School of Food and BioengineeringXihua UniversityChengduChina
| |
Collapse
|
34
|
Hydrogels and biohydrogels: investigation of origin of production, production methods, and application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Chen Y, Wang Z, Wang X, Su M, Xu F, Yang L, Jia L, Zhang Z. Advances in Antitumor Nano-Drug Delivery Systems of 10-Hydroxycamptothecin. Int J Nanomedicine 2022; 17:4227-4259. [PMID: 36134205 PMCID: PMC9482956 DOI: 10.2147/ijn.s377149] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 01/10/2023] Open
Abstract
10-Hydroxycamptothecin (HCPT) is a natural plant alkaloid from Camptotheca that shows potent antitumor activity by targeting intracellular topoisomerase I. However, factors such as instability of the lactone ring and insolubility in water have limited the clinical application of this drug. In recent years, unprecedented advances in biomedical nanotechnology have facilitated the development of nano drug delivery systems. It has been found that nanomedicine can significantly improve the stability and water solubility of HCPT. NanoMedicines with different diagnostic and therapeutic functions have been developed to significantly improve the anticancer effect of HCPT. In this paper, we collected reports on HCPT nanomedicines against tumors in the past decade. Based on current research advances, we dissected the current status and limitations of HCPT nanomedicines development and looked forward to future research directions.
Collapse
Affiliation(s)
- Yukun Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhenzhi Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Xiaofan Wang
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Mingliang Su
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Fan Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lian Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| |
Collapse
|
36
|
da Silva GR, dos Santos AL, Soares AC, dos Santos MC, dos Santos SC, Ţălu Ş, Rodrigues de Lima V, Bagnato VS, Sanches EA, Inada NM. PLGA-PVA-PEG Single Emulsion Method as a Candidate for Aminolevulinic Acid (5-ALA) Encapsulation: Laboratory Scaling Up and Stability Evaluation. Molecules 2022; 27:6029. [PMID: 36144765 PMCID: PMC9506276 DOI: 10.3390/molecules27186029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most widely used molecules used for photodynamic therapy (PDT) is 5-aminolevulinic acid (5-ALA), a precursor in the synthesis of tetrapyrroles such as chlorophyll and heme. The 5-ALA skin permeation is considerably reduced due to its hydrophilic characteristics, decreasing its local bioavailability and therapeutic effect. For this reason, five different systems containing polymeric particles of poly [D, L-lactic-co-glycolic acid (PLGA)] were developed to encapsulate 5-ALA based on single and double emulsions methodology. All systems were standardized (according to the volume of reagents and mass of pharmaceutical ingredients) and compared in terms of laboratory scaling up, particle formation and stability over time. UV-VIS spectroscopy revealed that particle absorption/adsorption of 5-ALA was dependent on the method of synthesis. Different size distribution was observed by DLS and NTA techniques, revealing that 5-ALA increased the particle size. The contact angle evaluation showed that the system hydrophobicity was dependent on the surfactant and the 5-ALA contribution. The FTIR results indicated that the type of emulsion influenced the particle formation, as well as allowing PEG functionalization and interaction with 5-ALA. According to the 1H-NMR results, the 5-ALA reduced the T1 values of polyvinyl alcohol (PVA) and PLGA in the double emulsion systems due to the decrease in molecular packing in the hydrophobic region. The results indicated that the system formed by single emulsion containing the combination PVA-PEG presented greater stability with less influence from 5-ALA. This system is a promising candidate to successfully encapsulate 5-ALA and achieve good performance and specificity for in vitro skin cancer treatment.
Collapse
Affiliation(s)
- Geisiane Rosa da Silva
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Paulo 13560-110, Brazil
| | | | - Andrey Coatrini Soares
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Paulo 13560-110, Brazil
- Embrapa Instrumentation, São Paulo 13560-110, Brazil
| | | | - Sandra Cruz dos Santos
- Chemical and Food School, Federal University of Rio Grande (FURG), Rio Grande 96203-000, Brazil
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, 15 Constantin Daicoviciu St., 400020 Cluj-Napoca, Romania
| | - Vânia Rodrigues de Lima
- Chemical and Food School, Federal University of Rio Grande (FURG), Rio Grande 96203-000, Brazil
| | | | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus 69067-005, Brazil
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Paulo 13560-110, Brazil
| |
Collapse
|
37
|
Impact of weakly charged insoluble karaya gum on zein nanoparticle and mechanism for stabilizing Pickering emulsions. Int J Biol Macromol 2022; 222:121-131. [PMID: 36113597 DOI: 10.1016/j.ijbiomac.2022.09.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022]
Abstract
The effect of weakly charged insoluble karaya gum (KG) on zein colloidal nanoparticles (ZKGPs) for stabilizing Pickering emulsions was investigated. Due to weak surface charge, KG could cover the surface of zein particles by hydrogen bonds and weak electrostatic interactions. With the increase in coverage, the zeta potential of ZKGPs changed from positive to negative values close to zero and the average particle size tended to become larger. The closest neutral wettability (89.85°) was achieved when the zein/KG mass ratio was 1:1. The samples prepared with high oil volume fraction (φ = 0.5-0.75) and high particle concentration (1.0-1.3 %, w/v) formed emulsion gels easily and showed higher storage stability. CLSM images also confirmed that ZKGPs could be distributed in the continuous phase to enhance the emulsion network structure. Consequently, weakly charged ZKGPs reduced the emulsification energy barrier and increased the coverage and steric hindrance of particles at the oil/water interface. These findings provide new ideas for the development of stable Pickering emulsions for application in food textural modification as well as encapsulation and delivery of bioactive substances.
Collapse
|
38
|
Meng Y, Qiu C, Li X, McClements DJ, Sang S, Jiao A, Jin Z. Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients. Crit Rev Food Sci Nutr 2022; 64:187-201. [PMID: 35930011 DOI: 10.1080/10408398.2022.2105800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polysaccharides are natural polymers isolated from plants, microorganisms, algae, and some animals they are composed of aldoses or ketoses linked by glycosidic bonds. Due to the affordability, abundance, safety, and functionality, polysaccharides are widely used in the foods and medicines to construct oral delivery systems for sensitive bioactive ingredients. In this article, the characteristics and applications of nanoscale polysaccharide-based delivery carriers are reviewed, including their ability to encapsulate, protect, and deliver bioactive ingredients. This review discusses the sources, characteristics, and functional properties of common food polysaccharides, including starch, pectin, chitosan, xanthan gum, and alginate. It also highlights the potential advantages of using polysaccharides for the construction of nano-delivery systems, such as nanoparticles, nanogels, nanoemulsions, nanocapsules, and nanofibers. Moreover, the application of delivery systems assembled from polysaccharides is summarized, with a focus on pH-responsive delivery of bioactives. There are some key findings and conclusions: Nanoscale polysaccharide delivery systems provide several advantages, including improved water-dispersibility, flavor masking, stability enhancement, reduced volatility, and controlled release; Polysaccharide nanocarriers can be used to construct pH-responsive delivery vehicles to achieve intestinal-targeted delivery and controlled release of bioactive ingredients; Polysaccharides can be used in combination with other biopolymers to form composite delivery systems with enhanced functional attributes.
Collapse
Affiliation(s)
- Yaxu Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, United States
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
39
|
Wang H, Ma JX, Zhou M, Si J, Cui BK. Current advances and potential trends of the polysaccharides derived from medicinal mushrooms sanghuang. Front Microbiol 2022; 13:965934. [PMID: 35992671 PMCID: PMC9382022 DOI: 10.3389/fmicb.2022.965934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022] Open
Abstract
For thousands of years, sanghuang is distinctive as a general designation for a group of precious and rare Chinese medicinal mushrooms. Numerous investigations have revealed that polysaccharide is one of the important biological active ingredients of sanghuang with various excellent biological activities, including antioxidant, anti-aging, anti-tumor, immunomodulatory, anti-inflammatory, anti-diabetic, hepatoprotective, and anti-microbial functionalities. For the past two decades, preparation, structural characterization, and reliable bioactivities of the polysaccharides from fruiting bodies, cultured mycelia, and fermentation broth of sanghuang have been arousing extensive interest, and particularly, different strains, sources, and isolation protocols might result in obvious discrepancies in structural features and bioactivities. Therefore, this review summarizes the recent reports on preparation strategies, structural features, bioactivities, and structure-activity relationships of sanghuang polysaccharides, which will enrich the knowledge on the values of natural sanghuang polysaccharides and support their further development and utilization as therapeutic agents, vaccines, and functional foods in tonic and clinical treatment.
Collapse
|
40
|
Immobilization Systems of Antimicrobial Peptide Ib−M1 in Polymeric Nanoparticles Based on Alginate and Chitosan. Polymers (Basel) 2022; 14:polym14153149. [PMID: 35956663 PMCID: PMC9370884 DOI: 10.3390/polym14153149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
The development of new strategies to reduce the use of traditional antibiotics has been a topic of global interest due to the resistance generated by multiresistant microorganisms, including Escherichia coli, as etiological agents of various diseases. Antimicrobial peptides are presented as an alternative for the treatment of infectious diseases caused by this type of microorganism. The Ib−M1 peptide meets the requirements to be used as an antimicrobial compound. However, it is necessary to use strategies that generate protection and resist the conditions encountered in a biological system. Therefore, in this study, we synthesized alginate and chitosan nanoparticles (Alg−Chi NPs) using the ionic gelation technique, which allows for the crosslinking of polymeric chains arranged in nanostructures by intermolecular interactions that can be either covalent or non-covalent. Such interactions can be achieved through the use of crosslinking agents that facilitate this binding. This technique allows for immobilization of the Ib−M1 peptide to form an Ib−M1/Alg−Chi bioconjugate. SEM, DLS, and FT-IR were used to determine the structural features of the nanoparticles. We evaluated the biological activity against E. coli ATCC 25922 and Vero mammalian cells, as well as the stability at various temperatures, pH, and proteases, of Ib−M1 and Ib−M1/Alg-Chi. The results showed agglomerates of nanoparticles with average sizes of 150 nm; an MIC of 12.5 µM, which was maintained in the bioconjugate; and cytotoxicity values close to 40%. Stability was maintained against pH and temperature; in proteases, it was only evidenced against pepsin in Ib−M1/Alg-Chi. The results are promising with respect to the use of Ib−M1 and Ib−M1/Alg−Chi as possible antimicrobial agents.
Collapse
|
41
|
Xu Y, Lv Y, Yin Y, Zhao H, Li X, Yi S, Li J. Improvement of the gel properties and flavor adsorption capacity of fish myosin upon yeast β-glucan incorporation. Food Chem 2022; 397:133766. [PMID: 35908465 DOI: 10.1016/j.foodchem.2022.133766] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
The potential effects of yeast β-glucan (YG) on heat-induced gel properties, microstructure and flavor adsorption capacity of fish myosin at different NaCl concentrations were investigated in this study. The incorporation of YG significantly improved the texture properties, gel strength, water holding capacity (WHC), storage modulus and loss modulus of myosin gels, especially at a high salt level, whereas the whiteness declined. Furthermore, myosin gels containing YG displayed a more compact and ordered three-dimensional network structure, accompanied by the increasing immobilization of water in gels. The binding abilities of gels to selected flavor compounds at high salt content were inferior to those at the low salt content. Regardless of the salt level, YG addition boosted the flavor binding capacity of gels, which might be attributed to the unfolding of the protein conformation by exposing more flavor-binding sites, as well as the porous sponge structure of YG with unique adsorption capacity.
Collapse
Affiliation(s)
- Yongxia Xu
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Yanan Lv
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Yiming Yin
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Honglei Zhao
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China.
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China.
| |
Collapse
|
42
|
Kopač T, Krajnc M, Ručigaj A. Protein release from nanocellulose and alginate hydrogels: The study of adsorption and desorption kinetics. Colloids Surf B Biointerfaces 2022; 217:112677. [PMID: 35792530 DOI: 10.1016/j.colsurfb.2022.112677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023]
Abstract
This work presents a study of the lysozyme release from crosslinked TEMPO nanocellulose (TOCNF) and alginate (ALG) hydrogels in a medium with different ionic strength and temperature. The main objective is to develop a mathematical model for a detailed study of the concurrent action of diffusion mechanism and adsorption/desorption kinetics. Model fit parameters provide important information about the initial (maximum) adsorption rate and its deceleration with increasing ionic strength of the release medium. Similarly, the initial (minimum) desorption rate and its acceleration with increasing salt concentration can be determined. The model leads us to the conclusion that the initial adsorption rate is higher in the case of TOCNF, but due to fewer electrostatic interactions and morphology as well as topography of the surface, it decreases to a negligible value much faster than in the case of ALG, where the diffusion process becomes dominant.
Collapse
Affiliation(s)
- Tilen Kopač
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Matjaž Krajnc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Aleš Ručigaj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
43
|
The non-covalent interactions between whey protein and various food functional ingredients. Food Chem 2022; 394:133455. [PMID: 35732088 DOI: 10.1016/j.foodchem.2022.133455] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
In daily diet, Whey protein (WP) is often coexisted with various Food functional ingredients (FFI) such as proteins, polyphenols, polysaccharides and vitamins, which inevitably affect or interact with each other. Generally speaking, they may be interact by two different mechanisms: non-covalent and covalent interactions, of which the former is more common. We reviewed the non-covalent interactions between WP and various FFI, explained the effect of each WP-FFI interaction, and provided possible applications of WP-FFI complex in the food industry. The biological activity, physical and chemical stability of FFI, and the structure and functionalities of WP were enhanced through the non-covalent interactions. The development of non-covalent interactions between WP and FFI provides opportunities for the design of new ingredients and biopolymer complex, which can be applied in different fields. Future research will further focus on the influence of external or environmental factors in the food system and processing methods on interactions.
Collapse
|
44
|
Interaction between Gelatin and Mulberry Leaf Polysaccharides in Miscible System: Physicochemical Characteristics and Rheological Behavior. Foods 2022; 11:foods11111571. [PMID: 35681321 PMCID: PMC9180381 DOI: 10.3390/foods11111571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, the miscible system was formed by mixing gelatin (G) with mulberry leaf polysaccharides (MLPs) continuously extracted with a hot buffer (HBSS), a chelating agent (CHSS), a dilute alkali (DASS), and a concentrated alkali (CASS), and the zeta potential, turbidity, particle size, distribution, and rheological properties of the miscible systems were evaluated. Under acidic conditions, the miscible systems of four polysaccharides and gelatin were in a clear state; under alkaline conditions, G-HBSS and G-CHSS were clarified, and G-DASS and G-CASS changed from clarification to turbidity. The zeta potential changed from positive to negative with the increase in pH. When the pH was at 7, it increased with the increase in polysaccharide concentration but was still negative. The four miscible systems all showed polydispersity. The particle sizes of G-HBSS and G-CHSS decreased with the increase in pH, while the particle sizes of G-DASS and G-CASS were increased. The four miscible systems showed “shear thinning” behavior, and the addition of gelatin reduced the apparent viscosity of the four polysaccharide solutions. G-CHSS was highly stable, and G-CASS was more suitable as a stabilizer in the freezing process.
Collapse
|
45
|
Zhang T, Myint KZ, Xia Y, Wu J. A comparative study on physicochemical and micellar solubilization performance between monoglucosyl rebaudioside A and rebaudioside A. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2651-2659. [PMID: 34687452 DOI: 10.1002/jsfa.11604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rebaudioside A (RA) and its monoglucosyl derivative, as like rebaudioside D (RD) are the most popular stevia glycosides but possess poor solubility in water, which limited their application as edible surfactants, the applications as in micellar solubilization and drug delivery. Meanwhile, effect of the monoglucosyl attached to RA moiety remains unclear. RESULTS Monoglucosyl rebaudioside A (RAG1) was synthesized via hydrolyzing the transglycosylation product of RA with 95% of RA converted. RAG1 content in raw reaction mixture was as high as 69.5% of total glycosides, and harvested with a content of 88.2% by simple filtration. The RAG1 exhibited an aqueous solubility of 87 folds of RA or 391 folds of RD at 25 °C. The surface activity of RAG1 solution was higher than RA and invincible to RD. The RAG1 micelles promoted aqueous solubility of idebenone (IDE) up to 500 folds higher at 25 °C. The cumulative release rate of IDE encapsulated in RAG1 micelles was 777.5% or 456.7% higher of that of free IDE in simulated gastric/intestinal fluids in 14 h, respectively. The RAG1-IDE remained the same in 98 days at 25 °C. CONCLUSION The α-linked glucosyl to RA induced higher hydrophilicity and surface activity than that resulted by β-linked glucosyl, making RAG1 not only dramatically raise the aqueous solubility of RA, but also endow IDE folds higher in bioaccessibility, yet making the capsule stable at storage. The results would provide a new edible delivery nanocarrier for encapsulation of hydrophobic bioactive components. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tongtong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Khaing Zar Myint
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
46
|
Modern Herbal Nanogels: Formulation, Delivery Methods, and Applications. Gels 2022; 8:gels8020097. [PMID: 35200478 PMCID: PMC8872030 DOI: 10.3390/gels8020097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
This study examined the most recent advancements in nanogel production and drug delivery. Phytochemistry is a discipline of chemistry that studies herbal compounds. Herbal substances have aided in the development of innovative remedies for a wide range of illnesses. Several of these compounds are forbidden from being used in medications due to broad medical characteristics and pharmacokinetics. A variety of new technical approaches have been investigated to ameliorate herbal discoveries in the pharmaceutical sector. The article focuses on the historical data for herb-related nanogels that are used to treat a variety of disorders with great patient compliance, delivery rate, and efficacy. Stimulus-responsive nanogels such as temperature responsive and pH-responsive systems are also discussed. Nanogel formulations, which have been hailed as promising targets for drug delivery systems, have the ability to alter the profile of a drug, genotype, protein, peptide, oligosaccharide, or immunogenic substance, as well as its ability to cross biological barriers, biodistribution, and pharmacokinetics, improving efficacy, safety, and patient cooperation.
Collapse
|
47
|
Lu Y, Luo Q, Chu Y, Tao N, Deng S, Wang L, Li L. Application of Gelatin in Food Packaging: A Review. Polymers (Basel) 2022; 14:polym14030436. [PMID: 35160426 PMCID: PMC8838392 DOI: 10.3390/polym14030436] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/01/2022] [Accepted: 01/09/2022] [Indexed: 01/27/2023] Open
Abstract
Owing to the increasing environmental concerns and requirements for high-quality foods, edible films and coatings (based on proteins, polysaccharides, natural phenolic active substances, etc.) are being developed as effective alternatives to traditional plastic packaging. Gelatin is extracted from collagen. It is an ideal material for food packaging due to its versatile advantages such as low price, polymerization, biodegradability, good antibacterial and antioxidant properties, etc. However, gelatin film exists poor waterproof and mechanical properties, which limit its developments and applications in food packaging. Previous studies show that pure gelatin can be modified by adding active ingredients and incorporating them with bio-polymers to improve its mechanical properties, aiming to achieve the desirable effect of preservation. This review mainly shows the preparation and molding ways of gelatin-based edible films and the applications of gelatin modified with other biopolymers. Furthermore, this review provides the latest advances in gelatin-based biodegradable packaging and food applications that exhibit outstanding advantages in food preservation.
Collapse
Affiliation(s)
- Yanan Lu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Qijun Luo
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Yuchan Chu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Ningping Tao
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Shanggui Deng
- Engineering Research Center of Food Thermal Processing Technology, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Li Wang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| |
Collapse
|
48
|
Nanocarriers for Sustainable Active Packaging: An Overview during and Post COVID-19. COATINGS 2022. [DOI: 10.3390/coatings12010102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lockdown has been installed due to the fast spread of COVID-19, and several challenges have occurred. Active packaging was considered a sustainable option for mitigating risks to food systems during COVID-19. Biopolymeric-based active packaging incorporating the release of active compounds with antimicrobial and antioxidant activity represents an innovative solution for increasing shelf life and maintaining food quality during transportation from producers to consumers. However, food packaging requires certain physical, chemical, and mechanical performances, which biopolymers such as proteins, polysaccharides, and lipids have not satisfied. In addition, active compounds have low stability and can easily burst when added directly into biopolymeric materials. Due to these drawbacks, encapsulation into lipid-based, polymeric-based, and nanoclay-based nanocarriers has currently captured increased interest. Nanocarriers can protect and control the release of active compounds and can enhance the performance of biopolymeric matrices. The aim of this manuscript is to provide an overview regarding the benefits of released active compound-loaded nanocarriers in developing sustainable biopolymeric-based active packaging with antimicrobial and antioxidant properties. Nanocarriers improve physical, chemical, and mechanical properties of the biopolymeric matrix and increase the bioactivity of released active compounds. Furthermore, challenges during the COVID-19 pandemic and a brief post-COVID-19 scenario were also mentioned.
Collapse
|
49
|
Xu T, Skoulas D, Ding D, Cryan SA, Heise A. Exploring the potential of polypeptide–polypeptoide hybrid nanogels for mucosal delivery. Polym Chem 2022; 13:6054-6060. [DOI: 10.1039/d2py01126c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
By chain extension of polysarcosine with phenylalanine and cystine, nanogels are formed. The nanogels facilitate the transport of dyes across an artificial mucus coated membrane and their release by reductive bond cleavage.
Collapse
Affiliation(s)
- Tao Xu
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Dimitrios Skoulas
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, Ireland
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin 2, Ireland
| | - Andreas Heise
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, Ireland
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin 2, Ireland
| |
Collapse
|
50
|
Jiang L, Li Y, Wang L, Guo J, Liu W, Meng G, Zhang L, Li M, Cong L, Sun M. Recent Insights Into the Prognostic and Therapeutic Applications of Lysozymes. Front Pharmacol 2021; 12:767642. [PMID: 34925025 PMCID: PMC8678502 DOI: 10.3389/fphar.2021.767642] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023] Open
Abstract
Lysozymes are naturally occurring enzymes present in a variety of biological organisms, such as bacteria, fungi, and animal bodily secretions and tissues. It is also the main ingredient of many ethnomedicines. It is well known that lysozymes and lysozyme-like enzymes can be used as anti-bacterial agents by degrading bacterial cell wall peptidoglycan that leads to cell death, and can also inhibit fungi, yeasts, and viruses. In addition to its direct antimicrobial activity, lysozyme is also an important component of the innate immune system in most mammals. Increasing evidence has shown the immune-modulatory effects of lysozymes against infection and inflammation. More recently, studies have revealed the anti-cancer activities of lysozyme in multiple types of tumors, potentially through its immune-modulatory activities. In this review, we summarized the major functions and underlying mechanisms of lysozymes derived from animal and plant sources. We highlighted the therapeutic applications and recent advances of lysozymes in cancers, hypertension, and viral diseases, aiming toseeking alternative therapies for standard medical treatment bypassing side effects. We also evaluated the role of lysozyme as a promising cancer marker for prognosis to indicate the outcomes recurrence for patients.
Collapse
Affiliation(s)
- Lin Jiang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yunhe Li
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Liye Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Jian Guo
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Wei Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Guixian Meng
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lei Zhang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Miao Li
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Lina Cong
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|